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Abstract
In this article, we present two high-order structure-preserving difference schemes for the
modified Kawahara equation, which are named as Scheme I and Scheme II, respectively.
Scheme I is a compact fourth-order difference schemewith a seven-point stencil and preserves
discrete mass, while Scheme II is a standard fourth-order difference schemewith a nine-point
stencil and preserves discrete energy. The proposed two schemes are three-level implicit and
the numerical convergence order is O(τ 2 + h4). The unconditional stability of Scheme I and
Scheme II is proven by von Neumann’s analysis. According to the Lax equivalence theorem,
the convergence of the two schemes is also presented. The errors and rates of convergence, the
discrete conservative mass Qn and energy En are compared with those from other schemes.
At last, some numerical experiments are given to demonstrate that the two proposed schemes
are accurate and efficient for handling the single and multi-solitary waves propagating over
a long period.
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1 Introduction

The dynamics of shallow water waves is a significantly developing research area in the field
of fluid mechanics. There are several models that are studied in this context, such as the KdV
equation, RLW equation, Boussinesq equation, Kawahara equation and several others (Ak
et al. 2016). The KdV equation

ut + uux + uxxx = 0,

was firstly introduced by Boussinesq Boussinesq (1871) and again derived by Korteweg and
de Vires Korteweg and de Vries (1895), which is used to describe long waves traveling in
canals (Bruzon et al. 2019). There are many KdV-type equations and one of the fifth-order
KdV equations is (Kawahara 1972)

ut + uux + uxxx − uxxxxx = 0,

which is called as the standard Kawahara equation. Moreover, the modified Kawahara equa-
tion is

ut + u2ux + uxxx − uxxxxx = 0,

which is also called the singularly perturbed KdV equation (Kawahara 1972).
The modified Kawahara equation has wide applications in physics such as plasma waves,

capillary-gravity water waves, water waves with surface tension, shallow water waves and so
on (Jin 2009). It plays an important role in the theory of fluid mechanics, optical fibers, biol-
ogy, solid-state physics, chemical kinematics, chemical physics, and geochemistry (Marinov
and Marinova 2018). In this article, we consider the following modified Kawahara equation
(Marinov and Marinova 2018)

ut + αu2ux + βuxxx − γ uxxxxx = 0, (1.1)

where α > 0, β > 0, γ > 0. Eq. (1.1) has wide applications in the theory of shallow water
waves (Hunter and Scheurle 1998; Bridges and Derks 2002). Here, u(x, t) represents the
wave profile and has the asymptotic values as follows (Burde 2011; Wang and Dai 2018a):

u → 0, ∂nx u → 0, x → ±∞, n ≥ 1.

Under these assumptions, Eq. (1.1) possesses the following two conservative quantities
(Zara et al. 2022; Chousurin et al. 2020; Ghiloufi and Omrani 2018):

Q(t) =
∫ +∞

−∞
u(x, t)dx =

∫ +∞

−∞
u(x, 0)dx = Q(0),

E(t) =
∫ +∞

−∞
u2(x, t)dx = ‖u(·, t)‖2L2 = E(0), t ∈ (0, T ].

In the past several decades, some types of exact and approximate analytic solutions have
been proposed to solve the Kawahara and modified Kawahara equations. Considering the
boundary condition u → 0 as x → ±∞, Ak et al. Ak and Karakoc (2018) obtained the
following solitary wave solution of Eq. (1.1) as

u(x, t) = 3√
10

√
β2

αγ
sech2

[√ β

20γ

(
x − 4β2

25γ
t
)]

, x → ±∞, t > 0.
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Applying the Adomian decomposition method (ADM), Polat et al. (2006) presented a
traveling wave solution of Eq. (1.1). Wazwaz (2007) derived new solitons solutions and
periodic solutions for Eq. (1.1) with the tanh method. Yusufoğlu et al. (2008) constructed
periodic and solitary wave solutions for Eq. (1.1) with the sine-cosine method. Besides
these, numerical solutions of the modified Kawahara equation were investigated by many
researchers. Jin (2009) considered the approximate solutions of Eq. (1.1) by using the vari-
ational iteration method and homotopy perturbation method. Yuan et al. (2008) proposed
the numerical scheme for Eq. (1.1) by using the dual-Petrov-Galerkin method. In Başhan
(2021), Başhan investigated two different forms of the modified Kawahara equation via the
differential quadrature method (DQM) by the contribution of the Crank-Nicolson technique.
However, these numerical methods lack the necessary theoretical analysis, such as the sta-
bility and conservation of the numerical schemes.

