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Abstract
In this article, a simple linear method is established for designing optimal revolving objects
with desired physical properties. First, the problem is converted to an optimal control problem
by defining an artificial control related to an unknown generator curve. Next, considering a
variational presentation and applying an embedding procedure, the problem is transferred
into one whose unknown is an optimal Radon measure. Using two stages of approximation
determines the optimal control, and the optimal generator rotating curve is obtained from the
results of a finite linear programming problem. The accuracy and applications of the method
are shown by presenting some classical numerical simulations and comparing the method
with the level set method in those examples.

Keywords Generator curve · Level set method · Linear programming · Optimal control ·
Optimal rotated shape · Radon measure

Mathematics Subject Classification 49Q10 · 49Q20 · 49J24

1 Introduction and background

The development of computer methods for solution of scientific and engineering geometrical
problems governed by physical laws, began in the last quarter of the previous century. Most
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of the methods presented were concerned with the interaction between theory and applica-
tion, especially for industrial purposes. Although, many of them were based on numerical
analyses, there were some powerful techniques which made use of optimal control theory
(Mohammadi and Pironneaun 2002; Pironneau 1983). In line with this theory, some methods
were established for calculating the differentials of the objective function over the boundary
of the given domain [as in the mapping method in Pironneau (1983)]. Of course, these meth-
ods required the solution of a numerical algorithm as well. As a matter of fact, the idea of
applying optimal control techniques for solving optimal shape design problems is old; never-
theless by offering new methods, optimal control theory plays a key role in the improvement
of this branch.

In general, most of solving optimal shape design problems are dependent on the method
used to solve differential equation existing in the problem. However, sometimes among the
studies conducted, we find methods dependent on the type of optimization method used in
the problem. Among there methods, we could refer to the minimax method, which does
the calculations by a minimax problem under the basis of a suitable vector field, or the
least-square method (Belegun and Rajan 1988).

Obtaining optimization conditions and also the need for finding an acceptable numerical
solution for the problem necessitate the use of numerical methods in some problems. Such
methods, in general, are capable of algorithmic implementation; three well-known methods
in this regard are finite element method, finite difference and boundary elements which have
their own specific used based on the type of the problem (Hicks and Hanne 1977).

One of the important points which needs to be considered in optimization is the extent to
which the information related to the objective function gradient and conditions accessible.
The finite difference method may calculate the gradients approximately but the calculation
is not that accurate (Park et al. 1983).

One of the other methods for solving optimal shape design problems is the level set
method. This method was presented by Osher and Sethian in 1911 which is a method for
examining the movement of levels in dimensions 2 and 3 (Osher and Sethian 1988).

The sensitivity analysis of the basis of anothermethodwhich could be called the sensitivity
shape. Thismethod is often used for problemswhich are related to the tension or have a elastic
structure. This method is often based on the changes of the system and the objective function
in relation to partial changes in geometric variables; mechanical engineers often benefit
from this method in their related problems. In the control theory, basic methods have been
invented to calculate objective function differentials which are dependent on the boundary
of the respective domain. Therefore, in this vein, optimization and control theories could
present methods for solving optimal shape design problems. Provided that the defined control
function is related to the domain shape, embedding and characteristic function methods are
in this category (Pironneau 1983).

These methods naturally directed the problem to a numerical algorithm. Among these
categories, it could be said that the embedding method is the most efficient one. In this
method, first, the differential equation solution space of the optimal shape design problem is
transferred to a fixed domain. Then, the problem is changed into an optimal control problem
whose controls appear in the coefficients of differential equation. Then, using control theory
methods, one can solve the new problem.

One of the methods for solving optimal control problem which has recently been used in
the embedding method. This method has been designed on the basis of Young’s idea which
uses measure space (Fakharzadeh and Alimorad 2019).

In 1986, by complementing Young’s idea, Rubio introduced a new embedding process for
solving optimal control problems (Rubio 1986). Its remarkable advantages encouraged some

123



A linear technique for designing… Page 3 of 17 421

researchers in the optimal shape area to apply it. The method was based on embedding the
solution space of the optimal control problem into an appropriate measure space. Therefore,
one can employ the strong linearity property of measures to obtain the optimal solution. The
automatic existence theorem, globality of the solution, linear treatment even for extremely
nonlinear problems and an easy algorithmic path for determining the optimal control, can be
stated as its advantages.

On this basis, we presented the first work in Fakharzadeh and Rubio (1999) to introduce a
technique for obtaining the most suitable simple closed curve in polar coordinates. The man-
ner of determining by use of measures the optimal domain in polar and Cartesian planes for
different partial differential systems are also discussed in Fakharzadeh (2003), Fakharzadeh
and Rubio (2009), Farahi et al. (2006), Farhadinia and Farahi (2007) and Nazemi and Farahi
(2009). Additionally, applications of the method in designing the optimal shapes for engi-
neering purposes can be found in Farhadinia and Farahi (2005),Mehneh et al. (2005), Nazemi
et al. (2008) and Nazemi et al. (2009).

