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Abstract
Aczel–Alsina t-norm and t-conorm were derived by Aczel and Alsina in 1982, which were
the modified or extended forms of algebraic t-norm and t-conorm. Furthermore, the power
aggregation operator is also a very significant and precious method that is used for evaluating
the finest preference from the collection of finite preferences. Inspired by the above theories,
we concentrate to derive the theory of Aczel–Alsina power aggregation operators for C-IF
information, such as C-IFAAPA, C-IFAAWPA, C-IFAAPG, and C-IFAAWPG operators.
Moreover, we derive the theory of idempotency and prove that the property of monotonicity
and boundedness failed with the help of some counterexamples. Additionally, we evaluate a
MADM approach to derive operators in the presence of C-IF information. Finally, we illus-
trative practical examples for comparing the derived work with various existing or prevailing
operators to show the supremacy and proficiency of the derived information.
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NMG Non-membership grade
C-IFAAPA Complex intuitionistic fuzzy Aczel–Alsina power averaging
C-IFAAWPA Complex intuitionistic fuzzy Aczel–Alsina weighted power averaging
C-IFAAPG Complex intuitionistic fuzzy Aczel–Alsina power geometric
C-IFAAWPG Complex intuitionistic fuzzy Aczel–Alsina weighted power geometric
MADM Multi-attribute decision-making
FS Fuzzy set
IFS Intuitionistic fuzzy set
C-FS Complex fuzzy set
C-IFS Complex intuitionistic fuzzy set

1 Introduction

Modeling ambiguities in MADM procedures are the main and important part of the decision-
making technique to address certain genuine life problems in the environment of modern
research areas. Many MADM methods have been derived for evaluating a problem in road
signals, artificial intelligence, and the robustness of human opinion in such a way that a col-
lection of preferences is derived under the consideration of many attributes. Simultaneously,
the ranking of preferences is derived and eventually, a beneficial preference is selected among
the efficient ones. MADM is a dominantly employed cognitive mathematical technique, the
major impact of which is to derive among a finite number of preferences using the optimal
data given by experts. However, MADM tools manage to be awkward and unreliable, it
requires the ambiguity of human reasoning capabilities, evaluating it tricky for experts in the
review procedure which give feasible resolve. Because of ambiguity and complications in
genuine life problems, as well as unreliable and insufficient information or awkward data, it
is complicated for the experts to take a beneficial optimal. The dilemma of complex data has
become a main problem for the last few years. To evaluate the above dilemmas, a fuzzy set
(FS) (Zadeh 1965) was deliberated in 1965 by modifying a function contained in the crisp

set. The function of MG �
R

(
μ̃�

) ∈ [0, 1], wherein the term classical information the value

of MG �
R

(
μ̃�

) ∈ {0, 1}. Furthermore, the fuzzy superior mandelbrot set was derived by
Mahmood and Ali (2022), the fuzzy N-soft set was pioneered by Akram et al. (2018), and the
multi-fuzzy N-soft set was deliberated by Fatimah and Alcantud (2021). To involve the NMG
in the environment of FS is a very challenging task for all experts because, in various genuine
life cases, experts faced a certain problem that contained the MG and NMG continuously.
For this, intuitionistic FS (IFS) (Atanassov 1986) was derived in 1986. Additionally, IFS

managed two grades at a time, called MG “�
R

(
μ̃�

)
” and NMG “�

R

(
μ̃�

)
” with a character-

istic: �
R

(
μ̃�

) + �
R

(
μ̃�

) ∈ [0, 1], where the idea of FS and crisp set is the simple case of
IFSs. Moreover, distance measures for IFS were derived by Garg and Rani (2022), Choquet-
integral aggregation operators for IFS were pioneered by Jia and Wang (2022), and certain
scholars have utilized different types of information for IFS, such as the extended MAIRA
technique (Ecer 2022), image segmentation (Jebadass and Balasubramaniam 2022), twin
support vector machine (Liang and Zhang 2022), investigation of the evolutionary procedure
(Yu et al. 2022), and bipolar soft sets (Mahmood 2020).

To utilize phase terms in the mathematical shape of MG “�
R

(
μ̃�

)
” is a very challenging

task for all scholars. Because in certain places, experts personally felt that phase term is very
valuable for some real-life problems, for instance, if we want to purchase a new branded car

123



Multi-attribute decision-making methods based on Aczel–Alsina … Page 3 of 34 87

based on two pieces of valuable information, called the model of the car and production date
of the car, wherewith this kind of information, FS has failed to evaluate it. For this, Ramot et al.
(2002) derived the theory of complex FS (C-FS) in 2002 bymodifying a function contained in
the FS. The C-FS contained a truth grade in the form of a complex number, whose amplitude
term and phase term are contained in the unit interval, where the model of the car represented
the amplitude term, and the production date of the car represented the phase term of the

complex number. The function of MG �
R

(
μ̃�

) ∈ [0, 1] in FS was extended to the MG

�
R

(
μ̃�

)
, �

I

(
μ̃�

) ∈ [0, 1] in C-FS, where the complete shape of MG in C-FS is of the shape:

�
��

(
μ̃�

) = �
R

(
μ̃�

)
e
i2π

(
�

I
(μ̃�)

)

. Furthermore, distance measures for C-FS were derived
by Liu et al. (2020), the theory of complex fuzzy N-soft set was derived by Mahmood and
Ali (2021), complex multi-fuzzy information was invented by Al-Qudah and Hassan (2018),
and finally, the theory of complex fuzzy logic was derived by Tamir et al. (2015). To involve
the complex-valued NMG in the environment of C-FS is a very challenging task for all
experts because, in various genuine life cases, experts faced a certain problem that contained
the complex-valued MG and complex-valued NMG continuously. For this, complex IFS (C-
IFS) was derived by Alkouri and Salleh (2012). Additionally, C-IFS managed two grades at a

time, called complex-valued MG “�
��

(
μ̃�

) = �
R

(
μ̃�

)
e
i2π

(
�

I
(μ̃�)

)

” and complex-valued

NMG “�
��

(
μ̃�

) = �
R

(
μ̃�

)
e
i2π

(
�

I
(μ̃�)

)

” with a characteristic: �
R

(
μ̃�

) + �
R

(
μ̃�

) ∈
[0, 1], �

I

(
μ̃�

)+�
I

(
μ̃�

) ∈ [0, 1], where the idea of FS, C-FS, and IFS is the simple case of
C-IFSs. Moreover, another form of C-IF soft set was derived by Ali et al. (2021), aggregation
operators based on generalized C-IFS were pioneered by Garg and Rani (2019), the new
ranking technique for C-IFSwith the help of new aggregation operators was invented byGarg
and Rani (2020a), generalized geometric aggregation operators for C-IFS was deliberated
by Garg and Rani (2020b), and robust aggregation information for C-IFS was proposed by
Garg and Rani (2020c).

Coping with ambiguity and uncertainty is a very awkward and challenging task for schol-
ars and for handling such sorts of problems, many scholars have derived different types of
theories. Similarly, Aczel and Alsina (1982) derived some novel t-norm and t-conorm, called
Aczel–Alsina t-norm and t-conorm in 1982. These derived norms received much attention
from different scholars and certain people have utilized them in the environment of different
fields, for instance, Pamucar et al. (2022) invented the sustainable transportation problems
based on Aczel–Alsina information. Furthermore, Senapati et al. (2022a) derived the theory
of hesitant fuzzy Aczel–Alsina aggregation operators. The theory of Aczel–Alsina aggre-
gation operators for IFS was invented by Senapati et al. (2022b). Moreover, Aczel–Alsina
aggregation operators for interval-valued IFSs were derived by Senapati et al. (2022c), geo-
metric aggregation operators for IFSs using Aczel–Alsina norms were derived by Senapati
et al. (2023), Aczel–Alsina aggregation operators for C-IFS was derived by Mahmood et al.
(2022), Aczel–Alsina aggregation operators for bipolar C-FS was derived byMahmood et al.
(2023), and finally, the Aczel–Alsina prioritized aggregation operators for IFS was proposed
by Sarfraz et al. (2022). Additionally, power aggregation operators (PAOs) (Yager 2001) are
a significant and precious method which are used for combining the collection of preferences
into one preference, and because of this reason experts can take easily proceed with their
procedure. PAOs for IFS were derived by Xu (2011) and the PAOs for C-FS were invented
by Hu et al. (2019). Finally, nowadays, Rani and Garg (2018) presented the PAOs for C-IFSs.
After a lot of analysis, we noticed that the experts have the following major issues, such as
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1. How do we derive new aggregation operators?
2. How do we aggregate the collection of the finite number of preferences into a singleton

set?
3. How do we derive the finest or most valuable preferences from the collection of prefer-

ences?

Managing the above queries is a very challenging task for individuals because the above
three complications are the backbone of every article, and managing the above queries is
complicated. Furthermore, it is also a very awkward and challenging task for all scholars to
combine the theory of PAOs based on Aczel–Alsina t-norm and t-conorm, whereas the theory
of PAOs based on Aczel–Alsina t-norm and t-conorm for FSs, IFSs, CFSs, and C-IFSs ware
does not derive yet, it means that the derived work in this analysis is very valuable and novel.
The major advantages of the proposed work are listed below:

1. Putting the value of �
��

(
μ̃�

) = 0 in the derived theory, then we will be getting the
power Aczel–Alsina aggregation operators for C-FS.

2. Putting the value of�
I

(
μ̃�

) = �
I

(
μ̃�

) = 0 in the derived theory, then we will be getting
the power Aczel–Alsina aggregation operators for IFS.

3. Putting the value of �
I

(
μ̃�

) = �
I

(
μ̃�

) = �
R

(
μ̃�

) = 0 in the derived theory, then we
will be getting the power Aczel–Alsina aggregation operators for FS.

4. Putting the value of �
��

(
μ̃�

) = 0 and removing the power aggregation operator in the
derived theory, then we will be getting the Aczel–Alsina aggregation operators for C-FS.

5. Putting the value of �
I

(
μ̃�

) = �
I

(
μ̃�

) = 0 and removing the power aggregation
operator in the derived theory, then we will be getting the Aczel–Alsina aggregation
operators for IFS.

6. Putting the value of �
I

(
μ̃�

) = �
I

(
μ̃�

) = �
R

(
μ̃�

) = 0 and removing the power
aggregation operator in the derived theory, then we will be getting the Aczel–Alsina
aggregation operators for FS.

