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Abstract
This article researches the approach to solving different instances of Cauchy integral equa-
tions by utilizing the Lucas polynomial technique. The technique decreases the solution of
a specified singular integral equation to the solution of an array equation corresponding to a
linear scheme of algebraic equations with unnamed Lucas coefficients. An evaluation of the
introduced strategy has been described. Some numerical illustrates are introduced to display
the accuracy and efficiency of the suggested strategy. The comparison between the results
which are obtained by the Lucas polynomial method and other methods such as the Lerch
polynomial method, Chebyshev polynomial method, Bernstein polynomial method, and the
reproducing kernel method is represented in a group of tables. All the numerical results are
obtained by using the Maple 18 program.

Keywords Cauchy singular integral equations · Lucas polynomials procedure ·
Error evaluation · Cauchy kernel

Mathematics Subject Classification 65R20 · 45B05

1 Introduction

Singular integral equations (SIE) with a Cauchy or Hilbert kernel have been developed by
famousmathematicians such as (Gakhov 1990; Lifanov 1996;Muskhelisvili 1968; Pogorzel-
ski 1996; Ladopoulos 2013) and others. Since it is hard to track down scientific arrangements

Communicated by Hui Liang.

B A. M. S. Mahdy
amr_mahdy85@yahoo.com; amattaya@tu.edu.sa

D. Sh. Mohamed
doaashokry203@yahoo.com

1 Department of Mathematics, Faculty of Science, Zagazig University, P. O. Box 44519, Zagazig,
Egypt

2 Department of Mathematics and Statistics, College of Science, Taif University, P. O. Box 11099, Taif
21944, Saudi Arabia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-022-02116-6&domain=pdf
http://orcid.org/0000-0003-2218-5408


403 Page 2 of 20 A. M. S. Mahdy, D. Sh. Mohamed

of particular indispensable equations for Cauchy kernels, lots of scientists have prepared var-
ious numerical techniques for solving this equation, similar to what (Abdou and Nasr 2003)
presented in their Legendre polynomial procedure for solving singular integral equations
of the second sort. Mohamed (2022) used the Lerch matrix procedure for solving singu-
lar integral equations of the first sort. Mandal and Bhattacharya (2007) applied Bernstein
polynomials for solving classes of integral equations. Kumar and Singh (2010) presented a
homotopy perturbation procedure for the solution of the Abel integral equation. Seifi (2020)
used a collocation system to solve the Cauchy singular integral. Seifi et al. (2017) used a
collocation procedure for the solution of singular integral equations. Kumar et al. (2011)
used the Homotopy perturbation technique for the solution scheme of general Abel’s integral
equations. Dezhbord et al. (2016) used a reproducing kernel for a solution singular inte-
gral equation of the first sort. Abdulkawi and Moayad (2015) used a differential transform
technique to solve first-order singular integral equations. Mennouni and Guedjiba (2011)
use iterations for the solution of singular integral equations. Karczmarek et al. (2006) intro-
duced the Jacobi polynomials technique for the solution of singular integral equations with a
Cauchy kernel. Jen and Srivastas (1981) presented the Cubic spline technique to approximate
the solution of singular integral equations. Yaghobifar et al. (2010) applied rational functions
to obtain approximation solutions of characteristic singular integral equations. Eshkuvatov
et al. (2009) used a Chebyshev polynomial technique to approximate the solution of singular
integral equations. For the purpose of solving Cauchy singular integral equations, De Bon-
isand invented the Nystr”om technique with a negative index in De Bonis and Laurita (2009).
Abdou and Ezz-Eldin (1994) used Krein’s method to get the solution of the FIE of the first
type.
The type generic of Cauchy singular integral the equation has presented in Gakhov (1990),
Golberg (1990):

ν

∫ 1

−1

ϕ(x)

x − z
dx +

∫ 1

−1
k(x, z)ϕ(x)dx = g(z), − 1 < z < 1, (1.1)

where g(z) and k(x, z) have presented continuous real-valued functions, ϕ(z) has the unde-
fined function. At k(x, z) = 0 in (1.1) simplified to the following formula:

ν

∫ 1

−1

ϕ(x)

x − z
dx = g(z), − 1 < z < 1. (1.2)

In physical phenomena, if the function ϕ(z) is considered to be a ”flux” then the kernel
k(x, z) = (x − z)−1, is called ordinary Cauchy singularity (Cauchy kernel). While, if the
unknown function represents a ”potential”, then k(x, z) = (x − z)−2, called strong singular
kernel.
The authors must note that when using Eq. (1.2) in physical mathematics problems or nuclear
reaction problems we must consider the next conditions:

ϕ(1) = ϕ(−1) = 0. (1.3)

But in the communication (contact) problems in the theory of elasticity or mixed problems
in dynamic systems, condition (1.3) is replaced by the following pressure condition:

∫ 1

−1
ϕ(x)dx = P. (1.4)