The reader can see (Fakharzadeh and Alimorad 2019) for knowing more about the history
and applications of this method.

Regarding Mehneh et al. (2005), in this, we would like to introduce a general technique
for generating optimal rotated objects using Rubio’s method. In this manner, we would be
able to obtain the general physical properties of the desired optimal shape. We inclined this
simple and linear method to be independent from the induced relation of the system involved
(compare with Farhadinia and Farahi 2005;Mehneh et al. 2005;Mohammadi and Pironneaun
2002; Pironneau 1983) and also to produce the optimal shape numerically. To determine the
efficacy of this method in numerical Examples 1 and 3, we have compared this method with
the level set method.

2 The conversion of the classical problem to an optimal control
problem

We are interested in designing a smooth and simple generator curve �(x) for x ∈ X , so that
�(0) = a,�(L) = b, and by rotating�(x) around the x-axis, we obtain the generated surface
or shape has the desired physical properties (fixed volume, given area, center of mass, total
mass, etc.) and also minimizes a given functional I which is dependent on the geometrical
element �(x).

Let L ∈ R+, X = [0, L], X0 = (0, L), ϒ = [a, b], � = X × ϒ × U and �̃ = X × ϒ

whereU ⊆ R is a compact and bounded set. The aim is to find a boundary which minimizes
the following functional

I(�, ϑ) =
∫ ∫

A
f0(x, �, ϑ)d�dx +

∫
∂A

h0(x, �)√
1 + ϑ2

dx, (2.1)

where f0 ∈ C(�) and h0 ∈ C(�̃). Suppose A is a region bounded on the plane by the known
boundaries �1, �2 and �3 and the unknown boundary �(x), such that first, �(x) Crosses the
fixed points (0, a) and (L, b) as its two ends, and second, the boundary of A forms a simple
smooth closed curve (see Fig. 1). It is clear that changing �(x) also changes the area of A,
which means that A is in fact a function of �; thus with a given �(x), we take every pair
(A, ∂A) satisfying these conditions as an acceptable geometric element. Hence, the classical
problem of optimal shape design is basically equal to minimizing function I(A, ∂A).
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Fig. 1 Region A and its boundary ∂A

Assume now that the optimal shape has such physical properties that it occupies a fixed
volume and its center of mass is the desired point (x̄, ȳ, z̄) in space. Thus, to find the center
of the shape, the following relations may be used (Rudin 1987):

x̄ =
∫ ∫ ∫

D xδdv

M
, ȳ =

∫ ∫ ∫
D yδdv

M
, z̄ =

∫ ∫ ∫
D zδdv

M
, (2.2)

where δ(x, y, z) is the density of the shape that occupies such a region as D in space and M
is the mass of shape D. Now, we consider the boundary �(x) as a control function and then
convert the OSD problem to an optimal control problem where the task is to minimize (2.1)
subject to the variational constraints (2.2). For smoothness of the unknown boundary �(x),
we define the artificial control ϑ : X → U such that

ϑ(x) = �̇(x) = d�(x)

dx
≡ g(x, �, ϑ), ∀x ∈ X , (2.3)

where � : X → ϒ is the trajectory and (2.3) the state equation in optimal control theory
view.

Definition 2.1 We shall say that a pair p = (�, ϑ) is admissible if the following conditions
hold:
(i) ϑ(x) is a control function and takes its value in a set U .
(ii) �(x) is a differentiable function, �(0) = a, �(L) = b and also satisfies (2.3).
We assume that the set of all admissible pairs is non-empty and denote it by P .

Generally, it is not always an easy task to find the solution to such classical problems and
problems may arise in the solution process. For instance, set P may be empty; even if P
is non-empty, its solution may not be obtainable. It is also likely that writing the necessary
general conditions for the existence of a solution is difficult or even impossible. Considering
such difficulties, we seek to propose a method which does not involve those difficulties as
far as possible.
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3 Metamorphosis

In this section, we try to change the solution space in an appropriate way. We transfer the
problem of minimization of (2.1) over P , into another, nonclassical problem which appears
to have some better properties in some aspects.
In the following, we use a transformation to enlarge the set P . For each admissible pair p,
we can define a linear functional �A : C(�) → R defined by h �−→ ∫ L

