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Abstract
This paper is concerned with the robust 1-center location problems on the tree networks
under minmax and minmax regret criteria, where the vertex weights and edge lengths of the
underlying tree are considered as dynamic data or discrete set of scenarios. In the problem
under minmax criterion, the aim is to find a point on the tree such that it minimizes the
maximum cost. The problem under minmax regret asks to find a point on the tree such
that minimizes the maximum regret. We develop the first optimal solution algorithms with
polynomial time complexities for the problems under investigation.

Keywords Minmax regret · Robust optimization · Center problem · Location problem

Mathematics Subject Classification 90C27 · 90C17

1 Introduction

Location problems have received strong theoretical interest due to their relevance in practice.
In a location problem on the network, the aim is to find the best locations for establishing one
or several facilities such that these facilities serve all clients on the network. One of the most
important location problems is the p-center location problem, which has many applications
in practice. In this problem the task is to find p locations for facilities which minimize the
maximum of weighted distances of each customer to its closest facility.
The classical p-center location problem was first investigated by Hakimi (1965). Hakimi
showed that this problem on general networks can not be solved in a polynomial time. Kariv
and Hakimi (1979) proposed a combinatorial algorithm with O(mn log n) time complexity
for the 1-center location problem on general graphs withm edges and n vertices. For the case
that the underlying graph is a tree, they reduced this time to O(n log n). Megiddo designed
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a linear time algorithm for solving the 1-center location problem on trees (Megiddo 1983).
Megiddo and Tamir also considered this problem inMegiddo and Tamir (1983) and proposed
an O(n log3 n) time algorithm for the continuous p-center location problem on tree networks.
Also, they presented an O(n log2 n log log n) time algorithm for a weighted discrete p-center
location problem.
Kouvelis et al. introduced the idea of minmax and minmax regret approaches to obtain a
robust solution of the 1-median problem (Kouvelis et al. 1993). These methods minimize the
maximum cost of decision maker’s decision and maximum difference between the cost of
decision-maker’s decision and the cost of optimal decision, respectively. In the minmax and
minmax regret criteria on networks, vertex weights and edge lengths are uncertain, and this
uncertainty can be consider as interval, discrete set of scenarios, dynamic, polyhedral, etc.
Averbakh showed that the minmax regret 1-center location problem on general graphs with
interval edge lengths isNP-hard (Averbakh2003). This problemongeneral graphswith uncer-
tain vertex weights can be solved in a polynomial time. Averbakh and Berman considered
the minmax regret 1-center location problem with interval vertex weights on general graphs
and tree networks and presented combinatorial algorithms with O(m2n log n) and O(n2)
running times, respectively (Averbakh and Berman 1997). Lin et al. improved these times
to O(mn log n) and O(n log2 n), respectively (Lin et al. 2006). The robust 1-center location
problem on tree networks with interval vertex weights and edge lengths was solved in O(n6)
time by Averbakh and Berman (2000). They reduced this time to O(n2 log n) on un-weighted
trees. Burkard and Dollani considered this problem and proposed combinatorial algorithms
for the problem with O(n3 log n) and O(n log n) times on weighted trees and un-weighted
trees, respectively (Burkard and Dollani 2002). Aloulou et al. (2005) presented an algorithm
with O(mn(log n + |S|)|S|) time complexity for the robust 1-center location problem with
uncertain vertex weights on general graphs and an algorithm with O(n(n + log n)|S|) time
complexity with uncertain vertex weights on tree graphs, where the type of uncertainty is the
discrete set of scenarios and S is the set of scenarios.
Bhattacharya et al. proposed algorithms with O(n), O(n log n) and O(n log2 n) times for
the minmax regret 1-center location problem on path, cycle and tree networks with interval
vertex weights, respectively (Bhattacharya et al. 2012). Also, Bhattacharya et al. considered
theminmax regret 1-center location problem on tree, unicycle and cactus graphs with interval
vertexweights and obtained algorithmswith O(n log n), O(n log n) and O(n log2 n) on these
graphs, respectively (Bhattacharya et al. 2015). This problemon cactus networkswith c cycles
solved in Bhattacharya et al. (2014).
In this paper, we consider the robust vertex and absolute 1-center location problems on the tree
networks. We use the minmax and minmax regret criteria for obtaining the robust solution.
The vertex weights and the edge lengths of the tree network are considered as dynamic data
and discrete set of scenarios. These problems have not been investigated up to nowwith these
types of data for the vertex weights and edge lengths. This paper is organized as follows.
Section 2 introduces the basic definitions, preliminaries and reviews some facts that are used
throughout the paper. In Sect. 3, we consider the robust vertex 1-center location problem on
dynamic tree networks with minmax criterion and present a polynomial time algorithm for
this problem. In Sect. 4, we solve this problem with minmax regret criterion in a polynomial
time. In Sects. 5 and 6, we consider the robust absolute 1-center location problem on the
dynamic tree networks and solve this problem under minmax and minmax regret criteria,
respectively. Section 7 considers the robust 1-center location problem on tree networks with
discrete set of scenarios for vertexweights and edge lengths. Finally, we present the concludes
of paper in Sect. 8.
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2 Problem statement

Let T = (V , E) be a tree network with vertex set V = {v1, . . . , vn} and edge set E . Each
vertex v ∈ V is associated with a weightwi and each edge e is associated with a non-negative
length le. Notice that the negative weights are allowed for vertices of tree T . For all x, y ∈ T ,
let d(x, y) be the length of shortest path between x , y. The classical absolute (vertex) 1-center
location problem wants to find x ∈ T (x ∈ V ) such that it minimizes the following objective
function:

f (x) = max
i=1,...,n

wi d(vi , x) (1)

in Kariv and Hakimi (1979) showed that d(vi , x), x ∈ e on general graphs is a linear function
or contains two linear functions. Therefore f (x) is a piecewise linear and continuous function
on each edge e on the graph. They used this property and solved the classical 1-center location
problem on general graphs and tree networks. The following Lemma is a conclusion of their
article.

