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Abstract
In this paper, we investigate the iterative methods for solving the absolute value equations
(AVEs). Using matrix splitting and the relaxed technique, a relaxed-based matrix splitting
(RMS) method is presented. As special cases, we propose a relaxed-based Picard (RP)
method, relaxed-based AOR (RAOR) method, and relaxed-based SOR (RSOR) method.
These methods include some known methods as special cases, such as the Newton-based
matrix splitting iterative method, the modified Newton type iteration method, the Picard
method, a new SOR-like method, the fixed point iteration method, the SOR-like method,
the AOR method, the modified SOR-like method, etc. Some convergence conditions of the
proposed method are presented. Numerical examples verify the theoretical results and the
advantages of the new methods.

Keywords Absolute value equations · Relaxed-based matrix splitting method ·
Relaxed-based Picard method · Relaxed-based AOR method · Relaxed-based SOR
method · Convergence

Mathematics Subject Classification 65F10 · 90C05 · 90C30

Communicated by Jinyun Yuan.

B Yongzhong Song
yzsong@njnu.edu.cn

Juan Song
song12368@163.com

1 School of Science, Wuxi University, Wuxi 214105, People’s Republic of China

2 Jiangsu Key Lab for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing
210023, People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-022-02157-x&domain=pdf
http://orcid.org/0000-0002-8204-7616


19 Page 2 of 13 J. Song, Y. Song

1 Introduction

In this paper, we investigate the iterative methods for solving the absolute value equations
(AVEs)

Ax − B|x | = b, (1)

where A, B ∈ Rn×n with B �= 0, b, x ∈ Rn , and |x | denotes the vector with absolute values
of components of x . When B = I , the AVEs (1) reduce to a special form

Ax − |x | = b. (2)

If B is nonsingular, then the AVEs (1) can be rewritten to B−1Ax − |x | = B−1b, which has
the form (2).

The system (1) is first introduced in Rohn (2004). For the existence and uniqueness of the
solution of (1) and (2), one can see (Hu and Huang 2010; Mangasarian 2009b; Mangasarian
and Meyer 2006; Rohn 2004, 2009; Wu 2021; Wu and Li 2018). In Mangasarian (2007),
Mangasarian and Meyer (2006), Mezzadri (2020), Rohn (2004), it has been proved that an
AVEs is equivalent to a linear complementarity problem (LCP), which is NP-hard. Hence,
they have proved that solving the AVEs is NP-hard.

In this paper, we always assume that the AVEs is solvable.
In recent years, under the conditions of the existence and uniqueness of the solution of

the AVEs (1) and (2), a variety of efficient iterative methods have been presented, such as for
solving the AVEs (1), a Picard method (Rohn et al. 2014), the generalized Newton method
(Hu et al. 2011; Miao et al. 2015; Wang et al. 2019), a smoothing Newton method (Miao
et al. 2017), the Newton-based matrix splitting iterative method (Zhou et al. 2021), the AOR
method and a preconditioned AOR method (Li 2017), and for solving the AVEs (2) the
generalized Newton method (Li 2016a; Mangasarian 2009a; Moosaei et al. 2015; Zhang and
Wei 2009), the generalized Traubs method (Haghani 2015), the fixed point iteration method
(Ke 2020; Yu et al. 2020), the SOR-like methods (Dong et al. 2020; Ke and Ma 2017; Li
and Wu 2020), the Picard-HSS iteration method (Salkuyeh 2014), the nonlinear MHSS-like
method (Li 2016b), the Picard-CSCS iteration method and the nonlinear CSCS-like iteration
method (Gu et al. 2017), the Picard-HSS-SOR iteration method (Zheng 2020), a generalized
and a preconditioned generalized Gauss-Seidel methods (Edalatpour et al. 2017), and so on.

In this paper, to improve computing efficiency, we present a relaxed-based matrix splitting
method (RMS) for solving the AVEs (1). As special cases, we propose a relaxed-based Picard
(RP) method, a relaxed-based AOR (RAOR) method, and a relaxed-based SOR (RSOR)
method. These methods include some known methods as special cases, such as the Newton-
based matrix splitting iterative method (NMS method) (Zhou et al. 2021), the modified
Newton type iteration method (MN method) (Wang et al. 2019), the Picard method (Rohn
et al. 2014), the new SOR-like method (Dong et al. 2020), the fixed point iteration (FPI)
method (Ke 2020; Yu et al. 2020), the SOR-like method (Ke andMa 2017), the AORmethod
(Li 2017), the modified SOR-like (MSOR-like) method (Li andWu 2020), etc. Moreover, we
prove convergence theorems of the proposed methods. Finally, we use numerical examples
to demonstrate our theoretical analysis and the superiority of the RMS method.

