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Abstract
The Kantorovich theory plays an important role in the study of nonlinear equations. It is
used to establish the existence of a solution for an equation defined in an abstract space. The
solution is usually determined by using an iterative process such asNewton’s or its variants. A
plethora of convergence results are available basedmainly on Lipschitz-like conditions on the
derivatives, and the celebrated Kantorovich convergence criterion. But there are even simple
real equations for which this criterion is not satisfied. Consequently, the applicability of the
theory is limited. The question there arises: is it possible to extend this theory without adding
convergence conditions? The answer is, Yes! This is the novelty andmotivation for this paper.
Other extensions include the determination of better information about the solution, i.e. its
uniqueness ball; the ratio of quadratic convergence as well as more precise error analysis.
The numerical section contains a Hammerstein-type nonlinear equation and other examples
as applications.
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1 Introduction

LetU,V, be Banach spaces and L(U,V) stand for the space of all continuous linear operators
mapping U into V. Consider, a differentiable mapping as per Fréchet L : � ⊆ U −→ V, and
its corresponding nonlinear equation

L(x) = 0, (1.1)

with � denoting a non-empty open set. The task of determining a solution x∗ ∈ � is very
challenging but important since applications from numerous computational disciplines are
brought in the form (1.1) (Argyros and Magréñan 2018; Argyros 2004a, b; Ezquerro et al.
2010; Ortega and Rheinboldt 1970; Verma 2019). The analytic form of x∗ is rarely attainable.
That is why mainly iterative processes are used to generate approximations to the solution
x∗.

Among these processes, the most widely used is Newton’s and its variants. In particular,
Newton’s process (NP) is defined by

x0 ∈ �, xn+1 = xn − L′(xn)−1L(xn) for n = 0, 1, 2, . . . (1.2)

There exists a plethora of results related to the study of NP (Argyros and Magréñan 2018;
Argyros 2004a; Argyros and Hilout 2010). These studies are based on the theory inaugurated
by Kantorovich and its variants (Argyros 2021, 2022, 2004a, b; Argyros and Magréñan
2018; Argyros and Hilout 2010; Dennis 1968; Ezquerro et al. 2010; Gragg and Tapia 1974;
Hernandez 2001; Ezquerro and Hernandez 2018; Kantorovich and Akilov 1982; Ortega and
Rheinboldt 1970; Potra and Pták 1980, 1984; Proinov 2010; Rheinboldt 1968; Tapia 1971).

The following conditions (A) are used in non-affine or affine invariant form.
Suppose: (A1) ∃ point x0 ∈ � and parameter λ ≥ 0 : L′(x0)−1 ∈ L(V,U) and

‖L′(x0)−1L(x0)‖ ≤ λ.

(A2) ∃ parameter M1 > 0 : Lipschitz condition
‖L′(x0)−1(L′(w1) − L′(w2))‖ ≤ M1‖w1 − w2‖)

holds ∀w1 ∈ � and w2 ∈ �.

(A3)

λ ≤ 1

2M1
. (1.3)

(A4) B[x0, ρ] ⊂ �, where parameter ρ > 0 is given later.

Let us denote B[x0, r ] := {x ∈ � : ‖x − x0‖ ≤ r} for r > 0. Set ρ = r1 = 1−√
1−2M1λ
M1

.

There are many variants of Kantorovich’s convergence result for NP. One of those follows
(Chen and Yamamoto 1989; Deuflhard 2004; Kantorovich and Akilov 1982).

Theorem 1.1 Under the conditionsA forρ = r1; theNP is contained in B(x0, r1), convergent
to a solution x∗ ∈ B[x0, r1] of Eq. (1.1) and

‖xn+1 − x∗‖ ≤ tn+1 − tn = M1(tn − tn−1)
2

2(1 − M1tn)
,
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where the scalar sequence {tn} is given by

t0 = 0, t1 = λ, tn+1 = tn + M1(tn − tn−1)
2

2(1 − M1tn)
.

Moreover, the convergence is linear if λ = 1
2M1

and quadratic if λ < 1
2M1

. Furthermore,
the solution is unique B[x0, r1] in the first case and in B(x0, r2) in the second, where r2 =
1+√

1−2M1λ
M1

.