0 h(x, �, ϑ)dx .
Some aspects of the mapping �A are useful; it is well defined, it is linear, it is positive, i.e.,
�A(F) ≥ 0 if F ≥ 0, and this mapping is continuous.
By Riesz representation theorem, an admissible pair p = (�, ϑ) defines a positive Radon
measure μ on �, so that μA(h) = �A(h) = ∫ L

0 hdx and h ∈ C(�). Also we need to convert
(2.1),�(0) = a and�(L) = b to its integral form. For this purpose, let B be an open disc inR2

containing �̃, and letC ′(B) denote the space of real-valued continuous functions on B whose
first derivatives are bounded. Suppose φg(x, �, ϑ) = φ�(x, �)ϑ(x) + φx (x, �) = φ̇(x, �),
for all φ ∈ C

′
(B); then, integrating over X , we have:

∫ L
0 φg(x, �, ϑ)dx = ∫ L

0 φ̇(x, �)dx = φ(L, �(L)) − φ(0, �(0)) ≡ δφ, ∀φ ∈ C
′
(B).

(3.4)

Therefore, conditions �(0) = a and �(b) = L are satisfied using this set of constraints.
Let D(X0) be the space of infinitely differentiable real-valued functions with compact

support in X0; from (3.4) and by considering φ(x, �) = �(x)ψ(x), we conclude:
∫ L

0
ψg(x, �, ϑ)dx = �(x)ψ(x)|L0 = 0 ,∀ψ ∈ D(X0). (3.5)

Since each differentiable function with finite derivatives satisfies the Lipschitz condition
and is absolutely continuous, function ψ(x) is absolutely continuous; if �(x) is absolutely
continuous, then, function �(x)ψ(x) is also absolutely continuous. Therefore, its derivative
has some elementary functions (see Rudin 1987). It is also important to derive a special case
of (3.4); this case will be necessary when we wish to consider the approximation scheme.
Denote C1(�) ⊆ C(�) as the set of all functions which depend only on the variable x ; thus:

∫ L

0
t(x, �, ϑ)dx = at , ∀t ∈ C1(�), (3.6)

where at is the integral of t over [0, L].
At this stage, we consider the desired physical properties of the optimal shape. Let

V and (x̄ A, ȳA, z̄ A) be the favorable volume and center of mass for the optimal shape,
respectively. By Pappus’s theorem (Leopold 1976), we should have V = 2π ȳ Ā, where
Ā = ∫ L

0

∫ �(x)
0 dydx is the area and (x̄, ȳ) is the center of mass of region A. Thus, we have:

∫ L

0

∫ �(x)

0
dydx =

∫ L

0
�(x)dx = V

2π ȳ
. (3.7)

If the curve�(x) revolves about the x-axis, due to the fact that all cross sections perpendicular
to the x-axis are circles, the surface resulting from such revolution can be expressed by the
relation z2 + y2 = �(x)2. Thus, Moreover, we know that the equation of the surface is
z2 + y2 = �(x)2; hence, by considering the symmetry property of the shape, we have:

x̄ A =
∫ ∫ ∫

D xdV∫ ∫ ∫
D dV

=
∫ L
0 x�2(x)dx

1
2

∫ L
0 �2(x)dx

;
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thus, ∫ L

0

(
x̄ A
2

− x

)
�2(x)dx = 0. (3.8)

We remind that, ( x̄ A2 − x)�2(x) ∈ C1(�) and ȳA = z̄ A = 0, since the x-axis is the axis of
rotation. Now, the set of Eqs. (3.4)–(3.8) explain the properties of an admissible pair in P .
So, the problem is defined as follow:

min : I(�, ϑ) = μ( f ),
S. to : μA(φg) = δφ, ∀φg ∈ C

′
(B);

μA(ψg) = 0, ∀ψg ∈ D(X);
μA( f ) = at , ∀t ∈ C1(�);
μA(�(x)) = v

2π ȳ Ā
;

μA( x̄ A2 − x)�2(x) = 0.

(3.9)

This transfer is one-to-one (see Rubio 1986) and hence all the difficulties mentioned still
exist. For this reason, we enlarged the underlying space; (instead the defined set of measures
by the Riesz representation theorem) among those positive Radon measures in M+(�), we
seek in the set of all those positive linear functionals on C(�) which satisfy (3.9). In this
new problem, we shall simply consider all linear functionalμ on C(�) satisfy (3.9) and seek
to minimize functional μ → μ( f ) over this new and larger set of functionals. So, one can
define problem (3.9) as follows:

min : I(�, ϑ) = μ( f ),
S. to : μ(φg) = δφ, ∀φg ∈ C

′
(B);

μ(ψg) = 0, ∀ψg ∈ D(X);
μ( f ) = at , ∀t ∈ C1(�);
μ(�(x)) = v

2π ȳ Ā
;

μ( x̄ A2 − x)�2(x) = 0.

