
Computational and Applied Mathematics (2023) 42:75
https://doi.org/10.1007/s40314-023-02209-w

Iterative approaches for solving equilibrium problems, zero
point problems and fixed point problems in Hadamard
spaces

Kiattiyot Juagwon1 ·Withun Phuengrattana1

Received: 7 January 2022 / Revised: 9 October 2022 / Accepted: 18 January 2023 /
Published online: 8 February 2023
© The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2023

Abstract
In this paper, we introduce a new iterative algorithm for approximating a common element of
the set of solutions of an equilibrium problem, a common zero of a finite family of monotone
operators and the set of fixed points of nonexpansive mappings in Hadamard spaces. We also
give numerical examples to solve a nonconvex optimization problem in a Hadamard space
to support our main result.

Keywords : Equilibrium problem · Zero point problem · Nonexpansive mapping ·
Hadamard spaces.
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1 Introduction

Equilibrium problems were originally studied in Blum and Oettli (1994) as a unifying class
of variational problems. Let K be a nonempty closed convex subset of a Hadamard space X
and f : K × K → R be a bifunction. An equilibrium problem is to find x ∈ K such that

f (x, y) ≥ 0, for all y ∈ K . (1.1)

The solution set of the equilibrium problem (1.1) is denoted by EP( f , K ). Equilibrium
problems and their generalizations have been important tools for solving problems arising
in the fields of linear or nonlinear programming, variational inequalities, complementary
problems, optimization problems, fixed point problems and have been widely applied to
physics, structural analysis, management sciences and economics. An extragradient method
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for equilibrium problems in a Hilbert space has been studied in Quoc et al. (2008). It has the
following form:

yn ∈ Argminy∈K
{
f (xn, y) + 1

2λn
‖xn − y‖2

}
,

xn+1 ∈ Argminy∈K
{
f (yn, y) + 1

2λn
‖xn − y‖)2

}
.

Under certain assumptions, the weak convergence of the sequence {xn} to a solution of
the equilibrium problem has been established. In recent years some algorithms defined to
solve equilibrium problems, variational inequalities and minimization problems, have been
extended from the Hilbert space framework to the more general setting of Riemannian man-
ifolds, especially Hadamard manifolds and the Hilbert unit ball. This popularization is due
to the fact that several nonconvex problems may be viewed as a convex problem under
such perspective. Equilibrium problems in Hadamard spaces were recently investigated in
(Iusem andMohebbi 2020; Khatibzadeh andMohebbi 2019, 2021; Khatibzadeh and Ranjbar
2017; Kumam and Chaipunya 2017). In 2019, Khatibzadeh and Mohebbi (2019) studied �-
convergence and strong convergence of the sequence generated by the extragradient method
for pseudo-monotone equilibrium problems in Hadamard spaces. Furthermore, in Khati-
bzadeh and Mohebbi (2021), the authors proved �-convergence of the sequence generated
by the proximal point algorithm to an equilibrium point of the pseudo-monotone bifunction
and the strong convergence under additional assumptions on the bifunction in Hadamard
spaces.

One of the most important problems in monotone operator theory is approximating a zero
of a monotone operator. Martinet (1970) introduced one of the most popular methods for
approximating a zero of a monotone operator in Hilbert spaces that is called the proximal
point algorithm; see also (Bruck and Reich 1977; Rockafellar 1976). In 2017, Khatibzadeh
and Ranjbar (2017) generalized monotone operators and their resolvents to Hadamard spaces
by using the duality theory. Very recently, Moharami and Eskandani (2020) proposed the
following hybrid extragradient method for approximating a common element of the set of
solutions of an equilibrium problem for a single bifunction f and a common zero of a finite
family of monotone operators A1, A2, . . . , AN in Hadamard spaces;⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn = J AN
γ N
n

◦ J AN−1

γ N−1
n

◦ · · · ◦ J A1
γ 1
n
xn,

yn = argminy∈K
{
f (zn, y) + 1

2λn
d(zn, y)

2
}

,

wn = argminy∈K
{
f (yn, y) + 1

2λn
d(zn, y)

2
}

,

xn+1 = αnu ⊕ (1 − αn)wn, n ∈ N,

(1.2)

where {αn}, {λn} and {γ i
n } are sequences satisfying some conditions. They proved strong

convergence theorem of the sequence {xn} generated by the above scheme.
In recent years, the problem of finding a common element of the set of solutions for

equilibrium problems, zero-point problems and fixed point problems in the framework of
Hilbert spaces, Banach spaces and Hadamard spaces have been intensively studied by many
authors, for instance, see (Alakoya and Mewomo 2022; Alakoya et al. 2022a, b; Eskandani
and Raeisi 2019; Iusem and Mohebbi 2020; Khatibzadeh and Ranjbar 2017; Kumam and
Chaipunya 2017; Li et al. 2009; Moharami and Eskandani 2020; Ogwo et al. 2021; Uzor
et al. 2022).
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Motivated and inspired by the above results, in this paper, we propose a new iterative
algorithm by using a modified hybrid extragradient method for finding a common element of
the set of solutions of an equilibrium problem, a common zero of a finite family of monotone
operators and the set of fixed points for nonexpansive mappings in Hadamard spaces. The
�-convergence theorem is established under suitable assumptions. We also provide a numer-
ical example to illustrate and show the efficiency of the proposed algorithm for supporting
our main results.