7. Putting the value of �
��

(
μ̃�

) = 0 and removing the Aczel–Alsina operational laws in
the derived theory, then we will be getting the power aggregation operators for C-FS.

8. Putting the value of �
I

(
μ̃�

) = �
I

(
μ̃�

) = 0 and removing the Aczel–Alsina operational
laws in the derived theory, then we will be getting the power aggregation operators for
IFS.

9. Putting the value of �
I

(
μ̃�

) = �
I

(
μ̃�

) = �
R

(
μ̃�

) = 0 and removing the Aczel–Alsina
operational laws in the derived theory, then we will be getting the power aggregation
operators for FS.

Noticed that the proposed work has a lot of advantages because from the derived operators
we can easily obtain a bundle of ideas. Therefore, inspired by the above benefits, we derive
the following ideas:

1. To derive the theory of C-IFAAPA and C-IFAAWPA operators.
2. To pioneer the theory of C-IFAAPG and C-IFAAWPG operators.
3. To demonstrate the property of Monotonicity and boundedness failed for the above

derived all operators and justify it with the help of an example.
4. To illustrate MADM application based on pioneered operators is to show the feasibility

of the presented approaches.
5. To compare the derived work with some prevailing approaches.

Our derived information is computed or divided into the following parts: In Sect. 2, in
Sect. 3, we derived the theory of C-IFAAPA, C-IFAAWPA, C-IFAAPG, and C-IFAAWPG
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operators and evaluated the significant idempotency property. We also proved that the prop-
erty of monotonicity and boundedness have failed and justified it with the help of some
counterexamples. In Sect. 4, in the presence of the above desirable information, a MADM
approach is examined by using the theory of C-IF information. An illustrative practical
example related to the consideration of the beneficial preference is selected to evaluate the
supremacy and proficiency of the derived information. In Sect. 5, we verified the compar-
ative analysis between the proposed results with various prevailing results. In Sect. 6, we
mentioned the final remarks.

2 Preliminaries

Here, we mentioned some prevailing derived ideas, called PAOs, C-IFSs, and their
Aczel–Alsina operational laws with somemore operational information.Where the universal
set is stated by: X̃U .

Definition 1 (Senapati et al. 2022c) Let�� j , j = 1, 2, . . . , n, be the finite family of positive
information. The mathematical information:

PA
(
��1 ,��2 , . . . , ��n

)
=

∑n
j=1

(
1 + �

(
�� j

))
�� j

∑n
j=1

(
1 + �

(
�� j

)) . (1)

Called PA operator with �
(
�� j

)
= ∑n

s = 1,
s �= j

SUP
(
�� j ,��s

)
, and the term

SUP
(
�� j ,��s

)
represents as support of �� j from ��s with some limitations:

1. SUP
(
�� j ,��s

)
∈ [0, 1].

2. SUP
(
�� j ,��s

)
= SUP

(
��s ,�� j

)
.

3. SUP
(
�� j ,��s

)
≥ SUP

(
��k ,��l

)
when

∣∣∣�� j − ��s

∣∣∣ ≤
∣∣∣��k − ��l

∣∣∣.

Definition 2 (Alkouri and Salleh 2012) The mathematical information:

�� =
{(

�
��

(
μ̃�

)
, �

��

(
μ̃�

)) : μ̃� ∈ X̃U

}
. (2)

Stated as a C-IF set. Further, we considered �
��

(
μ̃�

) = �
R

(
μ̃�

)
e
i2π

(
�

I
(μ̃�)

)

and

�
��

(
μ̃�

) = �
R

(
μ̃�

)
e
i2π

(
�

I
(μ̃�)

)

as an MG and NMG. Moreover, the main characteris-

tic of the C-IF set is stated by: 0 ≤ �
R

(
μ̃�

)+�
R

(
μ̃�

) ≤ 1 and 0 ≤ �
I

(
μ̃�

)+�
I

(
μ̃�

) ≤ 1.

Assume that the mathematical structure of the refusal grade is stated by: R
��

(
μ̃�

) =
R

R

(
μ̃�

)
e
i2π

(
R

I
(μ̃�)

)

=
(
1 −

(
�

R

(
μ̃�

) + �
R

(
μ̃�

)))
e
i2π

(
1−

(
�

I
(μ̃�)+�

I
(μ̃�)

))

, with

a new shape, which is represented as a C-IF number (C-IFN): �� j =⎛

⎝�
R j
e
i2π

(
�

I j

)

, �
R j
e
i2π

(
�

I j

)⎞

⎠, j = 1, 2, . . . , n. Additionally, in the consideration of any
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two C-IFNs �� j =
⎛

⎝�
R j
e
i2π

(
�

I j

)

, �
R j
e
i2π

(
�

I j

)⎞

⎠, j = 1, 2, we derive the following

AA operational laws, such as:

��1 ⊕ ��2 =

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎝

⎛

⎜⎜
⎝1 − e

−
((

−log

(
1−�

R1

))ξ

+
(

−log

(
1−�

R2

))ξ
) 1

ξ

⎞

⎟⎟
⎠e

i2π

⎛

⎜⎜⎜
⎝
1−e

−
((

−log

(
1−�

R1

))ξ
+

(
−log

(
1−�

R2

))ξ
) 1

ξ

⎞

⎟⎟⎟
⎠

,

⎛

⎜⎜
⎝e

−
((

−log

(
�

R1

))ξ

+
(

−log

(
�

R2

))ξ
) 1

ξ

⎞

⎟⎟
⎠e

i2π

⎛

⎜⎜⎜
⎝
e
−

((
−log

(
�
I1

))ξ
+

(
−log

(
�
I2

))ξ
) 1

ξ

⎞

⎟⎟⎟
⎠

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎠

, (3)

��1 ⊗ ��2 =

⎛

⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜
⎝

⎛

⎜⎜
⎝e

−
((

−log

(
�

R1

))ξ

+
(

−log

(
�

R2

))ξ
) 1

ξ

⎞

⎟⎟
⎠e

i2π

⎛

⎜⎜⎜
⎝
e
−

((
−log

(
�
I1

))ξ
+

(
−log

(
�
I2

))ξ
) 1

ξ

⎞

⎟⎟⎟
⎠

,

⎛

⎜
⎜
⎝1 − e

−
((

−log

(
1−�

R1

))ξ

+
(

−log

(
1−�

R2

))ξ
) 1

ξ

⎞

⎟
⎟
⎠e

i2π

⎛

⎜⎜
⎜
⎝
1−e

−
((

−log

(
1−�

R1

))ξ
+

(
−log

(
1−�

R2

))ξ
) 1

ξ

⎞

⎟⎟
⎟
⎠

⎞

⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟
⎠

, (4)

θS��1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜
⎝1 − e

−
(

θS

(
−log

(
1−�

R1

))ξ
) 1

ξ

⎞

⎟⎟
⎠e

i2π

⎛

⎜⎜
⎜
⎝
1−e

−
(

θS

(
−log

(
1−�

I1

))ξ
) 1

ξ

⎞

⎟⎟
⎟
⎠

,

⎛

⎜⎜
⎝e

−
(

θS

(
−log

(
�

R1

))ξ
) 1

ξ

⎞

⎟⎟
⎠e

i2π

⎛

⎜⎜
⎜
⎝
e
−

(

θS

(
−log

(
�
I1

))ξ
) 1

ξ

⎞

⎟⎟
⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (5)

��1

θS =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜
⎝e

−
(

θS

(
−log

(
�

R1

))ξ
) 1

ξ

⎞

⎟⎟
⎠e

i2π

⎛

⎜⎜
⎜
⎝
e
−

(

θS

(
−log

(
�
I1

))ξ
) 1

ξ

⎞

⎟⎟
⎟
⎠

,

⎛

⎜⎜
⎝1 − e

−
(

θS

(
−log

(
1−�

R1

))ξ
) 1

ξ

⎞

⎟⎟
⎠e

i2π

⎛

⎜⎜
⎜
⎝
1−e

−
(

θS

(
−log

(
1−�

I1

))ξ
) 1

ξ

⎞

⎟⎟
⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (6)

Definition 3 In the consideration of any two C-IFNs �� j =⎛

⎝�
R j
e
i2π

(
�

I j

)

, �
R j
e
i2π

(
�

I j

)⎞

⎠, j = 1, 2, we derive the following information, such as:

�SV

(
��1

)
= 1

2

(
�

R1
+ �

I1
− �

R1
− �

I1

)
,�SV

(
��1

)
∈ [−1, 1], (7)

ωAV

(
��1

)
= 1

2

(
�

R1
+ �

I1
_ + �

R1
+ �

I1

)
, ωAV

(
��1

)
∈ [0, 1]. (8)
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Stated as a score and accuracy values, with some limitations, such as:

1. When �SV

(
��1

)
> �SV

(
��2

)
⇒ ��1 > ��2 ;

2. When �SV

(
��1

)
< �SV

(
��2

)
⇒ ��1 < ��2 ;

3. When �SV

(
��1

)
= �SV

(
��2

)
⇒;

(i) When ωAV

(
��1

)
> ωAV

(
��2

)
⇒ ��1 > ��2 ;

(ii) When ωAV

(
��1

)
< ωAV

(
��2

)
⇒ ��1 < ��2 ;

(iii) When ωAV

(
��1

)
= ωAV

(
��2

)
⇒ ��1 = ��2 .

Theorem 1 In the consideration of any family of C-IFNs �� j =⎛

⎝�
R j
e
i2π

(
�

I j

)

, �
R j
e
i2π

(
�

I j

)⎞

⎠, j = 1, 2, . . . , n, we have derived the following results,

such as:

1. ��1 ⊕ ��2 = ��2 ⊕ ��1 ;

2. ��1 ⊗ ��2 = ��2 ⊗ ��1 ;

3. θS

(
��1 ⊕ ��2

)
= θS��1 ⊕ θS��2 ;

4.
(
θS1 + θS1

)
��1 = θS1��1 ⊕ θS2��1 ;

5.
(
��1 ⊗ ��2

)θS = ��1

θS ⊗ ��2

θS
;

6. ��1

θS1 ⊗ ��1

θS1 = ��1

θS1+θS2 .

3 PAOs based on Aczel–Alsina t-norm and t-conorm for C-IFSs

Here, we derived the theory of C-IFAAPA, C-IFAAWPA, C-IFAAPG, and C-IFAAWPG
operators and evaluated the significant idempotency property. We also proved that the prop-
erty of monotonicity and boundedness have failed and justified it with the help of some
counterexamples.

