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Abstract
Magnetic fields in stars and planets are generated by a dynamo process that results from
multi-scale interactions of the flows in conducting fluids. On the large scales, these flows
are dominated by a strong zonal component, while the magnetic fields exhibit a strong
toroidal/zonal character. Although dissipation certainly acts on these flows, the kinematic
and magnetic viscosities associated with these large-scale flows are small, so that, over the
timescale of several years and beyond, the system may be modelled as a conservative one. In
this context, the Hamiltonian formulation may give several insights, providing a systematic
way to relate the symmetries of the system with conservation laws. In the present article, we
introduce the Hamiltonian formulation for a model that reasonably describes the dynamics
of large-scale flows in stars and planets: the two-dimensional magnetohydrodynamic quasi-
geostrophic equations. In this context, we find the invariants of the system, which are of two
kinds: the Casimirs, related to the particle relabelling symmetry, and the zonal momentum,
which is related to the translational invariance in the zonal direction. We then use these
invariants to study the stability of some stationary solutions that are relevant for geophysical
and astrophysical applications.
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1 Introduction

The Solar Tachocline is a thin layer situated at the base of the convection zone and is believed
to play an important role in the Sun’smagnetic activity, since it is able to store strongmagnetic
fluxes (Thomas and Weiss 2012). Transitional layers of the same nature are thought of to be
present in other stars as well (Guerrero et al. 2016) and are believed to play an important
role in their respective magnetic activities. Planetary cores and their resulting magnetic fields
might also have their dynamics associated with thin layers of conducting fluids, for instance
the recent discovery of a stratified layer at the top of the Earth’s core (Raphaldini and Raupp
2020; Buffett 2014). The feature in common between the dynamics of stellar tachoclines
and planetary cores is that their dynamics can be described by thin layers of conducting
fluids (plasma or liquid metallic alloys) which are affected by both the magnetic fields and
the Coriolis force. Such systems can be modelled by the shallow-water MHD equations
(Gilman 2000), which consist of an hybrid between the atmospheric/oceanic shallow-water
models (Majda 2003) and the 2-D MHD equations. Similarly to the atmospheric/oceanic
case, such systems bear MHD generalisations of inertio-gravity and Rossby waves as linear
eigenmodes. As in the purely hydrodynamic case, an approximation has been introduced that
filters out the fast propagating gravity waves, giving rise to the so-called quasi-geostrophic
MHDequations (Zeitlin 2013).Recent studies (Dikpati et al. 2017, 2018) suggest the shallow-
water magnetized waves to be responsible for the spatio-temporal organisation of Solar
sunspot activity, opening perspective for its forecasting.

A similar model for MHD flows in thick shells is the Hide’s beta-plane model, which
consists of the same aforementioned quasigeostrophic MHD equations, but with a differ-
ent interpretation. Instead of the usual beta-plane interpretation as an approximation of the
spherical geometry to a plane tangent to the globe in which linear variations of the Coriolis
parameter with latitude are taken into account, in Hide’s beta-plane model the dynamics
takes place in a plane crossing the sphere on the equator, and the “beta term” in the equations
represents the latitudinal variation of the thickness of the fluid layer, resembling therefore the
effect of topography on the usual beta-plane approximation (Hide 1966; Canet et al. 2014).

Flows at stellar tachoclines are usually dominated by sheared zonal flows associated with
the core’s differential rotation; in the case of the Sun, the fluid rotates faster at the equator
than at the poles. The dynamics of such equatorial acceleration seems to be crucial for the
determination of the strength/configuration of the Solar cycle (Javaraiah et al. 2005) and was
recently shown to be an energy source for MHD Rossby waves that drive the solar magnetic
activity (Dikpati et al. 2018; Raphaldini et al. 2019), because solar-like differential rotation
with equatorial acceleration, coexisting with toroidal magnetic fields, can trigger instabil-
ity when perturbed by Rossby wave-type patterns. It is important, therefore, to understand
the circumstances under which differential rotation and toroidal magnetic field profiles are
stable/unstable.

Acomprehensive approach to study the nonlinear stability of eithermagnetohydrodynamic
or hydrodynamic systems is the energy-Casimir approach pioneered by the seminal work of
Arnold (1966). This approach is appropriately studied using the Hamiltonian description
of fluids/plasmas, whose the formulation in Eulerian coordinates was introduced by Morri-
son and Greene (1980) and has several advantages associated with the fact that symmetries
become more evident in this setting. Unlike the usual finite dimensional systems, the Hamil-
tonian formulation of fluid systems in Eulerian coordinates is non-canonical in the sense
that the corresponding Poisson bracket is degenerate, giving rise to the so-called Casimir
invariants. The Hamiltonian formulation has found numerous applications in geophysical
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flows (Shepherd 1990; Salmon 1988; Flierl et al. 2019) and in plasma physics (Morrison and
Hazeltine 1984; Tassi et al. 2009); in particular the Hamiltonian structure of the shallow-
water MHD equations was established in Dellar (2003). Among the main applications of the
Hamiltonian formulation of fluids and plasmas are the nonlinear (Lyapunov) stability, given
that the corresponding system have enough Casimir invariants (Holm et al. 1985; Majda
2003; Flierl et al. 2019).