The complete analytic solution of Eq. (1.2), after using the Cauchymethod, seeMuskhelisvili
(1968), leads to discuss the following four cases:
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Case (I) The response has bounded at the end point z = ±1, where

πνϕ(z) =
∫ 1

−1
k1(x, z)g(z)dz, k1(x, z) =

√
(1 − z2)

(
√

(1 − x2)(x − z))
. (1.5)

Case (II) The response has unbounded at the all end points z = ±1. In this case, we adapt
Eq. (1.2) to take the following form

πνϕ(z) =
{∫ 1

−1
k2(x, z)g(z)dz + C√

1 − z2

}
, k2(x, z) =

√
(1 − x2)

(
√

(1 − z2)(x − z))
. (1.6)

In mathematical physics phenomena, the value of the constant C, which depending upon the
interval of integration, is very important to determine. Therefore, we go to determine it at
z = −1. So, multiplying (1.6) by

√
1 − z2 and then following up by evaluating the result

form at z = −1, we have

C = 1

π

∫ 1

−1

√
1 − z

1 + z
g(z)dz. (1.7)

Case (III): The response has bounded at the end point z = 1 and unbounded at z = −1,
where

πνϕ(z) =
∫ 1

−1
k3(x, z)g(z)dz, k3(x, z) =

√
(((1 − z)(1 + x))

((1 + z)(1 − x)))

1

((x − z))
. (1.8)

Case (IV): The response has bounded at the end point z = −1 and unbounded at z = 1 In
this case, the formula (1.2) yields

πνϕ(z)=
∫ 1

−1

{
k4(x, z)g(z)dz+ C1√

(1 − z2)

}
, k4(x, z)=

√
(((1+z)(1−x))

((1−z)(1+x)))

1

((x − z))
.

(1.9)

To discuss the value of the constant C1 at z = 1, multiplying both sides of Eq. (1.9) by√
1 − z2 and evaluating the result at z = 1, we have another expression for the value of C1

in the form

C1 = 1

π

∫ 1

−1

√
1 + z

1 − z
g(z)dz. (1.10)

In this paper, the Lucas polynomial technique is developed to resolve singular Cauchy
integral equations of the first type of the form (1.2).
Such researchers like (Abd-Elhameed and Youssri 2017; Abd-elhameed and Youssri 2016)
used these polynomials to solve fractional differential equations. Cetin et al. (2015) studied
a system of higher order differential equations utilizing the Lucas polynomial technique.
For delay differential equations, Baykus and Sezer (2017) used the hybrid Taylor–Lucas
collocation approach. Lucas series was used by Nadir (2017) to solve an integro-differential
problem. By combining Lucas and Fibonacci polynomials, Haq and Ali (2021) investigate
the approximate solution of the two-dimensional Sobolev equation. Chelyshkov polynomi-
als were introduced by Mahdy et al. (2022) for the first class of two-dimensional integral
equations.
In the remainder of this paper. In Sect. 2, Lucas polynomial method and some properties
are presented. In Sect. 3, transformation of Eq. (1.2) is presented to remove the singularity.
In Sect. 4, we study the numerical solution by Lucas polynomial method. In Sect. 5, Error
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Table 1 The array contains the first few coefficients for the Lucas polynomials

Lucas polynomials Coefficients array

L1(z) = z 1

L2(z) = z2 + 2 1 2

L3(z) = z3 + 3z 1 3

L4(z) = z4 + 4z2 + 2 1 4 2

L5(z) = z5 + 5z3 + 5z 1 5 5

L6(z) = z6 + 6z4 + 9z2 + 2 1 6 9 2

L7(z) = z7 + 7z5 + 14z3 + 7z 1 7 14 7

L8(z) = z8 + 8z6 + 20z4 + 16z2 + 2 1 8 20 16 2

L9(z) = z9 + 9z7 + 27z5 + 30z3 + 9z 1 9 27 30 9

L10(z) = z10 + 10z8 + 35z6 + 50z4 + 25z2 + 2 1 10 35 50 25 2

evaluation is presented. In Sect. 6, a few numerical examples are provided to show how the
technique works and comparison between other methods are presented.

2 Lucas polynomials

Definition 2.1 Koshy (2001) By the recurrence relation, the Lucas polynomials are obtained

Ln+2(z) = zLn+1(z) + Ln(z), n ≥ 0, (2.1)

with L0(z) = 2 and L1(z) = z.
These polynomials have the following explicit form:

Ln(z) = (z + √
z2 + 4)n + (z − √

z2 + 4)n

2n
, (2.2)

and also have the following explicit power form representation

Ln(z) =
� n
2 �∑

k=0

n

n − k

(
n − k

k

)
zn−2k, n ≥ 1, (2.3)

where

⌈n
2

⌉
=
⎧⎨
⎩

n
2 , n even,

n−1
2 , n odd.

The first several Lucas polynomials are shown here, along with a variety of their coeffi-
cients in Table 1.