Definition 4 In the consideration of any family of C-IFNs �� j =⎛

⎝�
R j
e
i2π

(
�

I j

)

, �
R j
e
i2π

(
�

I j

)⎞

⎠, j = 1, 2, . . . , n, we derive the idea of the C-IFAAPA

operator, such as:

C-IFAAPA
(
��1 ,��2 , . . . ,��n

)
= Z1��1 ⊕ Z2��2 ⊕ · · · ⊕ Zn��n = ⊕n

j=1

(
Z j�� j

)
,

(9)

where,

Z j = PA
(
��1 ,��2 , . . . ,��n

)
=

(
1 + �

(
�� j

))

∑n
j=1

(
1 + �

(
�� j

)) . (10)
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Called PA operator with �
(
�� j

)
= ∑n

s = 1,
s �= j

SUP
(
�� j ,��s

)
, and the term

SUP
(
�� j ,��s

)
= 1 − d

(
�� j ,��s

)
represents as support of �� j from ��s and

d
(
�� j ,��s

)
= 1

4

(∣
∣
∣�

R j
− �

Rs

∣
∣
∣ +

∣
∣
∣�

I j
− �

Is

∣
∣
∣ +

∣
∣
∣�

R j
− �

Rs

∣
∣
∣ +

∣
∣
∣�

I j
− �

Is

∣
∣
∣
)
used as

a distance measure.

Theorem 2 In the consideration of any family of C-IFNs �� j =⎛

⎝�
R j
e
i2π

(
�

I j

)

, �
R j
e
i2π

(
�

I j

)⎞

⎠, j = 1, 2, . . . , n, we derive that the idea of C-IFAAPA

operator is given again a C-IFN, such as:

C-IFAAPA
(
��1 ,��2 , . . . , ��n

)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜
⎝1 − e

−
(

∑n
j=1 Z j

(
−log

(
1−�

R j

))ξ
) 1

ξ

⎞

⎟⎟
⎠e

i2π

⎛

⎜
⎜⎜
⎜
⎝
1−e

−
⎛

⎝∑n
j=1 Z j

(

−log

(

1−�
I j

))ξ
⎞

⎠

1
ξ

⎞

⎟
⎟⎟
⎟
⎠

,

⎛

⎜⎜
⎝e

−
(

∑n
j=1 Z j

(
−log

(
�

R j

))ξ
) 1

ξ

⎞

⎟⎟
⎠e

i2π

⎛

⎜
⎜
⎜⎜
⎝
e
−

⎛

⎝∑n
j=1 Z j

(

−log

(

�
I j

))ξ
⎞

⎠

1
ξ

⎞

⎟
⎟
⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(11)

Proof To derive the theory given in Eq. (11), we consider the procedure of mathematical
induction. Therefore, we derive the Eq. (11) for the value of n = 2, such as:

Z1��1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜
⎝1 − e

−
(

Z1

(
−log

(
1−�

R1

))ξ
) 1

ξ

⎞

⎟⎟
⎠e

i2π

⎛

⎜⎜
⎜
⎝
1−e

−
(

Z1

(
−log

(
1−�

I1

))ξ
) 1

ξ

⎞

⎟⎟
⎟
⎠

,

⎛

⎜⎜
⎝e

−
(

Z1

(
−log

(
�

R1

))ξ
) 1

ξ

⎞

⎟⎟
⎠e

i2π

⎛

⎜⎜
⎜
⎝
e
−

(

Z1

(
−log

(
�
I1

))ξ
) 1

ξ

⎞

⎟⎟
⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,
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Z2��2 =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎝1 − e

−
(

Z2

(
−log

(
1−�

R2

))ξ
) 1

ξ

⎞

⎟
⎟
⎠e

i2π

⎛

⎜⎜
⎜
⎝
1−e

−
(

Z2

(
−log

(
1−�

I2

))ξ
) 1

ξ

⎞

⎟⎟
⎟
⎠

,

⎛

⎜
⎜
⎝e

−
(

Z2

(
−log

(
�

R2

))ξ
) 1

ξ

⎞

⎟
⎟
⎠e

i2π

⎛

⎜⎜
⎜
⎝
e
−

(

Z2

(
−log

(
�
I2

))ξ
) 1

ξ

⎞

⎟⎟
⎟
⎠

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

then

C-IFAAPA
(
��1 ,��2

)
= Z1��1 ⊕ Z2��2

=

⎛

⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜
⎝1 − e

−
(

Z1

(
−log

(
1−�

R1

))ξ
) 1

ξ

⎞

⎟⎟
⎠e

i2π

⎛

⎜⎜
⎜
⎝
1−e

−
(

Z1

(
−log

(
1−�

I1

))ξ
) 1

ξ

⎞

⎟⎟
⎟
⎠

,

⎛

⎜⎜
⎝e

−
(

Z1

(
−log

(
�

R1

))ξ
) 1

ξ

⎞

⎟⎟
⎠e

i2π

⎛

⎜
⎜⎜
⎝
e
−

(

Z1

(
−log

(
�
I1

))ξ
) 1

ξ

⎞

⎟
⎟⎟
⎠

⎞

⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⊕

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜
⎝1 − e

−
(

Z2

(
−log

(
1−�

R2

))ξ
) 1

ξ

⎞

⎟⎟
⎠e

i2π

⎛

⎜
⎜⎜
⎝
1−e

−
(

Z2

(
−log

(
1−�

I2

))ξ
) 1

ξ

⎞

⎟
⎟⎟
⎠

,

⎛

⎜⎜
⎝e

−
(

Z2

(
−log

(
�

R2

))ξ
) 1

ξ

⎞

⎟⎟
⎠e

i2π

⎛

⎜⎜
⎜
⎝
e
−

(

Z2

(
−log

(
�
I2

))ξ
) 1

ξ

⎞

⎟⎟
⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜
⎝1 − e

−
(

∑2
j=1 Z j

(
−log

(
1−�

R j

))ξ
) 1

ξ

⎞

⎟⎟
⎠e

i2π

⎛

⎜⎜
⎜⎜
⎝
1−e

−
⎛

⎝∑2
j=1 Z j

(

−log

(

1−�
I j

))ξ
⎞

⎠

1
ξ

⎞

⎟⎟
⎟⎟
⎠

,

⎛

⎜⎜
⎝e

−
(

∑2
j=1 Z j

(
−log

(
�

R j

))ξ
) 1

ξ

⎞

⎟⎟
⎠e

i2π

⎛

⎜
⎜⎜
⎜
⎝
e
−

⎛

⎝∑2
j=1 Z j

(

−log

(

�
I j

))ξ
⎞

⎠

1
ξ

⎞

⎟
⎟⎟
⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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Hence, Eq. (11) is satisfied, further, we try to write it for the value of n = k, such as:

C-IFAAPA
(
��1 ,��2 , . . . , ��k

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎝1 − e

−
(

∑k
j=1 Z j

(
−log

(
1−�

R j

))ξ
) 1

ξ

⎞

⎟
⎟
⎠e

i2π

⎛

⎜
⎜
⎜⎜
⎝
1−e

−
⎛

⎝∑k
j=1 Z j

(

−log

(

1−�
I j

))ξ
⎞

⎠

1
ξ

⎞

⎟
⎟
⎟⎟
⎠

,

⎛

⎜
⎜
⎝e

−
(

∑k
j=1 Z j

(
−log

(
�

R j

))ξ
) 1

ξ

⎞

⎟
⎟
⎠e

i2π

⎛

⎜⎜
⎜⎜
⎝
e
−

⎛

⎝∑k
j=1 Z j

(

−log

(

�
I j

))ξ
⎞

⎠

1
ξ

⎞

⎟⎟
⎟⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

.

Moreover, we derive it for the value of n = k + 1, such as:

C-IFAAPA
(
��1 ,��2 , . . . ,��k+1

)
= ⊕k+1

j=1

(
Z j�� j

)
= ⊕k

j=1

(
Z j�� j

)
⊕ Zk+1��k+1

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜
⎝1 − e

−
(

∑k
j=1 Z j

(
−log

(
1−�

R j

))ξ
) 1

ξ

⎞

⎟⎟
⎠e

i2π

⎛

⎜⎜
⎜⎜
⎝
1−e

−
⎛

⎝∑k
j=1 Z j

(

−log

(

1−�
I j

))ξ
⎞

⎠

1
ξ

⎞

⎟⎟
⎟⎟
⎠

,

⎛

⎜⎜
⎝e

−
(

∑k
j=1 Z j

(
−log

(
�

R j

))ξ
) 1

ξ

⎞

⎟⎟
⎠e

i2π

⎛

⎜⎜
⎜⎜
⎝
e
−

⎛

⎝∑k
j=1 Z j

(

−log

(

�
I j

))ξ
⎞

⎠

1
ξ

⎞

⎟⎟
⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⊕

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜
⎝1 − e

−
(

Zk+1

(
−log

(
1−�

Rk+1

))ξ
) 1

ξ

⎞

⎟⎟
⎠e

i2π

⎛

⎜⎜
⎜⎜
⎝
1−e

−
⎛

⎝Zk+1

(

−log

(

1−�
Ik+1

))ξ
⎞

⎠

1
ξ

⎞

⎟⎟
⎟⎟
⎠

,

⎛

⎜⎜
⎝e

−
(

Zk+1

(
−log

(
�

Rk+1

))ξ
) 1

ξ

⎞

⎟⎟
⎠e

i2π

⎛

⎜
⎜⎜
⎜
⎝
e
−

⎛

⎝Zk+1

(

−log

(

�
Ik+1

))ξ
⎞

⎠

1
ξ

⎞

⎟
⎟⎟
⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

⎛

⎜
⎜
⎝1 − e

−
(

∑k+1
j=1 Z j

(
−log

(
1−�

R j

))ξ
) 1

ξ

⎞

⎟
⎟
⎠e

i2π

⎛

⎜⎜
⎜⎜
⎝
1−e

−
⎛

⎝∑k+1
j=1 Z j

(

−log

(

1−�
I j

))ξ
⎞

⎠

1
ξ

⎞

⎟⎟
⎟⎟
⎠

,

⎛

⎜
⎜
⎝e

−
(

∑k+1
j=1 Z j

(
−log

(
�

R j

))ξ
) 1

ξ

⎞

⎟
⎟
⎠e

i2π

⎛

⎜⎜
⎜⎜
⎝
e
−

⎛

⎝∑k+1
j=1 Z j

(

−log

(

�
I j

))ξ
⎞

⎠

1
ξ

⎞

⎟⎟
⎟⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

.