In this article, we introduce the Hamiltonian formulation of the quasi-geostrophic MHD
equations. In this formulation, it becomes clear how to determine the conserved quantities of
the governing equations, which are related to the symmetries of the system via the Noether’s
Theorem. Conserved quantities are of two kinds; the first one refers to the so-called Casimir
invariants. These quantities have their conservation related to the particle relabelling sym-
metry of the full Lagrangian system. The other conservation laws refer to the momenta
and are related to the translational symmetries of the system. In this context, due to the
aforementioned zonal shear flows associated with the differential rotation of stars, the zonal
momentum associated with the translational symmetry in the zonal direction is the most rele-
vant for astrophysical applications. After introducing the conserved quantities of the system,
we have proved the nonlinear (Lyapunov) stability of some steady-state solutions mimicking
the aforementioned zonal flows by using the energy-Casimir method (Holm et al. 1985).

2 Basic theory

2.1 Non-canonical Hamiltonian formulation

Most conservative models in nature can be cast into a Hamiltonian formulation. For
a finite-dimensional system described by its positions q = (q1, . . . , qn) and momenta
p = (p1, . . . , pn), where qi , pi ∈ R

m , for i = 1, . . . , n, and Hamiltonian functionH (p,q),
the Hamilton’s equations are:

dpi
dt

= −∂H

∂qi
(1)

dqi
dt

= ∂H

∂ pi
(2)

One may still define u = (q,p)T and write Eqs. (1)–(2) as:

du
dt

= J∇H (u) (3)

where J is the cosymplectic operator, given by

J =
[
0 −I
I 0

]
(4)

For computing the evolution of a functional of the canonical variables in phase space, it is
convenient to introduce the Poisson bracket. For any differentiable function F : R2×m×n →
R, we have:

dF

dt
= {H , F} (5)
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where {., .} is the Poisson bracket acting on smooth functions of the canonical variables; for
any F,G smooth, we have:

{G, F} =
n∑

i=1

[
∂G

∂qi

∂F

∂ pi
− ∂G

∂ pi

∂F

∂qi

]
= ∇GJ∇F (6)

For any smooth functions F,G of the canonical variables, the Poisson bracket {., .} sat-
isfies:

1. {F,G} = −{G, F}. (anti-symmetry)
2. {F, {G,H }} + {H , {F,G}} + {G, {H , F}} = 0 (Jacobi-identity)
3. {F,G} �= 0 for any F,G functionally independent (non-degeneracy).

Fluid systems are often described in Eulerian coordinates, which means that one does not
care about the positions of each of the system’s particles, but only on their velocities. This
gives rise to a symmetry in the system: the equations of motion are invariant under changes in
the positions of the particles, yielding the so-called particle-relabelling symmetry. Rigorous
description of how to reduce the dimensionality of a Hamiltonian system by making use of
its symmetries is given by the Lie–Poisson reduction (Marsden and Ratiu 2013). In practice,
reducing the dimensionality of the system will imply the degeneracy of the cosymplectic
operatorJ , which in turn will result in a degeneracy of the associated Poisson bracket. The
Hamiltonian description of fluid dynamics equations in Eulerian coordinates is, therefore,
called non-canonical and was first introduced by Morrison and Greene (1980). Again, for
the state vector u, which lives in an infinite dimensional space (a Banach or Frechet space),
its evolution will be described by:

du
dt

= J
δH

δu
(7)

where δ.
δu is to be interpreted as the Gateaux derivative in the functional space and the

cosymplectic operator J will take different forms depending on the context. Associated
with J , one may define the Poisson bracket:

{F ,G } = δF

δu
J

δG

δu
(8)

The Poisson bracket above still satisfies the anti-symmetry and the Jacobi-identity proper-
ties. However, it fails to satisfy the non-degeneracy property, meaning that there are functions
C whose gradient lies in the kernel ofJ . Therefore, {F ,C } = 0 for any smooth functional
F . This automatically implies that C is an invariant of the system:

dC (u)

dt
= {H ,C } = 0 (9)

Extensive reviews of the non-canonical formulation of fluid dynamics and plasmas are
given by Salmon (1988), Shepherd (1990) and Morrison (1998).

2.2 Lagrangian background: the Euler–Poincare equations

Hamilton’s critical action principle states that the equations of motion can be obtained by
finding the critical point of a Lagrangian functional defined on the phase space T M , L :
T M ×R → R. In local coordinates (q1, . . . , qn, q̇1, . . . , q̇n), the Euler–Lagrange equations
are obtained as:

δL = δ

∫ t2

t1
l(q, q̇, t)dt = 0 (10)
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The leading equations of motion are the Euler–Lagrange equations

d

dt

(
∂L

∂ q̇

)
= ∂L

∂q
(11)

The Lagrangian formulation can be shown to be equivalent to theHamiltonian formulation
given some regularity assumptions on the Lagrangian functional, which define the so-called
hyper-regular Lagrangians (Holm et al. 2009).