2 Preliminaries

In this section,wewillmention basic concepts, definitions, notations, and someuseful lemmas
on Hadamard spaces for use in the next sections. Let (X , d) be a metric space. A geodesic
from x to y is a map γ from the closed interval [0, d(x, y)] ⊂ R to X such that γ (0) =
x, γ (d(x, y)) = y and d(γ (t1), γ (t2)) = |t1 − t2| for all t1, t2 ∈ [0, d(x, y)]. The image of
γ is called a geodesic (or metric) segment joining x and y. When it is unique, this geodesic
segment is denoted by [x, y]. The space X is said to be a geodesic metric space if every two
points of X are joined by a geodesic, and X is said to be uniquely geodesic metric space if
there is exactly one geodesic joining x and y for each x, y ∈ X . A subset C of X is said to
be convex, if for any two points x, y ∈ C , the geodesic joining x and y is contained in C .
Let X be a uniquely geodesic metric space. For each x, y ∈ X and for each α ∈ [0, 1], there
exists a unique point z ∈ [x, y] such that d(x, z) = (1 − α)d(x, y) and d(y, z) = αd(x, y).
We denote the unique point z by αx ⊕ (1−α)y. A geodesic metric space (X , d) is a CAT(0)
space if it satisfies the (CN∗) inequality (Dhompongsa and Panyanak 2008):

d (z, αx ⊕ (1 − α)y)2 ≤ αd(z, x)2 + (1 − α)d(z, y)2 − α(1 − α)d(x, y)2,

for all x, y, z ∈ X and α ∈ [0, 1]. In particular, if x, y, z are points in X and α ∈ [0, 1], then
we have

d (z, αx ⊕ (1 − α)y) ≤ αd(z, x) + (1 − α)d(z, y).

It is well known that a CAT(0) space is a uniquely geodesic space. A complete CAT(0)
space is called a Hadamard space. Hilbert spaces and R-trees are two basic examples of
Hadamard spaces, which in some sense represent themost extreme cases; curvature 0 and cur-
vature −∞. The most illuminating instances of Hadamard spaces are Hadamard manifolds.
A Hadamard manifold is a complete simply connected Riemannian manifold of nonpositive
sectional curvature. The class of Hadamard manifolds includes hyperbolic spaces, manifolds
of positive definite matrices, the complex Hilbert ball with the hyperbolic metric and many
other spaces (see Goebel and Reich 1984; Kohlenbach 2015; Tits 1977).

In the following examples, we give some Hadamard spaces.

Example 2.1 Consider H = {(x, y) ∈ R
2 : y2 − x2 = 1 and y > 0}. Let d be a metric

defined by the function d : H × H → R that assigns to each pair of vectors u = (u1, u2)
and v = (v1, v2) the unique nonnegative number d(u, v) ≥ 0 such that

cosh d(u, v) = u2v2 − u1v1.

It is known that, in general, the metric space (H, d) is a Hadamard space and also a one-
dimensional hyperbolic space (see Bridson and Haefliger 1999; Kaewkhao et al. 2015).
Furthermore, it is easy to see that (H, d) is an R-tree.
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Example 2.2 LetM = P(n,R) be the space of (n × n) positive symmetric definite matrices
endowed with the Riemannian metric

〈A, B〉E := Tr(E−1AE−1B),

for all A, B ∈ TE (M) and every E ∈ M, where TE (M) denotes the tangent plane at E ∈ M.
Therefore, (M, 〈A, B〉 >E ) is a Hadamard space (see Khatibzadeh and Mohebbi 2019).

Example 2.3 Let Y = {(x, ex ) : x ∈ R} and Xn = {(n, y) : y ≥ en} for each n ∈ Z.
Set M = Y ∪ ⋃

n∈Z
Xn equipped with a metric d : X × X → [0,∞), defined for all

x = (x1, x2), y = (y1, y2) ∈ X by

d(x, y) =
⎧⎨
⎩

y1∫
x1

‖γ̇ (t)‖2 dt + |x2 − ex1 | + |y2 − ey1 | , x1 �= y1,

|x2 − y2| , x1 = y1,

where γ̇ is the derivative of the curve γ : R → X given as γ (t) = (t, et ) for each t ∈ R.
Therefore, (X , d) is a Hadamard space (see Chaipunya and Kumam 2017).

Let K be a nonempty subset of a Hadamard space X and T : K → K be a mapping. The
fixed point set of T is denoted by F(T ), that is, F(T ) = {x ∈ K : x = T x}. Recall that a
mapping T is called nonexpansive if

d(T x, T y) ≤ d(x, y)

for all x, y ∈ K .
The fixed point theory in Hadamard spaces was first studied by Kirk (2003) in 2003.

Many authors have then published papers on the existence and convergence of fixed points
for nonlinear mappings in such spaces (e.g., see Bačák and Reich 2014; Nanjaras et al. 2010;
Phuengrattana and Suantai 2012, 2013; Reich and Salinas 2015, 2016, 2017; Reich and
Shafrir 1990; Sopha and Phuengrattana 2015).

The notion of the asymptotic center can be introduced in the general setting of a Hadamard
space X as follows: Let {xn} be a bounded sequence in X . For x ∈ X , we define a mapping
r (·, {xn}) : X → [0,∞) by

r (x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius of {xn} is given by
r ({xn}) = inf {r (x, {xn}) : x ∈ X} ,

and the asymptotic center of {xn} is the set
A ({xn}) = {x ∈ X : r (x, {xn}) = r ({xn})} .

It is known that in a Hadamard space, the asymptotic center A ({xn}) consists of exactly
one point (Dhompongsa et al. 2006). A sequence {xn} in a Hadamard space X is said to be
�-converge to x ∈ X if x is the unique asymptotic center of {un} for every subsequence
{un} of {xn}. It is well known that every bounded sequence in a Hadamard space has a
�-convergent subsequence (Kirk and Panyanak 2008).

Lemma 2.4 (Ranjbar and Khatibzadeh 2016) Let X be a Hadamard space and {xn} be a
sequence in X. If there exists a nonempty subset F of X satisfying:
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(i) For every z ∈ F, limn→∞ d(xn, z) exists.
(ii) If a subsequence {xxk } of {xn} �-converges to x ∈ X, then x ∈ F.

Then, there exists p ∈ F such that {xn} �-converges to p ∈ X.

Lemma 2.5 (Dhompongsa and Panyanak 2008) Let K be a nonempty closed and convex
subset of a Hadamard space X, T : K → K be a nonexpansive mapping and {xn} be a
bounded sequence in K such that limn→∞ d(xn, T xn) = 0 and {xn} �-converges to x. Then
x = T x.

