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Abstract
This paper deals with the convergence and stability of the spectral collocation method for
a hyperbolic partial differential equation with piecewise continuous arguments. Firstly, the
convergence of continuous-time and discrete-time collocation methods is analyzed by means
of equivalent schemes with L2-norm rigorously. We obtain the order of convergence of the
continuous-time collocation method is O(h4) and the discrete-time collocation method is
O(h4 + p), where h and p are spatial step and temporal step, respectively. Secondly, the
stability of two numerical schemes is analyzed by Fourier analysis method. It is proven that
the continuous-time collocation method is unconditionally stable. The stability conditions
for the discrete-time collocation method are derived under which the analytic solution is
asymptotically stable. Finally, some numerical experiments are carried out to demonstrate
our theoretical results.

Keywords Hyperbolic partial differential equation · Piecewise continuous arguments ·
Spectral collocation method · Convergence · Stability

Mathematics Subject Classification 65M12 · 65M60

1 Introduction

In this paper we principally investigate theoretical and computational aspects of the spectral
collocation method for the numerical solution of following hyperbolic partial differential
equation with piecewise continuous arguments (PEPCA)
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utt (x, t) = a2uxx (x, t) + buxx (x, [t]), in � × J ,

u(x, 0) = v(x), ut (x, 0) = w(x), in �,

u(x, t) = 0 on ∂� × J ,

(1)

where a, b ∈ R, � = [0, 1] with smooth boundary ∂�, J = [0,+∞) and [·] denotes the
greatest integer function.

Nowadays, differential equations with piecewise continuous arguments (EPCA) are used
tomodel various different phenomena in economy (Cavalli andNaimzada 2016), competition
(Kartal and Gurcan 2015), population growth (Karakoc 2017) and so on. Hence, the exten-
sive applications of delay effects in describing the past and future status of systems show
the importance of the theory of EPCA. The study of EPCA was initiated by Aftabizadeh
and Wiener (1986). They found that the change of sign in the argument deviation leads to
interesting periodic properties, asymptotic and oscillatory behavior of solutions. Since EPCA
can hardly be solved by analytical methods or much complicated to deal with, the numerical
analysis of EPCA is currently an active area of research, which although start a little late.
And there has been a number of literatures on numerical methods for EPCA, see Gao (2017),
Liu and Zeng (2018), Milošević (2016), Wang and Wang (2018), Wang et al. (2011) and
Zhang et al. (2018). However, the numerical methods in these papers mainly focus on the
EPCA in case of ordinary differential equations. Up to now there has existed some literatures
about PEPCA with various numerical methods (Liang et al. 2010a, b; Wang 2017; Wang and
Wen 2014; Wang and Wang 2019). Parabolic PEPCA was investigated with the θ -method
(Liang et al. 2010a) and Galerkin finite element method (Liang et al. 2010b). In Wang and
Wen (2014), the θ -method was also applied to another PEPCA of mixed type and the suf-
ficient conditions for the numerical stability were established. In addition, Wang and Wang
(2019) considered the analytical and numerical stability of PEPCA of alternately retarded
and advanced type in the θ -schemes and achieved the corresponding stability conditions.
For more information on PEPCA, the interested readers can refer to publications (Wiener
and Debnath 1992, 1997; Wiener and Heller 1986; Bereketoglu and Lafci 2017) and the
references contained therein.

The spectral methods have been developed to investigate all kind of equations in the
recent two decades, which are known generally as the method of weighted residuals with
distinctive feature that the trial functions are used as the basis functions for a truncated series
expansion of solution. The Galerkin method, collocation method and Tau method are viewed
as three well-known spectral types. Compared with the existing numerical methods such
as finite element method and finite difference method, spectral methods provide superior
economical and accurate schemes when dealing with differential equations. The privilege
of collocation methods over other spectral methods mainly reflects on solving of linear and
nonlinear differential equations with accurate and efficient procedures, especially suitable
for the numerical analysis of nonlinear problems. The orthogonal spline collocation method
initially was proposed to investigate a m-order ordinary differential equation in De Boor and
Swartz (1973) and considered to deal with various equations later. Collocation schemes based
on Chebyshev polynomials (Ardabili and Talaei 2018; Babaei et al. 2020; Morgado et al.
2017; Nagy 2017), Legendre polynomials (Sharma et al. 2018; Yousefi et al. 2019), B-spline
functions (Roul and Goura 2019; Singh et al. 2021) and Jacobi polynomials (Bhrawy et al.
2016a, b) have been frequently applied to approximate the solution of various types of differ-
ential equations and integral equations. Some of the recent studies on collocation methods
are described as follows. Saw and Kumar (2021) proposed an efficient and accurate scheme
based on Chebyshev collocation method and finite difference approximation to investigate
time-fractional convection–diffusion equation and illustrated the convergence analysis. In
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Rahimkhani and Ordokhani (2019), 2D Bernoulli wavelets together with a fractional inte-
gral operator were applied to reduce two types of fractional partial differential equations
to systems of algebraic equations which were solved by the Newton’s iterative method and
the corresponding error estimate was presented in L2-norm. Similarly, a nonlinear weakly
singular partial integro-differential equation was investigated in Singh et al. (2018) and it was
reduced to nonlinear system of algebraic equations by the operational matrix of integration of
2D Legendre wavelets. Roul et al. studied Bratu-type and Lane–Emden-type problems (Roul
et al. 2019) with the optimal quartic B-spline collocation method and a class of nonlinear sin-
gular Lane-Emden type equations (Roul et al. 2019) with the optimal quintic spline function.
They achieved optimal convergence of order six through imposing perturbation to the orig-
inal problem while the normal quartic and quintic spline function just arrived at four order.
Orthogonal polynomials were selected matching to their specific properties which construct
them appropriate for the problem under investigation, like Fourier series (Arezoomandan
and Soheili 2021) for periodic problems and Chebyshev and Legendre polynomials for non-
periodic problems. The Chebyshev series expansion can be seen as a proper alternative to the
Fourier basis in the form of cosine Fourier series especially dealing with Gibbs phenomenon
at the boundaries (Rakhshan and Effati 2018). In addition, collocation methods have been
successfully applied in magnetic field (Renu et al. 2021), heat transfer (Ma et al. 2017; Wang
et al. 2017), radiative transfer (Li and Wei 2018), model of squeezing flow (Saadatmandi
et al. 2016) and so on. For more information on collocation methods, the interested reader
can refer to literatures (Hammad and El-Azab 2016; Baseri et al. 2018; Rohaninasab et al.
2018; Zaky and Ameen 2019) and the references contained therein.