Similar to theHamiltonian formulation of fluid dynamics in Eulerian coordinates resulting
from the Lie–Poisson reduction, in the Lagrangian1 description it is also possible to make use
of the system’s symmetries to reduce its dimensionality; this is the Euler–Poincare reduction.
In the general setting, the Euler–Poincare equation can be seen as the equation governing
the geodesic in a Lie group G . The Euler–Poincare equations can therefore be seen as gen-
eralisations of the Euler–Lagrange equations. For the Euler equations of fluid mechanics,
G = Di f fvol(�), the group of volume preserving diffeomorphisms on � ⊂ R

2 or � ⊂ R
3.

In the magnetohydrodynamic context in which the magnetic field is not only advected by the
velocity field but also feeds it back through the Lorentz force, the appropriate group-theoretic
setting is described on semi-direct products Di f fvol(�) S©Svect(�), where Svect(�) is the
Lie algebra of divergence-free vector fields on �.

For a Lagrangian function l(u, a) depending on the velocity variables u and the advected
quantities a (such as the magnetic field), the Euler–Poincare equations are written as:

d

dt

(
δl

δu

)
= −ad∗

u

(
δl

δu

)
+ δl

δa
	 a (12)

together with the evolution equation for a which consists of the Lie transport of a by the
velocity field u:

∂a

∂t
+ Lua = 0 (13)

In (12), the operator ad∗
u : g∗ → g∗ is the dual of:

aduη = [u, η] (14)

where [., .] : g×g → g is the Lie bracket defined on the Lie group g. The Diamond operator
	 in (12) is defined via:

〈
δl

δa
	 a, η

〉
= −

〈
δl

δa
,Lηa

〉
, (15)

for any η ∈ g.

3 The quasi-geostrophic MHD equations

The Quasi-geostrophic MHD equations were introduced as an approximation to the shallow-
water MHD equations in the strong rotation limit (Zeitlin 2013), in a similar fashion to the
usual derivation of the hydrodynamic quasi-geostrophic equations as a distinguished limit
of the hydrodynamic shallow-water equations when the Rossby number goes to zero (Majda
2003). The quasi-geostrophic MHD equations can be written as:

∂q

∂t
+ J (ψ, q) = J (A, j) (16)

1 We use the term referring to the variational formulation.
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∂A

∂t
+ J (ψ, A) = 0 (17)

where A is the magnetic field potential, j = �A the magnetic current andψ the streamfunc-
tion; q is the potential vorticity, given by

q = (� − F)ψ + β y (18)

where � is the Laplacian operator, F is the Rossby deformation radius squared, and the
parameter β refers to the derivative of the planetary vorticity with latitude in the usual β-
plane approximation. In (16)–(17), J is the usual Jacobian operator for any two differentiable
functions f , g : R2 → R:

J ( f , g) = ∂ f

∂x

∂g

∂ y
− ∂ f

∂ y

∂g

∂x
(19)

Obviously, when A and j are identically zero, the system reduces to the usual quasi-
geostrophic equations.

3.1 Lagrangian formulation: Euler–Poincaré equations

The quasi-geostrophic MHD equations presented above admit a Lagrangian formulation in
terms of reduced variables due to the existence of particle relabelling symmetries. Thus, we
write the reduced Lagrangian in terms of the velocity and magnetic fields, with the latter
appearing in the equation as an advected quantity:

L =
∫

l(u, a)dx2 (20)

For the advected quantity a corresponding to the magnetic field b, the Lagrangian density
l is given by:

l(u,b) =
∫ {

1

2
Du(1 − F�−1)u + D u · R − ψ(D − 1) + 1

2
|b|2

}
dt (21)

where the planetary vorticity is written as f = e3 · ∇ × R, where R represents the linear
velocity associated with the frame’s rotation, and D is the thickness of the fluid layer. In the
shallow water model, D varies in space and time, while in the quasi-geostrophic model the
height D is constant and can be used as a constraint (Holm and Zeitlin 1998).

Taking the variation in u, we obtain:

δl

δu
= D

{
u − F

2
�−1u + R

}
(22)

On the other hand, the variation in D yields

δl

δD
= 1

2
u(1 − F�−1)u + u · R − ψ, (23)

while the variation in ψ results in

δl

δψ
= (D − 1) (24)

To form the dynamical equations, first we have to note that the variations in b can be
written as:

δb = −Lηb = −∇ × (η × b) (25)

123



Quasi-geostrophic MHD equations: Hamiltonian... Page 7 of 18 57

where η = δu (see Appendix and the reference Holm et al. 1998). Therefore:

δ

∫
1

2
|b|2dx2 =

∫
δl

δb
· δbdx2 = −

∫
δl

δb
· ∇ × (δu × b)dx2

=
∫ [

∇ ×
(

δl

δb

)
× b

]
· δudx2 =

∫
(j × b)δudx3

(26)

