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Abstract
This paper deals with the global exponential stability for a class of Clifford-valued recurrent
neural networks with time-varying delays and distributed delays (mixed time delays). The
Clifford-valued neural network, as an extension of the real-valued neural network, which
includes the familiar complex-valued and the quaternion-valued neural network as special
cases, has been an active area of research recently. First, based on the Brouwer’s fixed point
theorem, the existence of the equilibrium point of Clifford-valued recurrent neural networks
is established. Next, by inequality technique and the method of the Clifford-valued variation
parameter, some novel assertions are given to ensure the global exponential stability of the
addressed model, which are new and complement some previous works. We illustrate the
effectiveness of this approach with a numerical example.

Keywords Recurrent neural networks · Clifford-valued · Mixed delays · Exponential
stability

Mathematics Subject Classification 34D20 · 34D23 · 93D20 · 93D05

1 Introduction

During the last decades, it is well known that the dynamic of neural networks has received
considerable attention, because it is a key factor in applications. Due to the study of the
last decades, research on real-value neural networks is mature, see Aouiti and Abed Assali
(2019), Yang et al. (2013), Wu et al. (2012), Alimi et al. (2019), and Aouiti and Assali
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(2019). For example in Aouiti and Abed Assali (2019), the authors studied the stability of
a class of delayed inertial neural networks via non-reduced-order method. In Yang et al.
(2013), the synchronization for a class of coupled neural networks with mixed probabilistic
time-varying delays and random coupling strengths was investigated by applying integral
inequalities and Lyapunov functional method. In Wu et al. (2012), the existence and the
global exponential stability for delayed impulsive cellular neural networks was studied by
the Lyapunov functions and the Razumikhin technique. In Alimi et al. (2019), the finite-time
and the fixed-time synchronization of inertial neural networks with proportional delays is
discussed by using analytical techniques and Lyapunov functional.

On the other hand, the research of complex-valued neural networks and quaternion-valued
neural networks has achieved significant success thanks to the perseverant efforts. Recently,
various models of complex value and quaternion value neural networks are proposed and
actively studied (see Hu and Wang 2012; Zhang et al. 2017; Aouiti et al. 2020; Zhang
et al. 2013; Aouiti and Bessifi 2020; Tu et al. 2019a, b and the references cited therein).
In addition, time delays, particularly time-varying delays are an essential characteristic of
signal transmission between neurons, and the main cause of instability and oscillation. It is,
therefore, necessary to study the stability of neural networks with time delays (Rakkiyappan
et al. 2015; Xu et al. 2020; Xu and Aouiti 2020). Furthermore, due to the parallel pathways
of a variety of axon sizes and lengths neural networks generally have a spatial nature, it
is desired to model them by using distributed delays. Therefore, time-varying delays and
distributed delays are an important parameter associated with neural networks (Aouiti et al.
2018; Achouri et al. 2020).

Clifford algebrawas discoveredby theBritishmathematicianWilliamK.Clifford (Clifford
1878). Clifford’s algebra is a generalization of real number, complex number and quaternion,
which has significant and extensive application areas. It has been used in various domains
including image and signal processing, neural computing, control problems, computer and
robot vision, neural networks and other fields thanks to its powerful and practical framework
for the solution and representation of a geometrical problem (Hitzer et al. 2013; Rivera-
Rovelo and Bayro-Corrochano 2006; Kuroe 2011; Dorst et al. 2007; Li and Xiang 2019). As
an example, in the world of neural networks, Pearson first suggested a Clifford value neural
network in Pearson and Bisset (1992), which is represented by Clifford’s value differential
equations. Later, Buchholz (2005) concluded that neural networks with Clifford value have
greater advantages compared to neural networks with real value. In recent years, research
on neural networks with Clifford value has become an active field research and received
more attention. Because Clifford’s number multiplication does not satisfy the commutative
law, therefore, it has brought great difficulties to the studies of neural networks with Clifford
value. Consequently, the existing studies on the existence and the global exponential stability
of the equilibrium point of neural networks with Clifford value are still very rare. Only a
few publications have been published to date on the stability of the equilibrium point of
Clifford-valued neural networks (Liu et al. 2016; Zhu and Sun 2016; Boonsatit et al. 2021;
Rajchakit et al. 2021a, b, c, d, e). In Liu et al. (2016), the existence, the uniqueness and global
asymptotic stability for the equilibrium for a class of Clifford-valued recurrent neural net-
works with time delays was investigated by applying differential inequality techniques and
linear matrix inequality (LMI) technique. In Zhu and Sun (2016), authors investigated global
exponential stability of Clifford-valued recurrent neural networks by Brouwer’s fixed point
theorem and inequality technique. It should be noted that time-varying delays and distributed
delays are not taken into account in Zhu and Sun (2016). On the other hand, time delays in
Liu et al. (2016) are constant, whichmeans that the outcomes therein are invalid to investigate
Clifford-valued recurrent neural networks with time-varying delays and distributed delays.
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In Boonsatit et al. (2021), finite-/fixed-time synchronization for Clifford-valued recurrent
neural networks with time-varying delays were studied by Lyapunov-Krasovskii functional
and computational techniques. In Rajchakit et al. (2021a, b), global exponential stability of
Clifford-valued recurrent neural networks with time delays had been studied by using Lya-
punov stability theory, linear matrix inequality techniques and analytical techniques. Global
asymptotic stability and global exponential stability for delayed Clifford-valued neutral-type
neural network models were investigated by employing the homeomorphism theory, linear
matrix inequality and Lyapunov functional methods in Rajchakit et al. (2021e).