Aplethora of studies has used conditions A (Argyros andMagréñan 2018; Argyros 2004a;
Argyros and Hilout 2010).

Example 1.2 Consider cubic polynomial

c(x) = x3 − μ.

Let � = B(x0, 1− μ) for some parameter μ ∈ (0, 1
2 ). Choose x0 = 1. Then, the conditions

A are verified for λ = 1−μ
3 and M1 = 2(2 − μ). It follows that the estimate

1 − μ

3
>

1

4(2 − μ)

holds ∀μ ∈ (0, 1
2 ). That is condition (A3) is not satisfied. Therefore, the convergence is not

assured by this theorem also used in Chen and Yamamoto (1989), Dennis (1968), Deuflhard
(2004), Ezquerro et al. (2010), Gragg and Tapia (1974), Hernandez (2001), Ezquerro and
Hernandez (2018), Kantorovich and Akilov (1982), Ortega and Rheinboldt (1970), Potra and
Pták (1980, 1984), Proinov (2010), Rheinboldt (1968), Tapia (1971), Yamamoto (1987a, b,
2000) and Zabrejko and Bnuen (1987). But the NP converges. Hence, clearly, there is a need
to improve the results based on condition A, which is only sufficient but not necessary.

In this paper, several avenues are presented for achieving this goal. The idea is to replace
the Lipschitz parameter M1 with smaller ones.

Consider the center Lipschitz condition

‖L′(x0)−1(L′(w1) − L′(x0))‖ ≤ M0‖w1 − x0‖ ∀w1 ∈ �, (1.4)

the set �1 = B[x0, 1
M0

] ∩ � and the Lipschitz -2 condition

‖L′(x0)−1(L′(w1) − L′(w2))‖ ≤ M‖w1 − w2‖ ∀w1, w2 ∈ �1. (1.5)

Notice that by the definition of the set �1

�1 ⊂ �0. (1.6)

Then, the Lipschitz parameters are related by

M0 ≤ M1, (1.7)

and
M ≤ M1. (1.8)

Notice also since parameters M0 and M are specializations of parameter M1, M1 =
M1(�), M0 = M0(�), but M = M(�1), where by M1(�) we mean that the parameter M1

depends on the set �. Therefore, no additional work is required to find M0 and M (see also
the numerical examples).

Moreover, the ratio M0
M can be very small (arbitrarily).
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Example 1.3 Define scalar function

L(x) = b0x + b1 + b2 sin e
b3x ,

for x0 = 0, where b j , j = 0, 1, 2, 3 are real parameters. It follows by this definition that for
b3 sufficiently large and b2 sufficiently small, M0

M1
can be small (arbitrarily), i.e., M0

M1
−→ 0.

Other extensions involve tighter majorizing sequences for NP (see Sect. 2) and improved
uniqueness results for solution x∗ (Sect. 3). The applications appear in Sect. 4 followed by
and the conclusions in Sect. 5.

2 Real sequences

Let K0, M0, K , M and λ be positive parameters. An important role in the study of NM is
played by the majorizing sequence {sn} defined for s0 = 0, s1 = λ, as

s2 = s1 + K (s1 − s0)2

2(1 − K0s1)
, sn+2 = sn+1 + M(sn+1 − sn)2

2(1 − M0sn+1)
. (2.1)

That is why some convergence results are listed for it in what follows in this section.

Lemma 2.1 Suppose conditions K0λ < 1 and sn+1 < 1
M0

hold for all n = 1, 2, . . . Then,
the following assertions hold

sn < sn+1 <
1

M0
, for all n = 0, 1, 2, . . .

and there exists s∗ ∈ [λ, 1
M0

] such that limn−→∞ sn = s∗.

Proof The definition of sequence {sn} and the conditions of the Lemma imply the assertion
and limn−→∞ sn = s∗ ∈ [λ, 1

M0
]. Notice that s∗ is the least upper bound (unique) of the

sequence {sn}. ��
Next, criteria stronger than those in Lemma 2.1 are developed for the convergence of the

sequence (2.1). However, these criteria are easier to verify than those of the Lemma 2.1.
Define parameter γ by

γ = 2M

M +
√
M2 + 8M0M

.