On the other hand, conservative numerical schemes have attracted more and more interest
in nonlinear partial differential equations (PDEs). Some of the most interesting features of
physical systems are hidden in the nonlinear behavior of the nonlinear PDEs, such as mass
and energy conservation laws (Soliman 2006; He 2016). Better approximated solutions can
be expected from the numerical schemes which have effective conservative properties rather
than the ones which have nonconservative properties, and the nonconservative schemes may
easily show nonlinear blow-ups (Wongsaijai and Poochinapan 2014; Nanta et al. 2021). Also,
the computational stability of the conservative scheme is totally different from that of the
nonconservative scheme. The computational stability of the conservative scheme is only con-
cerned with the structure of the scheme. The computational stability of the nonconservative
scheme depends not only on the structure of the scheme, but also on the form of the initial
values and their partial derivatives (Lin et al. 2003). Thus, the main purpose of this article is
to construct two conservative difference schemes for the modified Kawahara equation (1.1)
and give a detailed description of the stability and conservation of the two schemes.

To implement the numerical method, we choose the following initial and boundary value
conditions

u(x, 0) = u0(x), x ∈ � = [xl , xr ], (1.2)

u(xl , t) = u(xr , t) = 0, ux (xl , t) = ux (xr , t) = 0, uxx (xl , t) = uxx (xr , t) = 0, (1.3)

where u0(x) is a known smooth function.

Theorem 1.1 Suppose that u0 ∈ H2
0 (�), then the modified Kawahara equation (1.1)–(1.3)

is well-posed.

Proof Assume that u1 and u2 are two solutions of the modified Kawahara equation (1.1)–
(1.3) satisfying the initial conditions u(1)

0 and u(2)
0 , respectively. Let η = u1 − u2, then η

satisfies⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ηt = −α[u21(u1)x − u22(u2)x ] − βηxxx + γ ηxxxxx ,

η(x, 0) = u(1)
0 − u(2)

0 , x ∈ �,

η(xl , t) = η(xr , t) = 0, ηx (xl , t) = ηx (xr , t) = 0, ηxx (xl , t) = ηxx (xr , t) = 0.

Letting G(t) =
∫ xr

xl
η2dx , we obtain

dG(t)

dt
= −2α

∫ xr

xl
η[u21(u1)x − u22(u2)x ]dx − 2β

∫ xr

xl
ηηxxxdx + 2γ

∫ xr

xl
ηηxxxxxdx
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= −2α
∫ xr

xl
η[u21(η + u2)x − u22(u2)x ]dx − 2β

[
ηηxx − 1

2
(ηx )

2
]∣∣∣xr

xl

+ 2γ
[
(ηηxxxx − ηxηxxx ) + 1

2
(ηxx )

2
]∣∣∣xr

xl

= −2α
∫ xr

xl
ηu21ηxdx − 2α

∫ xr

xl
η(u21 − u22)(u2)xdx

= 2α
∫ xr

xl
η2u1(u1)xdx − 2α

∫ xr

xl
η2(u1 + u2)(u2)xdx . (1.4)

Suppose

C0 = max
(x,t)∈�×[0,T ] |u|, C1 = max

(x,t)∈�×[0,T ] |∂u/∂x |,

we obtain
∣∣∣
∫ xr

xl
η2u1(u1)xdx

∣∣∣ ≤ C0C1

∣∣∣
∫ xr

xl
η2dx

∣∣∣, (1.5)

∣∣∣
∫ xr

xl
η2(u1 + u2)(u2)xdx

∣∣∣ ≤ 2C0C1

∣∣∣
∫ xr

xl
η2dx

∣∣∣. (1.6)

We further obtain from Eqs. (1.4)–(1.6) that dG(t)/dt ≤ 6αC0C1G(t), t ∈ [0, T ], which
yields G(t) ≤ e6αC0C1T G(0), 0 ≤ t ≤ T . Thus, if u(1)

0 = u(2)
0 , we have η(x, 0) = 0

and hence G(0) = 0, implying that G(t) = 0. By the Sobolev inequality (Wang and Dai
2018b), we then obtain ‖η‖L∞ = 0 and u1 = u2. Furthermore, if η(x, 0) < ε, we obtain
G(0) < ε and hence G(t) ≤ e6αC0C1T G(0) ≤ εe6αC0C1T , 0 ≤ t ≤ T . Thus, we obtain that
the solution of Eqs. (1.1)–(1.3) is continuously dependent on the initial condition, implying
that the modified Kawahara equation (1.1)–(1.3) is well-posed. 	


The remainder of the article is arranged as follows: In Section 2, a linear compact difference
scheme (Scheme I) with fourth-order accuracy is derived. In Section 3, a standard fourth-
order difference scheme (Scheme II) is constructed. Discrete mass and discrete energy are
discussed for Scheme I and Scheme II, respectively. The unconditional stability of the two
schemes is proven by von Neumann’s analysis. In Section 4, some numerical examples
are provided to show the effectiveness of the proposed schemes. Concluding remarks and
comments are presented in the last section.