Lemma 2.1 (Kariv and Hakimi 1979) An optimal solution of the classical absolute 1-center
location problem on the tree network is obtained in O(n log n) time.

Dearing and Francis considered the center location problem on networks and obtained some
properties of this problem (Dearing and Francis 1974). We use one of these results, i.e.,
Lemma 2.1 in this paper.

Lemma 2.2 (Dearing and Francis 1974) The optimal value of the classical absolute 1-center
location problem equals to

max
1≤i, j≤n

wiw j d(vi , v j )

wi + w j
.

Also, if

wi∗w j∗d(vi∗ , v j∗)

wi∗ + w j∗
= max

1≤i, j≤n

wiw j d(vi , v j )

wi + w j
,

then x∗ is an absolute 1-center location, where

d(x∗, vi∗) = w j∗d(vi∗ , v j∗)

wi∗ + w j∗
.

In the real-life problems, the input data are not characterized precisely and many factors have
effect on these parameters. Therefore, the input data of problems may be uncertain. In the
robust optimization problems, this uncertainty is considered as interval data, discrete set of
scenarios, dynamic data and etc.
In the next sections, the vertex and absolute 1-center location problems are investigated such
that these problems contains dynamic data and discrete set of scenarios. First we introduce
the robust 1-center location problem under general uncertainty. Consider tree network T .
Suppose that the weight of vertices and length of edges in T are uncertain. Let S represents
the set of all realizations of the vertex weights and edge lengths. This set is called the set
of scenarios and each s ∈ S is a scenario. The classical 1-center location problem under
scenario s ∈ S is defined as

min
x∈T (min

x∈V ) f (x, s),
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in which

f (x, s) = max
i=1,...,n

ws
i d

s(vi , x).

The robust 1-center location problem on uncertain trees can be consider under two criteria,
i.e. minmax criterion (worst case criterion) and minmax regret criterion (robust deviation
and relative robustness). The first one selects a point on tree T such that it minimizes the
maximum value of the objective function on all scenarios. If we use this criterion for absolute
(vertex) 1-center location problem, then we have the following formulation:

min
x∈T (min

x∈V )max
s∈S f (x, s). (2)

The optimal solution of this problem is called absolute robust solution. If the difference
between f (x, s) and f (x∗, s) is considered by R(x, s) for all x ∈ T and s ∈ S, i.e. R(x, s) =
f (x, s) − f (x∗, s), then the robust deviation criterion for the absolute (vertex) 1-center
location problem is defined as follows:

min
x∈T (min

x∈V )max
s∈S R(x, s). (3)

Furthermore, the relative robustness criterion for the described problem is defined as

min
x∈T (min

x∈V )max
s∈S

R(x, s)

f (x∗, s)
. (4)

In the deviation and relative robustness the regret for a specific location is computed by
calculating either the difference or the ratio between the maximum transportation cost of
the specific location under a scenario and the maximum transportation cost of the optimal
location for this scenario.

3 Dynamic robust vertex 1-center location problemwithminmax
criterion

Suppose that the vertexweights and the edge lengths of treeT are linear functions of parameter
t and t varying in the interval [l, u]. Assume that the weight of vertex vi equals to wi (t) =
ai t +bi , 1 ≤ i ≤ n, and the length of edge e equals to le(t) = aet +be, e ∈ E with le(t) > 0
for any value of t on interval [l, u]. Notice that the vertex weights are allowed to become
negative. The dynamic robust vertex 1-center location problem under the minmax criterion
is formulated as follows:

min
x∈V max

t∈[l,u] f (x, t), (5)

where

f (x, t) = max
i=1,...,n

wi (t)d
t (x, vi ).

According to the definition of vertex weights and edges lengths, we can rewrite f (x, t) at
given vertex x as follows:

f (x, t) = max
i=1,...,n

wi (t)d
t (x, vi )

= max
i=1,...,n

(ai t + bi )

⎛
⎝

⎛
⎝ ∑

e∈E(Pi )

ae

⎞
⎠ t +

∑
e∈E(Pi )

be

⎞
⎠
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Fig. 1 The upper envelope of
functions f1, f2, f3

= max
i=1,...,n

(
Ai t

2 + Bi t + Ci
)
,

where Pi is the unique path between x and vi , Ai = ai (
∑

e∈E(Pi ) ae), Bi =
(ai (

∑
e∈E(Pi ) be) + bi (

∑
e∈E(Pi ) ae)) and Ci = bi (

∑
e∈E(Pi ) be). If we define fi (t) =

Ai t2 + Bi t + Ci , i = 1, . . . . . . , n, then

f (x, t) = max
i=1,...,n

fi (t).

The functions fi (t), i = 1, . . . , n have the following properties:

1. fi (t) is a continuous function on interval [l, u].
2. fi (t) is a totally defined on interval [l, u].
3. fi (t) is a univariate function. Also, for each 1 ≤ i �= j ≤ n, fi (t) and f j (t) intersect in

at most two points.

Consequently, for all x ∈ V , f (x, t) is the upper envelope of n continuous, totally defined
and univariate functions which each pair of them intersect at most two points. Therefore,
f (x, t) is a continuous piecewise function such that each piece of it is either a quadratic
function or linear function (see Fig. 1). If we want to obtain an optimal solution for (5) first,
we must compute f (x, t) on interval [l, u], for every vertex x ∈ V . For this purpose, we can
use the following Lemma, which it has been proven in Agarwal et al. (1996), because fi (t),
1 ≤ i ≤ n satisfy in the conditions of Lemma 3.1.

Lemma 3.1 (Agarwal et al. 1996) Let F = { f1, f2, . . . , fn} be a collection of n continuous,
totally defined and univariate functions that each pair of them intersect in at most s points.
Then, the total pieces of upper envelope of these n functions are equal to λs(n).

The value of λs(n) can be calculated using the following theorem, which is described in
Agarwal et al. (1996).

Theorem 3.2 (Agarwal et al. 1996) Let n be the number of univariate and continuous
functions. Then we have
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i. λ1(n) = n,
ii. λ2(n) = 2n − 1,
iii. λ3(n) = O(nα(n))

in which α(n) is the inverse of Ackerman’s function.