To the best of our knowledge, no major investigation on the global exponential stability
for Clifford-valued recurrent neural networks involving time-varying delays and distributed
delays (mixed time delays) have been carried out. Inspired by the above discussion and
analysis, the main goal of this paper is to investigate the existence and the global exponential
stability of the equilibrium point of Clifford-valued recurrent neural networks with mixed
time delays. The existence of the equilibrium of the system is obtained using the fixed point
theorem. In addition, by constructing appropriate delay differential inequality, some sufficient
conditions for the global exponential stability of equilibrium are proved. Finally, an example
is given to illustrate the effectiveness of the obtained results.

All the rest of the paper is organized into the following structure. In Sect. 2, some prelim-
inaries are introduced that will be used later. Model descriptions is exhibited in Sect. 3. In
Sect. 4, based on the Brouwer fixed point and inequality technique, we prove the existence
of the equilibrium point and the stability of the addressed model. In Sect. 5, an example is
given to show the effectiveness of the obtained results. In Sect. 6, conclusions is provided.

2 Notations and preliminaries

The following section introduces notations, definitions and preliminary facts that are used
throughout this work (see Buchholz 2005).

For convenience, letR andA denote the real space and the real clifford space, respectively.
Note by x the conjugate of the clifford number x .We defineA is as the cliffordwhich equipped
with m generators algebra that has equipped over the real number R. m the multiplicative
generators e1, e2, . . . , em are named clifford generators that satisfy the relations

⎧
⎨

⎩

ei e j + e j ei = 0 i �= j

e2i = −1 i = 1, 2, . . . ,m.

To keep it simple, if an element is the product of more than one Clifford generator, we write
its clues together. As an example e1e2 = e12, e2e3 = e23 and e8e6e4e2 = e8642. So, A has
its base in the following

{
eA = eh1h2...hr , 1 ≤ h1 < h2 < · · · < hr ≤ m

}
. (1)

Consequently, the real Clifford’s algebra consists of elements such as x = ∑
A x AeA, in

which x A ∈ R is a real number. If A = ∅, therefore e∅ can be described as e0 and x0 is the
coefficient of the e0 component, i.e., x0 is real part of x , for more detail see Buchholz (2005).
It can be concluded from these properties that

dimA =
m∑

k=0

(
m
k

)

=
m∑

k=0

m!
k!(m − k)! = 2m .
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Definition 1 (Buchholz 2005) For an arbitrary base vector, the conjugate is given:

ēA = (−1)
r(A)(r(A)+1)

2 eA.

Therefore,

eAēA = ēAeA = 1, eAēB = eBēA(−1)
p(p+1)

2 , p = |r(B) − r(A)|
Definition 2 (Buchholz 2005) The inner product in the clifford domain is defined as:

(x, y) := [x ȳ]0 =
∑

A

x AyA, ∀x, y ∈ A,

in which [·]0 indicates the coefficient of its e0-component. The norm onA is correspondingly
described as following

|x |0 = √
(x, x).

Definition 3 (Buchholz 2005)

1. The derivative for x(t) = ∑
A x A(t)eA is given as follows:

ẋ(t) =
∑

A

ẋ A(t)eA

2. The integral for x(t) = ∑
A x A(t)eA is given as follows:

∫ t

0
ẋ(s)ds =

∫ t

0

∑

A

ẋ A(s)eAds =
(

∑

A

∫ t

0
ẋ A(s)ds

)

eA.