Definition 2.2 (Rodrigues’s formula) The Rodrigues formula provided by can be used to
obtain the Lucas polynomials Ln(z)

Ln(z) = 2
n!

(2n)! (z
2 + 4)1/2

dn

dzn

{
(z2 + 4)n− 1

2

}
. (2.4)
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Proposition 2.1 Lucas polynomials’ generating function is described as

G(z, t) =
∞∑
n=0

Ln(z)t
n = 1 + t2

1 − t2 − zt
= 1 + zt + (z2 + 2)t2 + (z3 + 3z)t3 + · · · .

3 Changing the Eq. (1.2)

TThe accompanying structure can be used to address the peculiar function ϕ(z) in Eq. (1.2):

ϕ(i)(z) = ψ(i)(z) �(i)(z)√
1 − z2

, i = 1, 2, 3, 4, (3.1)

a well-behaved function of z in [−1, 1] called ψ(i)(z), and
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(1)(z) = 1 − z2, for Case (I),

�(2)(z) = 1, for Case (II),

�(3)(z) = 1 − z, for Case (III),

�(4)(z) = 1 + z, for Case (IV).

(3.2)

Now, we must independently transform Eq. (1.2) into each case’s corresponding transfor-
mation to eliminate the singular term at x = z.
Case (I): In the structure, the weird function ϕ(1)(z) can be handled by utilizing (3.1) and
(3.2):

ϕ(1)(z) =
√
1 − z2 ψ(1)(z), − 1 ≤ z ≤ 1. (3.3)

By changing (3.3) to (1.2), we obtain

∫ 1

−1

√
1 − x2

x − z
ψ(1)(x)dx = g(z), − 1 ≤ z ≤ 1. (3.4)

Therefore,

∫ 1

−1

√
1 − x2

x − z
ψ(1)(x)dx

=
∫ 1

−1

√
1 − x2

ψ(1)(x) − ψ(1)(z)

x − z
dx +

∫ 1

−1

√
1 − x2

ψ(1)(z)

x − z
dx .

(3.5)

The Cauchy principle value in its intended sense,

∫ 1

−1

√
1 − x2

1

x − z
dx = −π z, − 1 ≤ z ≤ 1. (3.6)
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Equation (3.4) can therefore be transformed into

− π z ψ(1)(z) +
∫ 1

−1

√
1 − x2

ψ(1)(x) − ψ(1)(x)

x − z
dx = g(z), − 1 ≤ z ≤ 1. (3.7)

Case (II): The unknown function ϕ(2)(z) in Eq. (1.2) can be handled in the structure using
(3.1) and (3.2):

ϕ(2)(z) = 1√
1 − z2

ψ(2)(z), − 1 < z < 1. (3.8)

When we change (3.8) to (1.2), we get
∫ 1

−1

1√
1 − x2

ψ(2)(x)

x − z
dx = g(z), − 1 < z < 1. (3.9)

Therefore,
∫ 1

−1

1√
1 − x2

ψ(2)(x)

x − z
dx

=
∫ 1

−1

1√
1 − x2

ψ(2)(x) − ψ(2)(z)

x − z
dx + ψ(2)(z)

∫ 1

−1

1√
1 − x2(x − z)

dx .

(3.10)

Cauchy principle value is a concept that
∫ 1

−1

1√
1 − x2(x − z)

dx = 0. (3.11)

Equation (3.9) can therefore be transformed into
∫ 1

−1

1√
1 − x2

ψ(2)(x) − ψ(2)(z)

x − z
dx = g(z), − 1 < z < 1. (3.12)

Case (III): It is possible to address the structure of the unknown function ϕ(3)(z) of Eq. (1.2)
from (3.1) and (3.2):

ϕ(3)(z) =
√
1 − z

1 + z
ψ(3)(z), − 1 < z ≤ 1. (3.13)

By changing (3.13) to (1.2), we obtain
∫ 1

−1

√
1 − x

1 + x

ψ(3)(x)

x − z
dx = g(z), − 1 < z ≤ 1. (3.14)

Therefore,
∫ 1

−1

√
1 − x

1 + x

ψ(3)(x)

x − z
dt =

∫ 1

−1

√
1 − x2

1 + x

ψ(3)(x)

x − z
dx

=
∫ 1

−1

√
1 − x2

x − z

(
ψ(3)(x)

1 + x
− ψ(3)(z)

1 + z
+ ψ(3)(z)

1 + z

)
dx

=
∫ 1

−1

√
1 − x2

x − z

(
ψ(3)(x)

1 + x
− ψ(3)(z)

1 + z

)
dx + ψ(3)(z)

1 + z

∫ 1

−1

√
1 − x2

x − z
dx
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= 1

1 + z

(∫ 1

−1

√
1 − x2

ψ(3)(x) − ψ(3)(z)

x − z
dx −

∫ 1

−1

√
1 − x2

ψ(3)(x)

1 + x
dx

)

−π zψ(3)(z)