For more information about Ackerman’s function, see Ackermann (1928). According to
Lemma 3.1 and Theorem 3.2, for each vertex v ∈ V , the number of pieces for the piecewise
function f (x, t) on the interval [l, u] is O(λ2(n)) = O(n). Suppose that this number is
denoted by m. In Agarwal et al. (1996), a method is presented that explains how to calculate
these pieces and their corresponding intervals with required time complexity. The important
results of this method are mentioned in the following two theorems.

Theorem 3.3 (Agarwal et al. 1996) The upper envelope of an arbitrary collection contains
n continuous, totally defined and univariate functions that each pair of them intersect in at
most s points, can be constructed in O(λs(n) log n) time.

We use from Theorem 3.3 and the proposed method presented in its proof to compute
the pieces of function f (x, t) as follows. For a given vertex x ∈ V , let {i1, . . . , im} be a
permutation of the index of { f1(t), . . . , fn(t)} such that

f (x, t) = fi1(t), ∀t ∈ I1 = [t0, t1],
f (x, t) = fi2(t), ∀t ∈ I2 = [t1, t2],

...

f (x, t) = fim , ∀t ∈ Im = [tm−1, tm],
where [l, u] = ⋃m

j=1 I j . The used process is described in Example 3.6. After calculating
the upper envelope and breakpoints, we must find the points that maximize the each piece of
upper envelope.

If the first derivative of the function fi j is denoted by f
′
i j
, then one of the points that this

function obtains its maximum, is t∗j such that, f
′
i j

(t∗j ) = 0. Point t∗j is called a critical point

of f
′
i j

(t). For example, if f (t) = at2 + bt + c, then

f
′
(t) = 0 ⇒ 2at + b = 0 ⇒ t∗ = −b/2a.

However, we know that the maximum of fi j (t) on interval I j is achieved at t = t j−1 or
t = t j . If t j−1 ≤ t∗j ≤ t j , then we get the following theorem.

Theorem 3.4 For a given vertex x on tree T , the value of objective function of the robust
vertex 1−center location problem with minmax criterion is obtained as

max
l≤t≤u

f (x, t) = max{ fi1(x, t0), fi1(x, t
∗
1 ), fi1(x, t1), . . . ,

fim (x, tm−1), fim (x, t∗m), fim (x, tm)}.
Thus, maxl≤t≤u f (x, t) is equivalent to choosing the largest member of a set with O(n)

members. This selection is performed in linear time. Consequently, for a vertex x on tree
T , maxl≤t≤u f (x, t) is calculated in O(n log n) time. If these operations are repeated for all
vertices of tree T , then we get the following Lemma.
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v1

v3

v2

v4

v5

v6

e1

e2

e3

e4

e5

Fig. 2 The tree network of Example 3.6

Table 1 The data of dynamic tree i wi (t) lei (t)

1 3t + 1 3t + 3

2 4 2

3 t − 1 t + 1

4 2t + 1 1

5 3 2t + 2

6 1 −

Lemma 3.5 An optimal solution for the dynamic robust vertex 1-center location problem
under minmax criterion on tree networks with linear vertex weights and linear positive edge
lengths can be computed in O(n2 log n) time.

Example 3.6 Consider the given tree network in Fig. 2with dynamic edge lengths and dynamic
vertex weights.

Assume that the vertex weights and edge lengths are given in Table 1. Using Theorem
3.3, we can obtain maps of f (x, t) on interval [−1, 3] for each x ∈ {v1, v2, ..., v6}. These
computed maps are given in Table 2. For example, we explain how to calculate f (x, t) for
x = v1 on interval [−1, 3]. First we compute fi (v1, t) for i = 1, ..., 6. We set

F = {0, 12t + 20, 3t2 − 3, 8t2 + 12t + 4, 12t + 15, 6t + 6}.
Then we partition set F into two sets F1 and F2 such that |Fi | ≤ 3, i = 1, 2. We calculate
the breakpoints of all functions in set Fi , i = 1, 2 and we put all these points in set V =
{−1, 0.25, 1,

√
352
16 , 3} so that vi ≤ vi + 1 for i = 1, ..., t − 1. There are functions f (1)

i ∈ F1

and f (2)
i ∈ F2 that have the highest value on the interval [vi , vi + 1], for i = 1, ..., t − 1. In

this example, f (1)
i = 12t + 20 and f (2)

i = 12t + 15 for i = 1, ..., t − 1. Next, we find the

roots of f (1)
i − f (2)

i on interval [vi , vi + 1]. We add these roots to set V and call the new set

V
′ = {v′

1, ..., v
′
t ′ }. Here, V

′ = V . It is clear that for i = 1, ..., t
′
, there is a unique function

fi ∈ F such that f (v1, t) = fi on interval
[
v

′
i , v

′
i+1

]
for i = 1, ..., t

′
. Here, fi = 12t + 20,

for i = 1, ..., t − 1. Therefore, f (v1, t) = 12t + 20 on interval [−1, 3].
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Table 2 The values of f (x, t) x f (x, t)

v1 12t + 20, t ∈ [−1, 3]
v2 3t + 12, t ∈

[
−1, −15+√

477
18

]

9t2 + 18t + 5, t ∈
[−15+√

477
18 , 3

]

v3 8 t ∈
[
−1, 1

3

]

9t2 + 12t + 4 t ∈
[
1
3 , 3

]

v4 4t + 12 t ∈
[
−1, −3+√

33
6

]

12t2 + 16t + 4 t ∈
[−3+√

33
6 , 3

]

v5 4t + 16 t ∈
[
−1, −19+√

753
24

]

12t2 + 19t + 5 t ∈
[−19+√

753
24 , 3

]

v6 12t + 20 t ∈
[
−1, −12+√

1152
32

]

18t2 + 24t + 6 t ∈
[−12+√

1152
32 , 3

]

As a result, a robust solution of the robust vertex 1-center location problem with minmax
criterion is obtained as

min
x∈{v1,...,v6}

max
t∈[−1,3]

f (x, t) = min{ f (v1,−1), f (v1, 3), f (v2,−1), f

(
v2,

−15 + √
477

18

)
,

f (v2, 3), f (v3,−1), f (v3,
1

3
), f (v3, 3), f (v4,−1), f

(
v4,

−3 + √
33

6

)
, f (v4, 3),

f (v5,−1), f

(
v5,

−19 + √
753

24

)
, f (v5, 3), f (v6,−1),

f

(
v6,

−12 + √
1152

32

)
, f (v6, 3)} = f (v5, 3).