Proposition 1 (Buchholz 2005) Let x1, x2, x3, c ∈ A. Therefore,

1. x1(x2 + x3) = x1x2 + x1x3,
2. (x1 + x2)x3 = x1x3 + x2x3,
3. x1x2 �= x2x1,
4. λx1 = x1λ if and only if for every λ ∈ R,
5. |x1 + x2|0 ≤ |x1|0 + |x2|0,
6. |x1x2|0 ≤ |x1|0|x2|0,
7.

∫ t

0
cx1(s)ds = c

∫ t

0
x1(s)ds.

Lemma 1 (Zhu and Sun 2016) Let x(t), f (t) ∈ A, be two clifford-valued functions, where
t > 0 and f (t) is a nonlinear function. In addition, let ς ∈ A, σ ∈ R, if ẋ + σ x(t) = f (t),

therefore, x(t) = ςe−σ t + e−σ t
∫

eσ t f (t)dt.

Lemma 2 (Minc 1988) Let M ≥ 0 be a square matrix. If ρ(A) < 1, therefore (Id − A) ≥ 0,
where ρ(A) is the spectral radius of A and Id indicates the identity matrix.

Lemma 3 (Minc 1988) If M = (m)n×n is M-matrix, therefore, the matrix MC(CM) is also
M-matrix, in which C = diag(c1, . . . , cn) > 0.

Lemma 4 (Shao 2009) Let M = (m)n×n ≥ 0 be a matrix, L = diag(l1, . . . , ln)0 (li >

, i = 1, . . . , n) and C = diag(c1, . . . , cn) (ci >, i = 1, . . . , n). The matrix CL−1 − |M |
is M-matrix if and only if ρ(C−1|A|L) < 1.
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3 Setup of the problem

In this paper, we consider the following Clifford-valued recurrent neural network with mixed
time delays:

dxi (t)

dt
= −ai xi (t) +

n∑

j=1

bi j f j (x j (t)) +
n∑

j=1

ci j f j (x j (t − τ j (t)))

+
n∑

j=1

di j

∫ t

−∞
Ki j (t − s) f j (x j (s))ds + Ii , (2)

where, i, j = 1, 2 . . . , n, n is the number of neuros, xi (·) ∈ A denotes the state of neuro i ,
ai > 0 is a real denotes the self-feedback connection weight, bi j , ci j , di j ∈ A indicates the
connection weights, f j (·) ∈ A is the activation non-linear function, τ j (·) is the transmission
delays that verifies 0 ≤ τ j (t) ≤ τ = max1≤ j≤n supt≥0 τ j (t), Ki j (·) is the kernel delay,
Ii ∈ A is external constant input.

The initial conditions of system (2) are

xi (0) = ϕ(s), s ∈ (−∞, 0].
For convenience, the equation (2) can be expressed in the vector form

ẋ(t) = −Ax(t) + B f (x(t)) + C f (x(t − τ(t))) + D
∫ t

−∞
K (t − s) f (x(t)) + I , (3)

where x = (x1, . . . , xn)T ∈ A
n is the state vector, A = diag(a1, . . . , an) ∈ R

n×n ,
B = (bi j )n×n ∈ A

n×n , C = (ci j )n×n ∈ A
n×n , D = (di j )n×n ∈ A

n×n , f (·) =
( f1(·), . . . , fn(·))T , I = (I1, . . . , In)T , K (·) = (ki j (·))n×n .

Remark 1 In this paper, the proposed system model is more general than the system model
proposed in previous works (Zhu and Sun 2016; Rajchakit et al. 2021a). If the distributed
time-varying delays is not considered, that is to make di j = 0, i = j = 1, 2, . . . , n, (2)
becomes into the following system

dxi (t)

dt
= −ai xi (t) +

n∑

j=1

bi j f j (x j (t)) +
n∑

j=1

ci j f j (x j (t − τ j (t))) + Ii ,

which was studied in Rajchakit et al. (2021a), and if ci j = di j = 0, i = j = 1, 2, . . . , n,
(2) becomes into the following clifford-valued recurrent neural network without delays

dxi (t)

dt
= −ai xi (t) +

n∑

j=1

bi j f j (x j (t)) + Ii ,

whichwas studied in Zhu and Sun (2016). Thus, it can be concluded that themodel considered
in this paper is more general than the ones in Zhu and Sun (2016) and Rajchakit et al. (2021a).