We then impose the constraint D = 1 on (22) and (24) and, taking the curl of (22) gives
the definition of the potential vorticity:

q = ∇ × u · e3 − Fψ + f = �ψ − Fψ + f (27)

Therefore, the Euler–Poincaré equation reads:

∂q

∂t
+ Luq = ∂q

∂t
+ u · ∇q = A�A (28)

together with the equation for the magnetic field potential transport:

∂A

∂t
+ LuA = ∂A

∂t
+ u · ∇A = 0 (29)

3.2 Hamiltonian formulation of theMHD-QG equations

The quasi-geostrophic MHD equations also admit a noncanonical hamiltonian formulation
in Eulerian coordinates similar to the hamiltonian formulation of reduced MHD equations
(Morrison and Hazeltine 1984). Consider the Hamiltonian

H = 1

2

∫
{|∇ψ |2+F |ψ |2+|∇A|2}d2x

= 1

2

∫
{ω(−�−1)ω − Fψ |�−1ω| + A�A}d2x (30)

where �−1 is the right inverse of the Laplacian operator (i.e. its Green function). To write
the equations of motion in Hamiltonian form, it is convenient to define ω = q − Fψ − β y.
In this way, the evolution equations in the Hamiltonian form are written as:

d

dt

[
q
A

]
= J

[
δH
δq

δH
δA

]
(31)

with the cosympletic operator J being given by

J = −
[
J (q, .) J (A, .)

J (A, .) 0

]
(32)

Likewise, the expressions for the variational derivatives of the Hamiltonian are:

δH

δψ
= −�ψ + Fψ (33)

δH

δq
= ψ (34)

δH

δA
= − j (35)
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where the magnetic current is defined as j = �A as previously mentioned. One can readily
verify the equivalence between equations (1)–(2) and Eq. (5) upon inserting the expressions
of the variational derivatives in (6). For any differentiable functionalF of the state variables,
its derivative can be written in terms of the corresponding Lie–Poisson bracket:

d

dt
F = {F ,H } (36)

where the Lie–Poisson bracket is defined by:

{F ,G } =
[

δF
δq

δF
δA

]
J

[
δG
δq
δG
δA

]
(37)

By making use of Eqs. (32) and (33)–(35), the Lie–Poisson bracket may be explicitly
written as:

{F ,G } = δF

δq

[
∇q · ∇⊥

(
δG

δq

)
+ ∇A · ∇⊥

(
δG

δA

)]

+δF

δA

[
∇A · ∇⊥

(
δG

δq

)]
(38)

where the gradient is taken in the plane R2, ∇ = (∂x , ∂y), and we define the perpendicular
gradient as ∇⊥ = (−∂y, ∂x ).

4 Invariants of the system

As discussed in Sect. 1, the conserved quantities of a non-canonical Hamiltonian system are
of two kinds. The first one refers to the so-called Casimir invariants, whose dynamics are tied
to Lagrangian particles and arise from Kelvin–Noether theorem (Holm et al. 2009; Cendra
et al. 1998) as a result of particle relabelling symmetries. In other words, these quantities are
due to the fact that the dynamics are unchanged by applying diffeomorphisms to the fluid
domain that changes the particles’ initial position. Consequently, a Casimir function C of a
non-canonical Hamiltonian system is associated with the degeneracy of the Poisson bracket,
so that, for any differentiable functional F , it satisfies {F ,C } = 0. Hence, from Eq. (36),
the quantity C is trivially conserved:

d

dt
C = {C ,H } = 0 (39)

For the quasi-geostrophic MHD system studied here, there are two classes of Casimir
invariants. The first class is associated with the fact that magnetic field lines are dragged
by the fluid motion (frozen flux property); this class is sometimes referred to as magnetic
helicity. The second class is an appropriate combination of the potential vorticity and the
potential magnetic field. In some texts, this Casimir functional is referred to as cross-helicity.
The magnetic helicity associated with Eqs. (16)–(17) is given by

CM =
∫

L(A)d2x (40)

where L is an arbitrary differentiable function. From Eq. (38), it is easy to see that CM is
conserved. In fact, considering G = CM in (38), it follows that

δG

δq
= 0; δG

δA
= L ′(A), (41)
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and consequently all terms of the form

∇A · ∇⊥
(

δG

δA

)
(42)

will vanish.
On the other hand, the cross-helicity associated with system (16)–(17) is given by

Cc =
∫

qG(A)d2x (43)

Upon substitution of the variational derivatives

δCc

δq
= G(A); Cc

δA
= qG ′(A) (44)

into the expression of the Poisson bracket (38), it is possible to verify that dC c
dt = 0, with G

indicating again an arbitrary differentiable function. Therefore, different choices of F and
G provide an infinite number of invariants, which however will not imply, in general, the
integrability of the Eq. (Shepherd 1990).

