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Abstract
In this paper, we investigate the asymptotical stability and synchronization of fractional
neural networks. Multiple time-varying delays and distributed delays are taken into consid-
eration simultaneously. First, by applying the Banach’s fixed point theorem, the existence
and uniqueness of fractional delayed neural networks are proposed. Then, to guarantee the
asymptotical stability of the demonstrated system, two sufficient conditions are derived by
integral-order Lyapunov direct method. Furthermore, two synchronization criteria are pre-
sented based on the adaptive controller. The above results significantly generalize the existed
conclusions in the previous works. At last, numerical simulations are taken to check the
validity and feasibility of the achieved methods.

Keywords Fractional neural networks · Asymptotical stability and synchronization ·
Multiple time-varying delays · Distributed delays · Lyapunov–Krasovskii function

Mathematics Subject Classification 34A08 · 34D06 · 34H15

1 Introduction

In the recent few decades, various artificial neural network models such as Hopfield neural
networks (de Castro and Valle 2020), recurrent neural networks (Achouri and Aouiti 2022),
cellular neural networks (Xu et al. 2021) have been widely investigated due to their exten-
sively application in optimization combination, filtering, signal processing, and so on. These
applications are strongly affected by the dynamical behaviors of neural networks, especially
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stability and synchronization. Therefore, the investigation on the stability and synchroniza-
tion of neural networks has become an attractive subject and a great deal of excellent results
have been proposed, see for examples (Chen et al. 2020; Wang et al. 2021; Xiao et al. 2021;
Liu et al. 2021).

Time delays, induced by the limited speed of the transmission between neurons, are usually
ubiquitous in neural networks.What ismore, some complicated behaviors such as oscillation,
bifurcation, or chaos may be produced by time delays (Song and Peng 2006; Aouiti et al.
2020). Thus, it is significant and unavoidable to study the stability and synchronization
of delayed neural networks. Zhang and Zeng (2021) provided several criteria to check the
stability and synchronization of reaction–diffusion neural networkswith general time-varying
delays. By Lyapunov–Krasovskii functions and linear matrix inequalities, the asymptotic
stability of recurrent neural networks withmultiple discrete delays and distributed delays was
concerned in Cao et al. (2006). The exponential stability of Clifford-valued inertial neural
networks with mixed delays was studied by the means of pseudo almost periodic function
theory and some inequality theories in Aouiti and Ben Gharbia (2020). In Sheng et al. (2021),
the finite-time stability of competitive neural networks with discrete time-varying delays was
discussed by adopting comparison strategies and inequality techniques. By now, a variety of
results about the stability and synchronization of neural networks have been derived.

It is worth noting that the above analysis about neural networks is focusing on the integer
calculus. Fractional calculus (Podlubny 1999; Kilbas et al. 2006), as an extension of the
integer calculus, has received considerable attention due to its broad applications in many
fields such as viscoelasticity (Koeller 1984), bioengineering (Debnath 2003), fluid mechanic
(Tripathi 2011), and so on. Compared with the traditional integer-order systems, fractional-
order models can depict multifarious processes and phenomena more exactly because of
its memory and hereditary properties. Owning to these superiorities, many researchers have
attempted to combine fractional calculus with neural networks, leading to fractional-order
neural networks.Moreover, the dynamical behavior of fractional neural networks has become
a noticeable subject and numerous results have been widely investigated (Fan et al. 2018;
Huang et al. 2020; Zhang et al. 2018; Xiao and Zhong 2019; Pratap et al. 2018; Chen et al.
2018).

Obviously, it is of considerable importance to investigate the stability of fractional neural
networks. In Liu et al. (2017), the properties of activation functions and M-matrix were
utilized to consider the Mittag–Leffler stability of fractional recurrent neural networks. In
Zhang andZhang (2020),Chen et al. (2021), themethod of theLyapunov–Krasovskii function
was used to study the asymptotic stability of fractional neural networks with time delays.
Yao et al. (2021) considered the exponential stability of fractional-order fuzzy cellular neural
networks with multiple delays by Laplace transform method and complex function. Some
criteria about the finite-time stability of fractional inertial neural networks with time-varying
delays were proposed by Lyapunov–Krasovskii function and analytical techniques in Aouiti
et al. (2022). In Li et al. (2021), based on the sign function and activation functions, the
uniform stability of complex-valued fractional neural networks with linear impulses and
fixed time delays was discussed.

In addition, the synchronization of fractional neural networks is another heated topic in
recent years. In Li et al. (2022), Bai et al. (2022), via employing the method of Lyapunov–
Krasovskii function, the exponential synchronization and secure synchronization of fractional
complex neural networks were investigated. You et al. (2020) studied theMittag–Leffler syn-
chronization of discrete-time complex fractional neural networkswith time delay by applying
the Lyapunov direct method and designing a suitable controller. Du and Lu (2021) utilized a
new fractional-order Gronwall inequality to explore the finite-time synchronization of frac-

123



Asymptotical stability and synchronization... Page 3 of 19 20

tional memristor-based neural networks with time delay. The quasi-uniform synchronization
of fractional neural networks with leakage and discrete delays was discussed by Laplace
transformation and several analytical techniques in Zhang et al. (2021).