Finally, we get our mentioned information. Further, we aim to justify the informa-
tion in Eq. (11) with the help of some suitable examples. For this, we use three C-IFNs,

such as: ��1 = (
0.2ei2π(0.2), 0.2ei2π(0.2)

)
,��2 = (

0.4ei2π(0.4), 0.4ei2π(0.4)
)
and ��3 =(

0.1ei2π(0.1), 0.89ei2π(0.89)
)
for ξ = 2, then by using the information in Eq. (11), we get

d
(
��1 ,��2

)
= 1

4
(|0.2 − 0.4| + |0.2 − 0.4| + |0.2 − 0.4| + |0.2 − 0.4|) = 0.2

d
(
��1 ,��3

)
= 0.395; d

(
��2 ,��3

)
= 0.395

SUP
(
��1 ,��2

)
= 1 − d

(
��1 ,��2

)
= 1 − 0.2 = 0.8

SUP
(
��1 ,��3

)
= 0.605; SUP

(
��2 ,��3

)
= 0.605

Then,

�
(
��1

)
=

n∑

s = 1,
s �= 1

SUP
(
��1 ,��s

)

= SUP
(
��1 ,��2

)
+ SUP

(
��1 ,��3

)
= 0.8 + 0.605 = 1.405

�
(
��2

)
= 1.405; �

(
��3

)
= 1.21

n∑

j=1

(
1 + �

(
�� j

))
= 7.02

Then,

Z1 =
(
1 + �

(
��1

))

∑3
j=1

(
1 + �

(
�� j

)) = 1 + 1.405

7.02
= 0.34259

Z2 = 0.34259; Z3 = 0.31481.

Therefore, we get the final result, such as:

C-IFAAPA
(
��1 ,��2 ,��3

)
=

(
0.13412ei2π(0.13412), 0.62398ei2π(0.62398)

)
.
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Idempotency 1 In the consideration of any family of C-IFNs �� j =⎛

⎝�
R j
e
i2π

(
�

I j

)

, �
R j
e
i2π

(
�

I j

)⎞

⎠, j = 1, 2, . . . , n, when �� j = �, then we derive

the below theory, such as:

C-IFAAPA
(
��1 ,��2 , . . . , ��n

)
= �. (12)

Proof Using the available above information �� j = � =
(

�
R
e
i2π

(
�

I

)

, �
R
e
i2π

(
�

I

))
,

then we have

C-IFAAPA
(
��1 ,��2 , . . . , ��n

)

=

⎛

⎜
⎜
⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜
⎝1 − e

−
(

∑n
j=1 Z j

(
−log

(
1−�

R j

))ξ
) 1

ξ

⎞

⎟⎟
⎠e

i2π

⎛

⎜⎜
⎜⎜
⎝
1−e

−
⎛

⎝∑n
j=1 Z j

(

−log

(

1−�
I j

))ξ
⎞

⎠

1
ξ

⎞

⎟⎟
⎟⎟
⎠

,

⎛

⎜⎜
⎝e

−
(

∑n
j=1 Z j

(
−log

(
�

R j

))ξ
) 1

ξ

⎞

⎟⎟
⎠e

i2π

⎛

⎜⎜
⎜⎜
⎝
e
−

⎛

⎝∑n
j=1 Z j

(

−log

(

�
I j

))ξ
⎞

⎠

1
ξ

⎞

⎟⎟
⎟⎟
⎠

⎞

⎟
⎟
⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜
⎝1 − e

−
((

−log
(
1−�

R

))ξ
) 1

ξ

⎞

⎟
⎠e

i2π

⎛

⎜⎜
⎜
⎝
1−e

−
((

−log

(
1−�

I

))ξ
) 1

ξ

⎞

⎟⎟
⎟
⎠

,

⎛

⎜
⎝e

−
((

−log
(
�

R

))ξ
) 1

ξ

⎞

⎟
⎠e

i2π

⎛

⎜
⎜⎜
⎝
e
−

((
−log

(
�
I

))ξ
) 1

ξ

⎞

⎟
⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜
⎝

(
1 − e

log
(
1−�

R

))
e
i2π

⎛

⎝1−e
log

(
1−�

I

)⎞

⎠

,

(
e
log

(
�

R

))
e
i2π

⎛

⎝e
log

(
�
I

)⎞

⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

=
(

�
R
e
i2π

(
�

I

)

, �
R
e
i2π

(
�

I

))
.

Monotonicity 2 In the consideration of any family of C-IFNs �� j =⎛

⎝�
R j
e
i2π

(
�

I j

)

, �
R j
e
i2π

(
�

I j

)⎞

⎠, j = 1, 2, . . . , n, when �� j ≤ �� j

′
=
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⎛

⎝�
R j

′
e
i2π

(
�

I j

′)

, �
R j

′
e
i2π

(
�

I j

′)⎞

⎠, then we have

C-IFAAPA
(
��1 ,��2 , . . . , ��n

)
� C-IFAAPA

(
��1

′
,��2

′
, . . . , ��n

′)
. (13)

To justify the above proposition (Monotonocity 2), we give some practical examples
and show that the information in Eq. (13) has failed. For this, we use three C-IFNs,

such as: ��1 = (
0.2ei2π(0.2), 0.2ei2π(0.2)

)
,��2 = (

0.4ei2π(0.4), 0.4ei2π(0.4)
)
,��3 =

(
0.1ei2π(0.1), 0.89ei2π(0.89)

)
and ��1

′
= (

0.2ei2π(0.2), 0.2ei2π(0.2)
)
,��2

′
=

(
0.4ei2π(0.4), 0.4ei2π(0.4)

)
,��3

′
= (

0.11ei2π(0.11), 0.11ei2π(0.11)
)
for ξ = 2, then using the

information in Eq. (11), we get

d
(
��1 ,��2

)
= 1

4
(|0.2 − 0.4| + |0.2 − 0.4| + |0.2 − 0.4| + |0.2 − 0.4|) = 0.2

d
(
��1 ,��3

)
= 0.395; d

(
��2 ,��3

)
= 0.395

SUP
(
��1 ,��2

)
= 1 − d

(
��1 ,��2

)
= 1 − 0.2 = 0.8

SUP
(
��1 ,��3

)
= 0.605; SUP

(
��2 ,��3

)
= 0.605

Then,

�
(
��1

)
=

n∑

s = 1,
s �= 1

SUP
(
��1 ,��s

)

= SUP
(
��1 ,��2

)
+ SUP

(
��1 ,��3

)
= 0.8 + 0.605 = 1.405

�
(
��2

)
= 1.405; �

(
��3

)
= 1.21

n∑

j=1

(
1 + �

(
�� j

))
= 7.02

Then,

Z1 =
(
1 + �

(
��1

))

∑3
j=1

(
1 + �

(
�� j

)) = 1 + 1.405

7.02
= 0.34259

Z2 = 0.34259; Z3 = 0.31481.

Therefore, we get the final result, such as:

C-IFAAPA
(
��1 ,��2 ,��3

)
=

(
0.13412ei2π(0.13412), 0.62398ei2π(0.62398)

)

And similarly, we get

C-IFAAPA

(
��1

′
,��2

′
,��3

′)
=

(
0.13144ei2π(0.13144), 0.48398ei2π(0.48398)

)
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Therefore, based on the above information, we get

C-IFAAPA
(
��1 ,��2 , . . . ,��n

)
� C − I FAAP A

(
��1

′
,��2

′
, . . . , ��n

′)

Hence, themonotonicity property has failed in the environment of theC-IFAAPAoperator.

Definition 5 In the consideration of any family of C-IFNs �� j =⎛

⎝�
R j
e
i2π

(
�

I j

)

, �
R j
e
i2π

(
�

I j

)⎞

⎠, j = 1, 2, . . . , n, we derive the idea of the C-IFAAWPA

operator, such as:

C − IFAAWPA
(
��1 , ��2 , . . . , ��n

)
= Z1��1 ⊕ Z2��2 ⊕ · · · ⊕ Zn��n = ⊕n

j=1

(
Z j�� j

)

(14)

where,

Z j = WPA
(
��1 ,��2 , . . . ,��n

)
=


 j

(
1 + �

(
�� j

))

∑n
j=1 
 j

(
1 + �

(
�� j

)) (15)

Called WPA operator with �
(
�� j

)
= ∑n

s = 1,
s �= j

SUP
(
�� j ,��s

)
, and the term

SUP
(
�� j ,��s

)
= 1 − d

(
�� j ,��s

)
represents as support of �� j from ��s and

d
(
�� j ,��s

)
used as a distance measure, where 
 j ∈ [0, 1] with ∑n

j=1 
 j = 1 represents

the weight vector.

Theorem 3 In the consideration of any family of C-IFNs �� j =⎛

⎝�
R j
e
i2π

(
�

I j

)

, �
R j
e
i2π

(
�

I j

)⎞

⎠, j = 1, 2, . . . , n, we derive that the idea of C-IFAAWPA

operator is given again a C-IFN, such as:

C − IFAAWPA
(
��1 ,��2 , . . . , ��n

)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜
⎝1 − e

−
(

∑n
j=1 Z j

(
−log

(
1−�

R j

))ξ
) 1

ξ

⎞

⎟⎟
⎠e

i2π

⎛

⎜
⎜⎜
⎜
⎝
1−e

−
⎛

⎝∑n
j=1 Z j

(

−log

(

1−�
I j

))ξ
⎞

⎠

1
ξ

⎞

⎟
⎟⎟
⎟
⎠

,

⎛

⎜⎜
⎝e

−
(

∑n
j=1 Z j

(
−log

(
�

R j

))ξ
) 1

ξ

⎞

⎟⎟
⎠e

i2π

⎛

⎜⎜
⎜⎜
⎝
e
−

⎛

⎝∑n
j=1 Z j

(

−log

(

�
I j

))ξ
⎞

⎠

1
ξ

⎞

⎟⎟
⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(16)
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Further, we aim to justify the information in Eq. (16) with the help of some suitable

examples. For this, we use three C-IFNs, such as:��1 = (
0.2ei2π(0.2), 0.2ei2π(0.2)

)
,��2 =

(
0.4ei2π(0.4), 0.4ei2π(0.4)

)
and ��3 = (

0.1ei2π(0.1), 0.89ei2π(0.89)
)
for ξ = 2, then by using

the information in Eq. (16), we get

d
(
��1 ,��2

)
= 1

4
(|0.2 − 0.4| + |0.2 − 0.4| + |0.2 − 0.4| + |0.2 − 0.4|) = 0.2

d
(
��1 ,��3

)
= 0.395; d

(
��2 ,��3

)
= 0.395

SUP
(
��1 ,��2

)
= 1 − d

(
��1 ,��2

)
= 1 − 0.2 = 0.8

SUP
(
��1 ,��3

)
= 0.605; SUP

(
��2 ,��3

)
= 0.605

Then,

�
(
��1

)
=

n∑

s = 1,
s �= 1

SUP
(
��1 ,��s

)

= SUP
(
��1 ,��2

)
+ SUP

(
��1 ,��3

)
= 0.8 + 0.605 = 1.405

�
(
��2

)
= 1.405; �

(
��3

)
= 1.21

where the weighted vectors are 0.4, 0.3 and 0.3, then we have

n∑

j=1


 j

(
1 + �

(
�� j

))
= 2.3465

Then,

Z1 =

1

(
1 + �

(
��1

))

∑3
j=1 
 j

(
1 + �

(
�� j

)) = 0.40997

Z2 = 0.30748; Z3 = 0.28255.