This parameter plays a role in the study of NP.
Suppose from now on that K0 ≤ M0. Define the real quadratic polynomials q, q1, q2 by

q(t) = M0(K − 2K0)t
2 + 2M0t − 1,

q1(t) = (MK + 2γ M0(K − 2K0))t
2 + 4γ (M0 + K0)t − 4γ,

and

q2(t) = M0(K − 2(1 − γ )K0)t
2 + 2(1 − γ )(M0 + K0)t − 2(1 − γ ).

The discriminants D, D1, D2 of these polynomials can be given as

D = 4M0(M0 + K − 2K0) > 0,

D1 = 16γ (γ (M0 − K0)
2 + (M + 2γ M0)K ) > 0
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and

D2 = 4(1 − γ )((1 − γ )(M0 − K0)
2 + 2M0K ) > 0,

respectively. It follows by the definition of γ, q1 and q2 that

M = 2M0γ
2

1 − γ
, MK + 2γ M0(K − 2K0) = 2M0γ

1 − γ
(K − 2(1 − γ )K0),

since after multiplying the polynomial q2 by
2M0γ
1−γ

, we obtain the polynomial q1 i.e.,

q1(t) = 2M0γ

1 − γ
q2(t).

That is polynomials q1 and q2 have the same roots. Denote by 1
2r1

the unique positive root of
polynomial q. This root is given explicitly by the quadratic formula and can be written as

1

2r1
= 1

M0 + √
M2 + M0(K − 2K0)

.

Moreover, denote by 1
2r2

the common positive root of polynomials q1 and q2. This root can
also be written as

1

2r2
= 2

γ (M0 + K0) + √
(γ (M0 + K0))2 + γ (MK + 2γ M0(K − 2K0)

.

Define parameter N by

N−1 = min

{
1

2r1
,

1

2r2

}
.

Suppose

λ ≤ 1

2N
. (2.2)

By the choice of parameters r1, r2 polynomials q, q1, q2 and condition (2.2), it follows that
M0s2 < 1, since q(λ) < 0, K0λ < 1, q1(λ) ≤ 0 and q2(λ) ≤ 0. Furthermore, the following
estimate holds

γ0 ≤ γ ≤ 1 − M0(s2 − s1)

1 − M0s1
, (2.3)

where the parameter γ0 = M(s2−s1)
2(1−M0s2)

. Indeed, the left hand side inequality reduces to q1(λ) ≤
0 and the right hand side to q2(λ) ≤ 0. These assertions are true by the choice of λ.

Lemma 2.2 Under condition (2.2), sequence {sn} satisfies

sn < sn+1 ≤ s̄∗∗ = λ +
(
1 + γ0

1 − γ

)
Kλ2

2(1 − K0λ)
, (2.4)

0 < sn+2 − sn+1 ≤ γ0γ
n−1 Kλ2

2(1 − K0λ)
for all n = 1, 2, . . . (2.5)

and is convergent to its least upper bound s∗ ∈ (λ, s̄∗∗] so that

s∗ − sn ≤ γ0(s2 − s1)γ n−2

1 − γ
for all n = 2, 3, . . . (2.6)
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Proof Induction is used to show the estimate

0 <
M(sk+1 − sk)

2(1 − M0sk+1)
≤ γ ∀ n = 1, 2, 3, . . . (2.7)

It follows by the definition of roots 1
2r1

, 1
2r2

and polynomial g1 that estimate (2.7) holds for
k = 1. Using the Definition (2.1) of sequence {sn} and parameter γ0

0 < s3 − s2 ≤ γ0(s2 − s1) ⇒ s3 ≤ s2 + γ0(s2 − s0)

⇒ s3 ≤ s2 + (1 + γ0)(s2 − s1) − (s2 − s1)

⇒ s3 ≤ s1 + 1 − γ 2
0

1 − γ0
(s2 − s1) < s̄∗∗.