This paper is organized as follows. In Sect. 2, some notations and lemmas are reviewed.
In Sect. 3, we propose the RMS, RP, RAOR, and RSORmethods for solving the AVEs (1). In
Sect. 4, the convergence analysis of the proposed method is presented. Numerical examples
and conclusions are given in Sects. 5 and 6, respectively.
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2 Preliminaries

In this section, some notations and auxiliary results are presented.
Let A ∈ Rn×n be the set of n × n matrices with real entries and Rn = Rn×1. The i th

component of a vector x ∈ Rn is denoted by xi . Denote |x | the vector with i th component
equal to |xi |. For matrix A, an expression A = Q − R is called a splitting of A when Q is
nonsingular. ‖A‖ denotes the spectral norm defined by ‖A‖ = max{‖Ax‖ : x ∈ Rn, ‖x‖ =
1}, where ‖x‖ is the 2-norm. For matrix A = (ai j ), B = (bi j ) ∈ Rn×n , we say A ≥ B if
ai j ≥ bi j , i, j = 1, · · · , n.

Lemma 1 (Young 1971, Lemma 6-2.1) If b and c are real, then both roots of the quadratic
equation

x2 + bx + c = 0

are less than one in modulus if and only if

|c| < 1, |b| < 1 + c.

The following results are obvious.

Lemma 2 For x, y ∈ Rn, the following results hold:

(i) ‖|x | − |y|‖ ≤ ‖x − y‖;
(ii) if 0 ≤ x ≤ y, then ‖x‖ ≤ ‖y‖;
(iii) if x ≤ y and Q ≥ 0, then Qx ≤ Qy.

3 Relaxed-basedmatrix splittingmethod

In this section, some new methods for solving the AVEs (1) are presented.
Let y = |x |. Then, the AVEs (1) is equivalent to a new AVEs{

Ax − By = b,
y = |x |.

We split A into

A = Q − R, (3)

where Q is nonsingular. Then, we define a relaxed-based matrix splitting (RMS) method for
solving the AVEs (1) as{

xk+1 = Q−1(Rxk + Byk + b),
yk+1 = (1 − τ)yk + τ |xk+1|, k = 0, 1, 2, · · · , (4)

where τ is a positive constant.
The RMS method has a general form and it contains many existing iterative methods as

its special cases.
Let Q = 1

ω
A, R = 1−ω

ω
A with ω �= 0. Then, the RMS method defined by (4) reduces to

a relaxed-based Picard (RP) method defined as{
xk+1 = (1 − ω)xk + ωA−1(Byk + b),
yk+1 = (1 − τ)yk + τ |xk+1|. (5)
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The RP method is simple in format and more efficient when A−1 is easy to calculate.
Especially, when A is a strictly diagonally dominant matrix, we usually choose it to solve
AVE.

For τ = 1, the RMS method (4) reduces to the Newton-based matrix splitting iterative
method (NMS method) (Zhou et al. 2021)

xk+1 = Q−1(Rxk + B|xk | + b), (6)

the modified Newton type iteration method (MN method) whenever R is a positive semi-
definite matrix (Wang et al. 2019), and a Picard method for R = 0 (Rohn et al. 2014)

xk+1 = A−1(B|xk | + b). (7)

Comparing with the NMS method (6), the RMS method (4) has a relaxation factor, so it
is more effective.

We decompose A into

A = D − L −U ,

where D is a diagonal matrix, and L and U are strictly lower and upper triangular matrices
of A, respectively, as usual.

In Wang et al. (2019); Zhou et al. (2021), from the NMS method, the authors propose
some special iterative methods, which include a special MN method

xk+1 = (A + �)−1(�xk + B|xk | + b), (8)

the Newton-based Gauss-Seidel (NGS) method

xk+1 = (D + � − L)−1[(� +U )xk + B|xk | + b], (9)

and the Newton-based SOR (NSOR) method

xk+1 = (D + α� − αL)−1{[α� + (1 − α)D + αU ]xk + α(B|xk | + b)}. (10)

For ω ∈ � \ {0} and γ ∈ �, let

A = Qγ,ω − Rγ,ω,

where

Qγ,ω = 1

ω
(D − γ L), Rγ,ω = 1

ω

[
(1 − ω)D + (ω − γ )L + ωU

]
.