1 + z
,

and Eq. (3.14) can be converted into

1

1 + z

(∫ 1

−1

√
1 − x2

ψ(3)(x) − ψ3(z)

x − z
dx −

∫ 1

−1

√
1 − x2

ψ(3)(x)

1 + x
dx

)

− 1

1 + z
π zψ(3)(z) = g(z) ,−1 < z ≤ 1. (3.15)

Case (IV): It is possible to address the structure of the unknown function ϕ(4)(x) of Eq. (1.2)
from (3.1) and (3.2):

ϕ(4)(z) =
√
1 + z

1 − z
ψ(4)(z), − 1 ≤ z < 1. (3.16)

Represent from (3.16) into (1.2), we obtain
∫ 1

−1

√
1 + x

1 − x

ψ(4)(x)

x − z
dx = g(z), − 1 ≤ z < 1. (3.17)

In a same manner, Eq. (3.17) can be changed into

1

1 − z

(∫ 1

−1

√
1 − x2

ψ(4)(x) − ψ(4)(z)

x − z
dx +

∫ 1

−1

√
1 − x2

ψ(4)(x)

1 − x
dx

)

− 1

1 − z
π zψ(4)(z) = g(z),−1 ≤ z < 1. (3.18)

In Eqs. (3.7), (3.12), (3.15) and (3.18), ψ(x)−ψ(z)
x−z = ψ ′(z) if x = z, then ψ(x)−ψ(z)

x−z ∈
C([−1, 1] × [−1, 1]) for each event, the singularity of (1.2) has taken out.

4 The approach to the problem

According to the truncated Lucas series structure, the approximate solution of Eqs. (3.7),
(3.12), (3.15) and (3.18) is as follows:

ψ( j)(z) ∼= ψ
( j)
N (z) =

N∑
n=0

a( j)
n Ln(z), j = 1, 2, 3, 4, (4.1)

while j = 1, 2, 3, 4 for examples I, II, III, and IV individually, a( j)
n stands for the undeter-

mined Lucas coefficients for n = 0, 1, . . . , N , and Ln(x) stands for the Lucas polynomials,
that are described by (2.3).
The following form is used to rewrite Eqs. (3.7), (3.12), (3.15), and (3.18):

F ( j)(z) + G( j)(z) = f (z), j = 1, 2, 3, 4, (4.2)

where

F (1)(z) =
∫ 1

−1

√
1 − x2

ψ(1)(x) − ψ(1)(z)

x − z
dt,
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G(1)(z) = −πxψ(1)(z), for case (I), (4.3)

F (2)(z) =
∫ 1

−1

1√
1 − x2

ψ(2)(x) − ψ(2)(z)

x − z
dt,

G(2)(z) = 0, for case (II), (4.4)

F (3)(z) = 1

1 + z

(∫ 1

−1

√
1 − x2

ψ(3)(x) − ψ(3)(z)

x − z
dt −

∫ 1

−1

√
1 − x2

ψ(3)(x)

1 + x
dx

)
,

G(3)(z) = −π zψ(3)(z)

1 + z
, for case (III), (4.5)

F (4)(z) = 1

1 − z

(∫ 1

−1

√
1 − x2

ψ(4)(x) − ψ(4)(z)

x − z
dt +

∫ 1

−1

√
1 − x2

ψ(4)(x)

1 − x
dx

)
,

G(4)(z) = −π zψ(4)(z)

1 − z
, for case (IV). (4.6)

By using the collocation points

zl = −1 + 2

N
l, l = 0, 1, . . . , N , (4.7)

into Eq. (4.2), we get

F ( j)(zl) + G( j)(zl) = f (zl), j = 1, 2, 3, 4, l = 0, 1, . . . , N . (4.8)

When we change (4.1) to (4.3), (4.4), (4.5), and (4.6), we get

F (1)(zl) �
N∑

n=0

a(1)
n

∫ 1

−1

√
1 − x2

Ln(x) − Ln(zl)

x − zl
dt, for case (I),

F (2)(zl) �
N∑

n=0

a(2)
n

∫ 1

−1

1√
1 − x2

Ln(x) − Ln(zl)

x − zl
dx, for case (II), (4.9)

F (3)(zl) � 1

1 + xl

[
N∑

n=0

a(3)
n

∫ 1

−1

√
1 − x2

Ln(x) − Ln(zl)

x − zl
dt

−
N∑

n=0

a(3)
n

∫ 1

−1

√
1 − x2

Ln(x)

1 + x
dx

]
, for case (III),

F (4)(zl) � 1

1 − xl

[ N∑
n=0

a(4)
n

∫ 1

−1

√
1 − x2

Ln(x) − Ln(zl)

x − zl
dx

+
N∑

n=0

a(4)
n

∫ 1

−1

√
1 − x2

Ln(x)

1 − x
dx

]
, for case (IV),

and

G(1)(zl) � −π zl

N∑
n=0

a(1)
n Ln(zl), for case (I),

G(2)(zl) = 0, for case (II), (4.10)
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G(3)(zl) � − π zl
1 + zl

N∑
n=0

a(3)
n Ln(zl), for case (III),

G(4)(zl) � − π zl
1 − zl

N∑
n=0

a(4)
n Ln(zl), for case (IV).