Suppose that estimate (2.7) holds for k = 1, 2, . . . , n − 1. Then, similarly by (2.7) and the
induction hypotheses, we obtain in turn

sk+2 ≤ sk+1 + γ0γ
k−1(s2 − s1)

≤ sk + γ0γ
k−2(s2 − s1) + γ0γ

k−1(s2 − s1)

≤ s1 + (1 + γ0(1 + γ + · · · + γ k−1))(s2 − s1)

= λ +
(
1 + γ0

1 − γ k

1 − γ

)
(s2 − s1)

< s̄∗∗.

It follows by the definition (2.1) of sequence {sn}, estimate (2.3) and induction hypothesis
(2.7) that

0 < sk+2 − sk+1 ≤ γ0γ
k−1(s2 − s1) ≤ γ k(s2 − s1).

Then, the estimate (2.7) for k + 1 replacing k holds, if

M

2
(sk+2 − sk+1) ≤ γ (1 − M0sk+1),

or

M

2
(sk+2 − sk+1) + γ M0sk+1 − γ ≤ 0,

or

M

2
γ k(s2 − s1) + γ M0

(
λ + 1 − γ k+1

1 − γ
(s2 − s1)

)
− γ ≤ 0,

or
pk(t) ≤ 0 at t = γ, (2.8)

where, the polynomial pk : [0, 1) −→ R is defined by

pk(t) = M

2
(s2 − s1)t

k+1 + tM0(1 + t + · · · + tk)(s2 − s1) − (1 − M0s1)t . (2.9)

There is a connection between consecutive polynomials:

pk+1(t) − pk(t) = M

2
(s2 − s1)

k+2 + tM0(1 + t + · · · + tk+1)(s2 − s1)

−(1 − M0λ)t − M

2
(s2 − s1)t

k
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−tM0(1 + t + · · · + tk)(s2 − s1) + (1 − M0λ)t

= 1

2
(2M0t

2 + Mt − 1)tk(s2 − s1).

It follows that

pk+1(t) = pk(t) + 1

2
q3(t)t

k(s2 − s − 1),

where

q3(t) = 2M0t
2 + Mt − M .

Notice that q3(γ ) = 0 by the definition of γ. Then, in particular

pk+1(γ ) = pk(γ ).

Define function p∞ : [0, 1) −→ R by

p∞(t) = lim
k−→∞ pk(t).

By this definition and polynomials pk

p∞(t) = γ (
M0

1 − γ
(s2 − s1) + M0s1 − 1). (2.10)

Consequently, assertion (2.8) holds if

1

γ
p∞(t) ≤ 0 at t = γ,

which is true by the choice of parameter 1
2r2

and polynomial p2. The induction for assertion
(2.7) is terminated leading to the conclusions. ��
Remark 2.3 The linear convergence of sequence {sn} is shown under the condition (2.2). This
condition provides the smallness of λ to force convergence. The quadratic convergence of
sequence {sn} can be shown if λ is chosen to be bounded above from by a smaller parameter
than 1

2N . Moreover, under condition (2.2) an upper bound on iterate sk is obtained which can
then be used in the proof to show quadratic convergence.

Lemma 2.4 Under condition (2.10) further suppose that for some ε > 0, β = ε
ε+1

M0

(
γ0(s2 − s1)

1 − γ
+ λ + s2 − s1

)
≤ β (2.11)

and

λ <
2

(1 + ε)M
. (2.12)

Then, the conclusions of Lemma 2.2 hold for sequence {sn},

sn+1 − sn ≤ M

2
(1 + ε)(sn − sn−1)

2 (2.13)

and

0 < sn+1 − sn ≤ 1

b
(bλ)2

n
, (2.14)

where b = M
2 (1 + ε) and bλ < 1.
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Proof Assertion (2.14) certainly holds if the following estimate is shown

0 <
M

2(1 − M0sk+1)
≤ M

2
(1 + ε). (2.15)

The estimate (2.15) holds for k = 1, since it is equivalent to M0λ ≤ β. But this is true by
M0 ≤ 2N , condition (2.2) and inequality εM0

2(1+ε)N ≤ β.