Apart from the Casimir invariants, the other class of conserved quantities of a hamiltonian
system refers to the momentum invariants, which can be found by taking variations of the
Hamiltonian, with infinitesimal variations restricted to the symmetry direction of the Hamil-
tonian. More precisely, if G is a Lie group under which the system is invariant, variations
should be taken with respect to the associated Lie algebra. In our case, we are primarily
interested in the invariance of the system with respect to translations in the zonal direction,
since most basic states of interest are zonally symmetric. Suppose that for all x, x ′, y, t ∈ R

we have:
H (u(x, y, t), t) = H (u(x ′, y, t), t), (45)

for u = (q, A). Then, if we define

δxH = H (u(x + ε, y, t), t) − H (u(x, y, t), t), (46)

we have

δxH =
〈
δH

δu
,
∂u

∂x

〉
+ O(ε2) = 0 (47)

Now, the following theorem taken from Shepherd (1990) provides a way to find the
conserved quantities associated with zonal symmetries of the Hamiltonian (other types of
symmetries such as translations in the y direction or rotations are completely analogous).

Theorem 1 (Shepherd 1990) Suppose that the Hamiltonian H is symmetric under transla-
tions in the x direction and that there exists a functional M that solves the equation

J

(
δM

δu

)
= −∂u

∂x
. (48)

Then, M is conserved by the dynamics:

dM

dt
= 0. (49)

The proof of this theorem results from the straightforward calculation:

dM

dt
= [M ,H ] =

〈
J

(
δM

δu

)
,
δH

δu

〉
= −

〈
δH

δu
,
∂u

∂x

〉
= 0 (50)
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At this point, we can derive the expression of the conserved quantity of the quasi-
geostrophic MHD dynamics for a zonally symmetric Hamiltonian. The expression for the
zonal momentum M is such that, by Noether’s theorem, it solves:

J

[
δM
δq

δM
δA

]
=

[
∂q
∂x

∂A
∂x

]
, (51)

which results in the system:

J

(
A,

δM

δq

)
= −∂A

∂x
, (52)

or, equivalently,
∂A

∂x

∂

∂ y

(
δM

δq

)
− ∂A

∂ y

∂

∂x

(
δM

δq

)
= −∂A

∂x
, (53)

From the equation above, we get
δM

δq
= −y (54)

Inserting (54) into the first line of system (51), we obtain:

J (q,−y) + J

(
A,

δM

δA

)
= −∂q

∂x
�⇒ J

(
A,

δM

δA

)
= 0, (55)

which means that the gradients of δM
δA and A are collinear; this condition is satisfied provided

δM

δA
= f (A), (56)

for an arbitrary differentiable function f . Since the general expression of the variation ofM
with respect to the variables q and A is given by

δM =
∫ {

δM

δq
δq + δM

δA
δA

}
dxdy, (57)

we conclude that the expression for the zonal momentum associated with the QG-MHD
dynamics is given by

M =
∫

−yq + H(A)dxdy, (58)

for H such that H ′ = f .

5 Stability analysis of stationary flows

As discussed in Sect. 1, it is important in the stellar and planetary MHD flows to establish
the stability conditions associated with background states characterised by zonal flows and
toroidal magnetic fields.

5.1 Equilibria

Here we wish to establish the stability of a class of equilibria that may be of relevance to
astrophysical and geophysical applications, in particular equilibria in the form of zonal flows
that arise in this context.
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First note that a particular (ψe, Ae) state constitutes an equilibrium of the Quasi-
geostrophic MHD equations if

J (ψe, qe) + J (Ae, je) = 0 (59)

J (ψe, Ae) = 0 (60)

The equations above imply that, at an equilibrium state, ∇ψe is parallel to ∇Ae. In order
for this condition to be satisfied, it suffices that ψe = �(A) for some differentiable function
�. From the general expression of a Casimir invariant,

E = H + C , (61)

if we denote our variables in vector notation by u = (q, A), in an equilibrium configuration
the variational derivative of the pseudo-energy-momentum must be zero:

δE

δu

∣∣∣∣
u

=
(

δE

δq
,
δE

δA

)∣∣∣∣
(q,A)

= 0 (62)

Calculating the first component of the variational derivative, we obtain:

δE

δq

∣∣∣∣
q

=
(

δH

δq
+ δC

δq
δq

)∣∣∣∣
q

= ψ + G(A) = 0; (63)

while the variational derivative with respect to the magnetic potential gives:

δE

δA

∣∣∣∣
A

=
(

δH

δA
+ δC

δA

)∣∣∣∣
A

= j + qG ′(A) + L ′(A) = 0 (64)

By applying the operator J (A, .) in both equations we obtain some constraints for the
equilibrium states. From the first equation,

J (A, ψ − G(A)) = 0 (65)

This condition is satisfied if ∇A is colinear with ∇ψ , for which a sufficient condition is
ψ = �(A).

From the second component, we get:

J (A, j + qG ′(A)) = 0, (66)

so that ∇A and ∇( j + qG ′(A)) are collinear. Such condition is satisfied if j + qG ′(A) is a
function of A, that is, j + qG ′(A) = �(A), which is verified by Eq. (64). We find from (64)
that �(A) = L ′(A).