Apparently, we can find that there are several effective methods such as Laplace transfor-
mation (Yao et al. 2021; Zhang et al. 2021), linear programming approach (Yang et al. 2020),
and Lyapunov direct method (Zhang and Zhang 2020) in demonstrating the stability and
synchronization of neural networks. Among them, the Lyapunov direct method is the most
frequently used in the existing literatures (Zhang and Wu 2022). For fractional systems, the
main difficulty is how to construct an appropriate Lyapunov–Krasovskii function, because
similar tools in integer calculus can not be generalized to fractional calculus easily. On the
other hand, most of the previous works regarded the time delay as a single time-varying delay
or constant time delays (Yao et al. 2021). However, it may not keep unchanged during the
transmission in neuron and the delays between the neurons may different. In view of this, it is
necessary and meaningful to explore some effective methods to investigate the stability and
synchronization of fractional neural networks with various types of time delays. However,
as far as we know, such investigation are rare (Syed Ali et al. 2021; Wu et al. 2022).

Motivated by the above analysis, we probe the asymptotical stability and synchronization
of Riemann–Liouville fractional neural networks with multiple time-varying delays and
distributed delays. The main contributions in this paper can be summarized as follows:

• We introduce the multiple time-varying delays and distributed delays to fractional neural
networks simultaneously. Compared with the previous works, the model is more close
to actual applications.

• The uniqueness, asymptotical stability and synchronization of the demonstrated system
are proposed. In addition, the obtained results are expressed as the matrix inequalities,
which are more concise and feasible to use.

• To avoid the difficulty of calculating the fractional-order derivative of a function, two
Lyapunov–Krasovskii functions associated with fractional integral terms are considered
and we can compute their first-order derivative directly.

• Based on the relationship between the stability and synchronization of fractional sys-
tems, two sufficient conditions about the synchronization of the considered system are
proposed.

This paper is organized as follows. In Sect. 2, some preliminaries and the fractional neural
network model are described. The asymptotical stability and synchronization criteria of the
considered system are studied in Sect. 3. In Sect. 4, four numerical examples are taken to
check the validity and feasibility of the proposed results. Some conclusions and further works
are summarized in Sect. 5.

2 Preliminaries andmodel description

At present, there are several definitions for fractional-order derivatives, such as Riemann–
Liouville and Caputo definitions. The two definitions have their own advantages. The Caputo
derivative is more applicable in practical engineering, because its initial conditions are the
same as integral-order systems in form. However, the Caputo derivative requires the func-
tion to be n-order differentiable and the Riemann–Liouville derivative only requires that
the function be continuous. On the other hand, compared with the Caputo derivative, the
Riemann–Liouville derivative can be considered as a natural generalization of integer deriva-
tive, because it is a continuous operator from the integer order to arbitrary order. Therefore, the
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Riemann–Liouville derivative is applied in this paper. Some preliminaries and the fractional
neural network model are introduced in this section.

Definition 1 The Riemann–Liouville fractional integral of order p for the function u(t) is
defined as

R
t0D

−p
t u(t) = 1

�(p)

∫ t

t0
(t − s)p−1u(s)ds, p > 0,

where �(·) is the Gamma function and �(p) = ∫ ∞
t0

t p−1e−tdt .

Definition 2 The Riemann–Liouville fractional derivative of order q for the function u(t) is
defined as

R
t0D

q
t u(t) = 1

�(n − q)

dn

dtn

∫ t

t0
(t − s)n−q−1u(s)ds, n − 1 ≤ q < n ∈ Z+.

In this paper, we investigate the Riemann–Liouville fractional neural networks with multiple
time-varying delays and distributed delays described by

R
t0D

α
t ui (t) = −aiui (t) +

n∑
j=1

bi j f j (u j (t)) +
K∑

k=1

n∑
j=1

cki j g j (u j (t − �k(t)))

+
n∑
j=1

hi j

∫ t

−∞
ψ j (t − s)r j (u j (s))ds + Ii , t > 0, (1)

where 0 < α < 1, i = 1, 2, · · · , n; ui (t) denotes the state of the i th neuron; bi j , cki j , hi j
represent the neuron interconnection parameters at time t ; ai > 0 is a constant; f j , g j , r j
are neuron activation functions with f j (0) = g j (0) = r j (0) = 0; �k(t) is the time-varying
delay satisfying �k(t) ≤ �k, �̇(k)(t) ≤ γk < 1, Ii is the external input.

The initial conditions of system (1) are given by

0D
−(1−α)
t ui (t) = φi (t), t ≤ 0.

Assumption 1 (A1) The delay kernel ψ j ∈ C([0,+∞),R) is a nonnegative function. Then,
the following equalities hold

(a)

∫ +∞

0
ψ j (s)ds = 1;

(b)
∫ +∞

0
sψ j (s)ds < ∞.