A function g : K → (−∞,∞] defined on a nonempty convex subset K of a Hadamard
space is convex if g(t x ⊕ (1 − y)y) ≤ tg(x) + (1 − t)g(y) for all x, y ∈ K and t ∈ (0, 1).
We say that a function g defined on K is lower semicontinuous (or upper semicontinuous)
at a point x ∈ K if

g(x) ≤ lim inf
n→∞ g(xn)

(
or lim sup

n→∞
g(xn) ≤ g(x)

)
,

for each sequence {xn} such that limn→∞ xn = x . A function g is said to be lower semicontin-
uous (or upper semicontinuous) on K if it is lower semicontinuous (or upper semicontinuous)
at any point in K .

In 2010, Kakavandi and Amini (2010) introduced the concept of quasilinearization in a
Hadamard space X , see also (Berg and Nikolaev 2008), as follows:

Denote a pair (a, b) ∈ X × X by
−→
ab and call it a vector. The quasilinearization is a map

〈·, ·〉 : (X × X) × (X × X) → R defined by

〈−→ab,−→cd〉 = 1

2

(
d(a, d)2 + d(b, c)2 − d(a, c)2 − d(b, d)2

)

for any a, b, c, d ∈ X . We say that X satisfies the Cauchy-Schwarz inequality if

〈−→ab,−→cd〉 ≤ d(a, b)d(c, d)

for any a, b, c, d ∈ X . It is known that a geodesically connected metric space is a CAT(0)
space if and only if it satisfies the Cauchy–Schwarz inequality; see (Berg andNikolaev 2008).
Later, Kakavandi and Amini (2010) defined a pseudometric D on R × X × X by

D((t, a, b), (s, u, v)) = L(�(t, a, b) − �(s, u, v)),

where � : R × X × X → C(X;R) defined by �(t, a, b)(x) = t〈−→ab,−→ax〉 for all x ∈ X and
C(X;R) is the space of all continuous real-valued functions on X . For a Hadamard space

X , it is obtained that D((t, a, b), (s, u, v)) = 0 if and only if t〈−→ab,−→xy〉 = s〈−→uv,
−→xy〉 for all

x, y ∈ X . Then, D can impose an equivalent relation on R× X × X , where the equivalence
class of (t, a, b) is [

t
−→
ab

]
=

{
s−→uv : t〈−→ab,−→xy〉 = s〈−→uv,

−→xy〉
}

.

The set X∗ = {[t−→ab] : (t, a, b) ∈ R×X×X} is ametric spacewithmetric D([tab], [scd]) :=
D((t, a, b), (s, c, d)), which is called the dual metric space of X . It is clear that [−→aa = −→

bb]
for all a, b ∈ X . Fix o ∈ X , we write 0 = −→oo as the zero of the dual space. Note that X∗ acts
on X × X by 〈x∗,−→xy〉 = t〈−→ab,−→xy〉, (x∗ = [t−→ab] ∈ X∗, x, y ∈ X).

Let X be a Hadamard space with dual X∗ and let A : X ⇒ X∗ be a multi-valued
operator with domain D(A) := {x ∈ X |Ax �= ∅}, range R(A) := ∪x∈X Ax , A−1(x∗) :=
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{x ∈ X |x∗ ∈ Ax} and graph gra(A) := {(x, x∗) ∈ X × X∗|x ∈ D(A), x∗ ∈ Ax}. A
multi-valued A : X ⇒ X∗ is said to be monotone (Khatibzadeh and Mohebbi 2019) if
the inequality 〈x∗ − y∗,−→yx〉 ≥ 0 holds for every (x, x∗), (y, y∗) ∈ gra(A). A monotone
operator A : X ⇒ X∗ is maximal if there exists no monotone operator B : X ⇒ X∗
such that gra(B) properly contains gra(A), that is, for any (y, y∗) ∈ X × X∗, the inequality
〈x∗ − y∗,−→yx〉 ≥ 0 for all (x, x∗) ∈ gra(A) implies that y∗ ∈ Ay. The resolvent of A of order
γ , is the multi-valued mapping J A

γ : X ⇒ X , defined by J A
γ (x) := {z ∈ X |[ 1

γ
−→zx ] ∈ Az}.

Indeed

J A
γ = (

−→
oI + γ A)−1 ◦ −→

oI ,

where o is an arbitrary member of X and
−→
oI (x) := [−→ox ]. It is obvious that this definition is

independent of the choice of o.

Theorem 2.6 (Khatibzadeh and Ranjbar 2017) Let X be a Hadamard space with dual X∗.
and let A : X ⇒ X∗ be a multi-valued mapping. Then

(i) For any γ > 0, R(J A
γ ) ⊂ D(A), F(J A

γ ) = A−1(0).

(ii) If A is monotone, then J A
γ is single-valued on its domain and

d(J A
γ x, J A

γ y)2 ≤ 〈−−−−−→
J A
γ x J A

γ y,−→xy〉, ∀x, y ∈ D(J A
γ ).

In particular, J A
γ is a nonexpansive mapping.

(iii) If A is monotone and 0 < γ ≤ μ, then d(J A
γ x, J A

μ x)2 ≤ μ−γ
μ+γ

d(x, J A
μ x)2, which implies

that d(x, J A
γ x) ≤ 2d(x, J A

μ x).

It is well known that if T is a nonexpansive mapping on a subset K of a Hadamard space
X , then F(T ) is closed and convex. Thus, if A is a monotone operator on a Hadamard space,
then, by parts (i) and (i i) of Theorem 2.6, A−1(0) is closed and convex. Also by using part
(i i) of Theorem 2.6 for all u ∈ F(J A

γ ) and x ∈ D(J A
γ ), we have

d(J A
γ x, x)2 ≤ d(u, x)2 − d(u, J A

γ x)2. (2.1)

We say that A : X ⇒ X∗ satisfies the range condition if, for every λ > 0, D(J A
λ ) = X . It is

known that if A is a maximal monotone operator on a Hilbert space H , then R(I +λA) = H
for all λ > 0. Thus, every maximal monotone operator A on a Hilbert space satisfies the
range condition. Also as it has been shown in Li et al. (2009) if A is a maximal monotone
operator on a Hadamard manifold, then A satisfies the range condition.