(3.10)

4 Existence and approximation

Let Q be the solution set of problem (3.10). In the sense of weak∗ topology, Q is compact;
moreover, the function μ �−→ μ( f ) is continuous and hence, it attains its minimum, say
μ∗ in the compact set Q (see Rubio 1986 Proposition II.3 and Theorem II.1). Despite the
fact that problem (3.10) is linear with respect to the unknown measures μ, the dimension of
the underlying space and the number of equations are infinite. To attain the optimal control,
we applied two stages of approximation to find the solution via the results of a finite linear
programming. It is possible to approximate the solution of the problem (3.10) by the solution
of a finite dimensional linear program of sufficiently large dimension. Besides, by increasing
the dimension of the problem, the accuracy of the approximation can be increased. First,
we consider the minimization of (3.10) not only over set Q, but also over its subset called
Q(M1, M2, M3) and defined by only a finite number of constraints to be satisfied. Consider
the equalities (3.10). Let the sets {φi , i ∈ N }, {ψ j , j ∈ N } and {ts, s ∈ N } are the sets of
total functions, respectively, in C ′(B), D(X0) and C1(�). Now, we select a finite subset of
each set. In this manner, for the first set of equations in (3.10), let set φi be such that the linear
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combinations of these functions are uniformly dense (i. e. they are dense in the topology
of uniform convergence) in space C ′(B), these functions can be taken to be monomials
in the components of variables x and �. For the next two sets of equations, we select:
ψl = sin( 2πlxL ), l = 1, 2, ..., M21; ψl ′ = 1−cos( 2πl

′x
L ), l ′ = 1, 2, ..., M22 these functions

are useful as bases for Fourier series, which are usually utilized in analyzing physics and
engineering problems. On the other hand, because of the density of the linear combinations
of this set of functions in different mathematical spaces, it is possible to approximate the
functions in these spaces using a linear combination of these triangular functions. Also, we
consider the third set of Eq. (3.10) as follows:

ts(x) =
{
1 x ∈ Js
0 x /∈ Js,

where Js = [ L(s−1)
S , sL

S ), s = 1, 2, ..., S ∈ N. Although the functions in the last set are not
continuous, the linear combinations of them can efficiently and properly approximate any
functions in C(�) properly. For fixed numbers M1, M2 and M3, we select M1 number of φi ,
M2 ofψ j , where M2 = M21 +M22, and M3 of ts functions, respectively. Now, the following
proposition is satisfied whose proof is similar to proposition III.1 in Rubio (1986).

Proposition 4.1 Let M1, M2 and M3 be positive integers. Consider the problem ofminimizing
the functionμ −→ μ( f ) over the set of measures Q(M1, M2, M3) inM+(�)which satisfies
the following conditions:

μ(φ
g
i ) = δφi , i = 1, 2, ..., M1;

μ(ψ
g
i ) = 0, i = 1, 2, ..., M2;

μ(ts) = as, s = 1, 2, ..., M3;
μ(�(x)) = v

2π ȳ Ā
;

μ( x̄ A2 − x)�2(x) = 0;

(4.11)

then, infQ(M1,M2,M3)
μ( f ) tends to infQ μ( f ) when M1, M2, M3 −→ ∞.

As a matter of fact, (4.11) is a semi-infinite linear programming problem and there are
some methods for solving it (see, for example, Glashoff and Gustafson 1983). However,
favoring the simpler way, we carried out the second stage of approximation. Rosenbloom
in Rosenbloom (1956) showed that the measure μ∗ in Q(M1, M2, M3) has the form
μ∗ = ∑M1+M2+M3+2

j=1 α∗
j δ(z

∗
j ) with the triples z∗j belonging to a dense subset of � and

the coefficients α∗
j ≥ 0 for j = 1, 2, . . . , M1 +M2 +M3 +2. Now, a discretization by nodes

on a dense subset of� can reduce the number of unknowns to only the coefficientsα∗
j
,s. Thus,

problem (3.7) can be approximated by the following finite linear programming problem. The
same theorem as Theorem III.1 in Rubio (1986) can show that when the number of nods and
constraints tends to infinity, the solution of the problem tends to the optimal solution of the
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classical problem.

min : ∑M
j=1 α j f (z j )

S. to : ∑M
j=1 α j (φ

g
k )(z j ) = δφk , k = 1, 2, ..., M1;∑M

j=1 α j (ψ
g
h )(z j ) = 0, h = 1, 2, ..., M2;∑M

j=1 α j ts(z j ) = as, s = 1, 2, ..., M3;∑M
j=1 α j� j = v

2π ȳ Ā
;

∑M
j=1 α j (

x̄ A
2 − x)�2

j = 0;
α j ≥ 0, j = 1, 2, ..., N ;

(4.12)

where as = ∫
Js
dx = L

M3
that Js = [ L(s−1)

M3
, Ls
M3

) and
⋃

Js = [0, L].
The method suggested based on measures has two approximation steps. This approxi-

mated solution will get more and more accurate once the conditions are increased and the
discretization (the number of variables) is made more exact.