Define polynomials gn : [0, 1) −→ R by

gn(t) = (1+ ε)M0γ0(1+ t + · · · + tn−1)(s2 − s1) + (1+ ε)M0(λ + s2 − s1) − ε. (2.16)

It follows from this definition that

gn+1(t) − gn(t) = (1 + ε)M0γ0(s2 − s1)t
n > 0,

Evidently, estimate (2.15) holds. Define function g∞ : (0, 1) −→ R by

g∞(t) = lim
k−→∞ gk(t).

Hence, we get g∞(t) = (1+ε)M0γ0(s2−s1)
1−t + (1 + ε)M0(λ + s2 − s1) − ε. Evidently, the

estimate

gn(t) ≤ 0 at t = γ

holds if instead

g∞(t) ≤ 0 at t = γ.

But this is identical to condition (2.11). The induction for the assertion (2.15). Then, it follows
by estimate (2.15) and the definition of sequence {sn} that assertion (2.13) holds. Using the
definition of parameter b and estimate (2.13)

b(sk+1 − sk) ≤ (b(sk − sk−1))
2 = (b(sk − sk−1)

2

≤ b2(b(sk−1 − sk−2)
2)2 = b2b2(sk−1 − sk−2)

22

≤ b2b2b2(sk−2 − sk−3)
23 ≤ . . . ,

thus,

sk+1 − sk ≤ b1+2+22+···+2k−1
λ2

k

= b
2k−1
2−1 λ2

k

= b−1b2
k
λ2

k = (bλ)2
k

b
.

Notice that 0 < bλ < 1 by the condition (2.12). Hence, sequence {sk} converges quadratically
to t∗. ��
Remark 2.5 Condition (2.11) is left uncluttered. It can be expressed as a function of λ by

ϕ(λ) = M0γ0(s2 − s1)

1 − γ
+ M0(λ + s2 − s1) − β.

Suppose

λ <
ε

(ε + 1)M0
. (2.17)
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It follows by the definition of polynomial ϕ and condition (2.17) that ϕ(0) = −β < 0.
Moreover, ϕ(t) −→ ∞ as t −→ r3 = min{ 1

K0
, 1
2r2

}. Hence, function ϕ1 has zeros in
interval (0, r3) as a consequence of the intermediate value theorem. Let λ0 stand for the
smallest such zero. Then, conditions (2.2), (2.11), and (2.12) are condensed as

λ ≤ 1

2N0
:= min

{
1

N
,

2

(1 + ε)M
,

ε

(1 + ε)M0
, λ0

}
. (2.18)

If 1
2N0

= ε
(1+ε)M0

or 1
2N0

= 2
(1+ε)M , then condition (2.18) should hold as a strict inequality.

3 Convergence of NP

The Lipschitz parameters are associated with operator L and its derivatives.
Suppose there exist parameters K0 > 0, K > 0 such that

‖L′(x0)−1(L′(x1) − L′(x0))‖ ≤ K0‖x1 − x0‖, (3.1)

‖L′(x0)−1(L′(x0 + ξ(x1 − x0)) − L′(x0))‖ ≤ K ξ‖x1 − x0‖, (3.2)

for x1 = x0 − L′(x0)−1L(x0) and each ξ ∈ [0, 1] and
B[x0, t∗] ⊂ �. (3.3)

Conditions (A1), (1.4), (1.5), (3.1)–(3.3) and those of Lemma 2.1 or Lemma 2.2 are summa-
rized by (H).

Next, under conditions H, we show the main convergence result for NP.

Theorem 3.1 Under conditions H sequence NP is convergent to a solution x∗ ∈ B[x0, t∗] of
equation L(x) = 0. Moreover, upper bounds

‖x∗ − xi‖ ≤ s∗ − si (3.4)

hold ∀ i = 0, 1, 2, . . .

Proof The assertions
‖x j+1 − x j‖ ≤ s j+1 − s j (3.5)

and
B[x j+1, s∗ − s j+1] ⊂ B[x j , s∗ − s j ] (3.6)

are proven by induction ∀ j = 0, 1, 2, . . . Using (A1)

‖x1 − x0‖ + ‖L′(x0)−1L(x0)‖ ≤ λ = s1 − s0.