2 Compact fourth-order difference scheme

In this section, we propose a compact fourth-order finite difference scheme (Scheme I) for
the problem (1.1)–(1.3). The solution domain � = {(x, t)|xl ≤ x ≤ xr , 0 ≤ t ≤ T } is
covered by the following uniform grid

�h = {(x j , tn)|x j = xl + jh, tn = nτ, 0 ≤ j ≤ J , 0 ≤ n ≤ N },
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where h = (xr − xl)/J and τ = T /N are the spatial and temporal step sizes, respectively.
Denote Un

j ≈ u(x j , tn), unj ≡ u(x j , tn) and further let

Z0
h = {U = (Uj )|U−2 = U−1 = U0 = U1 = UJ−1 = UJ = UJ+1 = UJ+2 = 0},

where j = −2,−1, 0, ..., J , J + 1, J + 2. For convenience, the following notations are
introduced:

(Un
j )t̂ = 1

2τ
(Un+1

j −Un−1
j ), (Un

j )x̃ = 1

h
(Un

j+1 −Un
j ), (Un

j )x̄ = 1

h
(Un

j −Un
j−1),

(Un
j )x̂ = 1

2h
(Un

j+1 −Un
j−1), (Un

j )ẍ = 1

4h
(Un

j+2 −Un
j−2), Ū n

j = 1

2
(Un+1

j +Un−1
j ),

〈Un, V n〉 = h
J−1∑
j=1

Un
j V

n
j , ‖Un‖2 = 〈Un,Un〉, ‖Un‖∞ = max

0≤ j≤J
|Un

j |.

By setting

w = −αu2ux − βuxxx + γ uxxxxx , (2.1)

we have

γ (∂7x u)nj = (∂2xw)nj + α

3
(∂3x u

3)nj + β(∂5x u)nj ,

wn
j = (∂t u)nj = (Un

j )t̂ + O(τ 2), (∂2xw)nj = (Un
j )x̃ x̄ t̂ + O(τ 2 + h2).

We then consider Eq. (2.1) at the grid point (x j , tn) as

wn
j = −α

3
[(u3)x ]nj − β(unj )xxx + γ (unj )xxxxx

= −α

3

{
[(Un

j )
3]x̂ − h2

6
(∂3x u

3)nj + O(h4)
}

− β
[
(Un

j )x̃ x̄ x̂ − h2

4
(∂5x u)nj + O(h4)

]

+ γ
[
(Un

j )x̃ x̄ x̃ x̄ x̂ − h2

3
(∂7x u)nj + O(h4)

]

= −α

3
[(Un

j )
3]x̂ − β(Un

j )x̃ x̄ x̂ + γ (Un
j )x̃ x̄ x̃ x̄ x̂ + αh2

18
(∂3x u

3)nj + βh2

4
(∂5x u)nj

− h2

3

[
(∂2xw)nj + α

3
(∂3x u

3)nj + β(∂5x u)nj

]
+ O(h4)

= −α

3
[(Un

j )
3]x̂ − β(Un

j )x̃ x̄ x̂ + γ (Un
j )x̃ x̄ x̃ x̄ x̂ − h2

3
(∂2xw)nj − αh2

18
(∂3x u

3)nj

− βh2

12
(∂5x u)nj + O(h4). (2.2)

Thus, we obtain the following compact finite difference scheme (Scheme I) with fourth-
order accuracy to solve the problem (1.1)–(1.3):
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(Un
j )t̂ + h2

3
(Un

j )x̃ x̄ t̂ + β(Ū n
j )x̃ x̄ x̂ + α

3
[(Un

j )
2Ū n

j ]x̂ + αh2

18
[(Un

j )
2Ū n

j ]x̃ x̄ x̂

+ (
βh2

12
− γ )(Ū n

j )x̃ x̄ x̃ x̄ x̂ = 0, (2.3)

U 0
j = u0(x j ), 0 ≤ j ≤ J , (2.4)

Un
0 = Un

J = 0, (Un
0 )x̂ = (Un

J )x̂ = 0, (Un
0 )x̃ x̄ = (Un

J )x̃ x̄ = 0, 1 ≤ n ≤ N . (2.5)

Letting enj = unj −Un
j , we obtain the following error equation:

rnj = (enj )t̂ + h2

3
(enj )x̃ x̄ t̂ + β(ēnj )x̃ x̄ x̂ + α

3
[(unj )2ūnj − (Un

j )
2Ū n

j ]x̂ + (
βh2

12
− γ )(ēnj )x̃ x̄ x̃ x̄ x̂

+ αh2

18
[(unj )2ūnj − (Un

j )
2Ū n

j ]x̃ x̄ x̂ .

By using the Taylor expansion, we can see that rnj = O(τ 2 + h4) holds as τ, h → 0. The

following two-level Crank-Nicolson difference scheme is chosen to compute U 1:

(U 0
j )t̃ + h2

3
(U 0

j )x̃ x̄ t̃ + β(U
1
2
j )x̃ x̄ x̂ + α

3
[(U 0

j )
2U

1
2
j ]x̂ + αh2

18
[(U 0

j )
2U

1
2
j ]x̃ x̄ x̂

+(
βh2

12
− γ )(U

0+ 1
2

j )x̃ x̄ x̃ x̄ x̂ = 0,

where

(U 0
j )t̃ = 1

τ
(U 1

j −U 0
j ), U

1
2
j = 1

2
(Un+1

j +Un
j ).