Substituting from (4.9) and (4.10) into (4.8) we get

N∑
n=0

a(1)
n

[∫ 1

−1

√
1 − x2

Ln(z) − Ln(zl)

x − zl
dt − π zl Ln(zl)

]
= f (zl), for case (I),

N∑
n=0

a(2)
n

[∫ 1

−1

1√
1 − x2

Ln(x) − Ln(zl)

x − zl
dx

]
= f (zl), for case (II), (4.11)

N∑
n=0

a(3)
n

1

1 + zl

[∫ 1

−1

√
1 − x2

Ln(x) − Ln(zl)

t − zl
dx −

∫ 1

−1

√
1 − x2

Ln(x)

1 + x
dt

−π zl Ln(zl)] = f (xl), for case (III),
N∑

n=0

a(4)
n

1

1 − zl

[∫ 1

−1

√
1 − x2

Ln(x) − Ln(zl)

t − xl
dt −

∫ 1

−1

√
1 − x2

Ln(x)

1 − x
dt

−π zl Ln(zl)] = f (zl), for case (IV).

Equation (4.11) can be expressed as follows:

N∑
n=0

a( j)
n [F( j)(zl) + G( j)(zl)] = f (zl), j = 1, 2, 3, 4. (4.12)

As a result, the following matrix form (4.12) may be formed, which is equivalent to each
condition of Eq. (1.2)

A j X j = F, j = 1, 2, 3, 4, (4.13)

which

[A j ] = F( j)(zl) + G( j)(zl), j = 1, 2, 3, 4,

X j =
[
a( j)
0 , a( j)

1 , a( j)
2 , . . . , a( j)

N

]T
, j = 1, 2, 3, 4

and

F = [ f (z0), f (z1), . . . , f (zN )]T .

Once the unusual coefficients a( j)
n have been solved for in Eq. (4.13) for conditions I through

(iv), convergent solutions to (3.3), (3.8), (3.13) and (3.16) using Eq. (4.1) are provided by

ϕ
(1)
N (z) =

√
1 − z2

N∑
n=0

a(1)
n Ln(z), for case I,
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ϕ
(2)
N (z) = 1√

1 − z2

N∑
n=0

a(2)
n Ln(z), for case II,

ϕ
(3)
N (z) =

√
1 − z

1 + z

N∑
n=0

a(3)
n Ln(z), for case III,

ϕ
(4)
N (z) =

√
1 + z

1 − z

N∑
n=0

a(4)
n Ln(z), for case IV. (4.14)

5 Error evaluation

For the convergent solutions of equation, we permit an error evaluation in this section (1.2).
Let the approximation for all situations be ϕm(z). For all situations I, II, III, IV, em(z) =
ϕ(z) − ϕm(z) is the error function connected to ϕm(z), where ϕ(z) is the precise solution of
(1.2). Since it satisfies, ϕm(z) is the approximate answer.

∫ 1

−1

ϕm(x)

x − z
dx = g(z) + Hm(z) − 1 < z < 1, (5.1)

where Hm(z) is a perturbation term and it is obtained from:

Hm(z) =
∫ 1

−1

ϕm(z)

x − z
dx − g(z). (5.2)

Subtracting (1.2) from (5.2), we obtain
∫ 1

−1

em(x)

x − z
dx = Hm(z), (5.3)

for the em(z) error function.Wewill solve (5.3) using the same techniqueswe used for finding
an approximation of ê(z) to em(z) (1.2). In this scenario, the perturbation term Hm(z) must
only affect the function g(z).

6 Illustrative data

A few mathematical examples are presented in this section to demonstrate the viability and
dependability of the Lucas polynomial strategy. Our method was used to solve these models
with N = 5, and Maple 18 was used for all numerical computations.

Example 1 The first kind Cauchy integral equation shown below is (Mohamed 2022; Seifi
et al. 2017; Dezhbord et al. 2016; Eshkuvatov et al. 2009):

∫ 1

−1

ϕ(x)

x − z
dx = z4 + 5z3 + 2z2 + z − 11

8
, − 1 < x < 1. (6.1)

Equation (6.1)’s accurate response in every situation is provided by:

Case (I) : ϕ(z) = − 1

π

√
1 − z2

(
z3 + 5z2 + 5

2
z + 7

2

)
. (6.2)

Case (II) : ϕ(z) = 1

π
√
1 − z2

(
z5 + 5z4 + 3

2
z3 − 3

2
z2 − 5

2
z − 7

2

)
. (6.3)
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Case (III) : ϕ(z) = − 1

π

√
1 − z

1 + z

(
z4 + 6z3 + 15

2
z2 + 6z + 7

2

)
. (6.4)

Case (IV) : ϕ(z) = 1

π

√
1 + z

1 − z

(
z4 + 4z3 − 5

2
z2 + z − 7

2

)
. (6.5)

Utilizing the collocation points (4.7) and the Lucas polynomial approach for Eq. (6.1), where
N = 5.