Then v5 is a location of robust vertex 1-center location on described tree.

4 Dynamic robust vertex 1-center location problemwithminmax
regret criterion

In this section, we use the minmax regret criterion to obtain a robust solution of the vertex
1-center location problem on tree networks with dynamic edge lengths and dynamic vertex
weights. Suppose that the vertexweights and the edge lengths of tree T are the linear functions
of parameter t . Using these assumptions, the minmax regret vertex 1-center location problem
is written as follows:

min
x∈V max

t∈[l,u]( f (x, t) − f (x∗, t)), (6)
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where

f (x∗, t) = min
y∈V f (y, t).

Therefore, we can rewrite the minmax regret vertex 1-center location problem as

min
x∈V max

y∈V max
t∈[l,u]( f (x, t) − f (y, t)). (7)

Now we wants to find a vertex such x̄ on tree T so that it minimizes this function:

max
y∈V (T )

max
t∈[l,u]( f (x̄, t) − f (y, t)).

Averbakh (2003) proved that the robust 1-center location problem with minmax regret crite-
rion on general networks is NP-hard, if the edge lengths be as interval. Moreover, he proved
that this problem can be solved on tree networks in a polynomial time (Averbakh and Berman
2000).

Lemma 4.1 The minmax regret 1-center location problem on general networks with dynamic
edge lengths is NP-hard.

Proof The length of edges are linear functions. Therefore, the length of edge e ∈ E is belong
to interval [le(l), le(u)]. 
�

Assume that for x ∈ e = (u, v) the ratio

dt (x, v)

le(t)

remains constant for every t ∈ [l, u]. For every vertex x and y on tree T , we know that
f (x, t) = max1≤i≤n fi (x, t) and f (y, t) = max1≤i≤n fi (y, t), where fi (x, t) = Axi t2 +
Bxi t+Cxi and fi (y, t) = Ayi t2+Byi t+Cyi . Notice that Axi , Ayi , Bxi , Byi andCxi ,Cyi are
defined similar to Ai , Bi and Ci introduced in Sect. 3. Now to calculate the robust solution,
f (x, t) − f (y, t) must be computed for each pair of vertices x and y. This is done as the
following two steps.
Step 1. For every x ∈ V , compute the upper envelope of the functions

fi (x, t) = Axi t
2 + Bxi t + Cxi , 1 ≤ i ≤ n

using the presented method in Theorem 3.2. Notice that for each x ∈ V and i ∈ {1, ..., n},
fi (x, t) is an univariate, continuous and totally defined function on all points of interval
[l, u], also, fi (x, t) is a quadratic or linear function. Then for each pair i, j ∈ {1, ..., n},
i �= j , the graph of fi (x, t) and f j (x, t) cut each other off at most in two points. The time
complexity of computing the upper envelope for a given vertex is O(n log n). Consequently,
for all vertices, this time increases to O(n2 log n).
Step 2.This step computes f (x, t)− f (y, t) for all x, y ∈ V . Suppose that {x1, x2, ..., xmx }
and

{
y1, y2, ..., ymy

}
are permutations of {1, 2, ..., n} such that

f (x, t) = fx1(x, t), ∀t ∈ [l, tx1],
f (x, t) = fx2(x, t), ∀t ∈ [tx1, tx2],

.

.

.
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f (x, t) = fxmx+1(x, t), ∀t ∈ [txmx , u].
and

f (y, t) = fy1(y, t), ∀t ∈ [l, ty1],
f (y, t) = fy2(y, t), ∀t ∈ [ty1, ty2],

.

.

.

f (y, t) = fym(y, t), ∀t ∈ [tymy , u].
Notice that m = λ2(n). Now we want to characterize f (x, t) − f (y, t) on interval [l, u].
Let t̄i = min

{
txi , tyi

}
, mx be the number of breakpoints of f (x, t) and my be the number

of breakpoints of f (y, t). Also, assume that k = min{mx ,my}.
Lemma 4.2 If t ∈ [

t̄0, t̄1
]
, then f (x, t) − f (y, t) = fx1(x, t) − fy1(y, t).

Proof For every t ∈ [
t̄0, tx1

]
, f (x, t) = fx1(x, t) and for every t ∈ [

t̄0, ty1
]
, f (y, t) =

fy1(y, t). By considering t̄1 is less than ty1, the desired goal can be concluded. 
�
Lemma 4.3 For i = 1, ..., k − 1, we have

1. If t̄i = txi and tyi ≤ t̄i+1, then for every t ∈ [t̄i , tyi ],
f (x, t) − f (y, t) = fxi+1(x, t) − fyi (y, t)

and for every t ∈ [tyi , t̄i+1],
f (x, t) − f (y, t) = fxi+1(x, t) − fyi+1(y, t).

2. If t̄i = txi and tyi > t̄i+1, then for every t ∈ [t̄i , t̄i+1],
f (x, t) − f (y, t) = fxi+1(x, t) − fyi (y, t)

3. If t̄i = tyi and txi ≤ t̄i+1, then for every t ∈ [t̄i , txi ],
f (x, t) − f (y, t) = fxi (x, t) − fyi+1(y, t)

and for every t ∈ [txi , t̄i+1],
f (x, t) − f (y, t) = fxi+1(x, t) − fyi+1(y, t).