Theorem 2.1 The difference scheme (2.3) is unconditionally stable in the linearized sense.

Proof For wave propagation cases, the solutions are often bounded. We assume that the
quantity U 2 in the non-linear term U 2Ū is locally constant (Nanta et al. 2021). Thus, for
simplicity, we substitute U 2 ≡ M into the nonlinear term in Eq. (2.3) and consider the
scheme (2.3) only at interior points as follows:

A0(U
n+1
j+3 −Un+1

j−3 ) + B0(U
n+1
j+2 −Un+1

j−2 ) + 1

6τ
(Un+1

j+1 +Un+1
j +Un+1

j−1 ) − C0(U
n+1
j+1 −Un+1

j−1 )

= −A0(U
n−1
j+3 −Un−1

j−3 ) − B0(U
n−1
j+2 −Un−1

j−2 ) + 1

6τ
(Un−1

j+1 +Un−1
j +Un−1

j−1 )

+ C0(U
n−1
j+1 −Un−1

j−1 ), (2.6)

where

A0 = 1

4h5

(βh2

12
− γ

)
, B0 = β

4h3
+ αM

72h
− 4A0, C0 = β

2h3
− αM

18h
− 5A0. (2.7)
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Thus, we can simply use the von Neumann analysis (Chousurin et al. 2020; Yang et al.
2021) for Eq. (2.6). To this end, we letUn

j = ξnei jθh , where ξ is the amplification factor for

Un
j and i = √−1. Thus, we obtain

Un
j+1 −Un

j−1 = 2i sin(θh)ξnei jθh, Un
j+2 −Un

j−2 = 2i sin(2θh)ξnei jθh, (2.8)

Un
j+3 −Un

j−3 = 2i sin(3θh)ξnei jθh, Un
j+1 +Un

j +Un
j−1 = [1 + 2 cos(θh)]ξnei jθh .

(2.9)

Substituting Eqs. (2.7)–(2.9) into Eq. (2.6), we obtain the following amplification factor
ξ2 = (A − τ i B)/(A + τ i B), where

A = 1 + 2 cos(θh), B = 12[A0 sin(3θh) + B0 sin(2θh) − C0 sin(θh)].
Thus, we see that |ξ | = 1. Therefore, the difference scheme (2.3) is unconditionally stable

in the linearized sense. 	

Theorem 2.2 The solution Un of the difference scheme (2.3) satisfies the following discrete
conservation: Qn = Qn−1 = · · · = Q0, where

Qn = h

2

J−1∑
j=1

(Un+1
j +Un

j ). (2.10)

Proof Multiplying Eq. (2.3) by h, summing up for j from 1 to J − 1, and considering the
discrete boundary conditions (2.5), we obtain

h

2τ

J−1∑
j=1

(Un+1
j −Un−1

j ) = 0.

Thus, this gives

Qn = h

2

J−1∑
j=1

(Un+1
j +Un

j ) = h

2

J−1∑
j=1

(Un−1
j +Un

j ) = Qn−1 = · · · = Q0.

Hence, we complete the proof. 	

Since the present scheme (2.3) is a linearized difference scheme for solving the well-posed

modified Kawahara equation, the stability of the scheme is equivalent to the convergence of
the scheme by the Lax equivalence theorem (Morton and Mayers 1994; Wang et al. 2021).
Thus, we obtain the following theorem.

Theorem 2.3 The solution of the numerical scheme (2.3)–(2.5) converges to the solution of
the initial-boundary-value problem (1.1)–(1.3), and the rate of convergence is O(τ 2 + h4).

3 Standard fourth-order difference scheme

In this section, we present a standard fourth-order finite difference scheme (Scheme II) for
the problem (1.1)–(1.3).
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Lemma 3.1 (Chousurin et al. 2020; Bayarassou et al. 2019) For any smooth function u, we
have

(∂xu)nj = 4

3
(Un

j )x̂ − 1

3
(Un

j )ẍ + O(h4),

(∂3x u)nj ≈ 3

2
(Un

j )x̃ x̄ x̂ − 1

2
(Un

j )x̃ x̄ ẍ + O(h4), (∂5x u)nj ≈ 5

3
(Un

j )x̃ x̄ x̃ x̄ x̂ − 2

3
(Un

j )x̃ x̄ x̃ x̄ ẍ + O(h4).

To develop a linear conservative difference scheme, the nonlinear term u2ux is re-written
as follows (Ghiloufi and Omrani 2018; He 2016):

u2ux = 1

4
[u2ux + (u3)x ].

Then, Eq. (1.1) can be changed as

ut + α

4
[u2ux + (u3)x ] + βuxxx − γ uxxxxx = 0.