In this paper, the delay kernel ψ j (t) is given by ψ j (t) = e−t .

Assumption 2 (A2) The neuron activation functions f j (·), g j (·), r j (·) are continuous and
satisfy the Lipschitz condition, which means that the following inequalities hold

(a) | f j (u1) − f j (u2)|≤ l1j |u1 − u2|;
(b) |g j (u1) − g j (u2)|≤ l2j |u1 − u2|;
(c) |r j (u1) − r j (u2)|≤ l3j |u1 − u2|,

where u1, u2 ∈ R and l1j , l
2
j , l

3
j are Lipschitz constants.
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Assumption 2* (A2*) The neuron activation functions g j (·), r j (·) are continuous and satisfy
the Lipschitz condition, which means that the following inequalities hold

(a)|g j (u1) − g j (u2)|≤ l2j |u1 − u2|;
(b)|r j (u1) − r j (u2)|≤ l3j |u1 − u2|,

where u1, u2 ∈ R and l2j , l
3
j are Lipschitz constants. In particularly, the neuron activation

function f j (·) is monotonically increasing, bounded and Lipschitz continuous, that is

(c) 0 ≤ f j (u1) − f j (u2)

u1 − u2
≤ l1j ,

where l1j is a positive constant.

Lemma 1 If α > β > 0, then the following property holds for integrable function u(t)

R
t0D

α
t (Rt0D

−β
t u(t)) =R

t0 Dα−β
t u(t).

Lemma 2 Let u(t) ∈ Rn be a vector of differentiable function, then the following inequality
holds

1

2
R
t0D

α
t (uT(t)Pu(t)) ≤ μT(t)PR

t0 D
α
t u(t), 0 < α < 1,

where P ∈ Rn×n is a constant, square, symmetric, and positive definite matrix.

Lemma 3 For any x, y ∈ Rn, ε > 0, the following inequality holds

2xTy ≤ εxTx + 1

ε
yTy.

Lemma 4 For constant matrices 
11,
12,
22, where 
11 = 
T
11,
22 = 
T

22, the follow-
ing two inequalities are equivalent

(a) 
 =
(


11 
12


T
12 
22

)
> 0;

(b) 
22 > 0,
11 − 
T
12


−1
22 
12 > 0.

Definition 3 A constant vector u∗ = (u∗
1, u

∗
2, · · · , u∗

n)
T ∈ Rn is an equilibrium point of

system (1) if and only if u∗ satisfy the following equations:

0 = −aiu
∗
i +

n∑
j=1

bi j f j (u
∗
j ) +

K∑
k=1

n∑
j=1

cki j g j (u
∗
j )

+
n∑
j=1

hi j

∫ t

−∞
ψ j (t − s)r j (u

∗
j )ds + Ii , i = 1, 2, · · · , n.

3 Main results

In this section, several sufficient conditions for asymptotical stability and synchronization of
Riemann–Liouville fractional delayed neural networks are derived.
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3.1 Asymptotic stability criteria

Theorem 1 Suppose that A1, A2 hold; Let u = (ũ1, ũ2, · · · , ũn)T ∈ B, where B is a Banach
space endowed with the norm ‖u‖1 = ∑n

i=1|ũi |. Then, there must exist a unique equilibrium
point u∗ for system (1) if the following inequalities hold.

ρ =
n∑

i=1

(
max

1≤ j≤n
|bi j |l1j + |hi j |l3j

a j
+

K∑
k=1

max
1≤ j≤n

|cki j |l2j
a j

)
< 1, i = 1, 2, · · · , n. (2)

Proof Let u = (ũ1, ũ2, · · · , ũn)T = (a1u1, a2u2, · · · , anun)T ∈ Rn . Constructing a map-
ping ϕ : B → B, ϕ(u) = (ϕ1(u), ϕ2(u), · · · , ϕn(u))T and

ϕi (u) =
n∑
j=1

bi j f j

(
ũ j

a j

)
+

K∑
k=1

n∑
j=1

cki j g j

(
ũ j

a j

)
+

n∑
j=1

hi j

∫ t

−∞
ψ j (t − s)r j

(
ũ j

a j

)
ds + Ii .

For any two different points  = (1, 2, · · · , n)
T, j = (j1, j2, · · · , jn)

T, we have

|ϕi () − ϕi (j)| ≤
∣∣∣∣

n∑
j=1

bi j f j

(
 j

a j

)
−

n∑
j=1

bi j f j (
j j

a j
)

∣∣∣∣

+
∣∣∣∣

K∑
k=1

n∑
j=1

cki j g j (
 j

a j
) −

K∑
k=1

n∑
j=1

cki j g j

(
j j

a j

) ∣∣∣∣

+
∣∣∣∣

n∑
j=1

hi j

∫ t

−∞
ψ j (t − s)r j

(
 j

a j

)
ds −

n∑
j=1

hi j

∫ t

−∞
ψ j (t − s)r j

(
j j

a j

)
ds

∣∣∣∣

≤
n∑
j=1

|bi j |l1j + |hi j |l3j
a j

| j − j j |+
K∑

k=1

n∑
j=1

|cki j |l2j
a j

| j − j j |.