In seeking to assess the potentialities of our approach as a computational method, the
increase of the numberM of variableswith the dimensionality of the problem—the number of
states and controls—is most important. Of course, the number M of equations also increases
with the number of dimensions, but not very fast, and the numbers involved are, anyway,
comparatively small. The large size of the linear programming problem, due to the large size
of the number of variables, gives rise to two main difficulties. The first, the large amount
of computer memory necessary to store the matrix of coefficients, can be taken care of
by computing the entries of this matrix every time they are needed; this only exacerbates
the second difficulty, increasing the time needed to actually solve the linear programming
problem. Of course, an assessment can be seriously carried out only after much work in
optimizing every aspect of the computation, using, for instance, a professionally written
modified simplex program; we can mention here, however, an aspect that gives reason for
optimism: the high accuracy that can be obtained with very coarse meshes. Also, it should be
noted that there do not seem to be othermethods guaranteed towork under general conditions,
even for low-order problems; our method does not take any special notice of whether the
differential equations are linear, or the performance criterion quadratic. A possible way to
proceed with the development of this method is to use in a first run of a problem a very coarse
mesh—which implies a small value of M—and then replace in a subsequent run the set �

by a smaller subset containing the solution obtained in the first run; in this way, we obtain
high resolution with a comparatively small value of M .

5 Algorithm (solution procedure)

To apply the mentioned method, here, we present an algorithmic path for the solution
procedure:
Step 1) Statement of the classical problem according to integral equations: Using rela-
tionship �A, all conditions as well as the objective function of problem are expressed in the
form of integral relationships over region A.
Step 2) representation in a space of measures: According to the Riesz representation
theorem, specific functionals defined on the basis of path and control functions introduce
unique measures such that there will be one-to-one correspondence between the pair of path
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and control functions and a subset of positive Radon measures. In this step, problem (3.9)
was obtained.

Then, instead of the measure introduced based on Riesz Representation theorem, we
consider all positive Radon measures which just satisfy Eq. (3.9) and we obtain problem
(3.10).
Step 3) Choosing the number of constraints: By considering a finite number of constraints
in (3.10), we change the problem into a new one, namely a semi-infinite linear programming
problem (4.11). Therefore, for given fixed numbers M1, M2 and M3, we select M1 number
of φi , M2 of ψh , and M3 number of ts functions from the mentioned total sets.
Step 4) Approximating with a finite linear programming problem:
(i) Determining region �: The problem should specify the constituting regions of � In this
problem, � = X × ϒ ×U , where X is the interval for x , ϒ the interval for �(x) and U the
interval for ϑ(x). Choosing a number N , region � is divided into N equal parts, so that we
obtain a partitioning for region � which includes N cells. Next, the constituting intervals of
�, are divided into n1, n2 and n3 equal parts, respectively; in this manner, region�will have
N = n1 × n2 × n3 cells.
(ii) Choosing Z ,

i s: From each of the cells obtained in step 1, we arbitrarily choose a
representative point zi = (xi , �i , ϑi ), and number these points from 1 to N.

In this way, all the necessary elements are available for solving the linear programming
problem.
Step 5) Identifying the optimal shape: Following the above choices, a linear programming
problemwithM = M1+M2+M3+2 constraints and N variables is obtainedwhose positive
answers are called α∗

1 , α
∗
2 , ..., α

∗
m , (m ≤ M).

Step 6) Calculating the control function and the path: Upon finding α∗
1 , α

∗
2 , . . . , α

∗
m , we

obtain the control function and the optimal path in this manner:
a) Assuming x0 = 0 we set xi = xi−1 + α∗

i i = 1, 2, . . . ,m.
b) For x ∈ [xi−1, xi ) we set ϑ(x) = ϑi , where ϑi is a component of zi (which is related to
α∗
i )

c) Assuming �0 = a and �L = b and using the differential equation ϑ(x) = �̇(x), gives the
following difference equation which yields the value of �i for each i as

�i = �i−1 + (xi − xi−1)ϑi , i = 1, 2, . . . ,m.

Step 7) Drawing the control function and the optimal path diagrams: with the data
obtained from the previous step, points (xi , �i , ϑi ) are determined. With intervals more
finely discretized by ϑi and by the use of software, the nearly optimal control function is
found to be a piecewise constant function and the nearly optimal shape to be a set of broken
lines.