The nonlinear term u2ux + (u3)x is approximated as

[u2ux + (u3)x ]nj = 4

3

{
(Un

j )
2(Ū n

j )x̂ + [(Un
j )

2Ū n
j ]x̂

}
− 1

3

{
(Un

j )
2(Ū n

j )ẍ + [(Un
j )

2Ū n
j ]ẍ

}
,

where the accuracy is O(τ 2 + h4). The other terms are discretizated as follows:

(uxxx )
n
j = 3

2
(Ū n

j )x̃ x̄ x̂ − 1

2
(Ū n

j )x̃ x̄ ẍ + O(τ 2 + h4),

(uxxxxx )
n
j = 5

3
(Ū n

j )x̃ x̄ x̃ x̄ x̂ − 2

3
(Ū n

j )x̃ x̄ x̃ x̄ ẍ + O(τ 2 + h4).

Thus, we propose a standard fourth-order finite difference scheme (Scheme II) for the
modified Kawahara equation (1.1) as follows:

(Un
j )t̂ + 4α

3
�1(U

n
j , Ū

n
j ) − α

3
�2(U

n
j , Ū

n
j ) + β

[3
2
(Ū n

j )x̃ x̄ x̂ − 1

2
(Ū n

j )x̃ x̄ ẍ

]

−γ
[5
3
(Ū n

j )x̃ x̄ x̃ x̄ x̂ − 2

3
(Ū n

j )x̃ x̄ x̃ x̄ ẍ

]
= 0, (3.1)

where

�1(U
n
j , Ū

n
j ) = 1

4

{
(Un

j )
2(Ū n

j )x̂ + [(Un
j )

2Ū n
j ]x̂

}
, �2(U

n
j , Ū

n
j ) = 1

4

{
(Un

j )
2(Ū n

j )ẍ + [(Un
j )

2Ū n
j ]ẍ

}
.

The initial and boundary conditions are discretized as similar to Eqs. (2.4) and (2.5),
respectively. The truncation error of the difference scheme (3.1) is

rnj = (enj )t̂ + β
[3
2
(ēnj )x̃ x̄ x̂ − 1

2
(ēnj )x̃ x̄ ẍ

]
− γ

[5
3
(ēnj )x̃ x̄ x̃ x̄ x̂ − 2

3
(ēnj )x̃ x̄ x̃ x̄ ẍ

]

+
[4α
3

�1(u
n
j , ū

n
j ) − α

3
�2(u

n
j , ū

n
j )

]
−

[4α
3

�1(U
n
j , Ū

n
j ) − α

3
�2(U

n
j , Ū

n
j )

]
.

By using the Taylor expansion, we can see that rnj = O(τ 2 + h4) holds as τ, h → 0. We

choose the following two-level Crank-Nicolson difference scheme for U 1

(U 0
j )t̃ + 4α

3
ψ1(U

0
j ,U

1
2
j ) − α

3
ψ2(U

0
j ,U

1
2
j ) + β

[3
2
(U

1
2
j )x̃ x̄ x̂ − 1

2
(U

1
2
j )x̃ x̄ ẍ

]

123
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−γ
[5
3
(U

1
2
j )x̃ x̄ x̃ x̄ x̂ − 2

3
(U

1
2
j )x̃ x̄ x̃ x̄ ẍ

]
= 0,

where

ψ1(U
0
j ,U

1
2
j ) = 1

4

{
(U0

j )
2(U

1
2
j )x̂ + [(U0

j )
2U

1
2
j ]x̂

}
, ψ2(U

0
j ,U

1
2
j ) = 1

4

{
(U0

j )
2(U

1
2
j )ẍ + [(U0

j )
2U

1
2
j ]ẍ

}
.

Theorem 3.2 The difference scheme (3.1) is unconditionally stable in the linearized sense.

Proof Similar to Theorem 2.1, we substitute U 2 ≡ M into the nonlinear term in Eq. (3.1)
and consider the scheme (3.1) only at interior points as follows:

A0(U
n+1
j+4 −Un+1

j−4 ) − B0(U
n+1
j+3 −Un+1

j−3 ) − C0(U
n+1
j+2 −Un+1

j−2 ) + D0(U
n+1
j+1 −Un+1

j−1 ) + 1

τ
Un+1

j

= −A0(U
n−1
j+4 −Un−1

j−4 ) + B0(U
n−1
j+3 −Un−1

j−3 ) + C0(U
n−1
j+2 −Un−1

j−2 )

− D0(U
n−1
j+1 −Un−1

j−1 ) + 1

τ
Un−1

j , (3.2)

where

A0 = γ

6h5
, B0 = β

16h3
+ 3γ

2h5
, C0 = αM

48h
− β

2h3
− 13γ

3h5
, D0 = αM

6h
− 13β

16h3
− 29γ

6h5
.

The amplification factor for Eq. (3.2) is ξ2 = (A − τ i B)/(A + τ i B), where

A = 1, B = 2[A0 sin(4θh) − B0 sin(3θh) − C0 sin(2θh) + D0 sin(θh)],
implying that |ξ | = 1, therefore, the difference scheme (3.1) is unconditionally stable. 	