Then, we can get

‖ϕ() − ϕ(j)‖ =
n∑

i=1

|ϕi () − ϕi (j)|

=
n∑

i=1

n∑
j=1

|bi j |l1j + |hi j |l3j
a j

| j − j j |+
n∑

i=1

K∑
k=1

n∑
j=1

|cki j |l2j
a j

| j − j j |

≤
n∑

i=1

(
max

1≤ j≤n
|bi j |l1j + |hi j |l3j

a j

)
n∑
j=1

| j − j j |

+
n∑

i=1

K∑
k=1

max
1≤ j≤n

|cki j |l2j
a j

n∑
j=1

| j − j j |

=
n∑

i=1

(
max

1≤ j≤n
|bi j |l1j + |hi j |l3j

a j
+

K∑
k=1

max
1≤ j≤n

|cki j |l2j
a j

)
‖ − j‖.

So ‖ϕ()−ϕ(j)‖ ≤ ρ‖− j‖. Based on (2), we can find that the mapping ϕ is a contraction
mapping on Rn . Hence , there must exist a unique fixed point ũ∗ ∈ Rn , such that ϕ(ũ∗) = ũ∗.
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Scilicet,

ũ∗
i =

n∑
j=1

bi j f j

(
ũ∗
j

a j

)
+

K∑
k=1

n∑
j=1

cki j g j

(
ũ∗
j

a j

)
+

n∑
j=1

hi j

∫ t

−∞
ψ j (t − s)r j

(
ũ∗
j

a j

)
ds + Ii .

Let u∗
i = ũ∗

i
ai
, we have

0 = −aiu
∗
i +

n∑
j=1

bi j f j (u
∗
j ) +

K∑
k=1

n∑
j=1

cki j g j (u
∗
j ) +

n∑
j=1

hi j

∫ t

−∞
ψ j (t − s)r j (u

∗
j )ds + Ii .

According to the Definition 3, the theorem can be proved. �	
By the transformation μi (t) = ui (t) − u∗

i , we can rewrite system (1) into the following
vector form

R
t0D

α
t μ(t) = −Aμ(t) + B f (μ(t)) +

K∑
k=1

Ckg(μ(t − �k(t)))

+H
∫ t

−∞
ψ(t − s)r(μ(s))ds, (3)

where μ(t) = [μ1(t), μ2(t), · · · , μn(t)]T; A = diag[a1, a2, · · · , an], B = [bi j ],Ck =
[cki j ], H = [hi j ], ψ(t − s) = diag[ψ1(t − s), ψ2(t − s), · · · , ψn(t − s)] and f (μ(t)) =[
f1(μ1(t)), f2(μ2(t)), · · · , fn(μn(t))

]T
, g(μ(t −�k(t))) = [

g1(μ1(t −�k(t))), g2(μ2(t −
�k(t))), · · · , gn(μn(t − �k(t)))

]T
, r(μ(t)) = [

r1(μ1(t)), r2(μ2(t)), · · · , rn(μn(t))
]T

.

Theorem 2 Suppose that A1, A2 and Theorem 1 hold; Then the system (3) is asymptotical
stable if there exist a positive definite matrix P, positive definite diagonal matrices M,Gk

and positive scalars δk, q j such that the following inequality holds.

�1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

S PB
√

1
δ1(1−γ1)

PC1 · · ·
√

1
δK (1−γK )

PCK PH

∗ M 0 · · · 0 0
∗ ∗ G1 · · · 0 0

∗ ∗ ∗ ...
...

...

∗ ∗ ∗ ∗ GK 0
∗ ∗ ∗ ∗ 0 Q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

> 0, (4)

where S = 2PA− L1ML1 − L3QL3 − ∑K
k=1 δk L2GkL2, L1 = diag[l11 , l12 , · · · , l1n ], L2 =

diag[l21 , l22 , · · · , l2n ], L3 = diag[l31 , l32 , · · · , l3n ], Q = diag[q1, q2, · · · , qn].
Proof Consider the following Lyapunov–Krasovskii function

V (t) = V1(t) + V2(t) + V3(t),

where

V1(t) =R
t0 Dα−1

t μT(t)Pμ(t),

V2(t) =
K∑

k=1

δk

∫ 0

−�k (t)
gT(μ(t + s))Gkg(μ(t + s))ds,
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V3(t) =
n∑
j=1

q j

∫ ∞

0
ψ j (η)

∫ t

t−η

ψ j (η)(r j (μ j (ξ)))2dξdη.