For case (I): Using the matrix equation shown below, we can:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2π − 1
2π

5
2π − 15

8 π 35
8 π − 75

16π

6
5π

7
50π

279
250π

2977
5000π

18969
250000π

425661
250000π

2
5π

23
50π − 77

250π
7617
5000π

83
25000π

771309
250000π

− 2
5π

23
50π − 77

250π
7617
5000π − 83

25000π
771309
50000 π

− 6
5π

7
50π − 279

250π
2977
5000π − 18969

25000π
425661
250000π

−2π − 1
2π − 5

2π − 15
8 π − 35

8 π − 75
16π

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a(1)
0

a(1)
1

a(1)
2

a(1)
3

a(1)
4

a(1)
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 35
8

− 11027
5000

− 7667
5000

− 5267
5000

5773
5000

61
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We can find the values of the constants as follows by solving the matrix problem above:

[
a(1)
0 = 13

4π
, a(1)

1 = 1

2π
, a(1)

2 = − 5

π
, a(1)

3 = − 1

π
, a(1)

4 = a(1)
5 = 0

]
.

These constants can be substituted into (4.14) to obtain the approximate solution, which
is the same as the exact result (6.2). A comparison between our method and the methods of
Seifi et al. (2017); Dezhbord et al. (2016); Eshkuvatov et al. (2009) for case I are shown in
Table 2.
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Table 2 Numerical outcomes of Example 1 for case (I) and Seifi et al. (2017), Dezhbord et al. (2016),
Eshkuvatov et al. (2009)

z Error of our
method, N = 5

Error of Seifi et al.
(2017), N = 4

Error of Dezhbord
et al. (2016), N = 200

Error of Eshkuvatov
et al. (2009), N = 20

−0.9 0 2.22045 × 10−16 4.497 × 10−9 3.33067 × 10−16

−0.3 0 2.22045 × 10−16 1.105 × 10−10 2.22045 × 10−16

0 0 0 1.303 × 10−9 6.66134 × 10−16

0.3 0 2.22045 × 10−16 7.120 × 10−10 6.66134 × 10−16

0.9 0 4.44089 × 10−16 1.136 × 10−8 2.22045 × 10−16

For case (II): Using the matrix equation shown below, we can:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 π −π 9
2π − 11

2 π 115
8 π

0 π − 3
5π

193
50 π − 729

250π
49923
5000 π

0 π − 1
5π

177
50 π − 227

250π
40483
5000 π

0 π 1
5π

177
50 π 227

250π
40483
5000 π

0 π 3
5π

193
50 π 729

250π
49923
5000 π

0 π π 9
2π − 11

2 π 115
8 π

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a(2)
0

a(2)
1

a(2)
2

a(2)
3

a(2)
4

a(2)
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 35
8

− 11027
5000

− 7667
5000

− 5267
5000

5773
5000

61
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We can find the values of the constants as follows by solving the matrix problem above:[
a(2)
0 arbitrary, a(2)

1 = 3

π
, a(2)

2 = −43

2π
, a(2)

3 = − 7

2π
, a(2)

4 = 5

π
, a(2)

5 = 1

π

]
.

As a result of these constants being substituted into (4.14), the following approximate solution
is obtained:

ϕ
(2)
5 (z) = 1

π
√
1 − z2

(z5 + 5z4 + 3

2
z3 − 3

2
z2 − 5

2
z) − 33

π
√
1 − z2

+ 2a(2)
0√

1 − z2
. (6.6)

If we use a(2)
0 = 33

2π , it is clear from comparing the precise and approximate solutions (6.3
and 6.6) that the approximate answer is equivalent to the accurate solution.
A comparison between our method and the methods of Seifi et al. (2017), Dezhbord et al.
(2016), Eshkuvatov et al. (2009) for case II are shown in Table 3.

The outcomes of Example 1 for case (III) are shown in Table 4 and Fig. 1, just as they
were for cases (I) and (II), respectively.