Lemma 3.3 (Chousurin et al. 2020; He 2016) For any two mesh functions U , V ∈ Z0

h, we
have

〈Ux̃ , V 〉 = −〈U , Vx̄ 〉, 〈Ux̂ , V 〉 = −〈U , Vx̂ 〉, 〈Uẍ , V 〉 = −〈U , Vẍ 〉,

〈Ux̃x̄ x̂ ,U 〉 = 0, 〈Ux̃x̄ ẍ ,U 〉 = 0, 〈Ux̃x̄ x̃ x̄ x̂ ,U 〉 = 0, 〈Ux̃x̄ x̃ x̄ ẍ ,U 〉 = 0.

Lemma 3.4 For any mesh function Un ∈ Z0
h, we have

〈�1(U
n, Ū n), Ū n〉 = 0, 〈�2(U

n, Ū n), Ū n〉 = 0, .

Proof For any mesh function Un ∈ Z0
h , according to Lemma 3.3, we obtain

〈�1(U
n, Ū n), Ū n〉 = 1

4
〈(Un)2Ū n

x̂ + [(Un)2Ū n]x̂ , Ū n〉 = 1

4
〈(Un)2Ū n, Ū n

x̂ 〉 − 1

4
〈(Un)2Ū n, Ū n

x̂ 〉 = 0.

Similarly, we get

〈�2(U
n, Ū n), Ū n〉 = 1

4
〈(Un)2Ū n

ẍ + [(Un)2Ū n]ẍ , Ū n〉 = 1

4
〈(Un)2Ū n, Ū n

ẍ 〉 − 1

4
〈(Un)2Ū n, Ū n

ẍ 〉 = 0.

	

Theorem 3.5 The solution Un of the difference scheme (3.1) satisfies the following discrete
conservation:

En ≡ 1

2
(‖Un+1‖2 + ‖Un‖2) = En−1 = · · · = E0, 0 ≤ n ≤ N − 1. (3.3)
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Proof Taking the inner product of Eq. (3.1) with 2Ū n , and applying Lemmas 3.3 and 3.4, we
obtain ‖Un‖2

t̂
= 0, that is ‖Un+1‖2 = ‖Un−1‖2, which yields

1

2
(‖Un+1‖2 + ‖Un‖2) = 1

2
(‖Un‖2 + ‖Un−1‖2),

this shows En = En−1 = · · · = E0. 	

Similar to Theorem 2.3, we have the following theorem for Scheme II.

Theorem 3.6 The solution of the numerical scheme (3.1) with the discrete conditions (2.9)–
(2.10) converges to the solution of the initial-boundary-value problem (1.1)–(1.3), and the
rate of convergence is O(τ 2 + h4).

4 Numerical experiments

In this section, we compute some numerical experiments to validate our theoretical analysis
in the previous sections. The accuracy of the numerical solutions is defined as (Cheng and
Wang 2021)

‖en‖ =
[
h

J−1∑
j=1

|unj −Un
j |2

] 1
2
, ‖en‖∞ = max

1≤ j≤J−1
|unj −Un

j |.

Example 1 Consider the following modified Kawahara equation (Ak and Karakoc 2018)

ut + u2ux + uxxx − uxxxxx = 0, (4.1)

with the initial condition

u0(x) = 3√
10

sech2
(√

5

10
x
)
.

The exact solitary wave solution for Eq. (4.1) has the following form

u(x, t) = 3√
10

sech2
[√

5

10

(
x − 4

25
t
)]

.

In this experiment, we choose xl = −50 and xr = 50. First, to investigate the accuracy
of the proposed difference schemes, we take τ = h2 and compute the ‖ · ‖ and ‖ · ‖∞ norm
errors of the numerical solutions. From Table 1, we can see that Scheme I and Scheme II
are about fourth-order of accuracy. Furthermore, we observe from Table 1 that the errors
obtained from Scheme I are a little smaller than that obtained from Scheme II. Table 2 gives
the comparison of error results in ‖ · ‖ and ‖ · ‖∞ norms at different times for the proposed
schemes and the septic B-spline collocation method (Ak and Karakoc 2018). From Table 2,
we can see that our difference schemes have relatively small errors than those obtained by
the method (Ak and Karakoc 2018).

To show that Scheme I (2.3) and Scheme II (3.1) have the mass and energy conservative
properties, respectively, we then list some values of discrete mass Qn for Scheme I and
discrete energy En for Scheme II at various times T in Table 3. From Table 3, we can see
that Scheme I and Scheme II preserve the discrete conservative properties very well.