Next, we can compute the derivative of V (t) with the help of Lemmas 1, 2 yields

V̇1(t) = R
t0D

α
t μT(t)Pμ(t) ≤ 2μT(t)P R

t0D
α
t μ(t)

= 2μT(t)P

[
− Aμ(t) + B f (μ(t)) +

K∑
k=1

Ckg(μ(t − �k(t))

+H
∫ t

−∞
ψ(t − s)r(μ(s)))ds

]

= 2μT(t)(−PA)μ(t) + 2μT(t)PB f (μ(t)) + 2
K∑

k=1

μT(t)PCkg(μ(t − �k(t)))

+2μT(t)PH
∫ t

−∞
ψ(t − s)r(μ(s))ds, (5)

V̇2(t) =
K∑

k=1

δkg
T(μ(t))Gkg(μ(t))

−
K∑

k=1

δk(1 − �̇k(t))g
T(μ(t − �k(t)))Gkg(μ(t − �k(t)))

≤
K∑

k=1

δkg
T(μ(t))Gkg(μ(t))

−
K∑

k=1

δk(1 − γk)g
T(μ(t − �k(t)))Gkg(μ(t − �k(t))). (6)

Based on the integral form of Cauchy’s inequality

( ∫
u(τ )v(τ )dτ

)2

≤
( ∫

u2(τ )ds

)( ∫
v2(τ )dτ

)
,

we have

V̇3(t) =
n∑
j=1

q j

∫ ∞

0
ψ j (η)(r(μ j (t)))

2dη −
n∑
j=1

q j

∫ ∞

0
ψ j (η)(r j (μ j (t − η)))2dη

≤ rT(μ(t))Qr(μ(t)) −
n∑
j=1

q j

∫ ∞

0
ψ j (η)dη

∫ ∞

0
ψ j (η)(r j (μ j (t − η)))2dη

≤ μT(t)L3QL3μ(t)

−
(∫ t

−∞
ψ(t − s)r(μ(s))ds

)T

Q(

∫ t

−∞
ψ(t − s)r(μ(s))ds). (7)
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According to Lemma 3, there must exist a positive definite diagonal matrix M such that

2μT(t)PB f (μ(t))

= 2μT(t)PBM− 1
2 M

1
2 f (μ(t))

≤ μT(t)PBM−1BTPμ(t) + f T(μ(t))M f (μ(t)), (8)

2
K∑

k=1

μT(t)PCkg(μ(t − �k(t)))

=
K∑

k=1

2μT(t)PCkG
− 1

2
k G

1
2
k g(μ(t − �k(t)))

≤
K∑

k=1

1

δk(1 − γk)
μT(t)PCkG

−1
k CT

k Pμ(t)

+
K∑

k=1

δk(1 − γk)g
T(μ(t − �k(t)))Gkg(μ(t − �k(t))), (9)

2μT(t)PH
∫ t

−∞
ψ(t − s)r(μ(s))ds

= 2μT(t)PHQ− 1
2 Q

1
2

∫ t

−∞
ψ(t − s)r(μ(s))ds

≤ μT(t)PHQ−1HTPμ(t)

+
( ∫ t

−∞
ψ(t − s)r(μ(s))ds

)T

Q
( ∫ t

−∞
ψ(t − s)r(μ(s))ds

)
. (10)

Hence, from (5)–(10), we can get

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t)

≤ 2μT(t)(−PA)μ(t) + μT(t)PBM−1BTPμ(t) + f T(μ(t))M f (μ(t))

+
K∑

k=1

1

δk(1 − γk)
μT(t)PCkG

−1
k CT

k Pμ(t) + μT(t)PHQ−1HTPμ(t)

+
K∑

k=1

δkg
T(μ(t))Gkg(μ(t)) + μT(t)L3QL3μ(t)

≤ μT(t)

[
− 2PA + L3QL3 + L1ML1 +

K∑
k=1

δk L2GkL2 + PBM−1BTP

+PHQ−1HTP +
K∑

k=1

1

δk((1 − γk)
PCkG

−1
k CT

k P

]
μ(t)

= −μT(t)�μ(t),

where� = 2PA−L1ML1−L3QL3−∑K
k=1 δk L2GkL2−PBM−1BTP−PHQ−1HTP−∑K

k=1
1

δk (1−γk )
PCkG

−1
k CT

k P . So V̇ (t) is negative if and only if � > 0. We convert the � to
the form of matrix �1 by Lemma 4 and the theorem can be proved. �	
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Remark 1 It is worth noting that the matrices M and Gk should be positive and diagonal
in Theorem 2. In the following Theorem, the constraint has been removed with the help of
another Lyapunov–Krasovskii function.

Theorem 3 Suppose that A1, A2*, and Theorem 1 hold; Then, the system (3) is asymptotical
stable if there exist positive definite matrices P, Gk and positive scalars δk, w j , q j such that
the following inequality holds.

�2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�1 �3 −PC1 · · · −PCK −PH
∗ �2 −WC1 · · · −WCK −WH
∗ ∗ δ1(1 − γ1)G1 · · · 0 0

∗ ∗ ∗ ...
...

...