Then, the RMS method defined by (4) is called the relaxed-based AOR (RAOR) method
defined as{

xk+1 = (D − γ L)−1{[(1 − ω)D + (ω − γ )L + ωU ]xk + ω(Byk + b)},
yk+1 = (1 − τ)yk + τ |xk+1|. (11)

For τ = 1, the RAOR method (11) turns into the AOR method (Li 2017):

xk+1 = (D − γ L)−1{[(1 − ω)D + (ω − γ )L + ωU ]xk + ω(B|xk | + b)}. (12)

Comparing with the AOR method (12), the RAOR method (11) has a relaxation factor, so
it is more effective.

For the casewhenω = γ , the RAORmethod can be called the relaxed-based SOR (RSOR)
method {

xk+1 = (D − ωL)−1{[(1 − ω)D + ωU ]xk + ω(Byk + b)},
yk+1 = (1 − τ)yk + τ |xk+1|. (13)
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For the AVEs (2), some known methods can be derived as follows.
In this case, the RP method (5) is equivalent to the new SOR-like method (Dong et al.

2020), where τ = ω/σ with σ > 0.
The RP method (5) reduces to the fixed point iteration (FPI) method whenever ω = 1 (Ke

2020; Yu et al. 2020) {
xk+1 = A−1(yk + b),
yk+1 = (1 − τ)yk + τ |xk+1|, (14)

and the SOR-like method whenever τ = ω (Ke and Ma 2017){
xk+1 = (1 − ω)xk + ωA−1(yk + b),
yk+1 = (1 − ω)yk + ω|xk+1|. (15)

Comparing with the FPI and SOR-like methods, the RP method has more degrees of
freedom, so it may be more effective.

The RSORmethod (13) reduces to themodified SOR-like (MSOR-like) methodwhenever
τ = ω (Li and Wu 2020){

xk+1 = (D − ωL)−1{[(1 − ω)D + ωU ]xk + ω(yk + b)},
yk+1 = (1 − ω)yk + ω|xk+1|. (16)

Comparing with the MSOR-like method, the degree of freedom of the RSOR method is
bigger, so it may be more effective.

4 Convergence analysis

In this section, we discuss the convergence of the methods proposed in Sect. 3.
For the AVEs (1) and the splitting (3), denote

μ = ||Q−1R||, ν = ||Q−1B||. (17)

Lemma 3 If

μ|1 − τ | < 1, τν < (1 − μ)(1 − |1 − τ |), (18)

then the RMS method (4) for solving the AVEs (1) is convergent.

Proof Let {x∗, y∗} be solution of the AVEs (1). Then, it holds that{
x∗ = Q−1Rx∗ + Q−1By∗ + Q−1b,
y∗ = (1 − τ)y∗ + τ |x∗|. (19)

Denote {
εxk = xk − x∗,
ε
y
k = yk − y∗, k = 0, 1, 2, · · ·

Subtracting (19) from (4), we have{
εxk+1 = Q−1Rεxk + Q−1Bε

y
k ,

ε
y
k+1 = (1 − τ)ε

y
k + τ(|xk+1| − |x∗|),

so that

|εxk+1| ≤ |Q−1R||εxk | + |Q−1B||εyk |,

123



19 Page 6 of 13 J. Song, Y. Song

|εyk+1| ≤ |1 − τ ||εyk | + τ ||xk+1| − |x∗|| ≤ |1 − τ ||εyk | + τ |εxk+1|.
By Lemma 2, we have

||εxk+1|| ≤ μ||εxk || + ν||εyk ||, ||εyk+1|| ≤ |1 − τ |||εyk || + τ ||εxk+1||.
This can be rewritten as[−τ 1

1 0

] [ ||εxk+1||
||εyk+1||

]
≤

[
0 |1 − τ |
μ ν

] [ ||εxk ||||εyk ||
]

,

which implies that[ ||εxk+1||
||εyk+1||

]
≤

[
0 1
1 τ

] [
0 |1 − τ |
μ ν

] [ ||εxk ||||εyk ||
]

≤
[

μ ν

τμ |1 − τ | + τν

] [ ||εxk ||||εyk ||
]

≤ · · · ≤
[

μ ν

τμ |1 − τ | + τν

]k+1 [ ||εx0 ||||εy0 ||
]

. (20)

Let

W =
[

μ ν

τμ |1 − τ | + τν

]
,

and let λ be an eigenvalue of W . Then, we have

det(λI − W ) = det

[
λ − μ −ν

−τμ λ − |1 − τ | − τν

]
= 0.