In this paper, we apply Hermite piecewise-cubic polynomial to instruct the spectral collo-
cation method, then we numerically solve Problem (1) by this spectral collocation method,
which can transform the given differential equation to algebraic systems of equations with
unknown coefficients. It is worthy noticing that the distinguishing advantage of collocation
method over Galerkin finite element method reflects on no effort to compute integrals when
setting up the corresponding algebraic systemof equations. Since no integral need to be evalu-
ated or approximated, the calculation of the coefficients determining the approximate solution
is vary fast. Moreover, the operational matrices of proposed method are sparse ones, which
make computation easy and quick. Also, unlike finite difference method, it yields continu-
ous approximation to the solution with high-order accuracy. On the basis of the outstanding
advantages of collocation method described above, we propose the continuous-time colloca-
tion and discrete-time collocation schemes for Problem (1) and discuss their convergence by
means of equivalent schemes. We also achieve unconditional stability for continuous-time
collocation scheme and some stability conditions for discrete-time collocation scheme with
Fourier analysis method. The satisfactory results can be obtained only using a little number
of nodes in numerical experiments, along with the comparisons with other existing numerical
methods showing that the spectral collocation method possesses higher accuracy.

The rest of paper is structured as follows. Sect. 2 presents some important preliminaries
which also includes reasons for locating two collocation points in per interval and bases
of Hermite piecewise-cubic space. In Sect. 3, we start with the convergence analysis of
continuous-time collocation scheme bymeans of its equivalent schemewith its corresponding
inner product and obtain the corresponding convergence order. Moreover, we prove that this
scheme is unconditional asymptotically stable. We analyze the convergence and stability of
discrete-time collocation scheme in analogous with continuous-time one in Sect. 4. Some
numerical experiments are provided to illustrate our theoretical analysis in Sect. 5 and the
last section contains some conclusions.
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2 Preliminaries

Definition 1 (Wiener 1993) A function u(x, t) is called a solution of Problem (1) if it satisfies
the conditions:

(i) u(x, t) is continuous in � × J .
(ii) ∂ku/∂xk and ∂ku/∂tk(k = 1, 2) exist and are continuous in � × J with the possible

exception of the points (x, n), where one-sided derivatives exist (n = 0, 1, 2, · · · ).
(iii) u(x, t) satisfies utt (x, t) = a2uxx (x, t) + buxx (x, [t]) in � × J with the possible

exception of the points (x, n), and conditions u(x, 0) = v(x), ut (x, 0) = w(x) in �

and u(x, t) = 0 on ∂� × J .

Lemma 1 (Wiener 1993) The zero solution of Problem (1) is asymptotically stable if and
only if

− a2 < b < 0. (2)

As we know, a collocation method is based on the principle of approximating the analytic
solution of given equation with an appropriate function belonging to a chosen finite dimen-
sional space, usually a piecewise polynomial which satisfies the equation exactly on a set of
specific points (called the set of collocation points). In this paper, we will concern with the
numerical solution of Problem (1) by a kind of particular method of collocation equipped
with Hermite piecewise-cubic polynomials with respect to space variable x at each time t .