Let u ∈ B[x1, s∗ − s1]. It follows by condition (A1)

‖u − x0‖ ≤ ‖u − x1‖ + ‖x1 − x0‖ ≤ s∗ − s1 + s1 − s0 = s∗,

so u ∈ B[x1, s∗−s1].That is assertions (3.5) and (3.6) hold if j = 0.Assume these assertions
hold if j = 0, 1, 2, . . . , n. It follows for each ξ ∈ [0, 1)

‖x j + ξ(x j+1 − x j ) − x0‖ ≤ s j + ξ(s j+1 − s j ) ≤ t∗,

and

‖x j+1 − x0‖ ≤
j+1∑

i=1

‖xi − xi−1‖ ≤
j+1∑

i=1

(si − si−1) = s j+1.
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It follows by induction hypotheses, the Lemmas and conditions (3.1) and (1.1)

‖L′(x0)−1(L′(x j+1 − L′(x0))‖ ≤ K̄‖x j+1 − x0‖ ≤ K̄ (s j+1 − s0) ≤ K̄ s j+1 < 1,

where K̃ =
{
K0, j = 0
M0, j = 1, 2, . . .

Hence, the inverse of linear operatorL′(x j+1) exists. Notice

that if j = 0, K0 can be used, whereas if j = 1, 2, . . . , then M0 is utilized.

‖L′(x j+1)
−1L′(x0)‖ ≤ 1

1 − K̃ s j+1
, (3.7)

as a consequence of a lemma on linear operators that are invertible due to Banach’s pertur-
bation lemma (Argyros and Magréñan 2018; Argyros 2004a, b; Argyros and Hilout 2010).

The identity can be given by NP

L(xn+1) =
∫ 1

0
(L′(x j + ξ(x j+1 − xn)) − L′(x j ))(x j+1 − x j )dξ, (3.8)

since

L(x j+1) = L(x j+1) − L(x j ) − L′(x j )(x j+1 − x j ).

Then, using induction hypotheses, identity (3.8) and condition (1.5)

‖L′(x0)−1L(x j+1)‖ ≤ M̃
∫ 1

0
ξ‖x j+1 − x j‖2dξ ≤ M̃

2
(s j+1 − s j )

2, (3.9)

where M̃ =
{
K , j = 0
M, j = 1, 2, . . .

It follows by NP, estimates (3.7), (3.9) and the definition (2.1) of sequence {sn}
‖x j+2 − x j+1‖ = ‖L′(x j+1)

−1L(x j+1)‖
= ‖L′(x j+1)

−1L′(x0)L′(x0)−1L(x j+1)‖
≤ ‖L′(x j+1)

−1L′(x0)‖‖L′(x0)−1L(x j+1)‖
≤ K̄

2

(s j+1 − s j )2

1 − M̄s j+1
= s j+2 − s j+1,

where K̄ =
{
K , j = 0
M, j = 1, 2, . . .

and M̄ =
{
K0, j = 0
M0, j = 1, 2, . . .

Moreover, if v ∈ B[x j+2, s∗ − s j+2], it follows
‖v − x j+1‖ ≤ ‖v − x j+2‖ + ‖x j+2 − x j+1‖

≤ s∗ − s j+2 + s j+2 − s j+1 = s∗ − s j+1.

Thus, the element v ∈ B[x j+1, s∗ − s j+1] completing the induction for assertions (3.5) and
(3.6). Notice that scalar majorizing sequence {s j } is fundamental as convergent. Hence, the
sequence {x j } is also convergent to some x∗ ∈ B[x0, s∗]. Furthermore, let j −→ ∞ in
estimate (3.9) to conclude L(x∗) = 0. Finally, the proof of assertion (3.4) using estimate
(3.5) as standard is omitted (Yamamoto 1987b). ��

Next, the uniqueness ball for the solution x∗ is presented. Notice that not all conditions S
are used.
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Proposition 3.2 Under center-Lipschitz condition (1.4) further assume the existence of a
solution p ∈ B(x0, R) ⊂ � of equation L(x) = 0 such that linear operator L′(p) is
invertible for some R > 0; a parameter R1 > R given by

R1 = 2

M0
− R. (3.10)

Then, the element p solves uniquely equation L(x) = 0 in the set T = B(x0, R1) ∩ �.