That is

λ2 − (|1 − τ | + τν + μ)λ + μ|1 − τ | = 0.

By (18), it holds that

μ|1 − τ | < 1, |1 − τ | + τν + μ < 1 + μ|1 − τ |.
It follows by Lemma 1 that |λ| < 1, which implies ρ(W ) < 1.

Hence, Wk → 0 (k → ∞), so that, by (20), εxk → 0, εyk → 0 (k → ∞). This has proved
that the RMS method (4) is convergent. ��
Theorem 4 Suppose that μ + ν < 1. If

0 < τ <
2(1 − μ)

1 − μ + ν
, (21)

then the RMS method (4) for solving the AVEs (1) is convergent.

Proof If 0 < τ ≤ 1, thenμ|1−τ | = μ(1−τ) < 1 and τν < τ(1−μ) = (1−μ)(1−|1−τ |).
Hence, the inequality (18) holds.

For 1 ≤ τ < 2(1 − μ)/(1 − μ + ν), on the one hand, it gets that τν < (1 − μ)(2 −
τ) = (1 − μ)(1 − |1 − τ |), which shows that the second inequality in (18) holds. On the
other hand, since 2μ(1 − μ)/(1 − μ + ν) < 1 + μ, it derives that τμ < 1 + μ, so that
μ|τ − 1| = μ(τ − 1) < 1, which shows that the first inequality in (18) holds.

In a word, we have proved that if (21) is satisfied, then the inequality (18) holds. It follows
by Lemma 3 that the RMS method (4) for solving the AVEs (1) is convergent. ��
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Theorem 5 Let A be nonsingular and ‖A−1B‖ < 1. Then, the RP method (5) for solving the
AVEs (1) is convergent, whenever either

0 < ω ≤ 1, 0 < τ <
2

1 + ‖A−1B‖
or

1 < ω <
2

1 + ‖A−1B‖ , 0 < τ <
2(2 − ω)

2 − ω + ω‖A−1B‖ .

Proof For theRPmethod,μ and ν defined by (17) reduce toμ = |1−ω| and ν = |ω|‖A−1B‖.
When ‖A−1B‖ < 1 and 0 < ω < 2/(1 + ‖A−1B‖), it is easy to prove that μ + ν =

|1 − ω| + ω‖A−1B‖ < 1. And it gets that

2(1 − μ)

1 − μ + ν
= 2(1 − |1 − ω|)

1 − |1 − ω| + ω‖A−1B‖ .

Now, by Theorem 4, the required result follows directly. ��
When ω = 1, by Theorem 5, the following corollary is obvious.

Corollary 6 Let A be nonsingular. If

‖A−1‖ < 1, 0 < τ <
2

1 + ‖A−1‖ ,

then the FPI method (14) for solving the AVEs (2) is convergent.

This convergence result is better than the corresponding one given by (Ke 2020, Theorem
2.1).

It is easy to see that if τ = ω, then the condition in Theorem 5 reduces to

‖A−1B‖ < 1, 0 < ω <
2

1 + √‖A−1B‖ .

Hence, by Theorem 5, the following corollary is direct.

Corollary 7 Let A be nonsingular. If

‖A−1‖ < 1, 0 < ω <
2

1 + √‖A−1‖ ,

then the SOR-like method (15) for solving the AVEs (2) is convergent.

This convergence condition is simpler than the corresponding one given by Ke and Ma
(2017).

Lemma 8 (Li 2017, Lemma 4.1) If ρ(|Q−1R|+ |Q−1B|) < 1, then the NMS method (6) for
solving the AVEs (1) is convergent.

This lemma implies (Zhou et al. 2021, Theorem 4.1) and is better than (Wang et al. 2019,
Theorem 3.1).

Since the Picard method (7) is a special case of the NMS method, from Lemma 8, the
following corollary is obvious.

Corollary 9 If A is nonsingular and ρ(|A−1B|) < 1, then the Picard method (7) for solving
the AVEs (1) is convergent.
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This corollary is consistent with (Moosaei et al. 2015, Theorem 4.3) and is better than
(Wang et al. 2019, Corollary 3.2). And the convergence given in (Rohn et al. 2014, Theorem
2) can be derived from this corollary directly.