For solving the equilibrium problem, we assume that the bifunction f : K × K → R

satisfies the following assumption.

Assumption 2.7 Let K be a nonempty closed convex subset of a Hadamard space X . Let
f : K × K → R be a bifunction satisfies the following conditions:

(B1) f (x, ·) : X → R is convex and lower semicontinuous for all x ∈ X .
(B2) f (·, y) is �-upper semicontinuous for all y ∈ X .
(B3) f is Lipschitz-type continuous, i.e. there exist two positive constants c1 and c2 such

that

f (x, y) + f (y, z) ≥ f (x, z) − c1d(x, y)2 − c2d(y, z)2, for all x, y, z ∈ X .

(B4) f is pesudo-monotone, i.e. for every x, y ∈ X , f (x, y) ≥ 0 implies f (y, x) ≤ 0.

Remark 2.8 It is known in Moharami and Eskandani (2020) that if a bifunction f satisfying
conditions (B1), (B2) and (B4) of Assumption 2.7, then EP( f , K ) is closed and convex.
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3 Main results

In this section, we prove�-convergence theorems for finding a common element of the set of
solutions to an equilibrium problem, a common zero of a finite family of monotone operators
and the set of fixed points of nonexpansive mappings in Hadamard spaces. In order to prove
our main results, the following two lemmas are needed.

Lemma 3.1 Let K be a nonempty closed convex subset of a Hadamard space X and let
f : K × K → R be a bifunction satisfying Assumption 2.7. Let A1, A2, . . . , AN : X ⇒ X∗
be N multi-valued monotone operators that satisfy the range condition with D(AN ) ⊂ K
and let T : K → K be a nonexpansive mapping. Assume that � = F(T ) ∩ EP( f , K ) ∩⋂N

i=1 A
−1
i (0) �= ∅. Let x1 ∈ K and {xn} be a sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn = J AN
γ N
n

◦ J AN−1

γ N−1
n

◦ · · · ◦ J A1
γ 1
n
xn,

yn = argminy∈K
{
f (zn, y) + 1

2λn
d(zn, y)

2
}

,

wn = argminy∈K
{
f (yn, y) + 1

2λn
d(zn, y)

2
}

,

vn = βnxn ⊕ (1 − βn)T zn,

xn+1 = αnwn ⊕ (1 − αn)T vn, n ∈ N,

(3.1)

where {αn}, {βn} ⊂ (0, 1), 0 < α ≤ λn ≤ β < min{ 1
2c1

, 1
2c2

} and {γ i
n } ⊂ (0,∞) for all

i = 1, 2, . . . , N. If x∗ ∈ �, then we have the following:

(i) f (yn, wn) ≤ 1
2λn

[d(zn, x∗)2 − d(zn, wn)
2 − d(wn, x∗)2];

(ii)
(

1
2λn

− c1
)
d(zn, yn)2 +

(
1

2λn
− c2

)
d(yn, wn)

2 − 1
2λn

d(zn, wn)
2 ≤ f (yn, wn);

(iii) d(wn, x∗)2 ≤ d(zn, x∗)2 − (1 − 2c1λn)d(zn, yn)2 − (1 − 2c2λn)d(yn, wn)
2.

Proof The proof of this fact is similar to that of (Khatibzadeh and Mohebbi 2019,Lemma
2.1). For convenience of the readers, we include the details.

(i) Take x∗ ∈ �. By letting y = twn ⊕ (1 − t)x∗ such that t ∈ [0, 1), we have

f (yn, wn) + 1

2λn
d(zn, wn)

2 ≤ f (yn, y) + 1

2λn
d(zn, y)

2

= f (yn, twn ⊕ (1 − t)x∗) + 1

2λn
d(zn, twn ⊕ (1 − t)x∗)2

≤ t f (yn, wn) + (1 − t) f (yn, x
∗) + 1

2λn
(td(zn, wn)

2

+ (1 − t)d(zn, x
∗)2 − t(1 − t)d(wn, x

∗)2).

Since f (x∗, yn) ≥ 0, pseudo-monotonicity of f implies that f (yn, x∗) ≤ 0. Thus, we can
write the above inequality as

f (yn, wn) ≤ 1

2λn

(
d(zn, x

∗)2 − d(zn, wn)
2 − td(wn, x

∗)2
)
.

Now, if t → 1−, we get

f (yn, wn) ≤ 1

2λn

(
d(zn, x

∗)2 − d(zn, wn)
2 − d(wn, x

∗)2
)
.
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(i i) By letting y = t yn ⊕ (1 − t)wn such that t ∈ [0, 1), we have

f (zn, yn) + 1

2λn
d(zn, yn)

2 ≤ f (zn, y) + 1

2λn
d(zn, y)

2

= f (zn, t yn ⊕ (1 − t)wn) + 1

2λn
d(zn, t yn ⊕ (1 − t)wn)

2

≤ t f (zn, yn) + (1 − t) f (zn, wn) + 1

2λn
(td(zn, yn)

2

+ (1 − t)d(zn, wn)
2 − t(1 − t)d(yn, wn)

2),

which implies that

f (zn, yn) − f (zn, wn) ≤ 1

2λn

(
d(zn, wn)

2 − d(zn, yn)
2 − td(yn, wn)

2) .