4. If t̄i = tyi and txi > t̄i+1, then for every t ∈ [t̄i , t̄i+1],
f (x, t) − f (y, t) = fxi (x, t) − fyi+1(y, t).

Proof Case 1 can be proved as follows. For every t ∈ [
txi , txi+1

]
, f (x, t) = fxi+1(x, t) and

for every t ∈ [
tyi , tyi+1

]
, f (y, t) = fyi+1(y, t). If t̄i = txi and tyi ≤ t̄i+1, then on interval[

t̄i , tyi
]
, f (x, t) = fxi+1(x, t) and f (y, t) = fyi (y, t). Therefore,

f (x, t) − f (y, t) = fxi+1(x, t) − fyi (y, t).

Also, for every t ∈ [
tyi , t̄i+1

]
, f (x, t) = fxi+1(x, t) and f (y, t) = fyi+1(y, t). Then

f (x, t) − f (y, t) = fxi+1(x, t) − fyi+1(y, t).

The other cases can be proved in an analogous way as Case 1. 
�
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Now based on Lemma 4.2 and Lemma 4.3 we get the following algorithm.
Algorithm 1: Find f (x, t) − f (y, t) for each given pairs of vertices x, y.

1. For every t ∈ [
t̄0, t̄1

]
, set

f (x, t) − f (y, t) = fx1(x, t) − fy1(y, t).

2. Set i = 1.
3. Repeat the following steps for 1 ≤ i ≤ k :
4. If t̄i = txi and tyi ≤ t̄i+1, then for every t ∈ [t̄i , tyi ] set

f (x, t) − f (y, t) = fxi+1(x, t) − fyi (y, t),

and for every t ∈ [tyi , t̄i+1] set
f (x, t) − f (y, t) = fxi+1(x, t) − fyi+1(y, t).

5. If t̄i = txi and tyi > t̄i+1, then for every t ∈ [t̄i , t̄i+1] set
f (x, t) − f (y, t) = fxi+1(x, t) − fyi (y, t),

6. If t̄i = tyi and txi ≤ t̄i+1, then for every t ∈ [t̄i , txi ] set
f (x, t) − f (y, t) = fxi (x, t) − fyi+1(y, t),

and for every t ∈ [txi , t̄i+1] set
f (x, t) − f (y, t) = fxi+1(x, t) − fyi+1(y, t).

7. If t̄i = tyi and txi > t̄i+1, then for every t ∈ [t̄i , t̄i+1] set
f (x, t) − f (y, t) = fxi (x, t) − fyi+1(y, t),

8. Set i = i + 1 and go to 3.

These steps are repeated until the function f (x, t) − f (y, t) are specified over the entire
interval [l, u]. In an iteration of Algorithm 1, the total time complexity is a constant value.
Thus, we can conclude the following lemma.

Lemma 4.4 For the given vertices x and y on tree T , the function f (x, t)− f (y, t) on interval
[l, u] is computed in a linear time. Moreover, the maximum value of this function occurs at
one of the breakpoints.

Proof The functions f (x, t) and f (y, t) are piecewise linear or quadratic functions, where
are computed in Step 1. Therefore f (x, t) − f (y, t) is also a piecewise linear or quadratic
function.According toTheorem3.3maximumandminimumpoint of this function is obtained
in its breakpoints. Therefore,

max
t∈[l,u]( f (x, t) − f (y, t))

= max
1≤i≤m

{
fxi−1(x, txi−1) − fyi (y, txi−1), fxi (x, txi−1)

− fyi−1(y, txi−1), fxi (x, txi−1) − fyi (y, txi−1), fxi−1(x, txi−1)

− fyi−1(y, txi−1), fxi−1(x, txi ) − fyi (y, txi ), fxi (x, txi ) − fyi−1(y, txi ), fxi (x, txi )

− fyi (y, txi ), fxi−1(x, txi ) − fyi−1(y, txi ), fxi−1(x, tyi−1)

− fyi (y, tyi−1), fxi (x, tyi−1) − fyi−1(y, tyi−1), fxi (x, tyi−1)
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− fyi (y, tyi−1), fxi−1(x, tyi−1) − fyi−1(y, tyi−1), fxi−1(x, tyi )

− fyi (y, tyi ), fxi (x, tyi ) − fyi−1(y, tyi ), fxi (x, tyi ) − fyi (y, tyi ), fxi−1(x, tyi )

− fyi−1(y, tyi ), fxi−1

(
x,

−Bxi−1 − Byi

2Axi−1 + 2Ayi

)

− fyi

(
y,

−Bxi−1 − Byi

2Axi−1 + 2Ayi

)
, fxi

(
x,

−Bxi − Byi−1

2Axi + 2Ayi−1

)

− fyi−1

(
y,

−Bxi − Byi−1

2Axi + 2Ayi−1

)
, fxi

(
x,

−Bxi − Byi

2Axi + 2Ayi

)

− fyi

(
y,

−Bxi − Byi

2Axi + 2Ayi

)
, fxi−1

(
x,

−Bxi−1 − Byi−1

2Axi−1 + 2Ayi−1

)

− fyi−1

(
y,

−Bxi−1 − Byi−1

2Axi−1 + 2Ayi−1

)}
.


�
Thus, we get the following Lemma.

Theorem 4.5 An optimal solution of the dynamic robust vertex 1-center location problem
under minmax regret criterion is obtained in O(n3) time.

Proof Step 1 is performed in O(n2 log n) time. Step 2 is done in a linear time for every
vertices x and y on tree T . Then the total time complexity of Step 2 and consequently, the
total time complexity of Algorithm 1 is o(n3). 
�
Example 4.6 Consider the given dynamic tree network of Example 3.6. We want to find a
vertex that minimizes the robust 1-center location problem with minmax regret criterion.
We first compute f (x, t) − f (y, t) for every pair of vertices x and y. The computed values
of f (x, t) − f (y, t) is written in Table 3. The procedure of finding f (x, t) − f (y, t) with
x = v1 and y = v2 is as follows. Let x = v1 and y = v2. Therefore, mx = 2 and my = 3.