In this paper, the following hypotheses should be added:

(H1) The activation functions f j (x) satisfy the Lipschitz condition regarding to the n

dimensional clifford vector. That is to say, there exist constants L f
j > 0 such that

| f j (x) − f j (y)|0 ≤ L f
j |x − y|0 for all x, y ∈ A and j = 1, 2, . . . , n.
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(H2) The delay kernels Ki j (.) : [0,+∞) → [0,+∞), i, j = 1, 2, . . . , n satisfying

∫ +∞

0
Ki j (s)ds = 1,

∫ +∞

0
eλs Ki j (s)ds = ki j < +∞.

where λ is positive number.

4 Main results

4.1 Existence and uniqueness of equilibrium point

We will study the existence and uniqueness of the equilibrium point of the model (2) in this
subsection.

Theorem 1 Suppose that the system (3) satisfies (H1)–(H2) and suppose that

ρ
(
A−1(|B|0 + |C |0 + |D|0)L f

)
< 1,

then the system (3) has a unique equilibrium point x∗ ∈ A
n, where A = diag(a1, . . . , an)T ,

|B|0 = (|bi j |0)n×n, |C |0 = (|ci j |0)n×n, L f = diag(L f
1 , . . . , L f

n )T .

Proof The equilibrium point x∗ = (x∗
1 , . . . , x

∗
n )

T is obviously subjected to clifford algebra
equation:

xi = 1

ai

n∑

j=1

bi j f j
(
x j

) + 1

ai

n∑

j=1

ci j f j
(
x j

) + Ii
ai

, (i = 1, 2, . . . , n) (4)

Define

Λi (x) = (Λ1(x), . . . , Λn(x)) ∈ A
n,

where

Λi (x) = 1

ai

n∑

j=1

bi j f j
(
x j

) + 1

ai

n∑

j=1

ci j f j
(
x j

) + 1

ai

n∑

j=1

di j f j
(
x j

) + Ii
ai

.

Therefore,

|Λi (x)|0 ≤ 1

ai

∣
∣
∣
∣
∣
∣

n∑

j=1

bi j f j
(
x j

)

∣
∣
∣
∣
∣
∣
0

+ 1

ai

∣
∣
∣
∣
∣
∣

n∑

j=1

ci j f j
(
x j

)

∣
∣
∣
∣
∣
∣
0

+ 1

ai

∣
∣
∣
∣
∣
∣

n∑

j=1

di j f j
(
x j

)

∣
∣
∣
∣
∣
∣
0

+
∣
∣
∣
∣
Ii
ai

∣
∣
∣
∣
0

≤ 1

ai

n∑

j=1

∣
∣bi j

∣
∣
0

∣
∣ f j

(
x j

)∣
∣
0 + 1

ai

n∑

j=1

∣
∣ci j

∣
∣
0

∣
∣ f j

(
x j

)∣
∣
0

+ 1

ai

n∑

j=1

∣
∣di j

∣
∣
0

∣
∣ f j

(
x j

)∣
∣
0 +

∣
∣
∣
∣
Ii
ai

∣
∣
∣
∣
0

≤ 1

ai

n∑

j=1

∣
∣bi j

∣
∣
0

∣
∣ f j

(
x j

) − f j (0) + f j (0)
∣
∣
0
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+ 1

ai

n∑

j=1

∣
∣ci j

∣
∣
0

∣
∣ f j

(
x j

) − f j (0) + f j (0)
∣
∣
0

+ 1

ai

n∑

j=1

∣
∣di j

∣
∣
0

∣
∣ f j

(
x j

) − f j (0) + f j (0)
∣
∣
0 +

∣
∣
∣
∣
Ii
ai

∣
∣
∣
∣
0

≤ 1

ai

n∑

j=1

∣
∣bi j

∣
∣
0

∣
∣ f j

(
x j

) − f j (0)
∣
∣
0 + 1

ai

n∑

j=1

∣
∣bi j

∣
∣
0

∣
∣ f j (0)

∣
∣
0

+ 1

ai

n∑

j=1

∣
∣ci j

∣
∣
0

∣
∣ f j

(
x j

) − f j (0)
∣
∣
0

+ 1

ai

n∑

j=1

∣
∣ci j

∣
∣
0

∣
∣ f j (0)

∣
∣
0 + 1

ai

n∑

j=1

∣
∣di j

∣
∣
0

∣
∣ f j

(
x j

) − f j (0)
∣
∣
0

+ 1

ai

n∑

j=1

∣
∣di j

∣
∣
0

∣
∣ f j (0)

∣
∣
0 +

∣
∣
∣
∣
Ii
ai

∣
∣
∣
∣
0

≤ 1

ai

n∑

j=1

∣
∣bi j

∣
∣
0 L

f
j

∣
∣x j

∣
∣
0 + 1

ai

n∑

j=1

∣
∣bi j

∣
∣
0

∣
∣ f j (0)