Therefore, we get the final result, such as:

C − IFAAWPA
(
��1 ,��2 ,��3

)
=

(
0.13056ei2π(0.13056), 0.60671ei2π(0.60671)

)
.

Idempotency 3 In the consideration of any family of C-IFNs �� j =⎛

⎝�
R j
e
i2π

(
�

I j

)

, �
R j
e
i2π

(
�

I j

)⎞

⎠, j = 1, 2, . . . , n, when �� j = �, then we derive

the below theory, such as:

C − IFAAWPA
(
��1 ,��2 , . . . , ��n

)
= � (17)
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Definition 6 In the consideration of any family of C-IFNs �� j =⎛

⎝�
R j
e
i2π

(
�

I j

)

, �
R j
e
i2π

(
�

I j

)⎞

⎠, j = 1, 2, . . . , n, we derive the idea of the C-IFAAPG

operator, such as:

C − IFAAPG
(
��1 , ��2 , . . . , ��n

)
= ��1

Z1 ⊗ ��2

Z2 ⊗ · · · ⊗ ��n

Zn = ⊗n
j=1

(

�� j

Z j

)

(18)

where,

Z j = PA
(
��1 ,��2 , . . . , ��n

)
=

(
1 + �

(
�� j

))
�� j

∑n
j=1

(
1 + �

(
�� j

)) (19)

Called PA operator with �
(
�� j

)
= ∑n

s = 1,
s �= j

SUP
(
�� j ,��s

)
, and the term

SUP
(
�� j ,��s

)
= 1 − d

(
�� j ,��s

)
represents as support of �� j from ��s and

d
(
�� j ,��s

)
used as a distance measure.

Theorem 4 In the consideration of any family of C-IFNs �� j =⎛

⎝�
R j
e
i2π

(
�

I j

)

, �
R j
e
i2π

(
�

I j

)⎞

⎠, j = 1, 2, . . . , n, we derive that the idea of C-IFAAPG

operator is given again a C-IFN, such as:

C − IFAAPG
(
��1 ,��2 , . . . , ��n

)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜
⎝e

−
(

∑n
j=1 Z j

(
−log

(
�

R j

))ξ
) 1

ξ

⎞

⎟⎟
⎠e

i2π

⎛

⎜⎜
⎜⎜
⎝
e
−

⎛

⎝∑n
j=1 Z j

(

−log

(

�
I j

))ξ
⎞

⎠

1
ξ

⎞

⎟⎟
⎟⎟
⎠

,

⎛

⎜⎜
⎝1 − e

−
(

∑n
j=1 Z j

(
−log

(
1−�

R j

))ξ
) 1

ξ

⎞

⎟⎟
⎠e

i2π

⎛

⎜⎜
⎜⎜
⎝
1−e

−
⎛

⎝∑n
j=1 Z j

(

−log

(

1−�
I j

))ξ
⎞

⎠

1
ξ

⎞

⎟⎟
⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(20)

Further, we aim to justify the information in Eq. (20) with the help of some suitable

examples. For this, we use three C-IFNs, such as:��1 = (
0.2ei2π(0.2), 0.2ei2π(0.2)

)
,��2 =

(
0.4ei2π(0.4), 0.4ei2π(0.4)

)
and ��3 = (

0.1ei2π(0.1), 0.89ei2π(0.89)
)
for ξ = 2, then by using

the information in Eq. (20), we get

d
(
��1 ,��2

)
= 1

4
(|0.2 − 0.4| + |0.2 − 0.4| + |0.2 − 0.4| + |0.2 − 0.4|) = 0.2

d
(
��1 ,��3

)
= 0.395; d

(
��2 ,��3

)
= 0.395
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SUP
(
��1 ,��2

)
= 1 − d

(
��1 ,��2

)
= 1 − 0.2 = 0.8

SUP
(
��1 ,��3

)
= 0.605; SUP

(
��2 ,��3

)
= 0.605

Then,

�
(
��1

)
=

n∑

s = 1,
s �= 1

SUP
(
��1 ,��s

)

= SUP
(
��1 ,��2

)
+ SUP

(
��1 ,��3

)
= 0.8 + 0.605 = 1.405

�
(
��2

)
= 1.405; �

(
��3

)
= 1.21

n∑

j=1

(
1 + �

(
�� j

))
= 7.02

Then,

Z1 =
(
1 + �

(
��1

))

∑3
j=1

(
1 + �

(
�� j

)) = 1 + 1.405

7.02
= 0.34259

Z2 = 0.34259; Z3 = 0.31481.

Therefore, we get the final result, such as:

C − IFAAPG
(
��1 ,��2 ,��3

)
=

(
0.13412ei2π(0.13412), 0.62398ei2π(0.62398)

)
.

Idempotency 4 In the consideration of any family of C-IFNs �� j =⎛

⎝�
R j
e
i2π

(
�

I j

)

, �
R j
e
i2π

(
�

I j

)⎞

⎠, j = 1, 2, . . . , n, when �� j = �, then we derive

the below theory, such as:

C − IFAAPG
(
��1 ,��2 , . . . , ��n

)
= � (21)

Definition 7 In the consideration of any family of C-IFNs �� j =⎛

⎝�
R j
e
i2π

(
�

I j

)

, �
R j
e
i2π

(
�

I j

)⎞

⎠, j = 1, 2, . . . , n, we derive the idea of the C-IFAAWPG

operator, such as:

C − IFAAWPG
(
��1 , ��2 , . . . , ��n

)
= ��1

Z1 ⊗ ��2

Z2 ⊗ · · · ⊗ ��n

Zn = ⊗n
j=1

(

�� j

Z j

)

(22)

where,

Z j = WPA
(
��1 ,��2 , . . . , ��n

)
=


 j

(
1 + �

(
�� j

))
�� j

∑n
j=1 
 j

(
1 + �

(
�� j

)) (23)
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Called WPA operator with �
(
�� j

)
= ∑n

s = 1,
s �= j

SUP
(
�� j ,��s

)
, and the term

SUP
(
�� j ,��s

)
= 1 − d

(
�� j ,��s

)
represents as support of �� j from ��s and

d
(
�� j ,��s

)
used as a distance measure, where 
 j ∈ [0, 1] with ∑n

j=1 
 j = 1 represents

the weight vector.

Theorem 5 In the consideration of any family of C-IFNs �� j =⎛

⎝�
R j
e
i2π

(
�

I j

)

, �
R j
e
i2π

(
�

I j

)⎞

⎠, j = 1, 2, . . . , n, we derive that the idea of C-IFAAWPG

operator is given again a C-IFN, such as:

C − IFAAWPG
(
��1 ,��2 , . . . , ��n

)

=

⎛

⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜
⎝e

−
(

∑n
j=1 Z j

(
−log

(
�

R j

))ξ
) 1

ξ

⎞

⎟⎟
⎠e

i2π

⎛

⎜⎜
⎜⎜
⎝
e
−

⎛

⎝∑n
j=1 Z j

(

−log

(

�
I j

))ξ
⎞

⎠

1
ξ

⎞

⎟⎟
⎟⎟
⎠

,

⎛

⎜⎜
⎝1 − e

−
(

∑n
j=1 Z j

(
−log

(
1−�

R j

))ξ
) 1

ξ

⎞

⎟⎟
⎠e

i2π

⎛

⎜⎜
⎜⎜
⎝
1−e

−
⎛

⎝∑n
j=1 Z j

(

−log

(

1−�
I j

))ξ
⎞

⎠

1
ξ

⎞

⎟⎟
⎟⎟
⎠

⎞

⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(24)

Further, we aim to justify the information in Eq. (16) with the help of some suitable

examples. For this, we use three C-IFNs, such as:��1 = (
0.2ei2π(0.2), 0.2ei2π(0.2)

)
,��2 =

(
0.4ei2π(0.4), 0.4ei2π(0.4)

)
and ��3 = (

0.1ei2π(0.1), 0.89ei2π(0.89)
)
for ξ = 2, then by using

the information in Eq. (16), we get

d
(
��1 ,��2

)
= 1

4
(|0.2 − 0.4| + |0.2 − 0.4| + |0.2 − 0.4| + |0.2 − 0.4|) = 0.2

d
(
��1 ,��3

)
= 0.395; d

(
��2 ,��3

)
= 0.395

SUP
(
��1 ,��2

)
= 1 − d

(
��1 ,��2

)
= 1 − 0.2 = 0.8

SUP
(
��1 ,��3

)
= 0.605; SUP

(
��2 ,��3

)
= 0.605

Then,

�
(
��1

)
=

n∑

s = 1,
s �= 1

SUP
(
��1 ,��s

)

= SUP
(
��1 ,��2

)
+ SUP

(
��1 ,��3

)
= 0.8 + 0.605 = 1.405
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�
(
��2

)
= 1.405; �

(
��3

)
= 1.21

where the weighted vectors are 0.4,0.3 and 0.3, then we have

n∑

j=1


 j

(
1 + �

(
�� j

))
= 2.3465

Then,

Z1 =

1

(
1 + �

(
��1

))

∑3
j=1 
 j

(
1 + �

(
�� j

)) = 0.40997

Z2 = 0.30748; Z3 = 0.28255.