5.2 Formal stability

We say that an equilibrium u of the equations of motion is formally stable when the second
variation of the pseudo energy/momentum associated with the disturbance around this equi-
librium state is positive definite, viz. vT D2E v > 0,∀v �= 0. The formal stability does not
imply a nonlinear stability, but it means that the dynamics linearized around the equilibrium
is stable under infinitesimal perturbations. Therefore, for a formally stable equilibrium, if
there is an instability, this cannot be a normal mode instability. See Marsden and Hughes
(1994) for an example of a formally stable system that is non-linearly unstable. Therefore,
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to establish the formal stability it suffices to calculate the second variation of the pseudo
energy/momentum around the equilibrium solution,

δ2E (ω, A)(δω, δA)(ω, A)(δω, δA) = δ2H + δ2C , (67)

and require it to be positive definite,

δ2E (ω, A) ≥ 0; ∀δA, δω (68)

The second variation of the Hamiltonian of the quasi-geostrophic MHD equations is:

δ2H =
∫

|∇δψ |2+D|δψ |2+|∇δA|2dx2, (69)

while the second variation of the Casimir functional, δ2C , is given by:

δ2C =
∫ (

L“(A) + qG ′′(A)
)
(δA)2 + G ′(A)δqδAdx2 (70)

Thus, combining (69) and (70) and completing squares, we obtain:

δ2E (ω, A) =
∫

|∇δψ − ∇(L ′(A)δA)|2+(1 − L ′(A)2)|δb|2

+ (qL ′′(A) + G ′′(A) + L ′(A)�L ′(A))(δA)2
(71)

To guarantee that δ2E (ω, A) is positive for all perturbations δψ and δA, it suffices to
impose that L ′(A)2 ≤ 1 and G ′′(A) + L ′(A)�L ′(A) > 0.

Note that formal stability refers to the stability of the dynamics under the quadratic part
of the Hamiltonian, which corresponds to the linearized dynamics around the equilibrium
state.

5.3 Nonlinear stability

Recall that an equilibrium u of a Hamiltonian system is stable in the Lyapunov sense if, for
any ε > 0, one can find a δ > 0 such that, if one starts the system’s dynamics in a ball of
radius δ around the equilibrium, u0 ∈ Bδ(u), the system will never leave the ball of radius
ε around the equilibrium, u(t) ∈ Bε(u), ∀t > 0. The energy-Casimir method was proposed
by Arnold (1966) as a method for proving the Lyapunov stability of fluid systems admitting
extra conservation laws other than the Hamiltonian, such as the Casimir functionals. The
process consists of combining the conserved quantities of the system to find a bounded norm
having a positive definite quadratic form. If such a quadratic form is found, one can show
that the equilibrium is stable for sufficiently small (but not infinitesimal) perturbations.

To prove the nonlinear stability of certain steady state solutions of the quasi-geostrophic
MHD equations, we make use of the following theorem:

Theorem 2 (Holm et al. 1985; Majda and Wang 2006) Let u(t) = u + δu(t) be a solution of
the Hamiltonian equations of motion (7) with Hamiltonian H : B → R, Casimir function
C : B → R and E = H + C satisfying DE (u) = 0, where B is a Banach space with norm
defined by a positive definite bilinear form l : B × B → R, l(u, u) = ||u||2. Additionally,
suppose that ||u(t)||= ||u(0)||,∀t . Then, u is nonlinearly stable if ∃K > 0, such that

||δu||2≤ E (u(0)) − E (u) ≤ K ||δu||2 (72)
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Proof First, note that E is continuous in the norm ||·||, since it is Holder continuous by the
second inequality in (72).

Given an equilibrium u and ε > 0, by the continuity of HC we can choose δ > 0 and
u(0) close enough to u such that if ||u(t)−u||2< ||u(t)−u||< δ then |E (0)−E (u)|< ε; but
since E (u(t)) = E (u(0)),∀t , we conclude that u(t) never leaves the ball of radius ε around
u. ��

The strategy to prove the nonlinear stability of any equilibrium state of a non-canonical
Hamiltonian system is to define a positive definite bilinear form l(., .) inspired by the expres-
sion of the second variation of δ2E (q, A) such that:

E (u + δu) − E (u) − DE (u)δu ≤ l(δu, δu), (73)

in a vicinity of u. Now, note that we can approximate the left-hand side of this inequality by
the second variation of E , namely

E (u + δu) − E (u) − DE (u)δu = δ2E (u)(δu)2 + O(δu3), (74)

to define

δ2E (u)(δu)2 = δ2H (u)(δu)2 + δ2C (u)(δu)2 (75)

Since the second variation of the Hamiltonian is already quadratic, we just need to find
bounds on the second variation of the Casimir function. In order to do so, let us consider real
constants κ, λ and μ such that

κ ≤ G ′(A) ≤ κ̃; λ ≤ 2L ′′(A) ≤ λ̃ μ ≤ 2G ′′(A) ≤ μ̃ (76)

Then, define

lc = 1

2

∫ (
λ + qμ

)
(δA)2 + κδqδAdx2, (77)

so that we have:

C (u + δu) − C (u) − DC (u)δu ≤ lc (78)

Now, defining

l(δq, δA) = δ2H (u)(δu)2 + δ2lC (δu) (79)

=
∫

1

2
|δu − κδb|2+(1 − κ2)|δb|2+(λ + qμ)(δA)2dx2, (80)

it follows that the system is stable under this norm provided κ < 1 and λ + qμ > 0.
In order to interpret the stability conditions let us go back to the physical meaning of

the functions G and L . For a given stationary state (ψ, A, q, j), G provides a relationship
between ψ and A, viz.