∣
∣
0 + 1

ai

n∑

j=1

∣
∣ci j

∣
∣
0 L

f
j

∣
∣x j

∣
∣
0

+ 1

ai

n∑

j=1

∣
∣ci j

∣
∣
0

∣
∣ f j (0)

∣
∣
0

+ 1

ai

n∑

j=1

∣
∣di j

∣
∣
0 L

f
j

∣
∣x j

∣
∣
0 + 1

ai

n∑

j=1

∣
∣di j

∣
∣
0

∣
∣ f j (0)

∣
∣
0 +

∣
∣
∣
∣
Ii
ai

∣
∣
∣
∣
0

= 1

ai

n∑

j=1

∣
∣bi j

∣
∣
0 L

f
j

∣
∣x j

∣
∣
0 + 1

ai

n∑

j=1

∣
∣ci j

∣
∣
0 L

f
j

∣
∣x j

∣
∣
0 + 1

ai

n∑

j=1

∣
∣di j

∣
∣
0 L

f
j

∣
∣x j

∣
∣
0 + γi ,

(5)

where

γi = 1

ai

n∑

j=1

∣
∣bi j

∣
∣
0

∣
∣ f j (0)

∣
∣
0 + 1

ai

n∑

j=1

∣
∣ci j

∣
∣
0

∣
∣ f j (0)

∣
∣
0 + 1

ai

n∑

j=1

∣
∣di j

∣
∣
0

∣
∣ f j (0)

∣
∣
0

+
∣
∣
∣
∣
Ii
ai

∣
∣
∣
∣
0

≥ 0, for i = 1, . . . , n.

Define

Λ(x) = (Λ1(x), . . . , Λn(x))
T , |Λ(x)|0 = (|Λ1(x)|0, . . . , |Λn(x)|0)T

γ = (γ1, . . . , γn)
T , x = (x1, . . . , xn)

T , |x |0 = (|x1|0, . . . , |xn |0)T .

Then the vector form is rewritten in the following form:

|Λ(x)|0 ≤ A−1|B|0L f |x |0 + A−1|C |0L f |x |0 + A−1|D|0L f |x |0 + γ.

Based on Lemma 3 and Lemma 4, since A−1|B|0L f + A−1|C |0L f + A−1|D|0L f is
non-negative matrix and ρ

(
A−1|B|0L f + A−1|C |0L f + A−1|D|0L f

)
< 1, then Id −
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(
A−1|B|0L f + A−1|C |0L f + A−1|D|0L f

)
is an M-matrix. Therefore, there exists vector

ξ = (ξ1, . . . , ξn)
T such that

(
Id −

(
A−1|B|0L f + A−1|C |0L f + A−1|D|0L f

))
ξ > γ.

Hence, we have

|Λ(x)|0 ≤ A−1|B|0L f |x |0 + A−1|C |0L f |x |0 + A−1|D|0L f |x |0 + γ

< A−1|B|0L f |x |0 + A−1|C |0L f |x |0 +
(

Id −
(

A−1|B|0L f + A−1|C |0L f

+ A−1|D|0L f
))

ξ.

Define Ω = {x ∈ A
n, |x |0 < ξ}, for any x ∈ A

n , we get |Λ(x)|0 ≤ ξ. Thus, the continuous
operatorΛmaps compact and convex setΩ into itself. Using Brouwer’s fixed point theorem,
Λ has a fixed point x∗ = (x∗

1 , . . . , x
∗
n )

T such as Λ(x∗) = x∗, which is the equilibrium point
of system (3). Therefore, system (2) has one unique equilibrium point. ��

4.2 Global exponential stability

Some sufficient conditions to ensure the global exponential stability of the system (2) will
be established in this subsection.

Theorem 2 Suppose that the spectral radius of thematrix (A−λId )−1
(|B|0L f +eλτ |C |0L f +

|J |0L f
)
is less than 1, that means ρ

(

(A − λId)−1
(|B|0L f + eλτ |C |0L f + |J |0L f

)
)

< 1,

in which |J |0 = (ki j |di j |0)n×n and λ > 0 is a small real constant, then the equilibrium point
of system (3) is globally exponentially stable.