One of the currentmethods of solving shape optimization problems is the level set method;
to compare this method with the shape-size method in terms of efficiency, a brief review of
the level set method will follow in the next section. In addition, two numerical examples will
be solved and comparison will be made of the results obtained by the two methods.

6 Level set method

The level set approach was introduced by Osher and Sethian (1988). We can use the level set
method to represent the unknown curve ∂A, i.e., we try to find a function ϕ(t, x) such that

�(t) = {x |ϕ(t, x) = 0}.
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In the above, �(0) is the initial curve and �(t) converges to the unknown true boundary,
when t → ∞. One of the essential ingredients of the level set method is to find the velocity
field Vn(t, x) in the normal direction of �(t), which is the used to move the level set function
ϕ(t, x) by solving

ϕt − Vn |∇ϕ| = 0, ϕ(0, x) = ϕ0(x).

We shall use the following gradient method to find a function ϕ, which approximates the
minimizer of (2.1) with respect to (3.8):

ϕn+1 = ϕn − α
∂ Jε
∂ϕ

(ϕn), (6.13)

where Jε = I(�, ϑ) + 1
ε

∫ L
0 ( x̄ A2 − x)�2(x)dx . The step size α is fixed and ε = 10−3.

In this paper [0, 3] is divided into n = 400 subintervals, and we let h = 3
n−1 and α = 0.5h.

Because the objective function Jε is a function of unknown boundary �(x), we assume that
� = ϕ. Thus, by obtaining the unknown function ϕ, the unknown boundary � is obtained.
In both Examples 1 and 3, we use the penalty function Jε. Then, we compute the topological
derivative associated with Jε, the notion introduced in Delfour and Zolesio (2001) and put
in (6.13).

7 Numerical examples

To test the introducedmethod in practice and also to show how it is applied, we intend to solve
some classical examples. The following classical examples are selected in such a way as to
demonstrate the generality and capability of the introduced method in some different cases.
In all the examples, their related finite linear programming problems are solved by revised
simplex method in subroutine DLRRS from the IMSL library of the software Compaq Visual
Fortran 6.5. Then, in the manner explained in Rubio (1986), the nearly optimal control is
established. By applying (2.3) to the obtained control, some points on �(x) are determined.
Afterwards, the optimal generator curve is illustrated by (a removed) curve fitting with spline
functions of degree 3, done by the software Maple 9.5. Moreover, for the discretization
schemes, in all the examples N = 12,000 nodes in � are selected by dividing X , ϒ ; and
U , respectively, into 20, 30, and 20 subdivisions. Also, these examples are solved using the
level set method and the results are compared.

Example 1 A simple computation shows that point (9/5, 0, 0) is the center of mass for the
rotated shape generated by the curve �(x) = √

x + 1, 0 ≤ x ≤ 1 (around the x-axis). In
this way, we intend to find the curve �(x) with the initial and the final points (0, 1) and
(3, 2) so that point (9/5, 0, 0) is its center of mass. By trial and error, we chose X = [0, 3],
ϒ = [1, 2], U = [0.3, 0.8], M1 = 2, M2 = 6, M3 = 10 and we let the objective function f
be a constant. Then, the related LP (like 4.12) with 12,000 variables and 19 constraints was
set up. From the results, the nearly optimal control was determined (Fig. 2).

After doing the curve fitting, the nearly optimal curve together with the curve
√
x + 1

were plotted in Fig. 3. A simple comparison shows the ability and accuracy of the method.
The nearly optimal shape was also shown in Fig. 4.
In the level set method, we assumed the initial curve to be a straight line that passes through

the points (0, 1) and (3, 2), i.e., y = 1
3 x + 1 and ∂ Jε

∂ϕi
= ∑n

i=1(xi − 1.9)2
√

�x2i + �ϕ2
i . In
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Fig. 2 The nearly optimal control
for Example 1
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Fig. 3 The generator curve
obtained by a spline function for
Example 1
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Fig. 4 The nearly optimal shape
for Example 1
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Fig. 5, the curve obtained with the level set method and the curve obtained with the method
presented in this paper are marked in black and red, respectively.

The curve obtained using the level set method, the initial curve and y = √
x + 1 are drawn

in Fig. 6. It is apparent in these figures that the two curves are quite similar in this example;
however, the level set method has a better answer.