Therefore, we get the final result, such as:

C − IFAAWPG
(
��1 ,��2 ,��3

)
=

(
0.48236ei2π(0.48236), 0.41013ei2π(0.41013)

)
.

Idempotency 5 In the consideration of any family of C-IFNs �� j =⎛

⎝�
R j
e
i2π

(
�

I j

)

, �
R j
e
i2π

(
�

I j

)⎞

⎠, j = 1, 2, . . . , n, when �� j = �, then we derive

the below theory, such as:

C − IFAAWPG
(
��1 ,��2 , . . . , ��n

)
= � (25)

where, the monotonicity property and boundedness has been failed for the idea of C-
IFAAPA, C-IFAAWPA, C-IFAAPG, and C-IFAAWPG operators.

4 MADMprocedures under-investigated operators

Here, we aim to derive a decision-making procedure based on pioneered operators which are
computed for C-IFSs. For this, we described the main procedure of decision-making and try
to show that the derived work is massively useful.

For this, we consider the valuable and dominant family of alternatives:

�� =
{
��1 ,��2 , . . . , ��m

}
. Similarly, we use the family of attributes

�
′
� =

{
�

′
�1

,�
′
�2

, . . . , �
′
�n

}
for each alternative based on the weight vector

Z =
(
Z1, Z2, . . . , Zn

)T ∑n
j=1 Z j = 1. Based on this information, we assigned the infor-

mation of C-IFN to each attribute in every alternative, where the value of C-IFN is stated

by: �� jk =
⎛

⎝�
R jk

e
i2π

(
�

I jk

)

, �
R jk

e
i2π

(
�

I jk

)⎞

⎠, j, k = 1, 2, . . . , n,m. Furthermore,

we considered �
��

(
μ̃�

) = �
R

(
μ̃�

)
e
i2π

(
�

I
(μ̃�)

)

and �
��

(
μ̃�

) = �
R

(
μ̃�

)
e
i2π

(
�

I
(μ̃�)

)

as an MG and NMG. Moreover, the main characteristic of the C-IF set is stated by:
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Table 1 The major steps of the derived algorithm

Proposed algorithm

Key Point 1: Frist, we aim to compute a matrix that contained the finite family of alternatives and
attributes in the shape of C-IFNs
Key Point 2: Usually, every decision matrix contained two types of data, like benefit and cost types, if
the data is cost type, then normalize it with the help of the below idea:

D =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎝�

R jk
e
i2π

(
�
I jk

)

, �
R jk

e
i2π

(
�
I jk

)⎞

⎟
⎠ Benefit

⎛

⎜
⎝�

R jk
e
i2π

(
�
I jk

)

, �
R jk

e
i2π

(
�
I jk

)⎞

⎟
⎠ Cost

But, if the data is benefit types, then do not normalize the data and proceed to the next steps
Key Point 3: Tanking the idea of C-IFAAPA, C-IFAAWPA, C-IFAAPG, and C-IFAAWPG operators and
trying to aggregate our considered normalized information
Where the above operators are the modified version of the bundle of ideas because the derived theory is
massively valuable and dominant due to computed based on C-IF information
Key Point 4: Tanking the idea in Eqs. (7) and (8) and evaluating the aggregated information
Key Point 5: Examine the order information in the presence of score information to find the best decision
Where the above procedure is the form of decision-making and with help of the above algorithm, we can
easily derive the best decision from the collection of preferences

0 ≤ �
R

(
μ̃�

) + �
R

(
μ̃�

) ≤ 1 and 0 ≤ �
I

(
μ̃�

) + �
I

(
μ̃�

) ≤ 1. Assume that the mathe-

matical structure of the refusal grade is stated by: R
��

(
μ̃�

) = R
R

(
μ̃�

)
e
i2π

(
R

I
(μ̃�)

)

=
(
1 −

(
�

R

(
μ̃�

) + �
R

(
μ̃�

)))
e
i2π

(
1−

(
�

I
(μ̃�)+�

I
(μ̃�)

))

. To proceed with the above proce-

dure, firstly, we aim to compute a decision-making procedure and then try to justify it with
the help of some practical examples. The derived algorithm is also stated in the form of
Table 1 and their geometrical representation in given in the form of Fig. 1.

Further, here, we stated the flowchart of the above algorithm is to state the proficiency
and reliability of the evaluated theory.

Under the evaluation of the procedure, we aim to justify it with the help of some practical
examples, which are stated below.

4.1 Practical-example

To demonstrate the derived theory, we use or describe a case study related to entrepreneur

to busy a novel branded machine out of five different models represented by �� j , j =
1, 2, 3, 4, 5,where the consideredmachines are stated in the formsuch as��1 :ATMmachine,

��2 : security checkingmachine,��3 : biometricmachine,��4 :millingmachine,��5 : CNC
Lathe machine. The accessibility of the above machines is measured under the presence of

the four different criteria, such as �
′
�1

: flexibility, �
′
�2

: reliability, �
′
�3

: prices, and �
′
�4

:
safety. To resolve the above problems, we select their weight vector 0.1, 0.2, 0.3, 0.4 for
each alternative. To evaluate the above theory in the presence of the data in Table 2, where,
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Fig. 1 Geometrical interpretation of the derived algorithm

Table 2 Information matrix (C-IF data)

Alternatives/attributes
�

′
�1

�
′
�2

��1 ((0.3, 0.2), (0.1, 0.2)) ((0.5, 0.7), (0.3, 0.1))

��2 ((0.4, 0.7), (0.3, 0.1)) ((0.4, 0.4), (0.2, 0.3))

��3 ((0.5, 0.5), (0.2, 0.4)) ((0.1, 0.7), (0.5, 0.1))

��4 ((0.6, 0.6), (0.2, 0.2)) ((0.2, 0.3), (0.4, 0.3))

��5 ((0.2, 0.5), (0.1, 0.3)) ((0.7, 0.4), (0.1, 0.2))

Alternatives/attributes
�

′
�3

�
′
�4

��1 ((0.8, 0.4), (0.1, 0.3)) ((0.2, 0.3), (0.4, 0.3))

��2 ((0.3, 0.5), (0.5, 0.4)) ((0.7, 0.4), (0.1, 0.2))

��3 ((0.7, 0.4), (0.3, 0.3)) ((0.6, 0.6), (0.2, 0.2))

��4 ((0.4, 0.6), (0.3, 0.5)) ((0.3, 0.5), (0.5, 0.4))

��5 ((0.6, 0.2), (0.1, 0.4)) ((0.7, 0.4), (0.3, 0.3))

if we talked about the first entry in Table 2, the machine ��1 states that the expert during

the decision-making evaluation agrees that it is flexible by 30% under the criteria �
′
�1

and
not flexible 10%. Similarly, concerning production date, he feels that 20% is compatible and

20% is not under the presence of the criteria �
′
�1

. Thus, the theory ((0.3, 0.2), (0.1, 0.2))
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in Table 2 is called C-IFN. Similarly, we evaluated the information in Table 2 under the
consideration of the above algorithm. Therefore, to proceed with the above procedure, firstly,
we aim to compute a decision-making procedure and then try to justify it with the help of
some practical examples. Therefore, the aim key-points are listed below:

Key Point 1: Frist, we aim to compute a matrix that contained the finite family of alterna-
tives and attributes in the shape of C-IFNs, see information in Table 2.Where, the information
in Table 2 is arranged in the shape of C-IFNs and it is clear that the theory of C-IFNs has a
lot of advantages because they contained the truth and falsity grades in the shape of complex
numbers, whose real and imaginary parts are covered in the unit interval. Furthermore, in
many situations, we faced two-dimension information, for instance, when we purchase a new
car, for this, we needed to visit the car company the owner of the car can provide two types
of data regarding each car such as name and production date of the car, where the name of
the car stated the real part, and the production date of the car stated the phase term. Noticed
that the theory of FS has failed to manage such type of situation.

Key-Point 2: Usually, every decision matrix contained two types of data, like benefit and
cost types, if the data is cost type, then normalize it with the help of the below idea:

D =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎝�
Rjk

e
i2π

(
�
Ijk

)

, �
Rjk

e
i2π

(
�
Ijk

)⎞

⎠ Benefit

⎛

⎝�
Rjk

e
i2π

(
�
Ijk

)

, �
Rjk

e
i2π

(
�
Ijk

)⎞

⎠ Cost

But, if the data is benefit types, then do not normalize the data and proceed to the next steps.
Information is given in Table 2, in the form of benefit types, then is no need to normalize,
therefore, we consider ξ = 2, then by using the information in Eq. (11), we get information
in Table 3, which contained the distance measures.

Where, the values of support information, see Table 4, which are obtained from the infor-
mation in Table 3.

Furthermore, we derive the value of each �
(
�� j

)
= ∑n

s = 1,
s �= j

SUP
(
�� j ,��s

)
for

every alternative based on their attributes, see Table 5.

Moreover, we use the theory given in Eq. (10) Z j = PA
(
��1 ,��2 , . . . , ��n

)
=

(
1+�

(
�� j

))

∑n
j=1

(
1+�

(
�� j

)) and try to derive their values, which are given in Table 6.

Moreover, we use the theory given in Eq. (10) Z j = PA
(
��1 ,��2 , . . . , ��n

)
=

(
1+�

(
�� j

))

∑n
j=1

(
1+�

(
�� j

)) and try to derive their values using the weight vector 0.1, 0.2, 0.3, and

0.4, which are given in Table 7.
Key-Point 3: Tanking the idea of C-IFAAPA, C-IFAAWPA, C-IFAAPG, and C-

IFAAWPG operators and trying to aggregate our considered normalized information, see
Table 8.

Key Point 4: Tanking the idea in Eqs. (7) and (8) and evaluating the aggregated informa-
tion, see Table 9.