Now, if t → 1−, we get

f (zn, yn) − f (zn, wn) ≤ 1

2λn

(
d(zn, wn)

2 − d(zn, yn)
2 − d(yn, wn)

2) . (3.2)

Also, by (B3), f is Lipschitz-type continuous with constants c1 and c2, hence we have

−c1d(zn, yn)
2 − c2d(yn, wn)

2 + f (zn, wn) − f (zn, yn) ≤ f (yn, wn). (3.3)

It follows by (3.2) and (3.3) that(
1

2λn
− c1

)
d(zn, yn)

2 +
(

1

2λn
− c2

)
d(yn, wn)

2 − 1

2λn
d(zn, wn)

2 ≤ f (yn, wn).

(i i i) By (i) and (i i), we can conclude that

d(wn, x
∗)2 ≤ d(zn, x

∗)2 − (1 − 2c1λn)d(zn, yn)
2 − (1 − 2c2λn)d(yn, wn)

2

This completes the proof. ��
Lemma 3.2 Let K be a nonempty closed convex subset of a Hadamard space X and let
f : K × K → R be a bifunction satisfying Assumption 2.7. Let A1, A2, . . . , AN : X ⇒ X∗
be N multi-valued monotone operators that satisfy the range condition with D(AN ) ⊂ K
and let T : K → K be a nonexpansive mapping. Assume that � = F(T ) ∩ EP( f , K ) ∩⋂N

i=1 A
−1
i (0) �= ∅. Let x1 ∈ K and {xn} be a sequence generated by (3.1) where {αn}, {βn} ⊂

(0, 1), 0 < α ≤ λn ≤ β < min{ 1
2c1

, 1
2c2

} and {γ i
n } ⊂ (0,∞) for all i = 1, 2, . . . , N. If

x∗ ∈ �, then we have d(wn, x∗) ≤ d(zn, x∗) ≤ d(xn, x∗) and d(xn+1, x∗) ≤ d(xn, x∗).

Proof From the nonexpansivity of J Ai
γ i
n
for all i = 1, 2, . . . , N , we have

d(zn, x
∗) = d(J AN

γ N
n

◦ J AN−1

γ N−1
n

◦ · · · ◦ J A1
γ 1
n
xn, x

∗)

≤ d(J AN−1

γ N−1
n

◦ · · · ◦ J A1
γ 1
n
xn, x

∗)

...

≤ d(J A1
γ 1
n
xn, x

∗)

≤ d(xn, x
∗).
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Using Lemma 3.1(i i i), we have

d(wn, x
∗) ≤ d(zn, x

∗) ≤ d(xn, x
∗). (3.4)

By (3.1) and (3.4), we get

d(xn+1, x
∗) ≤ αnd(wn, x

∗) + (1 − αn)d(T vn, x
∗)

≤ αnd(wn, x
∗) + (1 − αn)d(vn, x

∗)
≤ αnd(wn, x

∗) + (1 − αn)[βnd(xn, x
∗) + (1 − βn)d(T zn, x

∗)]
≤ αnd(wn, x

∗) + (1 − αn)[βnd(xn, x
∗) + (1 − βn)d(zn, x

∗)]
≤ αnd(wn, x

∗) + (1 − αn)d(xn, x
∗)

≤ d(xn, x
∗).

This completes the proof. ��

We now state and prove our main result.

Theorem 3.3 Let K be a nonempty closed convex subset of a Hadamard space X and let
f : K × K → R be a bifunction satisfying Assumption 2.7. Let A1, A2, . . . , AN : X ⇒ X∗
be N multi-valued monotone operators that satisfy the range condition with D(AN ) ⊂ K
and let T : K → K be a nonexpansive mapping. Assume that � = F(T ) ∩ EP( f , K ) ∩⋂N

i=1 A
−1
i (0) �= ∅. Let x1 ∈ K and {xn} be a sequence generated by (3.1) where {αn}, {βn} ⊂

(0, 1) and {λn}, {γ i
n } ⊂ (0,∞) satisfy the following conditions:

(C1) lim infn→∞ γ i
n > 0 for all i = 1, 2, . . . , N,

(C2) 0 < α ≤ λn ≤ β < min{ 1
2c1

, 1
2c2

},
(C3) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞,

(C4) lim infn→∞ βn(1 − βn) > 0.

Then the sequence {xn} �-converges to a point of �.

Proof Let x∗ ∈ �. It implies by Lemma 3.2 that d(xn+1, x∗) ≤ d(xn, x∗). Therefore
limn→∞ d(xn, x∗) exists for all x∗ ∈ �. This show that {xn} is bounded.

Put Sin = J Ai
γ i
n

◦ J Ai−1

γ i−1
n

◦ · · · ◦ J A1
γ 1
n
, for i = 1, 2, . . . , N and n ∈ N. Then zn = SNn xn . We

also assume that S0n = I , where I is the identity operator. By the nonexpansivity of Sin , we
have d(Sinxn, x

∗) ≤ d(xn, x∗). This implies that

lim sup
n→∞

[
d(Sinxn, x

∗)2 − d(xn, x
∗)2

]
≤ 0. (3.5)

Using (3.1) and Lemma 3.2, we can write

d(xn+1, x
∗)2 ≤ αnd(wn, x

∗)2 + (1 − αn)d(T vn, x
∗)2

≤ αnd(xn, x
∗)2 + (1 − αn)[βnd(xn, x

∗)2 + (1 − βn)d(T zn, x
∗)2]

≤ αnd(xn, x
∗)2 + (1 − αn)[βnd(xn, x

∗)2 + (1 − βn)d(zn, x
∗)2]

≤ αnd(xn, x
∗)2 + (1 − αn)[βnd(xn, x

∗)2 + (1 − βn)d(Sinxn, x
∗)2].

So

d(xn+1, x
∗)2 − d(xn, x

∗)2 ≤ (1 − αn)(1 − βn)
[
d(Sinxn, x

∗)2 − d(xn, x
∗)2

]
.
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By the conditions (C3) and (C4), for i = 1, 2, . . . , N , we have

0 ≤ lim inf
n→∞

[
d(Sinxn, x

∗)2 − d(xn, x
∗)2

]
. (3.6)

Using (3.5) and (3.6), we get

lim
n→∞

[
d(Sinxn, x

∗)2 − d(xn, x
∗)2

]
= 0. (3.7)

Applying (2.1), we obtain

d(J Ai
γ i
n
(Si−1

n xn), S
i−1
n xn)

2 ≤ d(x∗, Si−1
n xn)

2 − d(x∗, Sinxn)2

≤ d(x∗, xn)2 − d(x∗, Sinxn)2.