∗ ∗ ∗ ∗ δK (1 − γK )GK 0
∗ ∗ ∗ ∗ ∗ Q

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

> 0, (11)

where�1 = 2PA− L3QL3 −∑K
k=1 δk L2GkL2,�2 = 2W AL−1

1 ,�3 = −(LT
1 WB+ PB)

and W = diag[w1, w2, · · · , wn].

Proof Consider the following Lyapunov–Krasovskii function

V (t) = V1(t) + V2(t) + V3(t) + V4(t),

where

V1(t) =R
t0 Dα−1

t μT(t)Pμ(t),

V2(t) =
K∑

k=1

δk

∫ 0

−�k (t)
gT(μ(t + s))Gkg(μ(t + s))ds,

V3(t) =
n∑
j=1

q j

∫ ∞

0
ψ j (η)

∫ t

t−η

ψ j (η)(r j (μ j (ξ)))2dξdη,

V4(t) = 2
n∑
j=1

w j

∫ t

0
f j (μ j (s))

R
t0D

α
t μ j (s)ds.

Similar to the process of Theorem 2, we can compute the derivative of V4(t) yields

V̇4(t) = 2 f T(μ(t))W R
t0D

α
t μ(t)

= 2 f T(μ(t))W

[
− Aμ(t) + B f (μ(t)) +

K∑
k=1

Ckg(μ(t − �k(t)))

+H
∫ t

−∞
ψ(t − s)r(μ(s))ds

]

≤ −2 f T(μ(t))W AL−1
1 f (μ(t)) + 2 f T(μ(t))WB f (μ(t))

+2
K∑

k=1

f T(μ(t))WCkg(μ(t − �k(t)))

+2 f T (μ(t))WH
∫ t

−∞
ψ(t − s)r(μ(s))ds. (12)
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Combining (5), (6), (7), (12), we have

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t)

≤ μT(t)(−2PA + L3QL3 +
K∑

k=1

δk L2GkL2)μ(t)

+2μT(t)(LT
1WB + PB) f (μ(t)) + 2

K∑
k=1

μT(t)PCkg(μ(t − �k(t)))

+2μT(t)PH
∫ t

−∞
ψ(t − s)r(μ(s))ds − 2 f T(μ(t))W AL−1

1 f (μ(t))

+2
K∑

k=1

f T(μ(t))WCkg(μ(t − �k(t)))

+2 f T(μ(t))WH
∫ t

−∞
ψ(t − s)r(μ(s))ds

−
K∑

k=1

δk(1 − γk)g
T(μ(t − �k(t)))Gkg(μ(t − �k(t)))

−
(∫ t

−∞
ψ(t − s)r(μ(s))ds

)T

Q

(∫ t

−∞
ψ(t − s)r(μ(s))ds

)

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μ(t)
f (μ(t))

g(μ(t − �1(t)))
...

g(μ(t − �K (t)))∫ t
−∞ ψ(t − s)r(μ(s))ds

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

T

�2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μ(t)
f (μ(t))

g(μ(t − �1(t)))
...

g(μ(t − �K (t)))∫ t
−∞ ψ(t − s)r(μ(s))ds

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, the system (3) is asymptotical stable under the condition of (11). This completes
the proof. �	
Remark 2 Obviously, the constraint that the matrices Gk should be positive and diagonal
has been replaced with the positive matrices in Theorem 3. However, the restriction A2*
is more strict than A2. Therefore, two sufficient conditions in Theorems 2 and 3 can be
chosen according to the practical engineering. In the following part, we will discuss the
synchronization problem of the system (1) based on the relationship between the stability
and synchronization.

3.2 Asymptotic synchronization criteria

Taking system (1) as the drive system, the response system can be defined as

R
t0D

α
t vi (t) = −aivi (t) +

n∑
j=1

bi j f j (v j (t)) +
K∑

k=1

n∑
j=1

cki j g j (v j (t − �k(t)))

+
n∑
j=1

hi j

∫ t

−∞
ψ j (t − s)r j (v j (s))ds + Ii + zi (t), (13)
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where zi (t) is the suitable controller. In this subsection, we investigate the synchronization
between (1) and (13).

Define the error ei (t) = vi (t)−ui (t). Then, we can get the following error system between
(1) and (13)

R
t0D

α
t ei (t) = −ai ei (t) +

n∑
j=1

bi j f̄ j (e j (t)) +
K∑

k=1

n∑
j=1

cki j ḡ j (e j (t − �k(t)))

+
n∑
j=1

hi j

∫ t

−∞
ψ j (t − s)r̄ j (e j (s))ds + zi (t), (14)

where f̄ j (e j (t)) = f j (v j (t))− f j (u j (t)), ḡ j (e j (t−�k(t))) = g j (v j (t−�k(t)))−g j (u j (t−
�k(t))), r̄ j (e j (t)) = r j (v j (t)) − r j (u j (t)). The control law zi (t) is adopted as zi (t) =
−σi ei (t), σi ∈ R. For convenience, we transform the above system into the vector form
yields

R
t0D

α
t e(t) = −(A + σ̄ )e(t) + B f̄ (e(t)) +

K∑
k=1

Ck ḡ(e(t − �k(t)))

+H
∫ t

−∞
ψ(t − s)r̄(e(s))ds, (15)

where σ̄ = diag[σ1, σ2, · · · , σn]. It is easy to find that the synchronization between the
system (1) and (13) is equivalent to the asymptotical stability of the system (15) (Hu et al.
2018).