Also, l = mx = 2, t̄0 = −1 and t̄1 = −15+√
477

18 . For every t ∈ [
t̄0, t̄1

]
, f (x, t) − f (y, t) =

12t + 20− (3t + 12) = 9t + 8. For every t ∈
[
t̄1,max{2, −15+√

477
18 }

]
, f (x, t) − f (y, t) =

12t + 20− (9t2 + 18t + 5) = 15− 9t2 − 6t since max
{
2, −15+√

477
18

}
= 2 = tx1. For other

pair of vertices, the maps are determined in an analogous way. Now we use Lemma 4.4 and
obtain an optimal solution for the robust vertex 1-center location problem. Thus, we have

min
x∈{v1,...,v6}

max
x∈{v1,...,v6}

( f (x, t) − f (y, t)) = min{16, 84, 64, 104, 50, 184} = 16

Therefore, v1 is a robust solution of the robust 1-center location problem with minmax regret
criterion. The optimal value of objective function is equal to 16.

Corollary 4.7 If Axi = 0 for all i = 1, . . . , n and x ∈ V , then the time complexity of the
dynamic robust vertex 1-center location problem under minmax regret criterion is reduced
to O(n2α(n) log n).

5 Dynamic robust absolute 1-center location problem under minmax
criterion

If we use the worst case criterion for the absolute 1-center location problem, then we must
find a point on T such that this point minimizes the maximum value of the objective function
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Table 3 The values of
f (x, t) − f (y, t)

x, y f (x, t) − f (y, t)

v1, v2 9t + 8, t ∈
[
−1, −15+√

477
18

]

15 − 9t2 − 6t , t ∈
[−15+√

477
18 , 3

]

v1, v3 12t + 12 , t ∈
[
1, 1

3

]

17 − 9t2, t ∈
[
1
3 , 3

]

v1, v4 8t + 8, t ∈
[
−1, −3+√

33
6

]

16 − 12t2 − 4t , t ∈
[−3+√

33
6 , 3

]

v1, v5 8t + 4, t ∈
[
−1, −19+√

753
24

]

15 − 7t − 18t2, t ∈
[−19+√

753
24 , 3

]

v1, v6 0 , t ∈
[
−1, −12+√

1152
32

]

14 − 18t2 − 12t , t ∈
[−12+√

1152
32 , 3

]

v2, v3 3t + 4, t ∈
[
−1, 1

3

]

9 − 9t − 9t2, t ∈
[
1
3 , −15+√

477
18

]

6t + 2, t ∈
[−15+√

477
18 , 3

]

v2, v4 −t , t ∈
[
−1, −15+√

477
18

]

9t2 + 14t − 7, t ∈
[−15+√

477
18 , −3+√

33
6

]

−3t2 + 2t + 1, t ∈
[−3+√

33
6 , 3

]

v2, v5 −t − 4, t ∈
[
−1, −19+√

753
24

]

7 − 16t − 12t2, t ∈
[−19+√

753
24 , −15+√

477
18

]

−3t2 − t , t ∈
[−15+√

477
18 , 3

]

v2, v6 −9t − 8, t ∈
[
−1, −12+√

1152
32

]

6 − 12t − 18t2, t ∈
[−12+√

1152
32 , −15+√

477
18

]

−9t2 − 6t − 1, t ∈
[−15+√

477
18 , 3

]

v3, v4 −4t − 4, t ∈
[
−1, 1

3

]

9t2 + 8t − 9, t ∈
[
1
3 , −3+√

33
6

]

−3t2 − 4t − 1, t ∈
[−3+√

33
6 , 3

]

v3, v5 −4t − 8, t ∈
[
−1, 1

3

]

9t2 + 8t − 13, t ∈
[
1
3 , −12+√

753
24

]

−3t2 − 7t − 2, t ∈
[−12+√

753
24 , 3

]
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Table 3 continued x, y f (x, t) − f (y, t)

v3, v6 −12t − 12, t ∈
[
−1, −12+√

1152
32

]

2 − 24t − 18t2, t ∈
[−12+√

1152
32 , 1

3

]

−9t2 − 12t − 3, t ∈
[
1
3 , 3

]

v4, v5 -4 , t ∈
[
−1, −19+√

753
24

]

7 − 15t − 12t2, t ∈
[−19+√

753
24 , −3+√

33
6

]

−3t − 1, t ∈
[−3+√

33
6 , 3

]

v4, v6 −8t − 8, t ∈
[
−1, −12+√

1152
32

]

6 − 20t − 18t2, t ∈
[−12+√

1152
32 , −3+√

33
6

]

−6t2 − 8t − 2, t ∈
[−3+√

33
6 , 3

]

v5, v6 −8t − 4, t ∈
[
−1, −12+√

1152
32

]

10 − 20t − 18t2, t ∈
[−12+√

1152
32 , −19+√

753
24

]

−6t2 − 5t − 1, t ∈
[−19+√

753
24 , 3

]

on interval [l, u]. To do this, first we can find a point on each edge of the tree T that minimizes
the worst case criterion. These points are called the local minimums and their number are
equal to number of edges of T (i.e., n − 1). Then among these points we select a point as an
optimal solution for the robust absolute 1-center location problem under minmax criterion.
This solution is called the global minimum. This criterion on edge e ∈ E is considered as
follows:

min
x∈e max

t∈[l,u] f (x, t), (8)

where

f (x, t) = max
i=1,...,n

(Ai t
2 + Bi t + Ci ).

It is clear that there is an one-to-one correspondence between the length of edge e = (u, v) ∈
E and the interval [0, 1], where 0 is corresponding to dt (u, u) and 1 is corresponding to
dt (u, v), for all t ∈ [l, u]. Therefore, if we assume that x ∈ [0, 1], then Ai , Bi and Ci for
i = 1, . . . , n are as linear functions of x .
Then f (x, t) is an upper envelope of n continuous, totally defined and bivariate functions.
Consequently, f (x, t) is a piecewise bivariate function where each piece of this function is
a plane or a parabola. Let the number of pieces of this function be m and define

fi (x, t) = Ai t
2 + Bi t + Ci , ∀i = 1, . . . , n.

We want to compute f (x, t) on intervals [l, u] and [0, 1] in which t ∈ [l, u] and x ∈ [0, 1].
To calculate this function, we first examine its properties.