Proof According to Lemma 1, the model (2) is transformed into the following equality:

wi (t) = wi (0)e
−ai t + e−ai t

n∑

j=1

bi j

∫ t

0
eai s g j (w j (s))ds

+ e−ai t
n∑

j=1

ci j

∫ t

0
eai s g j (w j (s − τ j (s)))ds (6)

+ e−ai t
n∑

j=1

di j

∫ t

0
eai s

∫ t

−∞
Ki j (s − m)g j (w j (m))dmds, (7)

therefore

|wi (t)|0 ≤ |wi (0)|0e−ai t + e−ai t
n∑

j=1

|bi j |0
∫ t

0
eai s |g j (w j (s))|0ds

+ e−ai t
n∑

j=1

|ci j |0
∫ t

0
eai s |g j (x j (s − τ j (s)))|0ds (8)

+ e−ai t
n∑

j=1

|di j |0
∫ t

0
eai s

∫ t

−∞
Ki j (s − m)g j (x j (m))dmds
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≤ |wi (0)|0e−ai t + e−ai t
n∑

j=1

|bi j |0L f
j

∫ t

0
eai s |w j (s)|0ds

+ e−ai t
n∑

j=1

|ci j |0L f
j

∫ t

0
eai s |w j (s − τ j (s))|0ds

+ e−ai t
n∑

j=1

|di j |0L f
j

∫ t

0
eai s

∫ t

−∞
Ki j (s − m)w j (m)dmds. (9)

Define

θi (t) = |wi (0)|0e−ai t + e−ai t
n∑

j=1

|bi j |0L f
j

∫ t

0
eai s |w j (s)|0ds

+ e−ai t
n∑

j=1

|ci j |0L f
j

∫ t

0
eai s |w j (s − τ j (s))|0ds

+ e−ai t
n∑

j=1

|di j |0L f
j

∫ t

0
eai s

∫ t

−∞
Ki j (s − m)w j (m)dmds.

therefore, we get

|wi (t)|0 ≤ θi (t)

By calculating the derivative of θi (·), we obtain

θ̇i (t) = −aiθi (t) +
n∑

j=1

|bi j |0L f
j |w j (t)|0dt

+
n∑

j=1

|ci j |0L f
j |w j (t − τ j (t))|0

+
n∑

j=1

|di j |0L f
j

∫ t

−∞
Ki j (t − m)w j (m)dm.

Let

qi (t) = eλtθi (t), 0 < λ < min{a1, a2, . . . , an},
then, we have

q̇i (t) ≤ (λ − ai )qi (t) + eλt
n∑

j=1

|bi j |0L f
j |w j (t)|0

+ eλt
n∑

j=1

|ci j |0L f
j |w j (t − τ j (t))|0

+ eλt
n∑

j=1

|di j |0L f
j

∫ t

−∞
Ki j (t − m)w j (m)dm.
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Let q̃ j (t) = max−∞≤u≤t
q j (u), we obtain

q̇i (t) ≤ (λ − ai )qi (t) +
n∑

j=1

|bi j |0L f
j q̃ j (t)

+
n∑

j=1

eλτ j (t)|ci j |0L f
j q̃ j (t)

+
n∑

j=1

|di j |0L f
j q̃ j (t)

∫ t

−∞
eλ(t−m)Ki j (t − m)dm.

On the other hand,

q̇i (u) − (λ − ai )qi (u) ≤
n∑

j=1

|bi j |0L f
j q̃ j (u) +

n∑

j=1

eλτ j (u)|ci j |0L f
j q̃ j (u)

+
n∑

j=1

|di j |0L f
j q̃ j (u)ki j .

By integrating both sides from 0 to t , the following results are obtained

qi (t) ≤ qi (0)e
(λ−ai )t +

n∑

j=1

|bi j |0L f
j q̃ j (t)

∫ t

0
e(λ−ai )(t−u)du

+
n∑

j=1

eλτ j (t)|ci j |0L f
j q̃ j (t)

∫ t

0
e(λ−ai )(t−u)du

+
n∑

j=1

|di j |0L f
j q̃ j (t)ki j

∫ t

0
e(λ−ai )(t−u)du.

In addition, note that
∫ t

0
e(λ−ai )(t−u)du ≤ 1

ai − λ
,

therefore

qi (t) ≤ qi (0) + 1

ai − λ

n∑

j=1

|bi j |0L f
j q̃ j (t) + 1

ai − λ

n∑

j=1

eλτ j (t)|ci j |0L f
j q̃ j (t) (10)

+ 1

ai − λ

n∑

j=1

|di j |0L f
j q̃ j (t)ki j (11)

≤ qi (0) + 1

ai − λ

n∑

j=1

L f
j

(

|bi j |0 + eλτ |ci j |0 + |di j |0ki j
)

q̃ j (t) (12)

Define

Q(t) = (q1(t), . . . , qn(t))
T ,

Q̃(t) = (̃q1(t), . . . , q̃n(t))
T ,
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q(0) = (q1(0), . . . , qn(0))
T ,

Θ(t) = (θ1(t), . . . , θn(t))
T ,

w(t) = (w1(t), . . . , wn)
T ,

then, Eq. (10) can be written as the following vector form:

Q(t) ≤ q(0) + (A − λId)
−1

(

|B|0L f + eλτ |C |0L f + |J |0L f
)

Q̃(t).