Theorem 4 Suppose that A1, A2, and Theorem 1 hold; Then, the systems (1) and (13) are in
synchronization if the following inequality holds.

�3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

S PB
√

1
δ1(1−γ1)

PC1 · · ·
√

1
δK (1−γK )

PCK PH

∗ M 0 · · · 0 0
∗ ∗ G1 · · · 0 0

∗ ∗ ∗ ...
...

...

∗ ∗ ∗ ∗ GK 0
∗ ∗ ∗ ∗ 0 Q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

> 0, (16)

where S̄ = 2P(A + σ̄ ) − L1ML1 − L3QL3 − ∑K
k=1 δk L2GkL2.

Theorem 5 Suppose that A1, A2*, and Theorem 1 hold; Then the systems (1) and (13) are in
synchronization if the following inequality holds.

�4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�̄1 �3 −PC1 · · · −PCK −PH
∗ �̄2 −WC1 · · · −WCK −WH
∗ ∗ δ1(1 − γ1)G1 · · · 0 0

∗ ∗ ∗ ...
...

...

∗ ∗ ∗ ∗ δK (1 − γK )GK 0
∗ ∗ ∗ ∗ ∗ Q

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

> 0, (17)

where �̄1 = 2P(A + σ̄ ) − L3QL3 − ∑K
k=1 δk L2GkL2, �̄2 = 2W (A + σ̄ )L−1

1 .

123



Asymptotical stability and synchronization... Page 13 of 19 20

Remark 3 The theorems obtained in this paper reveal the relationship between the asymptot-
ical stability and synchronization of fractional neural networks.

Remark 4 Compared with Hu et al. (2018), the neural networks in this paper are more appli-
cable due to its multiple time-varying delays and distributed delays. Some inequality theories
are used in dealing with the time delays.

4 Numerical simulations

In this section, four examples are taken to show the correctness of our proposed results by
LMI toolbox and predictor-corrector algorithm (Bhalekar and Daftardar-Gejji 2011).

Example 1 Consider the following two-dimensional fractional-order delayed neural net-
works

R
0 D

α
t μ(t) = −Aμ(t) + Bsin(μ(t)) + C tanh(μ(t − 0.5))

+H
∫ t

−∞
ψ(t − s)cos(μ(s))ds. (18)

The parameters of (18) are set as

A =
(
2.1 0
0 2.1

)
, B =

(
0.1 0.17
0.3 0.2

)
,C =

(
0.3 −0.1

−0.2 0.1

)
, H =

(
0.2 −0.1
0 −0.2

)
.

Obviously, the neuron activation functions satisfy the condition A2 and l1j = l2j = l3j = 1.
It can be verified that

ρ =
2∑

i=1

(
max

1≤ j≤2
|bi j |l1j + |hi j |l3j

a j
+ |ci j |l2j

a j

)
= 1.37

2.1
< 1.

So, there exists a unique equilibrium point for system (18).
According to the Theorem 2, we can obtain positive scalars δ = q1 = q2 = 1 and a

positive definite matrix P, positive definite diagonal matrices M,G by Matlab LMI toolbox,
which illustrate the asymptotical stability of system (18)

P =
(

1.6534 −0.0024
−0.0024 1.6433

)
, M =

(
1.9915 0

0 1.9810

)
,G =

(
1.9915 0

0 1.9810

)
.

To further verify the correctness of the above analysis, the state trajectories of system (18)
under different initial conditions and different fractional-order conditions are simulated by
predictor–corrector algorithm in Figs. 1, 2. It is easy to find that the trajectories of states
u1(t), u2(t) are asymptotical stable.

Example 2 Consider the following two-dimensional fractional-order delayed neural networks
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Fig. 1 Trajectories of states under different initial conditions. The fractional order is set as α = 0.6

Fig. 2 Trajectories of states under different fractional-order conditions. The initial condition is set as [0.8, 0.7]

R
0 D

α
t μ(t) = −Aμ(t) + Btanh(μ(t)) + C tanh(μ(t − 0.5))

+H
∫ t

−∞
ψ(t − s)cos(μ(s))ds. (19)

The parameters of (18) are set as

A =
(
1.8 0
0 1.8

)
, B =

(−0.1 0
0 −0.1

)
,C =

(
0.3 −0.2

−0.2 0.3

)
, H =

(
0.1 −0.2
0 −0.1

)
.

Similarly, the Theorem 1 can be proved as follows

ρ =
2∑

i=1

(
max

1≤ j≤2
|bi j |l1j + |hi j |l3j

a j
+ |ci j |l2j

a j

)
= 1

1.8
< 1.