From Theorem 4, the following convergence for the RAOR method (11) is direct.

Theorem 10 Let μ̃ = ||(D−γ L)−1[(1−ω)D+ (ω −γ )L +ωU ]||, ν̃ = ||(D−γ L)−1B||.
Assume that μ̃ + ων̃ < 1. If

0 < τ <
2(1 − μ̃)

1 − μ̃ + ων̃
,

then the RAOR method (11) for solving the AVEs (1) is convergent.

When ω = γ , we can obtain the convergence of the RSOR method (13).
For theMSOR-likemethod (16), this theorem is consistentwith (Li andWu2020, Theorem

1).
It is easy to prove that if μ̃ + ων̃ < 1 then

2(1 − μ̃)

1 − μ̃ + ων̃
> 1.

Hence, by Theorem 10, the following result is immediately.

Corollary 11 Let μ̃ = ||(D−γ L)−1[(1−ω)D+ (ω−γ )L +ωU ]||, ν̃ = ||(D−γ L)−1B||.
Assume that μ̃+ων̃ < 1. Then, the AOR method (12) for solving the AVEs (1) is convergent.

5 Numerical examples

In this section, three numerical examples are tested to demonstrate the effectiveness and
feasibility of our methods for solving the AVEs (1) and (2) from aspects of the iteration
times, the elapsed computation time, and the relative residual error.

For convenience, the iteration times, the elapsed computation time (unit: second), and
the relative residual error are, respectively, denoted as ‘IT’, ‘CPU’(unit: s) and ‘RES’. In
the computation, all initial vector are taken as zero vectors, and numerical methods are
terminated once the relative error satisfies ||Axk − B|xk | − b||2/||b||2 ≤ 10−6 or the CPU
is more than 500 s. All the tests are performed under Matlab 2016b on a personal computer
with 2.30GHZ central processing unit (Inter(R) Core(TM) i5-8259U), 8GB memory, and
Windows 10 operating system.

Example 1 (Guo et al. 2019) Let m be a prescribed positive integer and n = m2. Consider
the AVEs (2) with

A = tr idiag(−I , S,−I ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

S −I 0 · · · 0 0
−I S −I · · · 0 0
0 −I S · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · S −I
0 0 0 · · · −I S

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rn×n,
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S = tr idiag(−1, 8,−1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

8 −1 0 · · · 0 0
−1 8 −1 · · · 0 0
0 −1 8 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 8 −1
0 0 0 · · · −1 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rm×m,

x∗ = (−1, 1,−1, 1, · · · ,−1, 1) ∈ Rn, b = Ax∗ − |x∗|.
We test the RP method (5) with the experimental optimal parameters (ω, τ), the SOR-like

method (15) with the optimal parameter given in Guo et al. (2019), the RAOR method (11)
with the parameters (ω, γ, τ ) = (0.9, 0.85, 1.6), the AOR method (12) with the parameters
(ω, γ ) = (0.9, 0.85), the MN method (8), the NGS method (9), and the NSOR method
(10) with the experimental optimal parameter, respectively. For the MN, NGS, and NSOR
methods, � is taken as two common cases. The experimental results are listed in Table 1.

From Table 1, we can see that these seven tested methods can fast converge to the solution
x∗ for different sizes. When the matrix dimension increases, it is almost constant, which
shows that these seven tested methods are stable. Furthermore, we can see that the RP, SOR-
like, and RAOR methods have less CPU and IT than the other methods. In terms of the
elapsed CPU and IT, the RP method requires the least computing time and iteration times.

In Mangasarian and Meyer (2006), the linear complementarity problem (LCP)

Mz + q ≥ 0, z ≥ 0, z(Mz + q) = 0 (22)

with M ∈ Rn×n , det(I − M) �= 0 and q ∈ Rn , can be reduced to the AVEs

(M + I )x − (M − I )|x | = q (23)

with x = 1
2 [(M − I )z + q].

Example 2 (Zhou et al. 2021) Consider the LCP (22), where M = M̂ + 4I with

M̂ = tr idiag(−I , S,−I ) ∈ Rn×n, S = tr idiag(−1, 4,−1) ∈ Rm×m,

and q = −Mz∗ with z∗ = (1.2, 1.2, · · · , 1.2) ∈ Rn being its unique solution. In this case,
the unique solution of the corresponding AVEs (23) is

x∗ = (−0.6,−0.6, · · · ,−0.6) ∈ Rn .