In Fig. 1, we show the comparison of the numerical solutions and single solitary wave
solution with h = 0.1 and τ = h2. In Fig. 2, we draw the absolute error distributions
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Table 1 Comparison of errors and rate of convergence at T = 1 using τ = h2, xl = −50 and xr = 50 for
Example 1

Scheme h ‖en‖ Rate ‖en‖∞ Rate

0.5 1.5719519612784E−04 − 8.8258696486986E−05 −
I 0.25 9.3313787667937E−06 4.074323 4.5465289459922E−06 4.278901

0.125 5.7481569045183E−07 4.020919 2.8130434681639E−07 4.014562

0.0625 3.5921209775737E−08 4.000192 1.7553913989054E−08 4.002267

0.5 2.7499846119265E−04 − 1.4646674715346E−04 −
II 0.25 1.7169696899806E−05 4.001487 8.0049088839739E−06 4.193544

0.125 1.0772904986400E−06 3.994385 5.0615911395546E−07 3.983222

0.0625 6.7467246206836E−08 3.997076 3.1516156129285E−08 4.005427

Table 2 Comparison of error estimates in ‖ · ‖ and ‖ · ‖∞ norms for Example 1

T ‖en‖(I) ‖en‖∞(I) ‖en‖(II) ‖en‖∞(II) ‖en‖ (Ak and
Karakoc
2018)

‖en‖∞ (Ak
and Karakoc
2018)

20 3.249880E−07 1.440461E−07 5.607020E−07 2.439698E−07 2.747538E−06 1.260529E−06

40 4.075945E−07 1.616671E−07 6.520445E−07 2.657936E−07 4.045791E−06 1.620782E−06

60 4.539718E−07 1.728254E−07 6.912754E−07 2.614720E−07 5.629183E−06 2.617156E−06

80 5.227938E−07 2.075733E−07 7.212088E−07 2.695171E−07 6.811939E−06 2.680477E−06

100 6.948901E−07 5.006549E−07 7.336044E−07 2.630856E−07 8.275389E−06 2.909858E−06

Table 3 Discrete conservative mass and energy computed by Scheme I and Scheme for Example 1

T Qn (I) |Qn − Q0|/|Q0| En (II) |En − E0|/|E0|
0 8.48528136933757 − 5.36656314599849 −
10 8.48528136923964 1.1541226306298E−11 5.36656314599862 2.416333242494E−14

20 8.48528136918097 1.8455494807012E−11 5.36656314599960 2.068778461039E−13

30 8.48528136903449 3.5718347381719E−11 5.36656314599995 2.720857431959E−13

40 8.48528136901417 3.8113052401087E−11 5.36656314599948 1.845350387247E−13

50 8.48528136896391 4.4036278541308E−11 5.36656314599878 5.411924454080E−14

60 8.48528136894464 4.6307260274860E−11 5.36656314599793 1.042664344364E−13

obtained from Scheme I and Scheme II, respectively. From Figs. 1 and 2, we can see that
these numerical approximations obtained by Scheme I and Scheme II are in good agreement
with the single solitary wave solutions. Fig. 3 shows the plot of single solitary waves at
different time levels T = 10, 20, 30 and 40 with h = 0.5 and τ = h2. From Fig. 3, we
can see that the numerical solutions obtained from Scheme I and Scheme II can keep the
same shape as time increases. Thus, we can say that our difference schemes are effective for
studying the solitary wave traveling for a long time.

At last, to investigate the influence of the coefficients α, β and γ on the numerical results,
we plot the numerical solutions obtained from Scheme I and Scheme II with various values of
the coefficients in Figs. 4 and 5, respectively, where xl = −50, xr = 50, h = 0.1, τ = 0.01
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Fig. 1 Comparison of the numerical solutions and single solitary wave solution of Example 1 computed by
Scheme I (left) and Scheme II (right) with h = 0.1 and τ = h2

Fig. 2 Absolute error distribution of Example 1 computed by Scheme I (left) and Scheme II (right) with
h = 0.1 and τ = h2

Fig. 3 Single solitary wave computed by Scheme I (left) and Scheme II (right) at different time levels with
h = 0.5 and τ = h2
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Fig. 4 Comparison of numerical solutions obtained by Scheme I with various values of the coefficients α, β
and γ

and T = 10. We see from Figs. 4 and 5 that different values of the coefficients α, β and γ of
Scheme I and Scheme II can change the numerical results conspicuously.

Example 2 We consider the interaction of two separated solitary waves with different ampli-
tudes and traveling in the same direction. In this case, we consider Eq. (4.1) with the initial
condition as follows

u(x, 0) =
2∑

i=1

√
9ci
10

sech2
[√ ci

20
(x − χi )

]
, i = 1, 2.

First, we choose the domain � = [−50, 100] and show the interaction of two separated
at different time levels in Fig. 6, where h = 0.1, τ = 0.05, c1 = 0.85, c2 = 0.35, χ1 = 0
and χ2 = 20. We can see that the larger solitary wave has passed the smaller solitary wave as
time increases up to T = 95. After the interaction, the two separated solitary waves regain
their original shape again. The calculated values of the conservative invariants Qn and En

obtained by Scheme I and Scheme II are tabulated in Table 4. It is seen that the values of the
invariants Qn and En remain almost constant during the computer run.

Example 3 We consider the interaction of three separated solitary waves with different ampli-
tudes and traveling in the same direction. In this case, we consider Eq. (4.1) with the following
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Fig. 5 Comparison of numerical solutions obtained by Scheme II with various values of the coefficients α, β
and γ

initial condition

u(x, 0) =
3∑

i=1

√
45ci
8

sech2
[√5ci

16
(x − χi )

]
, i = 1, 2, 3.