Key Point 5: Examine the order information in the presence of score information to find
the best decision, see Table 10.
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Table 5 Expressed the values of �
(
�� j

)

��1 ��2 ��3 ��4 ��5

�
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Table 6 Represented the values of Z j without weight vectors

��1 ��2 ��3 ��4 ��5

Z1 = 0.2556 Z1 = 0.2491 Z1 = 0.2565 Z1 = 0.2437 Z1 = 0.242

Z2 = 0.2444 Z2 = 0.26 Z2 = 0.2306 Z2 = 0.2473 Z2 = 0.2562

Z3 = 0.2481 Z3 = 0.2455 Z3 = 0.2528 Z3 = 0.2545 Z3 = 0.2491

Z4 = 0.2519 Z4 = 0.2455 Z4 = 0.2601 Z4 = 0.2545 Z4 = 0.2527

Table 7 Represented the values of Z j with weight vectors

��1 ��2 ��3 ��4 ��5

Z1 = 0.1024 Z1 = 0.1001 Z1 = 0.1019 Z1 = 0.0967 Z1 = 0.0963

Z2 = 0.1958 Z2 = 0.2091 Z2 = 0.1833 Z2 = 0.1963 Z2 = 0.2039

Z3 = 0.2982 Z3 = 0.2961 Z3 = 0.3013 Z3 = 0.303 Z3 = 0.2975

Z4 = 0.4036 Z4 = 0.3947 Z4 = 0.4135 Z4 = 0.404 Z4 = 0.4023

We derive four different types of results under the consideration of four different types of
operators. Further, we explained the supremacy of the pioneered information by ignoring the
part of the imaginary for the information in Table 2, then the final score values are stated in
Table 11.

Finally, we examined the order information in the presence of score information to find
the best decision, see Table 12.
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Table 8 For ξ = 2, we aggregated the information by using different types of operators

Alternatives C-IFAAPA operator C-IFAAPG operator

��1 ((0.3227, 0.256), (0.4578, 0.491)) ((0.6273, 0.6134), (0.1298, 0.1149))

��2 ((0.2688, 0.2878), (0.5065, 0.5005)) ((0.6757, 0.7196), (0.1619, 0.1353))

��3 ((0.3066, 0.3121), (0.557, 0.5047)) ((0.5932, 0.7515), (0.1634, 0.1367))

��4 ((0.2165, 0.28), (0.606, 0.6065)) ((0.611, 0.7122), (0.1885, 0.1889))

��5 ((0.3464, 0.1991), (0.4051, 0.5783)) ((0.6854, 0.6228), (0.0836, 0.1503))

Alternatives C-IFAAWPA operator C-IFAAWPG operator

��1 ((0.3376, 0.2448), (0.4869, 0.516)) ((0.6091, 0.6308), (0.1473, 0.1262))

��2 ((0.3029, 0.2515), (0.476, 0.5325)) ((0.6884, 0.7023), (0.1638, 0.1421))

��3 ((0.3276, 0.3118), (0.5531, 0.4988)) ((0.6255, 0.7514), (0.1558, 0.1206))

��4 ((0.1848, 0.2763), (0.641, 0.645)) ((0.6011, 0.7178), (0.2081, 0.2056))

��5 ((0.3702, 0.184), (0.4312, 0.5874)) ((0.7587, 0.6065), (0.0992, 0.1554))

Table 9 Stated different score values

Alternatives C-IFAAPA
operator

C-IFAAPG
operator

C-IFAAWPA
operator

C-IFAAWPG
operator

��1 − 0.185 0.498 − 0.21 0.4832

��2 − 0.225 0.5491 − 0.227 0.5424

��3 − 0.222 0.5223 − 0.206 0.5503

��4 − 0.358 0.4729 − 0.412 0.4526

��5 − 0.219 0.5371 − 0.232 0.5553

Table 10 Stated ranking
information C-IFAAPA operator ��1 > ��5 > ��3 > ��2 > ��4

C-IFAAPG operator ��2 > ��5 > ��3 > ��1 > ��4

C-IFAAWPA operator ��3 > ��1 > ��2 > ��5 > ��4

C-IFAAWPG operator ��5 > ��3 > ��2 > ��1 > ��4
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Table 11 Stated different score values

Alternatives C-IFAAPA
operator

C-IFAAPG
operator

C-IFAAWPA
operator

C-IFAAWPG
operator

��1 − 0.068 0.2488 − 0.075 0.2309

��2 − 0.119 0.2569 − 0.087 0.2623

��3 − 0.125 0.2149 − 0.113 0.2349

��4 − 0.195 0.2113 − 0.228 0.1965

��5 − 0.029 0.3009 − 0.03 0.3298

Table 12 Stated ranking
information C-IFAAPA operator ��5 > ��1 > ��2 > ��3 > ��4

C-IFAAPG operator ��5 > ��2 > ��1 > ��3 > ��4

C-IFAAWPA operator ��5 > ��1 > ��2 > ��3 > ��4

C-IFAAWPG operator ��5 > ��2 > ��3 > ��1 > ��4

We derive the best decision ��5 under the consideration of four different types of opera-
tors. Further, by using the values of the parameter, we try to derive the influence or stability
of the derived operators.

4.2 Influence/stability of parameter

Using the different values of parameter ξ , it is very necessary to check the stability and influ-
ence of the proposed work with the help of parameter ξ . Already, we proved that the derived
operators are massively powerful and dominant to evaluate different kinds of problems. The
main aim of this section is to check the stability and influence of the proposed work with the
help of parameter ξ . The main analysis for different values of ξ , the final ranking information
is described in Table 13.

Information in Table 13, we noticed that the idea of the C-IFAAPA operator is stated

two different types of results such as ��5 for the value of ξ = 1, and ��1 for the value of
ξ = 3, 5, 7, 10, 11. Moreover, the idea of C-IFAAPG operator stated the same results such

as ��2 for the different value of parameter ξ = 1, 3, 5, 7, 10, 11. Similarly, the idea of the

C-IFAAWPA operator has stated two different types of results as ��3 for the value of ξ = 1,

and ��1 for the value of ξ = 3, 5, 7, 10, 11. Finally, the idea of the C-IFAAWPG operator

has stated three different types of results as ��3 for the value of ξ = 1, ��5 for the value of

ξ = 3,7, and ��2 for the value of ξ = 7, 10, 11. We derived various kinds of results for four
different kinds of operators, but many of them given the most repeated value is��1 . Further,
by excluding the phase term from the information in Table 2, then we check the influence of
the proposed work with the help of parameter ξ . The main analysis for different values of ξ ,
the final ranking information is described in Table 14.
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Table 13 Aggregated information for ξ (with phase term)

Parameter Operator Score values Ranking values

ξ = 1 C-IFAAPA − 0.2498, − 0.2684, − 0.2583,
− 0.3881, − 0.2441

��5 > ��1 > ��2 > ��3 > ��4

C-IFAAPG 0.5438, 0.581, 0.5797, 0.5026,
0.5803

��2 > ��5 > ��3 > ��1 > ��4

C-IFAAWPA − 0.2778, − 0.2686, − 0.2357,
− 0.4354, − 0.2527

��3 > ��5 > ��2 > ��1 > ��4

C-IFAAWPG 0.5277, 0.5781, 0.607, 0.4735,
0.5903

��3 > ��5 > ��2 > ��1 > ��4

ξ = 3 C-IFAAPA − 0.1332, − 0.1858, − 0.1943,
− 0.3319, − 0.2019

��1 > ��2 > ��3 > ��5 > ��4

C-IFAAPG 0.4671, 0.5251, 0.4762, 0.447,
0.4993

��2 > ��5 > ��3 > ��1 > ��4

C-IFAAWPA − 0.1558, − 0.1918, − 0.1848,
− 0.3898, − 0.2167

��1 > ��3 > ��2 > ��5 > ��4

C-IFAAWPG 0.4553, 0.5163, 0.5014, 0.4336,
0.5188

��5 > ��2 > ��3 > ��1 > ��4

ξ = 5 C-IFAAPA − 0.066, − 0.1257, − 0.1551,
− 0.2926, − 0.1794

��1 > ��2 > ��3 > ��5 > ��4

C-IFAAPG 0.4294, 0.4937, 0.4189, 0.4076,
0.4485

��2 > ��5 > ��3 > ��1 > ��4

C-IFAAWPA − 0.0828, − 0.1382, − 0.153,
− 0.349, − 0.1943

��1 > ��3 > ��2 > ��5 > ��4

C-IFAAWPG 0.423, 0.4842, 0.4385, 0.4023,
0.4632

��5 > ��2 > ��3 > ��1 > ��4

ξ = 7 C-IFAAPA − 0.0278, − 0.0872, − 0.1287,
− 0.2664, − 0.1646

��1 > ��2 > ��3 > ��5 > ��4

C-IFAAPG 0.4071, 0.4746, 0.3874, 0.3814,
0.4189

��2 > ��5 > ��3 > ��1 > ��4

C-IFAAWPA − 0.0402, − 0.1011, − 0.1301,
− 0.3166, − 0.1786

��1 > ��3 > ��2 > ��5 > ��4

C-IFAAWPG 0.4041, 0.4658, 0.4029, 0.3795,
0.4299

��2 > ��5 > ��3 > ��1 > ��4

ξ = 10 C-IFAAPA 0.0046, − 0.0526, − 0.1029, −
0.2415, − 0.1496

��1 > ��2 > ��3 > ��5 > ��4

C-IFAAPG 0.3865, 0.457, 0.3608, 0.3567,
0.3933

��2 > ��5 > ��3 > ��1 > ��4

C-IFAAWPA − 0.004, − 0.0651, − 0.1061,
− 0.2822, − 0.1618

��1 > ��3 > ��2 > ��5 > ��4
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Table 13 (continued)

Parameter Operator Score values Ranking values

C-IFAAWPG 0.3859, 0.4495, 0.3723, 0.3564,
0.4011

��2 > ��5 > ��3 > ��1 > ��4

ξ = 11 C-IFAAPA 0.0118, − 0.0447, − 0.0968, −
0.2357, − 0.1458

��1 > ��2 > ��3 > ��5 > ��4

C-IFAAPG 0.3816, 0.4528, 0.3548, 0.3509,
0.3875

��2 > ��5 > ��1 > ��4 > ��3

C-IFAAWPA 0.004, − 0.0565, − 0.1, −
0.2737, − 0.1574

��1 > ��2 > ��3 > ��5 > ��4

C-IFAAWPG 0.3814, 0.4458, 0.3654, 0.3508,
0.3947

��2 > ��5 > ��1 > ��3 > ��4

Information in Table 14, we noticed that the idea of the C-IFAAPA operator is stated two

different types of results such as ��5 for the value of parameter ξ = 1, 3, 5, and ��1 for the
value of parameter ξ = 7, 10, 11. Moreover, the idea of C-IFAAPG operator stated the same

results such as ��5 for the different value of parameter ξ = 1, 3, 5, 7, 10, 11. Similarly, the

idea of the C-IFAAWPA operator has stated two different types of results as ��5 for the

value of parameter ξ = 1, 3, 5, 7, and ��1 for the value of parameter ξ = 10, 11. Finally,

the idea of the C-IFAAWPG operator has stated the same results such as��5 for the value of
parameter ξ = 1, 3, 5, 7, 10, 11. Here, check the stability of the derived work by excluding

only the phase term from the information in Table 2. Therefore, we obtained ��5 by using
four different types, it means that the phase term affects the overall results. Moreover, we
compare the derived operators with certain prevailing operators to mention the supremacy
and worth of the presented information.