We test the RP method (5) with the parameters (ω, τ) = (0.6, 0.998) and (ω, τ) =
(0.998, 0.598), the Picard method (7), the MN method (8), the NGS method (9), and the
NSOR method (10) with the optimal parameter α = 0.9. For the MN, NGS, and NSOR
methods, set � = M̂ .

Some iterative methods for solving the LCP (22) have been proposed. In Huang and Cui
(2022), the authors given a class of RMMSmethod, in which the RMSORmethod is the more
effective one. Here, we test the RMSORmethod, where� = 0.5I , γ = 1, and the parameter
in SOR splitting and relaxation parameter θ are, respectively, selected as the experimental
optimal parameters 0.6 and 0.98.

The experimental results are listed in Table 2, where ‘-’ denotes the CPU time larger than
500 s.

From Table 2, we can see that the Picard method does not converge within 500 s, and the
other six tested methods can fast converge to the solution x∗ for different sizes. When the
matrix dimension increases, IT is constant, which shows that the other six tested methods
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Table 1 Numerical results of Example 1

m 8 × 8 16 × 16 32 × 32 64 × 64

RP (ω, τ) (0.98,1.03) (0.98,1.02) (0.98,1.02) (0.98,1.02)

IT 9 9 9 9

CPU 0.0041 0.0176 0.3356 11.1864

RES 9.2021e−7 8.5694e−7 9.2389e−7 9.5740e−7

SOR-like (ω, ω) (1.0671,1.0671) (1.0704,1.0704) (1.0714,1.0714) (1.0717,1.0717)

IT 13 13 13 13

CPU 0.0053 0.0253 0.5124 17.1123

RES 5.0322e−7 7.5853e−7 8.7749e−7 9.2821e−7

RAOR IT 14 14 14 14

CPU 0.0063 0.0241 0.5231 20.4936

RES 4.5378e−7 7.2882e−7 8.6364e−7 9.3050e−7

AOR IT 17 17 17 17

CPU 0.0085 0.0305 0.6385 25.3445

RES 4.7171e−7 7.4878e−7 8.8460e−7 9.3050e−7

MN � 0.5 ∗ diag(A) 0.5 ∗ diag(A) 0.5 ∗ diag(A) 0.5 ∗ diag(A)

IT 21 22 22 22

CPU 0.0067 0.0389 0.9235 30.8884

RES 9.0245e−7 6.4895e−7 7.3282e−7 9.5201e−7

� diag(A) diag(A) diag(A) diag(A)

IT 33 34 34 35

CPU 0.0069 0.0630 1.4164 50.2641

RES 8.7680e−7 8.3264e−7 9.5132e−7 7.0006e−7

NGS � 0.5 ∗ diag(A) 0.5 ∗ diag(A) 0.5 ∗ diag(A) 0.5 ∗ diag(A)

IT 26 27 27 27

CPU 0.0067 0.0340 0.9642 37.6451

RES 6.9223e−7 6.3687e−7 7.4380e−7 7.9705e−7

� diag(A) diag(A) diag(A) diag(A)

IT 38 39 39 39

CPU 0.0094 0.0485 1.4684 56.4281

RES 7.4126e−7 7.9015e−7 9.1848e−7 9.8249e−7

NSOR � 0.5 ∗ diag(A) 0.5 ∗ diag(A) 0.5 ∗ diag(A) 0.5 ∗ diag(A)

α 1.22 1.22 1.22 1.22

IT 21 22 22 22

CPU 0.0076 0.0367 0.8829 30.7969

RES 9.5619e−7 7.8885e−7 9.2134e−7 9.8327e−7

� diag(A) diag(A) diag(A) diag(A)

α 1.22 1.22 1.22 1.22

IT 33 34 35 35

CPU 0.0103 0.0522 1.3352 48.5387

RES 9.4268e−7 9.5474e−7 7.7609e−7 8.3095e−7
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Table 2 Numerical results of Example 2

n 3600 4900 6400 8100 10000

RP IT 5 5 5 5 5

(ω, τ) (0.6,0.998) (0.6,0.998) (0.6,0.998) (0.6,0.998) (0.6,0.998)

CPU 3.8662 9.0153 20.0840 38.8365 71.7079

RES 5.9447e−7 5.6943e−7 5.5102e−7 5.3694e−7 5.2585e−7

(ω, τ) (0.998,0.598) (0.998,0.598) (0.998,0.598) (0.998,0.598) (0.998,0.598)