Lemma 5.1 1. At one point of the domain, the function with maximum value is equal to
upper envelope in this point.
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2. If (xk, tk) is the starting point of domain for function fk(x, t), then the domain of this
function is

[
xk, xk+1

] × [
tk, tk+1

]
, where (xk+1, tk+1) is the smallest intersection point

of this function with other functions.

Proof 1. It is obvious.
2. Let (xk+1, tk+1) and (xk+2, tk+2) be the intersection points of function fk(x, t) with

functions fi (x, t) and f j (x, t). Also, xk+1 < xk+2 and tk+1 < tk+2.

fk(x, t) > fi (x, t), fk(x, t) > f j (x, t) ∀(x, t) ∈ [
xk, xk+1

] × [
tk, tk+1

]

and

fk(xk+1, tk+1) = fi (xk+1, tk+1).

Given that fk(x, t) is decreasing and fi (x, t) is increasing in this interval, thus

fk(x, t) < fi (x, t), ∀x > xk+1andt > tk+1.


�
For obtaining function f (x, t), we perform the following algorithm:

Algorithm 2: Find f (x, t) on intervals [l, u] and [0, 1]
1. Set k = 0, k′ = k + 1, t0 = l and x0 = 0.
2. Calculate the value of functions fi (x, t) = Ai t2 + Bi t +Ci for i = 1, . . . , n at point tk ,

xk .
3. Select the function with maximum value in specified point and denote the selected

function by fik (x, t).
4. Let

(
x j , t j

)
be the intersection of fik (x, t) with f j (x, t) for 2 ≤ j ≤ n such that

xk+1 ≤ x j and tk+1 ≤ t j for 1 ≤ j ≤ n. Show the domain of fik (x, t)with Pk = Ik × Jk ,
where Ik = [

tk, tk+1
]
and Jk = [

xk, xk+1
]
.

5. If (xk+1, tk+1), xk+1 < 1 and tk+1 < u, is the intersection of fik (x, t) with the one of
functions f j (x, t), then call it fik+1(x, t). Set k = k + 1 and go to step 2.

6. Otherwise, call the first one fik+1(x, t) and the second function fik′+1
(x, t). Set k = k+1

and repeat the steps 2-6 for fik+1(x, t) and fik′+1
(x, t) separately. In this case, Jk′+1 = Jk ,

Ik′+1 = [
tk, tk+1

]
and Jk+1 = [

xk, xk+1
]
, Ik+1 = Ik , respectively.

This procedure performs atmostn iteration and any time containsO(n)operations. Therefore,
the total time for performing the characterized procedure is O(n2).

Lemma 5.2 An optimal solution of the absolute robust absolute 1-center location problem
on T is obtained in O(n3) time.

Proof For each edge of tree T run Algorithm 2. Thus the time complexity of problem is equal
to O(n3). 
�

6 Dynamic robust absolute 1-center location problemwithminmax
regret criterion

Consider now the robust deviation absolute 1-center location problem in which the length of
edges and the weight of vertices are linear functions of parameter t . This problem is written
as follows:

min
x∈T max

t∈[l,u]( f (x, t) − f (x∗, t)). (9)
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According to Lemma 2.2, we have

f (x∗, t) = max
i, j=1,...,n

wi (t)w j (t)dt (vi , v j )

wi (t) + w j (t)
.

Similar to Sect. 5, we consider this problem on each edge e ∈ E and solve this problem on
described edge. Let

f (x∗, t) = max
i, j=1,...,n

αi j t3 + βi j t2 + γi j t + δi j

(ai + a j )t + (bi + b j )
,

where

αi j = aia j

⎛
⎝ ∑

e∈Pi j

ae

⎞
⎠ ,

βi j =
⎛
⎝aia j

⎛
⎝ ∑

e∈Pi j

be

⎞
⎠ + aib j

⎛
⎝ ∑

e∈Pi j

ae

⎞
⎠ + bia j

⎛
⎝ ∑

e∈Pi j

ae

⎞
⎠

⎞
⎠ ,

γi j =
⎛
⎝aib j

⎛
⎝ ∑

e∈Pi j

be

⎞
⎠ + bia j

⎛
⎝ ∑

e∈Pi j

be

⎞
⎠ + bib j

⎛
⎝ ∑

e∈Pi j

ae

⎞
⎠

⎞
⎠

and

δi j = bib j

⎛
⎝ ∑

e∈Pi j

be

⎞
⎠ .

Notice that Pi j represents the unique path between the vertices vi and v j on tree T .
Therefore, f (x∗, t) is the maximum of O(n2) univariate fractional functions. for solving
problem (9), first we must compute the upper envelope of O(n2) univariate fractional func-
tions on interval [l, u]. To compute the upper envelope we distinguish the following two
cases:
Case 1. Let the denominator of functions

fi j (t) = αi j t3 + βi j t2 + γi j t + δi j

(ai + a j )t + bi + b j

be a scaler, for all 1 ≤ i, j ≤ n, i.e,

ai + a j = 0.

In this case, f (x∗, t) is the upper envelope of O(n2) continuous, totally defined, univariate
functions such that the maximum degree of each of them is three. Furthermore, each disjoint
pair fi j (t) and fkh(t) intersect in at most three points on interval [l, u], 1 ≤ i, j, k, h ≤ n.
(We know that each polynomial with degree n has at most n real roots). Therefore, we can
use Theorem 3.3 and calculate f (x∗, t) on interval [l, u]. Thus, we conclude the following
Lemma.

Lemma 6.1 The upper envelope of
{
fi j : 1 ≤ i, j ≤ n

}
is obtained in O(n2α(n2) log n) time.

It has at most m = O(n2α(n2)) subinterval.

Proof In Lemma 3.1 and Theorem 3.3, if we set s = 3 and n2 instead n, we can conclude
this Lemma. 
�
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Now we have to solve the dynamic robust absolute 1-center location problem on each
obtained subinterval.
It can be solved separately on every edge of tree in O(n2) time using Algorithm 2. Therefore,
the number of local minimums on tree T and interval [l, u] is at most O(n3α(n2)). Conse-
quently, we can select an optimal solution for the dynamic robust absolute 1-center location
problem on interval [l, u] between the obtained optimal solutions.