Example 2 We would like to cut a rectangular metal surface with length L = 3 and width
b = 2 by curve �(x) from (0, 1) and (3, 2) (see Fig. 1), so that the lower part has the
point (x̄, ȳ) = (1.8, 0.8) as its center of mass; moreover, its rotation generates a shape with
minimum volume. Therefore, as mentioned before, the following conditions hold for this
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Fig. 5 The initial and optimal
curve obtained by the level set
method for Example 1
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Fig. 6 Comparison of the two
curves obtained in Example 1
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problem:
∫ L

0

(
�(x)

2
− ȳ

)
�(x)dx = 0,

∫ L

0
(x − x̄)�(x)dx = 0.

The objective function is
∫ L
0 π�2(x)dx , to solve the problem, we consider U =

[−0.35, 0.85]. Choosing M1 = 2 dense functions of the first kind in the form of φ1(x, �) =
x�2, φ2(x, �) = x�. M2 = 12 functions of the kind (3.5) andM3 = 12 constraints from the
functions of the third kind, gives us the linear optimization problem (4.12) with 28 constraints
and 12,000 variables.

123



A linear technique for designing… Page 13 of 17 421

Fig. 7 The nearly optimal control
for Example 2
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min : ∑12,000
j=1 α j f (z j )

S. to : ∑12,000
j=1 α j (2x j� jϑ j + �2

j ) = 12,
∑12,000

j=1 α j (x jϑ j + � j ) = 6,
∑12,000

j=1 α j

[
� j

(
2πl
3

)
cos

(
2πxl
3

)
+ ϑ j sin

(
2πxl
3

)]
= 0, l = 1, 2, . . . , 6,

∑12,000
j=1 α j

[
� j

(
2πl ′
3

)
sin

(
2πxl ′
3

)
+ ϑ j (1 − cos

(
2πxl ′
3

)
)
]

= 0, l ′ = 1, 2, . . . , 6,

α1 + · · · + α1200 = 1
4 ,

α1201 + · · · + α2400 = 1
4 ,

α2401 + · · · + α3600 = 1
4 ,

α3601 + · · · + α4800 = 1
4 ,

α4801 + · · · + α6000 = 1
4 ,

α6001 + · · · + α7200 = 1
4 ,

α7201 + · · · + α8400 = 1
4 ,

α8401 + · · · + α9600 = 1
4 ,

α9601 + · · · + α10,800 = 1
4 ,

α10,801 + · · · + α12,000 = 1
4 ,∑12,000

j=1 α j [� j (
� j
2 − ȳ)] = 0,

∑12,000
j=1 α j [� j (x − x̄)] = 0,

α j ≥ 0, j = 1, 2, . . . , 12,000.

To check the accuracy of the results, the center of mass of the area under the fitted curve
was calculated as (1.6917311, 0.83297) Moreover, using the least squares approximation, a
second-order curve was fitted to the points obtained, for which the point (1.6852, 0.82262)
was obtained as the center of mass. These points seem reasonably acceptable compared to
the point (1.8, 0.8) The optimal control diagram, the optimal path diagram, and the final
three-dimensional shape are represented, respectively, in Figs. 7, 8and 9.
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Fig. 8 The curve generator by
spline function for Example 2
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Fig. 9 The nearly optimal shape
for Example 2
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Fig. 10 The nearly optimal
control for Example 3
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Example 3 (Catenoid problem, extracted from Smith (1974) page 123) The aim is to find
an optimal curve passing through the points (0, 1) and (3, 2), with the center of mass
at point (1.9, 0, 0), such that the generated rotated shape has the minimum surface area.
Thus, the performance criterion is the minimization of

∫ 3
0 2π�(x)

√
1 + ϑ2(x)dx with

the additional condition
∫ 3
0

�2(x)
2 (x − 1.9)dx = 0. The problem was solved by selecting

U = [−1.047, 2.052] and with 27 constraints. The optimal value was found to be 25.44468
and the resulted optimal control, optimal generator and optimal shape were plotted in Figs. 10
, 11and 12, respectively. In this example, as in Example 1, we assumed that the initial curve

is y = 1
3 x + 1. Also, ∂ Jε

∂ϕi
= ∑n

i=1(πϕi )(xi − 1.9)2
√

�x2i + �ϕ2
i .
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Fig. 11 The generator curve
obtained by a spline function for
Example 3
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Fig. 12 The nearly optimal shape
for example (3)
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Fig. 13 The generator curve
obtained using new method (red)
and level set (black) in Example 3
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In Fig. 13, the curve obtained by the level set method is presented using black and the
curve obtained with the method presented in this paper is displayed using red.