5 Comparative/sensitive analysis

Here, we aim to evaluate the comparison between proposed and prevailing information. For
this, we use the above illustrative practical example related to the consideration of the benefi-
cial preference selected to evaluate the supremacy and proficiency of the derived information
which is verified by comparing their final ranking results with various prevailing results. To
compare the derived information with some prevailing information, we consider the prevail-
ing information of Senapati et al. (2022b) to derive the theory of Aczel–Alsina aggregation
operators for IFS. Additionally, PAOs for IFS were derived by Xu (2011) and the PAOs for
C-FS were invented by Hu et al. (2019). Finally, nowadays, Rani and Garg (2018) presented
the PAOs for C-IFSs. After, a brief discussion, the main comparative investigation is given
in Table 15 based on the information in Table 2 (with phase terms).

All proposed operators and the theory of Mahmood et al. (2023) are given different
ranking information. The information derived by Senapati et al. (2022b) such as the theory
of Aczel–Alsina aggregation operators for IFS, PAOs for IFS were derived by Xu (2011),
and the PAOs for C-FS were invented by Hu et al. (2019) lot of limitations because these all
operators are computed based on IFSs and C-FS which are the special case of the derived
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Table 14 Aggregated information for ξ (without phase term)

Parameter Operator Score values Ranking values

ξ = 1 C-IFAAPA − 0.1069, − 0.1441, − 0.1467,
− 0.2124, − 0.0465

��5 > ��1 > ��2 > ��3 > ��4

C-IFAAPG 0.2776, 0.2766, 0.2602, 0.2269,
0.3338

��5 > ��2 > ��1 > ��3 > ��4

C-IFAAWPA − 0.1197, − 0.1155, − 0.1304,
− 0.2412, − 0.0434

��5 > ��1 > ��2 > ��3 > ��4

C-IFAAWPG 0.2628, 0.2896, 0.2811, 0.2068,
0.3555

��5 > ��2 > ��3 > ��1 > ��4

ξ = 3 C-IFAAPA − 0.0379, − 0.0965, − 0.112,
− 0.1791, − 0.019

��5 > ��1 > ��2 > ��3 > ��4

C-IFAAPG 0.2298, 0.2422, 0.2787, 0.1985,
0.2731

��5 > ��2 > ��1 > ��3 > ��4

C-IFAAWPA − 0.0424, − 0.0648, − 0.1023,
− 0.2145, − 0.0215

��5 > ��1 > ��2 > ��3 > ��4

C-IFAAWPG 0.2118, 0.2428, 0.1954, 0.1878,
0.3022

��5 > ��2 > ��3 > ��1 > ��4

ξ = 5 C-IFAAPA − 0.0024, − 0.064, − 0.0956,
− 0.1554, − 0.0074

��5 > ��1 > ��2 > ��3 > ��4

C-IFAAPG 0.2074, 0.2229, 0.1357, 0.1798,
0.2397

��5 > ��2 > ��1 > ��3 > ��4

C-IFAAWPA − 0.0049, − 0.038, − 0.0892,
− 0.1895, − 0.0099

��5 > ��1 > ��2 > ��3 > ��4

C-IFAAWPG 0.1913, 0.2199, 0.1475, 0.1742,
0.2618

��5 > ��2 > ��3 > ��1 > ��4

ξ = 7 C-IFAAPA 0.0163, − 0.0441, − 0.0853, −
0.1398, − 0.001

��1 > ��5 > ��2 > ��3 > ��4

C-IFAAPG 0.1946, 0.2113, 0.1138, 0.1674,
0.2228

��5 > ��2 > ��1 > ��3 > ��4

C-IFAAWPA 0.0146, − 0.0234, − 0.0809, −
0.1699, − 0.0031

��5 > ��1 > ��2 > ��3 > ��4

C-IFAAWPG 0.1808, 0.2075, 0.1227, 0.1642,
0.2395

��5 > ��2 > ��3 > ��1 > ��4

ξ = 10 C-IFAAPA 0.0313, − 0.0266, − 0.0755, −
0.1254, 0.0045

��1 > ��5 > ��2 > ��3 > ��4

C-IFAAPG 0.183, 0.2005, 0.0964, 0.1554,
0.2095

��5 > ��2 > ��1 > ��3 > ��4

C-IFAAWPA 0.0301, − 0.0112, − 0.0726, −
0.1496, 0.003

��5 > ��1 > ��2 > ��3 > ��4
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Table 14 (continued)

Parameter Operator Score values Ranking values

C-IFAAWPG 0.172, 0.1968, 0.1028, 0.1538,
0.2216

��5 > ��2 > ��3 > ��1 > ��4

ξ = 11 C-IFAAPA 0.0345, − 0.0226, − 0.0731, −
0.122, 0.0057

��1 > ��5 > ��2 > ��3 > ��4

C-IFAAPG 0.1803, 0.1979, 0.09260.1525,
0.2066

��5 > ��2 > ��1 > ��4 > ��3

C-IFAAWPA 0.335, − 0.0085, − 0.0705, −
0.1447, 0.0044

��1 > ��5 > ��2 > ��3 > ��4

C-IFAAWPG 0.1701, 0.1943, 0.0985, 0.1512,
0.2177

��5 > ��2 > ��1 > ��4 > ��3

Table 15 Comparison information (with phase term information in Table 2)

Methods Score values Ranking values

Senapati et al. (2022b) × × − × × − × × − × × × × − × × − × × − × ×
Xu (Xu 2011) × × − × × − × × − × × × × − × × − × × − × ×
Hu et al. (2019) × × − × × − × × − × × × × − × × − × × − × ×
Rani and Garg (2018) 0.2762, 0.2681, 0.2933,

0.1207, 0.2761
��3 > ��1 > ��5 > ��2 > ��4

C-IFAAPA operator − 0.185, − 0.225, − 0.222, −
0.358, − 0.219

��1 > ��5 > ��3 > ��2 > ��4

C-IFAAPG operator 0.498, 0.5491, 0.5223, 0.4729,
0.5371

��2 > ��5 > ��3 > ��1 > ��4

C-IFAAWPA operator − 0.21, − 0.227, − 0.206, −
0.412, − 0.232

��3 > ��1 > ��2 > ��5 > ��4

C-IFAAWPG operator 0.4832, 0.5424, 0.5503,
0.4526, 0.5553

��5 > ��3 > ��2 > ��1 > ��4

information in Table 2. But the theory derived by Rani and Garg (2018), such as the PAOs for
C-IFSs has easily evaluated our considered information in Table 2. After, a brief discussion,
the main comparative investigation is given in Table 16 based on the information in Table 2
(without phase terms).

All proposed operators, the theory of Rani and Garg (2018), the theory of Senapati et al.
(2022b), and the theory of Xu (2011) are given the same ranking results, where the best

optimal is ��5 . But the theory of PAOs for C-FS was invented by Hu et al. (2019) and has a
lot of limitations because these all operators are computed based on C-FSwhich is the special
case of the derived information in Table 2 (without phase term). After, a brief discussion,
we concluded that the derived operators played a very important role in the environment of
fuzzy decision-making technique and hence our investigation is massively superior to a lot
of existing information.
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Table 16 Comparison information (without phase term information in Table 2)

Methods Score values Ranking values

Senapati et al. (2022b) − 0.0742, − 0.0858, −
0.1154, − 0.2274, − 0.0307

��5 > ��1 > ��2 > ��3 > ��4

Xu (2011) 0.1629, 0.1203, 0.1257,
0.0303, 0.2297

��5 > ��1 > ��3 > ��2 > ��4

Hu et al. (2019) × × − × × − × × − × × × × − × × − × × − × ×
Rani and Garg (2018) 0.1629, 0.1203, 0.1257,

0.0303, 0.2297
��5 > ��1 > ��3 > ��2 > ��4

C-IFAAPA operator − 0.068, − 0.119, − 0.125, −
0.195, − 0.029

��5 > ��1 > ��2 > ��3 > ��4

C-IFAAPG operator 0.2488, 0.2569, 0.2149,
0.2113, 0.3009

��5 > ��2 > ��1 > ��3 > ��4

C-IFAAWPA operator − 0.075, − 0.087, − 0.113, −
0.228, − 0.03

��5 > ��1 > ��2 > ��3 > ��4

C-IFAAWPG operator 0.2309, 0.2623, 0.2349,
0.1965, 0.3298

��5 > ��2 > ��3 > ��1 > ��4

6 Conclusion

PAOs were derived by Yager which is very famous and valuable to cope with awkward and
unreliable information. Further, Aczel–Alsina t-norm and t-conorm were evaluated by Aczel
and Alsina, which is used for computing any kind of operator. Under the presence of the
above information, we derived the following information, such as:

1. We derived the theory of the C-IFAAPA operator and C-IFAAWPA operator.
2. We exposed the idea of the C-IFAAPG operator and C-IFAAWPG operator.
3. We derived the theory of idempotency and prove that the property of monotonicity and

boundedness failed with the help of some counterexamples.
4. We evaluated aMADM approach to derive operators in the presence of C-IF information.
5. We demonstrated some practical examples for comparing the derived work with various

existing or prevailing operators to show the supremacy and proficiency of the derived
information.

In the future, we concentrate to revise the theory of complex bipolar FSs (Gulistan et al.
2021), C-IF graph (Yaqoob et al. 2019), complex neutrosophic graph (Yaqoob and Akram
2018), m-polar fuzzy aggregation operators (Ali et al. 2023), Dombi aggregation operators
(Akram et al. 2020, 2021), interval-valued q-rung orthopair fuzzy soft information (Ali et al.
2022), Fermatean fuzzy bipolar soft information (Ali and Ansari 2022) and try to utilize it
in the field of artificial intelligence, machine learning, pattern recognition, and clustering
analysis.
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