Proof Define linear operator Q = ∫ 1
0 L′( p̄+ξ(p− p̄))dξ for some element p̄ ∈ T satisfying

F( p̄) = 0. By using the definition of parameter R1, set T and condition (1.4)

‖L′(x0)−1(L′(x0) − Q)‖ ≤ ‖
∫ 1

0
L′(x0)−1(L′(p + ξ(p − p̄)) − L′(x0))dξ‖

≤ M0

∫ 1

0
((1 − ξ)‖p − x0‖ + ξ‖ p̄ − x0‖)dξ

<
M0

2
(R + R1) = 1. (3.11)

Then, the estimate (4.5) and the Banach lemma on linear operators (Argyros and Magréñan
2018; Argyros 2004a, b; Argyros and Hilout 2010) with inverses, imply the invertablility of
linear operator Q. Moreover, by the approximation 0 = L(p) − L( p̄) = Q(p − p̄), we
deduce p̄ = p. ��
Remark 3.3 Notice that not all conditions of Theorem 3.1 are used in Proposition 3.2. But if
they were, then, we can set p = x∗ and R = s∗.

4 Special cases and Examples

It turns out that conditions of Theorem 3.1 reduce to the ones given by the earlier studies.
But first we have the observations

Remark 4.1 Let us compare conditions H to conditions A:
It follows by these conditions that K0 ≤ K ≤ M0. Consequently, replacing M0 or

M1 by these tighter parameters gives previously mentioned benefits. Moreover, notice that
parameters K0, K , M0, M are specializations of the originally usedM1.Hence, no additional
cost is required in their computation.

(1) The condition (A1) is common.
(2) The condition (A2) always implies the conditions (3.1) and (3.2). However, the converse

implication does not hold necessarily, unless K0 = K = M1.

(3) The new majorizing sequence {sn} is tighter than the sequence {tn} used by Kantorovich.
In particular, under the conditions of the Theorem 1.1 and the Theorem 3.1, a simple
inductive argument gives

0 ≤ sn ≤ tn,

0 ≤ sn+1 − sn ≤ tn+1 − tn

and

s∗ ≤ ρ.

Notice also:

123



76 Page 12 of 14 S. Regmi et al.

Table 1 Sequence (2.1)

n 1 2 3 4 5 6 7

sn+1 0.2000 0.2594 0.2690 0.2693 0.2693 0.2693 0.2693

(4) The conditions of Lemma 2.2 are stronger than those of the Lemma 2.1.
(5) The conditions of the Kantorovich Theorem 1.1 imply

tn <
1

M1
.

This inequality implies the one by our Lemma 2.1 but not vice versa unless if M0 = M1.

(6) Next, a comparison between Lemma 2.2 and the corresponding one in Theorem 1.1
follows.

Case K0 = M0 = K = M .

(i) It follows by the definition of N that N = M and condition (2.2) reduces to

Mλ ≤ 1

2
. (4.1)

Furthermore, if M = M1 it reduces to the Kantorovich condition (A3) in the conditions A.

But by estimate (1.8) it follows that if M < M1 then condition (A3) implies (4.1) but not
vice versa. Hence, the new convergence criterion (4.1) weakens the Kantorovich criterion
(A3) (see also the examples where M < M1). (ii) The majorizing sequence reads

u0 = o, u1 = λ, un+2 = un+1 + M(un+1 − un)2

2(1 − M0un+1)
.

This sequence is more precise than {tn} but not necessarily {sn}, unless if K = M and
K0 = M0.

(iii) The uniqueness ball is extended, since M0 is used for M1 in the formula. (see also
Proposition 3.2).

Other specializations of the Lipschitz conditions give similar benefits (Table 1).