123



Approximate solution of Cauchy integral equations... Page 13 of 20 403

Table 3 Numerical outcomes of Example 1 for case (II) and Seifi et al. (2017), Dezhbord et al. (2016),
Eshkuvatov et al. (2009)

z Error of our
method, N = 5

Error of Seifi et al.
(2017), N = 4

Error of Dezhbord
et al. (2016),
N = 200

Error of
Eshkuvatov et al.
(2009), N = 20

−0.9 0 1.11022 × 10−16 9.00 × 10−7 6.6613 × 10−16

−0.3 0 2.22045 × 10−16 2.289 × 10−7 4.16334 × 10−16

0 0 2.22045 × 10−16 2.287 × 10−7 1.66533 × 10−16

0.3 0 2.22045 × 10−16 2.499 × 10−7 0

0.9 0 2.22045 × 10−16 9.43690 × 10−7 9.43690 × 10−16

Table 4 Numerical outcomes of Example 1 case III and Seifi et al. (2017), Dezhbord et al. (2016), Eshkuvatov
et al. (2009)

z Error of our
method, N = 5

Error of Seifi et al.
(2017), N = 4

Error of Dezhbord
et al. (2016),
N = 200

Error of
Eshkuvatov et al.
(2009), N = 20

−0.9 6.756729253 × 10−21 2.22045 × 10−16 2.594 × 10−8 3.21965 × 10−15

−0.3 1.516354499 × 10−21 2.22045 × 10−16 8.386 × 10−9 1.44329 × 10−15

0 8.940000000 × 10−22 2.22045 × 10−16 7.02 × 10−9 6.66134 × 10−16

0.3 4.955347252 × 10−22 2.22045 × 10−16 7.156 × 10−7 2.22045 × 10−16

0.9 5.457800309 × 10−23 4.44089 × 10−16 1.901 × 10−8 8.8818 × 10−16

Fig. 1 Error of example 1 case III
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Table 5 Numerical outcomes of Example 1 case IV and Seifi et al. (2017), Dezhbord et al. (2016), Eshkuvatov
et al. (2009)

z Error of our
method, N = 5

Error of Seifi et al.
(2017), N = 4

Error of Dezhbord
et al. (2016),
N = 200

Error of
Eshkuvatov et al.
(2009), N = 20

−0.9 3.406823648 × 10−23 1.11022 × 10−16 9.949 × 10−9 7.77156 × 10−16

−0.3 3.632306959 × 10−21 3.33067 × 10−16 1.892 × 10−9 1.1102 × 10−16

0 0 2.22045 × 10−16 9.718 × 10−10 4.4409 × 10−16

0.3 6.745712926 × 10−23 2.22045 × 10−16 9.611 × 10−10 0

0.9 6.472964932 × 10−22 0 1.154 × 10−7 1.11022 × 10−15

Fig. 2 Error of example 1 case IV

Similarly, the outcomes of Example 1 for case (IV) are presented in Table 5 and Fig. 2.

Example 2 Define the first sort’s next Cauchy integral equation as Mohamed (2022), Seifi
et al. (2017).

∫ 1

−1

ϕ(t)

x − z
dx = −z4 + 3

2
z2 − 3

8
,−1 < z < 1. (6.7)

The accurate response of Eq. (6.7) each case has provided by:

Case (I) : ϕ(z) = − 1

π

√
1 − z2(z − z3). (6.8)

Case (II) : ϕ(z) = 1

π
√
1 − z2

(−z + 2z3 − z5) (6.9)

Case (III) : ϕ(z) = − 1

π

√
1 − z

1 + z
(z + z2 − z3 − z4). (6.10)
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Case (IV) : ϕ(z) = − 1

π

√
1 + z

1 − z
(z − z2 − z3 + z4). (6.11)

Equation (6.7) is solved using the Lucas polynomial technique, and collocation points (4.7)
are used at N = 5.

For case (I)We arrive at the subsequent matrix equation.:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2π − 1
2π

5
2π − 15

8 π 35
8 π − 75

16π

6
5π

7
50π

279
250π

2977
5000π

18969
250000π

425661
250000π

2
5π

23
50π − 77

250π
7617
5000π

83
25000π

771309
250000π

− 2
5π

23
50π − 77

250π
7617
5000π − 83

25000π
771309
50000 π

− 6
5π

7
50π − 279

250π
2977
5000π − 18969

25000π
425661
250000π

−2π − 1
2π − 5

2π − 15
8 π − 35

8 π − 75
16π

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a(1)
0

a(1)
1

a(1)
2

a(1)
3

a(1)
4

a(1)
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
8

177
5000

− 1583
5000

− 1583
5000

177
5000

1
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.12)

We arrive at the constant values by solving the matrix problem (6.12) as follows:[
a(1)
0 = 0, a(1)

1 = − 4

π
, a(1)

2 = 0, a(1)
3 = 1

π
, a(1)

4 = a(1)
5 = 0

]
.

By replacing these constants in (4.14), we achieve the approximate solution, which is equiv-
alent to the correct solution (6.8).
A comparison between our method and the method of Seifi et al. (2017) for case I are shown
in Table 6.
For case (II): The constant values are obtained in a manner similar to case (I) as follows:[

a(2)
0 arbitrary, a(2)

1 = −17

π
, a(2)

2 = 0, a(2)
3 = 7

π
, a(2)

4 = 0, a(2)
5 = − 1

π

]
.