Lemma 6.2 Time complexity of computing an optimal solution for the dynamic robust abso-
lute 1-center location problem under minmax regret criterion in the case of ai + a j = 0 is
O(n5α(n2)).

Case 2.Let ai +a j �= 0, for all i, j . In this case we useAlgorithm 2 two times. In the first time
we use this algorithm for computing maxi, j=1,...,n fi j (t) on interval [l, u]. In the following
we present a brief description of how to calculate maxi, j=1,...,n fi j (t) using Algorithm 2 on
interval [l, u]. It should be noted that Algorithm 2 is used for bivariate functions, but we want
to use it for univariate functions.

1. Set t0 = l and compute the value of functions fi j (t) at point t0.
2. Select the function that has maximum value at this point. Denote this function with

fi j1(t).
3. Compute the intersection of fi j1(t) with the remaining functions.
4. Choose the minimum intersection point and consider this point with t1. Denote the

function corresponding to this point by fi j2 .
5. Repeat steps 1 to 4 until tk ≥ u.

If this approach is repeated, then f (x∗, t) is computed. In this case, at most O(n2) pieces
and their corresponding intervals are obtained in O(n4) time.
Again, the dynamic robust absolute 1-center location problem on each edge e ∈ E and each
interval is computed, separately using the Algorithm 2. On each interval and each edge the
dynamic robust absolute 1-center location problem under minmax regret criterion can be
calculated in O(n2) time. Then we can conclude the following Lemma.

Lemma 6.3 Dynamic robust absolute 1-center location problem under minmax regret
criterion on T in case ai + a j �= 0 can be solved in O(n5) time.

If we compare case 1 and case 2 together, we see that the used method used in the second
case has less time complexity. Therefore, the second case method is more efficient.

Remark 6.4 By the same process, we can obtain an optimal solution for relative robust
absolute(vertex) 1-center location problem on tree T .

7 Robust deviation 1-center location problem on trees

In this section, we assume that T is a weighted tree and the edge lengths and vertex weights
of T correspond to a finite set of positive real and real numbers, respectively. Denote the set
of all possible events for the edge lengths and vertex weights of tree T with a finite number
of scenarios, which is denoted by S. We now consider the robust deviation 1-center location
problem. For obtaining the optimal solution of this problem, first we have to compute the
1-centers on the tree T for all scenarios. Using Lemma 2.1, we get the following Lemma:

Lemma 7.1 Under all scenarios in S, the time complexity of computing f (x∗, s) is equal to
O(n log n|S|).
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For solving the minmax regret 1-center location problem with the candidate locations E ,
it is sufficient to solve this problem on each edge of tree T , separately. Therefore, we first
compute the optimal solution of this problem for every edge e ∈ E .

min
x∈e (min

x∈V )max
s∈S R(x, s). (10)

We can obtain the optimal solution of this problem at O(|S|) time using the Kouvelis’s
algorithm (Kouvelis et al. 1993). Then we have

Lemma 7.2 The robust deviation 1-center location problem on tree networks can be solved
in O(|S|n log n) time.

Suppose now that the weights of all vertices of tree T are equal to one. Also, for each s ∈ S,
let p[as, bs] be a longest path on T under scenario s which is computed in linear time by
Handler’s algorithm (Handler 1973). On the other hand, we know that the middle point of
this path indicates the absolute 1-center under scenario s ∈ S. Then, for all x ∈ T we have

R(x, s) = max
i=1,...,n

ds(vi , x) − ds(as, bs)

2
.

Furthermore, we know that the furthest vertex from each point x on T is the endpoint of
longest path on T . Therefore, maxi=1,...,n ds(vi , x) = max {ds(as, x), ds(bs, x)}. It follows
that

R(x, s) = max

{
ds(as, x) − ds(as, bs)

2
, ds(bs, x) − ds(as, bs)

2

}
.

Now we solve the minmax regret 1-center location problem on each edge e = (u, v) ∈ E . If
we define a mapping on edge e = (u, v) such that in this map the points u and v correspond
to 0 and 1, respectively, and the distance between u and each point x on edge e except u and
v is equal to xds(u, v), where x = ds (u,x)

ds (u,v)
, then we conclude that

ds(as, x) − ds(as, bs)

2
= 2ds(as, u) − ds(as, bs)

2
+ xds(u, v).

It is clear that ds(as, x) − ds (as ,bs )
2 and ds(bs, x) − ds (as ,bs )

2 are the linear functions which
are defined on interval [0, 1]. Therefore, an optimal solution for the robust deviation 1-center
location problem on edge e can be computed in O(|S|) time using the presented algorithm
in Kouvelis et al. (1993).

Lemma 7.3 An optimal solution for the robust deviation 1-center location problem on the
un-weighted tree T is obtained in O(n|S|) time.

8 Conclusion

In this paper, we considered the robust vertex (absolute) 1-center location problem on tree
networks in which vertex weights and edge lengths have been considered as dynamic data or
as a discrete set of scenarios. We considered the problems with minmax and minmax regret
criteria and developed combinatorial algorithmswhich solve the problems under investigation
in polynomial times.
We showed that in all problems, the optimal solution was located in one of the breakpoints.
The dynamic robust vertex 1-center problem under minmax and minmax regret criteria were
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solved in times O(n2 log n) and O(n3). Also, an optimal solution for the dynamic robust
absolute 1-center problem under minmax and minmax regret criteria were computed in times
O(n3) and O(n5). In the two first problems, the objective functions are univariable, but in the
next two problems, the objective functions are bivariables. Finally, we considered the robust
deviation 1-center problem and obtained an algorithm for this problem in O(|S|n log n) time
complexity. In this problem, the vertex weights and edge lengths were considered as discrete
set of scenarios.
For further research, we can consider the robust inverse (reverse) location problems. We can
investigate the robust inverse 1-center problem. Furthermore, we can also study the minmax
reverse 1-center problem.
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