ψ = G ′(A), (81)

so that
u = G ′′(A)b (82)

Therefore, G provides a proportionality factor between magnetic fields and flows, and
stream functions with magnetic potentials. This could have implications for the stability of
toroidal fields in the solar interior. As demonstrated numerically in Dikpati et al. (2021), thin
and concentrated latitudinal bands with strong magnetic fields seems to be more favourable
for the development of instabilities, since fields with slow latitudinal variation will satisfy
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more easily (76). Equation (64) says that j + qG ′(A) = L ′(A). Since q depends on β the
second inequality in (76) suggests a latitudinal dependence of the stability properties, which
is also found in numerical simulations in ref Dikpati et al. (2021).

5.4 Accessible variations and the negative energy principle

An alternative approach to study the stability of fluid and plasma systems was proposed
by Morrison and Pfirsch (1989) and further explored in Morrison (1998) and Kaltsas et al.
(2020); this approach is referred to as dynamical accessibility. The idea of the method is to
begin with a general equilibrium state of the Hamiltonian equations and to use the structure of
the non-canonical brackets to perturb the system only on directions tangent to the symplectic
leaves determined by the Casimirs. By doing so, one gets more flexibility in the choice of
equilibria, but on the other hand this type of analysis has difficulties in extending to the general
nonlinear stability analysis (Holm et al. 1985) (see Sect. 5.3). To obtain the expression for
dynamically accessible variations, we make use of the generation function (Morrison 1998):

W =
∫ [

χq + αA
]
d2x (83)

Then, for a state variable v = (q, A), we define

δvda = {v,W }, (84)

from where we obtain the following expressions for the variations:

δqda = {F (q),W } =
∫

δF (q)

δq

[
J

(
q,

δW

δq

)
+ J

(
A,

δW

δq

)]
dx2

= ∇q · ∇⊥χ + ∇A · ∇⊥α = J (q, χ) + J (A, α) (85)

δAda = {F (A),W } =
∫

δF (A)

δA
J

(
A,

δW

δA

)
dx2 = ∇A · ∇⊥χ = J (A, χ) (86)

In the equations above, we use the notation

F (q) =
∫

qi (x
′)δ(x − x ′)d2x ′; F (A) =

∫
A(x ′)δ(x − x ′)d2x ′, (87)

with δ(x − x ′) representing the Dirac delta distribution. Let us show that dynamically acces-
sible variations yield automatically δC da

M = δC da
c = 0. In what follows we will repeatedly

use the integration by parts formula∫
f J (g, h)dx2 = −

∫
J ( f , g)hdx2 (88)

for any differentiable functions f , g, h : R2 → R. First, consider the expression of accessible
variations δC da

M

δC da
M (A) =

∫
δCM

δA
δAdadx2

=
∫

L ′(A)∇A · ∇⊥χdx2 = −
∫

∇⊥(L ′(A))∇A · χdx2 = 0, (89)

which holds for an arbitrary variation of χ . For δC da
c , it follows

123



Quasi-geostrophic MHD equations: Hamiltonian... Page 15 of 18 57

δC da
c (A) =

∫
δCc

δq
δqda + δCc

δA
δAdadx2 (90)

Inserting the expressions of the variations δAda and δqda given by (86) and (85), respec-
tively, we obtain:

δC da
c (q, A) =

∫
G(A)[J (q, χ) + J (A, α)] + qG ′(A)J (A, χ)dx2 (91)

Integrating by parts, it follows that

δC da
c (q, A) = −

∫ [
J (q,G(A) + G ′(A)J (A, q)

]
χdx2 = 0. (92)

The equation above also holds for arbitrary variations αi and χi . We may also calculate
the dynamically accessible variation of the Hamiltonian function δH da :

δH da =
∫ [

δH

δq
δqda + δH

δA
δAda

]
dx2

=
∫ [

ψi

(
J (q, χ) + J (A, αi )

)
+

(
J (A, χ)

)]
dx2

=
∫ [

χ

(
J (ψ, q) − J (A, j)

)
+ αi

(
J (ψ, A)

)]
dx2

(93)

For any steady-state solution of the dynamical equations represented by (q, A), it follows
that J (ψ, A) = 0 and J (ψ, q) + J (A, j) = 0; hence, integrating by parts, we conclude that
δH da(q, A) = 0 for any perturbations α, χ .