So, there exists a unique equilibrium point for system (19).
Then, we can find positive scalars δ = q j = ω j = 1, j = 1, 2 and positive definite

matrices P,G that satisfy the inequality (11)

P =
(

2.3456 −0.0017
−0.0017 2.3473

)
,G =

(
4.0327 −0.0027

−0.0027 4.0354

)
.
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Fig. 3 Trajectories of states under different initial conditions. The fractional order is set as α = 0.6

Fig. 4 Trajectories of states under different fractional-order conditions. The initial condition is set as [0.8, 0.7]

Therefore, we can conclude that the system (19) is asymptotical stable based on the Theo-
rem 3. The trajectories of states u1(t), u2(t) under different initial conditions and different
fractional-order conditions are given in Figs. 3, 4, which can verify the accuracy of the
previous work.

Example 3 Consider the following two-dimensional fractional-order delayed neural net-
works

R
0 D

α
t μ(t) = −Aμ(t) + Bsin(μ(t)) + C tanh(μ(t − 0.5))

+H
∫ t

−∞
ψ(t − s)cos(μ(s))ds. (20)

The parameters of (20) are set as

A =
(
1.7 0
0 1.7

)
, B =

(
0.4 −0.1
0.3 −0.2

)
,C =

(
0.6 0.1

−0.2 0.4

)
, H =

(
0.3 −0.2
0 −0.1

)
.
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Fig. 5 Trajectories of states under different fractional-order conditions. The parameters are set as α = 0.6 and
α = 0.8 respectively

Then, the error system between (13) and (14) can be devised as

R
t0D

α
t e(t) = −(A + σ̄ )e(t) + Bsin(e(t)) + C tanh(e(t − 0.5))

+H
∫ t

−∞
ψ(t − s)cos(e(s))ds + z(t), (21)

where the control law can be chosen as

σ̄ =
(−0.2 0

0 0.05

)
.

Based on the Theorem 4, the positive definite matrix P and positive definite diagonal matrices
M, G can be calculated by Matlab yields

P =
(
4.4674 0.1959
0.1959 5.2716

)
, M =

(
2.3818 0

0 4.9722

)
,G =

(
2.8494 0

0 5.4527

)
.

So, the error system (21) is asymptotical stable which means that the systems (13) and
(14) are in synchronization. Figure 5 presents the trajectories of e1(t), e2(t) under different
fractional-order conditions. We can find that the time responses of the states tend to zero,
which illustrates the correctness of the above analysis.

Example 4 Consider the following two-dimensional fractional-order delayed neural net-
works

R
0 D

α
t μ(t) = −Aμ(t) + Btanh(μ(t)) + C tanh(μ(t − 0.5))

+H
∫ t

−∞
ψ(t − s)cos(μ(s))ds. (22)

The parameters of (22) are set as

A =
(
1.5 0
0 1.5

)
, B =

(
0.2 −0.1

−0.5 0.3

)
,C =

(−0.1 −0.2
−0.3 0.17

)
, H =

(
0.3 −0.21
0.1 −0.2

)
.
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Fig. 6 Trajectories of states under different fractional-order conditions. The parameters are set as α = 0.6 and
α = 0.8 respectively

Similarly, we can get the error system between (13) and (14), that is

R
t0D

α
t e(t) = −(A + σ̄ )e(t) + Btanh(e(t)) + C tanh(e(t − 0.5))

+H
∫ t

−∞
ψ(t − s)cos(e(s))ds + z(t), (23)

where the control law can be devised as

σ̄ =
(−0.13 0

0 −0.08

)
.

So, there exist positive definite matrices P,G that satisfy the inequality (17)

P =
(

1.9251 −0.0358
−0.0358 1.8965

)
,G =

(
2.1986 0.0930
0.0930 1.8433

)
.

Based on the Theorem 5, we can conclude that the error system (21) is asymptotical stable,
which means that the systems (13) and (14) are in synchronization. The synchronization
trajectories of e1(t), e2(t) in Fig. 6 further verify the accuracy of the above analysis.

5 Conclusion

As we know, various types of time delays are inevitable in the implementation of fractional
neural networks. Recently, the dynamical analysis of fractional delayed neural networks
has received considerable attention. In view of this, we consider the fractional neural net-
works with both multiple time-varying delays and distributed delays, and then investigate
their asymptotical stability and synchronization. First, by the Banach’s fixed point theorem,
the existence and uniqueness of the considered system are studied. Then, two sufficient
conditions are derived to ensure the asymptotical stability of the addressed model by integer-
order Lyapunov direct method, which can avoid calculating the fractional-order derivative of
Lyapunov–Krasovskii functions. Furthermore, the synchronization criteria are presented as
our main results. Numerical simulations are proposed at last by LMI toolbox and predictor–
corrector algorithm to check the effectiveness of the obtained results.
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In the future, we might study the dynamical behaviors including stability, synchronization
and bifurcation of fractional memristive complex-valued neural networks with time delays
and impulsive effects.
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