This implies by (3.7) that

lim
n→∞ d(Sinxn, S

i−1
n xn) = 0, (3.8)

and hence for any i = 1, 2, . . . , N , we have

d(xn, S
i
nxn) ≤ d(xn, S

1
n xn) + d(S1n xn, S

2
n xn) + · · · + d(Si−1

n xn, S
i
nxn).

Then

lim
n→∞ d(xn, S

i
nxn) = 0. (3.9)

Since lim infn→∞ γ i
n > 0, there exists γ0 ∈ R such that γ i

n ≥ γ0 > 0 for all n ∈ N and
i = 1, 2, . . . , N . By using Theorem 2.6, for all i = 1, 2, . . . , N , we have

d(J Ai
γ0

(Si−1
n xn), S

i
nxn) ≤ d(J Ai

γ0
(Si−1

n xn), S
i−1
n xn) + d(Si−1

n xn, S
i
nxn)

≤ 2d(J Ai
γ i
n
(Si−1

n xn), S
i−1
n xn) + d(Si−1

n xn, S
i
nxn)

= 3d(Sinxn, S
i−1
n xn).

By (3.8), we get

lim
n→∞ d(J Ai

γ0
(Si−1

n xn), S
i
nxn) = 0. (3.10)

Now for every i = 1, 2, . . . , N , we have

d(J Ai
γ0

xn, xn) ≤ d(J Ai
γ0

xn, J
Ai
γ0

(Si−1
n xn)) + d(J Ai

γ0
(Si−1

n xn), S
i
nxn) + d(Sinxn, xn)

≤ d(xn, S
i−1
n xn) + d(J Ai

γ0
(Si−1

n xn), S
i
nxn) + d(Sinxn, xn).

This implies by (3.9) and (3.10) that

lim
n→∞ d(J Ai

γ0
xn, xn) = 0. (3.11)

Using (3.1) and Lemma 3.2, we have

d(xn+1, x
∗)2 ≤ αnd(wn, x

∗)2 + (1 − αn)d(T vn, x
∗)2

≤ αnd(xn, x
∗)2 + (1 − αn)d(vn, x

∗)2

≤ αnd(xn, x
∗)2 + (1 − αn)[βnd(xn, x

∗)2 + (1 − βn)d(T zn, x
∗)2

− βn(1 − βn)d(xn, T zn)
2]

≤ αnd(xn, x
∗)2 + (1 − αn)[βnd(xn, x

∗)2 + (1 − βn)d(zn, x
∗)2
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− βn(1 − βn)d(xn, T zn)
2]

≤ αnd(xn, x
∗)2 + (1 − αn)[d(xn, x

∗)2 − βn(1 − βn)d(xn, T zn)
2]

≤ d(xn, x
∗)2 − βn(1 − βn)(1 − αn)d(xn, T zn)

2.

Hence

d(xn, T zn)
2 ≤ 1

βn(1 − βn)(1 − αn)

[
d(xn, x

∗)2 − d(xn+1, x
∗)2

]
.

It implies by the conditions (C3) and (C4) that

lim
n→∞ d(xn, T zn) = 0. (3.12)

Consider

d(xn, T xn) ≤ d(xn, T zn) + d(T zn, T xn)

≤ d(xn, T zn) + d(zn, xn).

Applying (3.9) and (3.12), we obtain

lim
n→∞ d(xn, T xn) = 0. (3.13)

Let {xnk } be a subsequence of {xn} such that {xnk } �-converges to p ∈ K . Using Lemma
2.5 and (3.13), we have p ∈ F(T ). By Lemma 2.5 and (3.11), we get p ∈ A−1

i (0) for

any i = 1, 2, . . . , N . So p ∈ ⋂N
i=1 A

−1
i (0). To show p ∈ EP( f , K ), we assume that

z = εwn ⊕ (1 − ε)y, where 0 < ε < 1 and y ∈ K . So we have

f (yn, wn) + 1

2γn
d(zn, wn)

2 ≤ f (yn, z) + 1

2γn
d(zn, z)

2

= f (yn, εwn ⊕ (1 − ε)y) + 1

2γn
d(zn, εwn ⊕ (1 − ε)y)2

≤ ε f (yn, wn) + (1 − ε) f (yn, y)

+ 1

2γn

[
εd(zn, wn)

2 + (1 − ε)d(zn, y)
2 − ε(1 − ε)d(wn, y)

2] .

Therefore

f (yn, wn) − f (yn, y) ≤ 1

2γn
[d(zn, y)

2 − d(zn, wn)
2 − εd(wn, y)

2].

Now, if ε → 1−, we obtain
1

2γn
[d(zn, wn)

2 + d(wn, y)
2 − d(zn, y)

2] ≤ f (yn, y) − f (yn, wn). (3.14)

Since

d(zn, wn)
2 + d(wn, y)

2 − d(zn, y)
2 ≥ d(wn, y)

2 − d(zn, y)
2

= (d(wn, y) − d(zn, y))(d(wn, y) + d(zn, y))

≥ −d(wn, zn)[d(wn, y) + d(zn, y)],
it implies by (3.14) that

− 1

2γn
d(wn, zn)[d(wn, y) + d(zn, y)] ≤ f (yn, y) − f (yn, wn). (3.15)
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By lim infn→∞(1 − ciλn) > 0, for i = 1, 2, using Lemma 3.1(iii), we have

lim
k→∞ d(znk , ynk )

2 = lim
k→∞ d(ynk , wnk )

2 = 0. (3.16)

This implies that

lim
k→∞ d(wnk , znk )

2 = 0. (3.17)

Using Lemma 3.1(i), Lemma 3.1(ii), (3.16) and (3.17), we have

f (ynk , wnk ) = 0. (3.18)

Since SNn xn = zn , it follows by (3.9) and (3.16) that {ynk } �-converges to p. Now replacing
n with nk in (3.15), taking lim sup and using (3.17) and (3.18), we have

0 ≤ lim sup
k→∞

f (ynk , y) ≤ f (p, y), for all y ∈ K .