It follows that

Q̃(t) ≤ q(0) + (A − λId)
−1

(

|B|0L f + eλτ |C |0L f + |J |0L f
)

Q̃(t),

then
[

Id − (A − λId)
−1

(

|B|0L f + eλτ |C |0L f + |J |0L f
)]

Q̃(t) ≤ q(0). (13)

Sinceρ

(

(A−λId)−1
(|B|0L f +eλτ |C |0L f +|J |0L f

)
)

, (A−λId)−1
(|B|0L f +eλτ |C |0L f +

|J |0L f
) ≥ 0, therefore, using Lemma 2, we obtain

(

Id − (A − λId)
−1

(

|B|0L f + eλτ |C |0L f + |J |0L f
))−1

≥ 0,

by using (13), we have

Q̃(t) ≤
(

Id − (A − λId)
−1

(

|B|0L f + eλτ |C |0L f + |J |0L f
))−1

|q(0)|0. (14)

Because

eλt |w(t)|0 ≤ eλtΘ(t) = Q(t) ≤ Q̃(t), (15)

from (14) and (15), we can obtain the following result:

|w(t)|0 ≤ e−λt Q̃(t)

≤
(

Id − (A − λId)
−1(|B|0L f + eλτ |C |0L f + |J |0L f )

)−1

|q(0)|0e−λt .

Hence, model (3) is globally exponentially stable. This completes the proof. ��
Remark 2 Recently, the authors in Zhu and Sun (2016) provided sufficient conditions for
the existence and global exponential stability of Clifford-valued recurrent neural networks
without delays. The authors in Liu et al. (2016) studied the existence and the stability of
Clifford-valued neural networks with a constant delay. At present, our results in Theorem 1
and Theorem 2 complement the aforementioned work.

Remark 3 In recent years, it has been found that complex-valued and quaternion-valued
neural networks have more advantages than real-valued neural networks in some practical
applications. Consequently, there have beenmany papers on complex-valued and quaternion-
valued neural networks (Hu andWang 2012; Zhang et al. 2017; Aouiti et al. 2020; Zhang et al.
2013; Aouiti and Bessifi 2020; Tu et al. 2019a, b). The above result can be easily applied to
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real-valued, complex-valued and quaternion-valued recurrent neural networks. The Clifford-
valued neural networkmodel (2) includes real-valued (m = 0), complex-valued (m = 1) and
quaternion-valued (m = 2) neural network models as its special cases, which has important
and extensive application fields.

Remark 4 In Boonsatit et al. (2021) and Rajchakit et al. (2021a), some authors have achieved
the stability or synchronization of neural networks using the Lyapunov function method,
and the decomposition method. In contrast to the method in the above papers, however,
we obtain the global exponential stability of Clifford-valued neural networks by using the
non-decomposition method, and the proof by inequality technique and matrix theory and its
spectral theory. Hence, the aim of this paper is to investigate the global exponential stability
of Clifford-valued neural networks.

Remark 5 Because of their practical importance and extensive applications in many fields,
such as telecommunications and robotics, aerospace, signal filtering, parallel computing, data
mining, several Clifford-valued neural networks have been studied with different methods in
recent years, especially for stability, synchronization and pseudo almost automorphic prob-
lems. In Boonsatit et al. (2021), Rajchakit et al. (2021a), Rajchakit et al. (2021b), Rajchakit
et al. (2021c), Rajchakit et al. (2021d), Rajchakit et al. (2021e) and Aouiti et al. (2021),
the authors consider the stability problem for the delayed neural networks via the methods
of Lyapunov function and Lyapunov-Krasovskii functional, Banach’s fixed point principle,
as well as the matrix inequalities technique with a great deal of integral calculations. For
example, Boonsatit et al. (2021) consider the finite-time and fixed-time synchronization
for delayed Clifford-valued recurrent neural networks, where the finite/fixed-time syn-
chronization criteria are established by Lyapunov-Krasovskii functional and computational
techniques.Rajchakit et al. (2021a) investigate the global exponential stability in theLagrange
sense of the delayed Clifford-valued recurrent neural networks with Lyapunov stability the-
ory, some analytical techniques and the linear matrix inequality (LMI) technique, based on
which, the obtained conditions are given in terms of high-dimensional matrices. While in this
paper, instead of using the methods above, the Brouwer’s fixed point theorem, the method of
Clifford-valued variation parameter, inequality technique and matrix theory and its spectral
theory are applied to investigate the considered Clifford-valued neural networks, which can
help to avoid a large number of tedious calculations and high-dimensional matrices.