As a result of these constants being substituted into (4.14), the following approximate solution
is obtained:

ϕ
(2)
5 (z) = 1

π
√
1 − z2

(−z + 2z3 − z5) + 2a(2)
0√

1 − z2
. (6.13)

If we accept a(2)
0 = 0, then it is obvious from comparing the exact answer (6.9) with the

approximate solution (6.13), that they are identical.
A comparison between our method and the method of Seifi et al. (2017) for case II are shown
in Table 7.

The outcomes of Example 2 for case (III) are presented in Table 8 and Fig. 3. The outcomes
of Example 2 for case (IV) are presented in Table 9 and Fig. 4.
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Table 6 Numerical outcomes of
Example 2 for case (I) and Seifi
et al. (2017)

z Error of our
method, N = 5

Error of Seifi et al.
(2017), N = 5

−0.9 0 6.93889 × 10−18

−0.7 0 0

−0.5 0 1.38778 × 10−17

−0.3 0 2.77556 × 10−17

−0.1 0 2.08167 × 10−17

0.1 0 0

0.3 0 2.77556 × 10−17

0.5 0 1.38778 × 10−17

0.7 0 1.38778 × 10−17

0.9 0 6.93889 × 10−18

Table 7 Numerical outcomes of
Example 2 for case (II) and Seifi
et al. (2017)

z Error of our method, N = 5 Error of Seifi et al. (2017), N = 5

−0.9 0 2.77556 × 10−17

−0.7 0 1.38778 × 10−17

−0.5 0 1.38778 × 10−17

−0.3 0 1.38778 × 10−17

−0.1 0 2.08167 × 10−17

0.1 0 3.46945 × 10−17

0.3 0 4.16334 × 10−17

0.5 0 1.38778 × 10−17

0.7 0 1.38778 × 10−17

0.9 0 7.63278 × 10−17

Table 8 Numerical outcomes of Example 2 case III and Seifi et al. (2017)

z Error of our method, N = 5 Error of Seifi et al. (2017), N = 5

−0.9 6.868055532 × 10−20 2.08167 × 10−17

−0.7 2.966358931 × 10−20 1.38778 × 10−17

−0.5 1.849483853 × 10−20 1.38778 × 10−17

−0.3 1.359336107 × 10−20 2.77556 × 10−17

−0.1 1.096653043 × 10−20 2.08167 × 10−17

0.1 9.118064873 × 10−21 6.93889 × 10−18

0.3 7.356485602 × 10−21 2.77556 × 10−17

0.5 5.382059209 × 10−21 0

0.7 3.166929449 × 10−21 0

0.9 9.735486084 × 10−22 3.46945 × 10−18
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Fig. 3 Error of example 2 case III

Table 9 Numerical outcomes of Example 2 case IV and Seifi et al. (2017)

z Error of our method, N = 5 Error of Seifi et al. (2017), N = 5

−0.9 3.406823648 × 10−23 1.38778 × 10−17

−0.7 3.278755817 × 10−22 1.38778 × 10−17

−0.5 2.110215234 × 10−22 0

−0.3 3.632306959 × 10−23 4.16334 × 10−17

−0.1 7.281498971 × 10−23 2.08167 × 10−17

0.1 8.899609856 × 10−23 1.38778 × 10−17

0.3 6.745712926 × 10−23 2.77556 × 10−17

0.5 6.330645703 × 10−22 1.38778 × 10−17

0.7 1.857961630 × 10−21 1.38778 × 10−17

0.9 6.472964932 × 10−22 6.93889 × 10−17

7 Conclusion

This study develops the Lucas polynomial approach for resolving a variety of first-class
Cauchy integral equation problems. Implementing smooth transforms significantly elimi-
nates the singularity of Eq. (1.2). Numerical illustrates are presented to illustrate the method
comparison between the Lucas polynomial method at N = 5 and the Chebyshev polynomial
method (Eshkuvatov et al. 2009) at N = 20. Reproducing the kernel method (Dezhbord et al.
2016) at N = 200 and the Bernstein polynomials method (Seifi et al. 2017) at N = 4 are
presented in Tables 2, 3, 4 and 5 for Example 1. A comparison between the Lucas polyno-
mial method and the Bernstein polynomial method is presented in Tables 6, 7, 8, and 9, for
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Fig. 4 Error of example 2 case IV

Example 2. Also by comparing the results of our method with the results of Mohamed (2022)
we note that the method used in Mohamed (2022) gives exact solution in special case λ = 1
but if λ �= 1 the approximate solution different the exact solution. It is clear the accuracy of
our method is very high. Future Work:
We will consider the following potential function

μ�(x, t) − λ

∫ t

0

∫ 1

−1
F(t, τ )

1

(x − y)2
�(y, t)dydτ = f (x, t).

The importance of this integral equation appears inmathematical physics problems especially,
in nuclear reactions when its boundary conditions are applied.
It also shows its importance, when studying the forces of internal and external stress on a
longitudinal crack in ceramics. It also shows its importance in treating cracks in linear and
nonlinear elastic materials.
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