Therefore p ∈ EP( f , K ) and so p ∈ �. This implies by Lemma 2.4 that the sequence {xn}
�-converges to a point of �. ��

We obtain the following convergence result, by replacing T = I , the identity mapping in
Theorem 3.3.

Theorem 3.4 Let K be a nonempty closed convex subset of a Hadamard space X and let
f : K × K → R be a bifunction satisfying Assumption 2.7. Let A1, A2, . . . , AN : X ⇒ X∗
be N multi-valued monotone operators that satisfy the range condition with D(AN ) ⊂ K.
Assume that � = EP( f , K ) ∩ ⋂N

i=1 A
−1
i (0) �= ∅. Let x1 ∈ K and {xn} be a sequence

generated by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn = J AN
γ N
n

◦ J AN−1

γ N−1
n

◦ · · · ◦ J A1
γ 1
n
xn,

yn = argminy∈K
{
f (zn, y) + 1

2λn
d(zn, y)

2
}

,

wn = argminy∈K
{
f (yn, y) + 1

2λn
d(zn, y)

2
}

,

vn = βnxn ⊕ (1 − βn)zn,

xn+1 = αnwn ⊕ (1 − αn)vn, n ∈ N,

(3.19)

where {αn}, {βn} ⊂ (0, 1) and {λn}, {γ i
n } ⊂ (0,∞) satisfy the following conditions:

(C1) lim infn→∞ γ i
n > 0 for all i = 1, 2, . . . , N,

(C2) 0 < α ≤ λn ≤ β < min{ 1
2c1

, 1
2c2

},
(C3) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞,

(C4) lim infn→∞ βn(1 − βn) > 0.

Then the sequence {xn} �-converges to a point of �.

Let X be a Hadamard space with dual X∗ and let g : X → (−∞,∞] be a proper
function with effective domain D(g) := {x : g(x) < ∞}. Then, the subdifferential of g is
the multi-valued mapping ∂g : X ⇒ X∗ defined by:

∂g(x) =
{{

x∗ ∈ X∗|g(z) − g(x) ≥ 〈
x∗,−→xz 〉 , z ∈ X

}
, x ∈ D(g)

∅, x /∈ D(g).
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It has been proved in Kakavandi and Amini (2010) that ∂g(x) of a convex, proper and lower
semicontinuous function g satisfies the range condition. So using Theorem 3.3, we can obtain
the following corollary.

Corollary 3.5 Let K be a nonempty closed convex subset of a Hadamard space X and let
f : K × K → R be a bifunction satisfying Assumption 2.7. Let g1, g2, . . . , gN : K →
(−∞,∞] be N proper convex and lower semicontinuous functions and let T : K → K be a
nonexpansive mapping. Assume that � = F(T )∩ EP( f , K )∩⋂N

i=1 argminy∈K gi (y) �= ∅.
Let x1 ∈ K and {xn} be a sequence generated by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn = J ∂gN
γ N
n

◦ J ∂gN−1

γ N−1
n

◦ · · · ◦ J ∂g1
γ 1
n
xn,

yn = argminy∈K
{
f (zn, y) + 1

2λn
d(zn, y)

2
}

,

wn = argminy∈K
{
f (yn, y) + 1

2λn
d(zn, y)

2
}

,

vn = βnxn ⊕ (1 − βn)T zn,

xn+1 = αnwn ⊕ (1 − αn)T vn, n ∈ N,

(3.20)

where {αn}, {βn} ⊂ (0, 1) and {λn}, {γ i
n } ⊂ (0,∞) satisfy the following conditions:

(C1) lim infn→∞ γ i
n > 0 for all i = 1, 2, . . . , N,

(C2) 0 < α ≤ λn ≤ β < min{ 1
2c1

, 1
2c2

},
(C3) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞,

(C4) lim infn→∞ βn(1 − βn) > 0.

Then the sequence {xn} �-converges to a point of �.

4 Numerical examples

In this section, we proceed to perform two numerical experiments to show the computational
efficiency of our algorithms.

Example 4.1 Let X = R
2 be endowed with a metric dX : R2 × R

2 → [0,∞) defined by

dX (x, y) =
√

(x1 − y1)2 + (x21 − x2 − y21 + y2)2,

for all x = (x1, x2), y = (y1, y2) ∈ R
2. Then, (R2, dX ) is a Hadamard space (see Eskandani

and Raeisi 2019) with the geodesic joining x to y given by

t x ⊕ (1 − t)y = (
t x1 + (1 − t)y1, (t x1 + (1 − t)y1)

2 − t(x21 − x2) − (1 − t)(y21 − y2)
)
.

Let f1, f2 : R2 → R and T : R2 → R
2 be mappings defined by

f1(x1, x2) = 200
(
(x2 + 1) − (x1 + 1)2

)2 + x21 , f2(x1, x2) = 200x21 ,

T (x1, x2) = (−x1, x2) .

It follows that f1 and f2 are convex and lower semicontinuous in (R2, dX ) and T is nonex-
pansive. Let f : R2 × R

2 → R be a function defined by

f (x, y) = dX (y, 0)2 − dX (x, 0)2.
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Table 1 Numerical results for Example 4.1

n xn = (x(1)
n , x(2)

n ) dX (xn , 0) dX (xn , xn−1)

1 (5.4000000, 2.9000000) 26.8094685 –

2 (−2.9461639, −7.9191270) 16.8584392 12.7668792

3 (1.9282547, −8.0566028) 11.9316114 6.8580788

4 (−1.3523158, −6.7907902) 8.7249855 4.5516547

5 (0.9834855, −5.5330183) 6.5742415 3.1539407

6 (−0.7315235, −4.4185521) 5.0074004 2.3093670

7 (0.5524772, −3.5230171) 3.8679084 1.7074108

8 (−0.4218925, −2.7949109) 3.0026909 1.2965376

9 (0.3248816, −2.2223503) 2.3504592 0.9867645

10 (−0.2518217, −1.7642345) 1.8449157 0.7634372

.