IT 6 6 6 6 6

CPU 4.6897 10.7683 24.7143 47.6933 98.6913

RES 1.0528e−7 1.0406e−7 1.0332e−7 1.0284e−7 1.0252e−7

Picard IT – – – – –

CPU – – – – –

RES – – – – –

MN IT 28 28 28 28 –

CPU 26.2930 67.9872 152.5700 408.3453 –

RES 8.4789e−7 8.7256e−7 8.9115e−7 9.0567e−7 –

NGS IT 10 10 10 10 10

CPU 9.2301 21.2518 45.6189 117.1443 226.7960

RES 4.4613e−7 6.0898e−7 3.7969e−7 3.5586e−7 3.3599e−7

NSOR IT 8 8 8 8 8

CPU 7.0860 16.4593 35.2885 71.4078 161.1710

RES 2.5137e−7 2.2340e−7 2.0211e−7 1.8533e−7 1.7174e−7

RMSOR IT 13 13 13 13 13

CPU 12.7717 28.1610 55.1909 112.0169 445.8347

RES 6.2102e−7 6.3276e−7 6.4167e−7 6.4867e−7 6.5431e−7

are all effective and stable except the MNmethod. Further, we can see that the RP, NGS, and
NSOR methods have less CPU and IT than the other methods. In terms of the elapsed CPU
and IT, the RP method requires the least computing time and iteration times.

Example 3 Consider the AVEs (1) with the matrix A and B are randomly generated by the
following matlab procedure: A = rand(n, n) + n ∗ eye(n) ∈ Rn×n , B = rand(n, n) + n

2 ∗
eye(n) ∈ Rn×n , b = ones(n, 1) ∈ Rn×1.

We test the RAOR method (11), the Picard method (7), and the MSOR-like method (16),
where we choose five increasing sizes: n = 4000, 5000, 6000, 7000, 8000. The experimental
results are listed in Table 3, where ‘–’ denotes the CPU time larger than 500 s.

From Table 3, we can see that the MSOR-like method does not converge within 500 s, and
the RAOR method has less CPU and IT than the Picard method. This shows that the RAOR
method is superior to the Picard and MSOR-like methods under some conditions.

123



19 Page 12 of 13 J. Song, Y. Song

Table 3 Numerical results of Example 3

n 4000 5000 6000 7000 8000

RAOR IT 29 29 29 29 29

CPU 38.2336 72.9921 125.9768 199.7599 341.1727

RES 7.8293e−7 7.8299e−7 7.8340e−7 7.8343e−7 7.8577e−7

Picard IT 36 36 36 36 36

CPU 64.2573 96.3039 169.8457 272.4404 448.7433

RES 6.8529e−7 6.8775e−7 6.8672e−7 6.8729e−7 6.8755e−7

MSOR-like IT – – – – –

CPU – – – – –

RES – – – – –

6 Conclusions

In this paper, we investigate the iterativemethods for solving theAVEs (1). Usingmatrix split-
ting and the relaxed technique, a relaxed-based matrix splitting (RMS) method is presented.
As special cases, we propose the RP, RAOR, and RSOR methods. These methods include
some known methods as special cases, such as the Newton-based matrix splitting iterative
method (NMS method) (Zhou et al. 2021), the modified Newton type iteration method (MN
method) (Wang et al. 2019), the Picard method (Rohn et al. 2014), the NSOR method (Dong
et al. 2020), the fixed point iteration (FPI) method (Ke 2020; Yu et al. 2020), the SOR-like
method (Ke and Ma 2017), the AORmethod (Li 2017), the modified SOR-like (MSOR-like)
method (Li and Wu 2020), etc.

We prove convergence theorems of the proposed methods. Numerical examples show
that our methods are superior to the Picard, SOR-like, MN, NGS, AOR, NSOR, MSOR-like
methods and the RMSOR method given in Huang and Cui (2022) under some conditions.

For the RMS method, how to construct more effective splitting and make the method
converge faster still needs further research.

With reference to Li (2017), we can construct a preconditioned relaxed-based matrix
splitting method.

For the RMS, RP, RAOR, and RSOR methods, there are some parameters involved. For
the selection of parameters, trial calculation is mainly used. How to select better parameters
is an interesting and important problem, and of course, it is also a difficult problem, which
deserves further study.
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