Let us now calculate the second variation of the Hamiltonian function under dynamically
accessible variations:

δ2H da =
∫ [

δ2H

δq2
δ2qda + δ2H

δAδq
δAdaδqda + δ2H

δA2 δ2Ada
]
dx2 (94)

Now, we need to derive expressions for the second variations of both the potential vorticity
and the magnetic potential:

δ2qda = {{F (q),W },W } = {δqda1 ,W }
= −[

J (χ, J (q, χ)) + J (χ, J (A, α)) + J (α, J (A, χ))
]

= −[∇χ.∇⊥(∇q.∇⊥χ
) + ∇α.∇⊥(∇A.∇⊥χ

) + ∇χ.∇⊥(∇A.∇⊥α
)] (95)

δ2Ada = {{F (A),W },W } = {δqda1 ,W } = −J (χ, J (A, χ))

= −[∇χ.∇⊥(∇A.∇⊥χ
)] (96)

Considering a simple steady state A(y) = B0y and q(y) = Q0y = (�
′
0 + β)y, we may

further decompose the perturbations in a Fourier basis to diagonalise the bilinear form, viz.

χ =
∑
k

δq̂ke
ik.x; α =

∑
k

δ Âke
ik.x (97)
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This Fourier expansion results in

δ2Ĥ =
∑
k

(
B0 + Q0

|k|2
)
kx (δq̂k)

2 + B0|k|2kxδq̂kδ Âk

=
∑
k

[(√
ωR + ωaδq̂k + ωA|k|2√

ωR + ωa
δ Âk

)2

−
(

ωA|k|2√
ωR + ωa

δ Âk

)2]
(98)

where ωA = B0kx and ωR = (V ′′(y) + β)kx/|k|2 refer to Alfvén and Rossby wave fre-
quencies, respectively (see Raphaldini and Raupp 2015). Then, the last term in (98) indicates
that this system is formally stable under accessible variations, for instance, if ωA + ωR ≥ 0.
In general, however, this quadratic form may be indefinite and there might exist modes for
which δ2Ĥ > 0 and othermodes for which δ2Ĥ < 0. In this case, the existence of “negative
energy modes” will imply instability (Kueny and Morrison 1995; Marsden and Ratiu 2013;
Morrison and Pfirsch 1989; Morrison and Kotschenreuther 1990).

In this example, we have chosen a simple linear profile of q(y) and A(y) such that the
quadratic form would take a simple diagonalizable representation in terms of Fourier modes.
For more general basic sates, the analysis can be more intricate.

6 Final remarks

Here we have introduced the Lagrangian (variational) and Hamiltonian formulations of the
quasi-geostrophic MHD equations. In this formulation, we found the invariants of the sys-
tem, which are of two kinds: the Casimirs and momenta. The Casimirs are associated with
the particle-relabelling symmetry via Noether’s theorem and correspond to the helicities
(magnetic and cross helicities). The zonal momentum found here is associated with the
translational symmetry in the zonal direction, and is the most relevant one due to typical
zonal jet structure of the flows in stars, generally referred to as the differential rotation profile
(Thomas andWeiss 2012). The study of the stability of equilibrium states in these systems is
of great importance for understanding the dynamics of the Sun. In particular, the instability
type that arises in Sect. 5.4 might contribute to the growth of magnetized Rossby waves as
described in Dikpati et al. (2018).
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Appendix: Differential forms representation of magnetic fields

The representation of magnetic fields in terms of differential form is given in terms of 2-
forms. First introduce the following operations, first the isomorphism that takes vector field
on R

3 to 1-forms � : TR
3 → T ∗

R
3 defined by

(ei )
� = dxi (99)

i = 1, 2, 3, where {e1, e2, e3} is the basis of R3, the inverse isomorphism,� : TR3 → T ∗
R
3,

is defined by
(ei )

# = dxi (100)

Finally, introduce the Hodge star operator that takes l forms to n − l forms in Rn . In R3,

∗(1) = dx1 ∧ dx2 ∧ dx3; ∗(dxi ) = dx j ∧ dxk
∗(dx j ∧ dxk) = dxi ; ∗(dx1 ∧ dx2 ∧ dxk) = 1

(101)

With this, a given magnetic field, B = B1e1 + B2e2 + B1e3, is expressed by the following
differential form

β = ∗B� = B1dy ∧ dz + B2dx ∧ dz + B3dx ∧ dy (102)

the law on non existence of magnetic monopoles ∇.B = 0 is them expressed as

∗ d(∗Bb) = 0 ⇐⇒ dβ = 0 (103)

which implies, by Poincare’s Lemma in the existence (at least locally) in the existence of a
1-form such that β = dα, from which we define the vector potential A

B = [∗(dA�)]# = (∗dα)#; A = α# (104)

For an Euler–Poincaré equations with advected quantities (Holm et al. 2009) the variations
in the action with respect with the advected quantity (A or B) is of the form

δA = Lδudα; δB = Lδudβ (105)

We need to calculate the Lie derivatives of these forms

Luα = iudα + diuα = (u.∇A + A.∇u)� = [u × ∇ × A + ∇(A.u)]� (106)

and
Luβ = d(Luα) = Ludα = iudα + diuα = ∗[(∇ × (u × B))�] (107)
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