Here, we choose the parameters xl = −50, xr = 100, h = 0.1, τ = 0.05, c1 = 0.85,
c2 = 0.5, c3 = 0.35, χ1 = −25, χ2 = 0, χ2 = 20. Fig. 7 shows the interaction of three
separated solitary waves at different time levels T = 30 ∼ 150. As it is seen from Fig. 7,
the interaction started about at time T = 80 and the overlapping processes occurred between
T = 80 and 100. Then, to verify the solutions of Scheme I and Scheme II are stable for the
initial value, we solve Eq. (4.1) with the following initial condition

u(x, 0) =
3∑

i=1

√
45ci
8

sech2
[√5ci

16
(x − χi )

]
+ ε, i = 1, 2, 3.

Here, ε is chosen as 0, ±0.001, ±0.002 and ±0.003, respectively. We can see from Fig.
8 that no significant difference exists with a slight change in the initial condition u0, which
confirms that both Scheme I and Scheme II are stable with respect to the initial condition u0
and convergent to stationary solutions.

123



Two structure-preserving... Page 15 of 20 401

Fig. 6 Interaction of two solitary waves for Scheme I (left) and Scheme II (right) of Example 2 at different
times

Table 4 Discrete conservative mass and energy computed by Scheme I and Scheme II for Example 2

T Qn (I) |Qn − Q0|/|Q0| En (II) |En − E0|/|E0|
0 16.97056269642206 − 20.30695252952590 −
5 16.97056269637951 2.507332991378E−12 20.30695252952665 3.691457815430E−14

10 16.97056269635112 4.180214174822E−12 20.30695252952118 2.325093571899E−13

15 16.97056269625593 9.789421837091E−12 20.30695252952188 1.980440875387E−13

20 16.97056269614153 1.653035214705E−11 20.30695252952495 4.688676277419E−14
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Fig. 7 Numerical solutions of Example 3 computed by Scheme II at different times

Fig. 8 Effects of the initial conditions to the solutions of Scheme I (left) and Scheme II (right) at T = 1 with
xl = −50, xr = 100, h = 0.1 and τ = 0.01

Example 4 We consider Eq. (4.1) with theMaxwellian initial condition (Ghiloufi andOmrani
2018)

u(x, 0) = exp[−(x − 40)2].
In this case, we calculate the solution at the region [−100, 100] with h = 0.25 and

τ = 0.25. Table 5 contains the comparison of the discrete mass Qn and energy En obtained
byour schemes and those obtained by the septicB-spline collocationmethod (Ak andKarakoc
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Table 5 Comparison of the invariants Qn and En obtained by different methods

T Qn (I) En (II) Qn (Ak and Karakoc 2018) En (Ak and Karakoc 2018)

0 1.77245385090552 1.25331413731550 1.7724538509 1.2533141373

1 1.77245385090556 1.25331413731525 1.7724538507 1.2533141369

2 1.77245385090574 1.25331413731523 1.7724538506 1.2533141369

3 1.77245385090579 1.25331413731519 1.7724538506 1.2533141368

4 1.77245385090571 1.25331413731502 1.7724538506 1.2533141368

5 1.77245385090587 1.25331413731505 1.7724538506 1.2533141368

Fig. 9 Space-time graph of the interaction in the domain [−100, 100] at various times with h = 0.1, τ = 0.05

2018). We can see that the values of the invariants Qn and En obtained by our schemes are
relatively more stable than the values obtained in Ak and Karakoc (2018).

Example 5 We consider Eq. (4.1) with the following initial condition

u(x, 0) = αe−|x−c1| + β sign(x)e−|x | − γ e−|x−c2|.

In this example, we choose c1 = −5, c2 = 5 and represent the numerical results at various
times with h = 0.1, τ = 0.05, in the domain [−100, 100] in Figs. 9 and 10. As shown in the
figures, we can observe the interaction of the Kawahara equation.
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Fig. 10 Initial condition and numerical simulation for the interaction at various times with h = 0.1, τ = 0.05
in the domain [−100, 100]

5 Conclusion

We have developed two conservative finite difference schemes with fourth-order accuracy for
themodifiedKawahara equation.The compact fourth-order difference scheme (Scheme I) and
standard fourth-order difference scheme (Scheme II) are both unconditionally convergent and
the convergence order is O(τ 2+h4). To demonstrate the efficiency of the numerical schemes,
the convergence errors and conserved quantities Qn and En have been calculated for the test
problems. Numerical experiments verify that the proposed difference schemes simulate the
conservative quantities (Qn and En) well in single soliton and colliding soliton evolutions. It
is also shown that the compact difference scheme (Scheme I) is more efficient than the non-
compact numerical scheme (Scheme II). With suitable variations, the technique of analysis
used in this article can be applied to study the single or multi-solitary waves propagating over
a long period. Further work can be done by performing numerical approximations of other
models in traffic flow modeling with the proposed schemes.
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