.

.
.
.
.

.

.

.
.
.
.

55 (0.0000127, −0.0000433) 0.0000451 0.0000312

56 (−0.0000100, −0.0000321) 0.0000336 0.0000253

57 (0.0000084, −0.0000231) 0.0000245 0.0000205

58 (−0.0000065, −0.0000157) 0.0000170 0.0000166

59 (0.0000055, −0.0000114) 0.0000127 0.0000128

60 (−0.0000043, −0.0000079) 0.0000090 0.0000104

It is obvious that f satisfies (B1), (B2), (B3) and (B4). Letting N = 2, A1 = ∂ f1 and
A2 = ∂ f2, the sequence {xn} generated by (3.1) takes the following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tn = argminy∈R2

{
f1(y) + 1

2γ 1
n
dX (y, xn)

2
}

,

zn = argminy∈R2

{
f2(y) + 1

2γ 2
n
dX (y, tn)

2
}

,

yn = argminy∈R2

{
f (zn, y) + 1

2λn
dX (zn, y)

2
}

,

wn = argminy∈R2

{
f (yn, y) + 1

2λn
dX (zn, y)

2
}

,

vn = βnxn ⊕ (1 − βn)T zn,

xn+1 = αnwn ⊕ (1 − αn)T vn, n ∈ N.

(4.1)

We choose αn = 1
2n+1 , βn = 9

11 , γ
1
n = γ 2

n = 4n, λn = 1
n+5 + 1

5 , for all n ∈ N. It can be
observed that all the assumptions of Theorem 3.3 are satisfied and� = F(T )∩EP( f ,R2)∩⋂N

i=1 A
−1
i (0) = {(0, 0)}. Using the algorithm (4.1) with the initial point x1 = (5.4, 2.9), we

have the numerical results in Table 1, Figs. 1 and 2.
Moreover, we test the effect of the different control sequence {βn} on the convergence of

the algorithm (4.1). In this test, Fig. 3 presents the behaviour of xn by choosing three different
control sequences (a) βn = 1

10 , (b) βn = 9
11 and (c) βn = 9

11 − 1
5n where the initial point

x1 = (5.4, 2.9). We see that the sequence {xn} by choosing the control sequence βn = 1
10

converges to the solution (0, 0) ∈ � faster than the others.
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Fig. 1 Plotting of dX (xn , 0) in Table 1

Fig. 2 Plotting of dX (xn , xn−1) in Table 1

To compare the proposed algorithm (3.19) with the algorithm (1.2) in Moharami and
Eskandani (2020), we consider the following example.

Example 4.2 Let X , dX , f1, f2, f , N , A1, A2, {αn}, {βn}, {γ 1
n }, {γ 2

n }, {λn} are as in Example
4.1. We computed the iterates of (1.2) and (3.19) for the initial point x1 = (0.7, 0.5) and
u = (1, 1). The numerical experiments of all iterations for approximating the point (0, 0) ∈
� = EP( f ,R2) ∩ ⋂N

i=1 A
−1
i (0) are given in Table 2 and Fig. 4.

From Table 2 and Fig. 4, we observe that the convergence rate of the proposed algorithm
(3.19) is much quicker than that of the algorithm (1.2) in Moharami and Eskandani (2020).
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Fig. 3 Behaviours of xn with three different control sequences {βn}

Table 2 Numerical results for Example 4.2

Algorithm (1.2) Algorithm (3.19)

n xn = (x(1)
n , x(2)

n ) dX (xn , 0) xn = (x(1)
n , x(2)

n ) dX (xn , 0)

1 (0.7000000, 0.5000000) 0.7000714 (0.7000000, 0.5000000) 0.7000714

2 (0.3333423, 0.1536464) 0.3360444 (0.3818269, 0.1859230) 0.3839301

3 (0.1999603, 0.0588646) 0.2008496 (0.2499303, 0.1003433) 0.2527843

4 (0.1428261, 0.0289293) 0.1430806 (0.1752799, 0.0627255) 0.1781774

5 (0.1110892, 0.0171084) 0.1111915 (0.1274781, 0.0424944) 0.1301515

6 (0.0908989, 0.0113041) 0.0909497 (0.0948158, 0.0302968) 0.0971804

7 (0.0769318, 0.0080708) 0.0769619 (0.0716128, 0.0223384) 0.0736518

8 (0.0666328, 0.0060452) 0.0666522 (0.0546867, 0.0168560) 0.0564171

9 (0.0588601, 0.0047202) 0.0588735 (0.0421130, 0.0129622) 0.0435740

10 (0.0526307, 0.0038243) 0.0526412 (0.0326448, 0.0100992) 0.0338716

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

55 (0.0092070, 0.0000926) 0.0092070 (0.0000028, 0.0000143) 0.0000146

56 (0.0090417, 0.0000896) 0.0090417 (0.0000026, 0.0000146) 0.0000148

57 (0.0088823, 0.0000867) 0.0088823 (0.0000023, 0.0000149) 0.0000150

58 (0.0087284, 0.0000840) 0.0087284 (0.0000022, 0.0000150) 0.0000152

59 (0.0085797, 0.0000814) 0.0085797 (0.0000020, 0.0000135) 0.0000137

60 (0.0084361, 0.0000790) 0.0084361 (0.0000019, 0.0000123) 0.0000124

123



Iterative approaches for solving equilibrium problems, zero... Page 17 of 18 75

Fig. 4 Comparison of Algorithm (1.2) and Algorithm (3.19) with initial point x1 = (0.7, 0.5)
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