5 Numerical example

Weconsider the two-neuronClifford-valued recurrent neural networkwithmixed time delays
represented by:

dxi (t)

dt
= −ai xi (t) +

2∑

j=1

bi j f j (x j (t)) +
2∑

j=1

ci j f j (x j (t − τ j (t)))

+
2∑

j=1

di j

∫ t

−∞
Ki j (t − s) f j (x j (s))ds + Ii , i = 1, 2, (16)

where A =
(
10 0
0 20

)

,

B =
(

2 −1 + e1 − e2 + e1e2
1 − e1 + e2 − e1e2 3

)

,
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C =
(
1 − e1 − e2 1 + 2e1 + e1e2
1 − e1 + e2 1 + e1 + e2 − e12

)

,

D =
( −2 −1 − e1
2 − e1 + 2e2 2 − 2e2

)

,

I =
( 3

2e1− 1
2 + 3

2e2 + e1e2

)

,

and the activation functions is

f j
(
u j

) = 1 − e−x0j

1 + e−x0j
+ 1

1 + e−x1j
e1 + 1 − e−x2j

1 + e−x2j
e2 + 1

1 + e−x12j
e1e2

where u j = x0j + x1j e1 + x2j e2 + x12j e1e2 ∈ A, j = 1, 2.
We choose the time-varying delays τ1(t) = 0.3 + 0.1 sin(t), τ2(t) = 0.6 + 0.4 cos(t),

τ = 1, ki j (t − s) = e−(t−s), t ≥ 0, s ∈ (0,+∞].
We have in this example

L f =
( 1

2 0
0 1

2

)

,

|B|0 =
(
2 2
2 3

)

,

|C |0 =
(√

3
√
6√

3 2

)

,

|D|0 =
(
2

√
2

3 2
√
2

)

,

then,

A−1|B|0L f + A−1|C |0L f + A−1|D|0L f =
(
0.2866 0.2932
0.1683 0.1957

)

≥ 0,

ρ

(

A−1|B|0L f + A−1|C |0L f + A−1|D|0L f
)

= 0.4679 < 1.

So, the conditions of Theorem 1 hold and system (16) has at least an equilibrium point.
Now, we fix λ = 0.1, τ = 1 then

|J |0 = (ki j |di j |0)2×2 =
(

2
0.9

√
2

0.9
3
0.9

2
√
2

0.9

)

,

then

(A − λId)
−1(|B|0L f + eλτ |C |0L f + |J |0L f ) =

(
0.3099 0.3171
0.1821 0.2099

)

,

ρ

(

(A − λId)
−1(|B|0L f + eλτ |C |0L f + |J |0L f )

)

= 0.5053 < 1.

Therefore, all the conditions of Theorem2 hold, then the system (16) is globally exponentially
stable.

123



48 Page 14 of 17 E. A. Assali

Fig. 1 a The state trajectories of x01 (t) with 6 different initial conditions; b The state trajectories of x11 (t) with

6 different initial conditions; c The state trajectories of x21 (t) with 6 different initial conditions; d The state

trajectories of x121 (t) with 6 different initial conditions

Using the Simulink toolbox in MATLAB, the fact is verified by the simulation in Figs. 1
and 2 with six different initial conditions which demonstrates the state trajectories of the
system (16).

6 Conclusion

In this paper, the existence and the global exponential stability of the equilibrium point for a
class of Clifford-valued recurrent neural networks with mixed time delays were proven using
the Brouwer’s fixed point theorem, inequality technique, and the method of the Clifford-
valued variation parameter. This is the first paper to study the global exponential stability
for Clifford-valued neural networks with mixed time delays. The results of this article are
essentially new, especially when our system degenerates into real, complex and quaternion
value systems. Finally, the effectiveness of the results obtained is illustrated by an illustrative
example.
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Fig. 2 a The state trajectories of x02 (t) with 6 different initial conditions; b The state trajectories of x12 (t) with

6 different initial conditions; c The state trajectories of x22 (t) with 6 different initial conditions; d The state

trajectories of x122 (t) with 6 different initial conditions

Data Availability Statement No data availability statement applies.
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