The objective function obtained by the level set method is 27.3998. In this example, the
method based on measures yields a smaller value of the objective function than what we
found. Moreover, our method provides a better curve compared to the level set method.
Also, a comparison of the results of the analytical solution from Smith (1974) indicates the
advantages of this new method.
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8 Conclusion

Based on the properties of measures, a method was established for designing optimal rotated
shapes. First, the problemwas posed into an optimal control frame in a variational representa-
tion. Then, the global optimal shape was constructed by the following algorithm: transferring
the problem into a measure space, extending the underlying space, two approximation steps,
obtaining the optimal generator curve and the optimal rotated shape from the solution of an
appropriate finite linear programming problem.
Themethod has several advantages such as the automatic existence theorem, globality, linear-
ity of the solutionmethod even for extremely nonlinear problems, easily imposing the desired
physical properties of the optimal shape and also generality of and simplicity in application
to different systems and for different purposes. In addition, this method is independent of
the initial shape; thus, this method is a very convenient tool for engineers to design a rotated
shape. In comparison with the level set method, it has better a result and a smaller value of
the objective function.

Acknowledgements This research received no specific grant from any funding agency in the public,
commercial, or not-for-profit sectors.

Declarations

Conflict of interest The authors declare no conflict of interest in preparing this article.

References

BelegunD,Rajan S (1988) Shape optimization approach based on natural design variables and shape functions.
Comput Method Appl Mech Eng 66(23):87–106

Delfour M, Zolesio J (2001) Shapes and geometries-analysis, differential calculus and optimization. SIAM,
Philadelphia

Fakharzadeh AJ (2003) Determining the best domain for a nonlinear wave system. J Appl Math Comput
13:183–194

Fakharzadeh AJ, Alimorad H (2019) A review of theoretical measure approaches in optimal shape problems.
Int J Numer Anal Model 16(4):543–574

Fakharzadeh AJ, Rubio JE (1999) Shapes and measures. IMA J Math Control Inf 16:207–220
Fakharzadeh AJ, Rubio JE (2009) Best domain for an elliptic problem in cartesian coordinates by means of

shape-measure. Asian J Control 11:536–547
Farahi MH, Mehne HH, Borzabadi AH (2006) Wing drag minimization by using measure theory. Optim

Methods Softw 21:1–9
FarhadiniaB, FarahiMH(2005)Optimal shape design of an almost straight nozzle. Int JApplMath 13:319–334
Farhadinia B, Farahi MH (2007) On the existence of solution of an optimal shape design problem governed

by full Navier–Stoke equations. Int J Contemp Math Sci 2:701–711
Glashoff K, Gustafson SA (1983) Linear optimization and approximation. Springer, Berlin
Haslinger J, Neittaanamaki P (1988) Finite element approximation for optimal shape design: theory and

applications. Wiley, New York
HicksRM,HannePA (1977)Wingdesign bynumerical optimization. In:AIAAaircraft systems and technology

conference, Seattle, Washington, pp 22–24
Leopold F (1976) Advanced calculus. The Williams and Wilkins Company, New York
Mehneh HH, Farahi MH, Esfahani JA (2005) Slot nozzle design with specified pressure in a given subregion

by embedding method. J Appl Math Comput 168:1–9
Mohammadi B, Pironneaun O (2002) Applied optimal shape design. Anal Numer
Nazemi AR, Farahi MH (2009) Control of the fiber orientation distribution at the outlet of contraction. Acta

Appl Math 106:279–292

123



A linear technique for designing… Page 17 of 17 421

Nazemi AR, Farahi MH, Zamirian M (2008) Filtration problem in homogeneous dam by using embedding
method. J Appl Math Comput 28:313–332

Nazemi AR, Farahi MH, Mehneh HH (2009) Optimal shape design of iron pole section of electromagnet.
Phys Lett A 372:3440–3451

Osher S, Sethian JA (1988) Fronts propagatingwith curvature-dependent speed: algorithm based onHamilton–
Jacobi formulations. J Comput Phys 79:12–49

Park JJ, Rebelo N, Kobayashi S (1983) A new approach to perform design in metal forming with finite element
method. Int J Mach Tool Des Res 23:71–99

Pironneau O (1983) Optimal shape design for elliptic system. Springer, Berlin
RosenbloomPC (1956)Qudques classes de problems exteremaux.Bulletin de SocieteMathematique de France

80:183–216
Rubio JE (1986) Control and optimization: the linear treatment of nonlinear problems. Manchester University

Press, Manchester
Rudin W (1987) Real and complex analysis, 3rd edn. McGraw-Hill Series in Higher Mathematics, New York
Smith DR (1974) Variational methods in optimization. Prentic-Hall Inc, Englewood Cliffs

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	A linear technique for designing optimal rotated shapes
	Abstract
	1  Introduction and background
	2 The conversion of the classical problem to an optimal control problem
	3 Metamorphosis
	4 Existence and approximation
	5 Algorithm (solution procedure)
	6 Level set method
	7 Numerical examples
	8 Conclusion
	Acknowledgements
	References