Example 4.2 The parameters using the example of the introduction are K0 = μ+5
3 , K =

M0 = μ+11
6 . Moreover,�0 = B(1, 1 − μ) ∩ B(1, 1

M0
) = B(1, 1

M0
). Set M = 2(1 + 1

3−μ
)

M0 < M1 and M < M1 for all μ ∈ (0, 0.5). Criterion (2.2) is then satisfied if μ ∈ S0 :=
[0.42, 0.5). Hence, the range of values for μ for which NP converges is extended. Interval
S0 can be enlarged if the condition of Lemma 2.1 is verified. Then, for μ = 0.4, we have the
following 1

M0
= 0.5263,

Hence, the conditions of Lemma 2.1 hold. For ε = 0.63, we have

M0

(
γ0(s2 − s1)

1 − γ
+ λ + s2 − s1

)
= 0.1143 ≤ β = 0.3865

and

λ = 0.2000 <
2

(1 + ε)M
= 0.4431.

Thus, the conditions (2.11) and (2.12) hold, and the interval S0 is further enlarged.

123



Extended Kantorovich theory for solving... Page 13 of 14 76

Example 4.3 Let U = V = C[0, 1] be the space of continuous real functions on the interval
[0, 1]. The max-norm is used. Set � = B[x0, 3]. Define Hammerstein nonlinear integral
operator L on � as

L(v)(w) = v(w) − y(w) −
∫ 1

0
G(w, t)v3(t)dt, v ∈ C[0, 1], w ∈ [0, 1]. (4.2)

where function y ∈ C[0, 1], and G is a kernel related by Green’s function

G(w, t) =
{

(1 − w)t, t ≤ w

w(1 − t), w ≤ t .
(4.3)

It follows by this definition that L′ is defined by

[L′(v)(z)](w) = z(w) − 3
∫ 1

0
G(w, t)v2(t)z(t)dt (4.4)

z ∈ C[0, 1], w ∈ [0, 1]. Pick x0(w) = y(w) = 1. It then follows from (4.2)–(4.4) that
L′(x0)−1 ∈ L(V,U),

‖I − L′(x0)‖ < 0.375, ‖L′(x0)−1‖ ≤ 1.6,

λ = 0.2, M0 = 2.4, M1 = 3.6,

and �0 = B(x0, 3) ∩ B(x0, 0.4167) = B(x0, 0.4167), so M = 1.5. Notice that M0 < M1

and M < M1. Set K0 = K = M0. The Kantorovich convergence criterion (A3) is not
satisfied, since 2M1λ = 1.44 > 1. Therefore convergence of NP is not assured. But our
condition is satisfied, since 2Mλ = 0.6 < 1.

Remark 4.4 (i) Under conditions H, set p = x∗ and R = s∗.
(ii) Lipschitz condition (1.5) can be replaced by

‖L′(x0)−1(L′(w1) − L′(w2))‖ ≤ d‖w1 − w2‖, (4.5)

∀ w1 ∈ �0 and w2 = w1 − L′(w1)
−1L(w1) ∈ �0. This, even smaller parameter d can

replace M in the aforementioned results. The existence of iterate w2 is assured by (1.4).
(iii) Another way to reduce Lipschitz constant M is given as follows: Suppose Lipschitz

condition (1.5) is replaced by

‖L′(x0)−1(L′(w1) − L′(w2))‖ ≤ d0‖w1 − w2‖, (4.6)

∀w1 ∈ T1 and w2 = w1 − L′(w1)
−1L(w1) ∈ T1, where T1 = B(x1,

1
M0

− λ) provided
that λμ < 1. Notice that d0 ≤ d ≤ M, since T1 ⊂ �0 ⊂ �1. In the case of example 4.1,

the parameters are d0 = 5(4−μ)3+μ(3−μ)3

3(3−μ)(4−μ)2
< d = 6+2(3−μ)(1+2μ)

3(3−μ)
< M ∀μ ∈ (0, 0.5).

5 Conclusion

A newmethodology extends the applicability of NP. The new results are finer than the earlier
ones. Therefore, they can replace them. No additional conditions are used. The methodology
is very general. Consequently, it can be applied to extend other procedures (Argyros 2004b;
Chen and Yamamoto 1989; Deuflhard 2004; Yamamoto 1987b).
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