Let δ = [x0, x1, · · · , xN ], where 0 = x0 < x1 < · · · < xN = 1 denote the regular
partitions of �i = [xi−1, xi ] with the steps hi = xi − xi−1 and h = max

1≤i≤N
(xi − xi−1). Set

time-size p = 1/m (m ≥ 1) and let Sr−1 be the piecewise polynomial spline space

Sr−1 = {ν ∈ C2(�̄) : ν |�i ∈ Pr−1(�i ), 1 ≤ i ≤ N }, (3)

where Pr−1(�i ) denotes the space of all (real) polynomials of degree no more than r − 1
when restricted to the set �i . When r = 4, the space S3 is commonly known as Hermite
piecewise-cubic space. The bases of the Hermite piecewise-cubic space are considered as
follows

φi (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(

1 + 2
x − xi

xi−1 − xi

)(
x − xi−1

xi − xi−1

)2

, x ∈ [xi−1, xi ],
(

1 + 2
x − xi

xi+1 − xi

)(
x − xi+1

xi − xi+1

)2

, x ∈ [xi , xi+1],
0, elsewhere,

ϕi (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(x − xi )

(
x − xi−1

xi − xi−1

)2

, x ∈ [xi−1, xi ],

(x − xi )

(
x − xi+1

xi − xi+1

)2

, x ∈ [xi , xi+1],
0, elsewhere,

i = 1, 2, . . . , N − 1

(4)

that is, S3 = span[φ0, ϕ0, . . . , φN , ϕN ] and dim(S3) = 2N + 2. Therefore, we need 2N + 2
relations to specify the numerical solution of Problem (1) at each time t . It’s obvious to see
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that the coefficient of φ0 and φN are 0 from the boundary conditions in Problem (1). For
convenience, let

S03 = span{ϕ0, φ1, ϕ1, . . . , φN−1, ϕN−1, ϕN } = span{	1,	2, . . . , 	2N }. (5)

The method of collocation requires that the remaining relations should be obtained by
having the differential equation satisfied at 2N points. Since there are N intervals �i , two
points are located in each interval subsequently. We choose the points in the following form

ξi,k1 = 1

2
(xi−1 + xi ) + (−1)k1

hi
2
√
3
, i = 1, 2, . . . , N , k1 = 1, 2, (6)

then xi−1 < ξi,1 < ξi,2 < xi .
We can denote a discrete inner product in C(�) and its associated norm by

〈 f , g〉i = 1

2

(
f (ξi,1)g(ξi,1) + f (ξi,2)g(ξi,2)

)
hi , | f |2i = 〈 f , f 〉i , (7)

and

〈 f , g〉 =
N∑

i=1

〈 f , g〉i , | f 2| = 〈 f , f 〉. (8)

Let Hs(�) be Sobolev space on� and |·|s is the related norm.Define H1
0 = {φ ∈ H1(�) :

φ = 0 on ∂�}. H1
0 (�) is the completion of C∞

0 (�) under L2(�)-norm ‖ · ‖ and denote

‖ f ‖ = ‖ f ‖L2 = ( f , f )
1
2 , ‖∇ f ‖ = ‖∇ f ‖L2 = (∇ f ,∇ f )

1
2 , (9)

where

‖ f ‖s =
⎛

⎝
∑

0≤|α|≤s

‖Dαu‖2
⎞

⎠

1
2

, ( f , g) =
∫

�

f (x)g(x)dx,

(∇ f ,∇g) =
∫

�

∂ f

∂x

∂g

∂x
dx, ∀ f , g ∈ L2(�).

(10)

By the Gauss type integration, we have

〈 f , g〉 = ( f , g), ∀ f , g ∈ P2N−1. (11)

3 Continuous-time collocationmethod

The continuous-time approximation is a differentiable map U (t) = U (·, t) : J̄ → S3,
belonging to S3 for each t , such that

Utt (ξi,k, t) = a2Uxx (ξi,k, t) + bUxx (ξi,k, [t]), i = 1, . . . , N , k = 1, 2, t ∈ J ,

U (ξi,k, 0) = v̄(ξi,k), Ut (ξi,k, 0) = w̄(ξi,k),

U (x0, t) = U (xN , t) = 0,

(12)

where v̄, w̄ are the S3-interpolation of v and w at the nodes ξi,k , respectively.
It is useful to introduce a continuous time discrete Galerkin procedure, whose solution

can be viewed as the solution of (12), that is

〈Utt (x, t) −Uxx (x, t) −Uxx (x, [t]), χ〉 = 0, χ ∈ S3. (13)
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According to (Douglas and Dupont 1974, Lemma 4.1), we know that the collocation
method (12) and the discrete Galerkin method (13) each posses a unique solution and these
solutions are identical if the processes start from the same initial values.

We write Problem (1) in weak form: Finding u: J̄ → H1
0 , application of Green’s formula

to the second term and third term gives

(utt (x, t), φ) + a2(∇u(x, t),∇φ) + b(∇u(x, [t]),∇φ) = 0,∀φ ∈ H1
0 , t > 0,

u(0) = v, ut (0) = w,
(14)

from (11) and (13), (14) is equivalent to the following Galerkin type scheme

(Utt (x, t), χ) + a2(∇U (x, t),∇χ) + b(∇U (x, [t]),∇χ) = 0,∀χ ∈ S3, t > 0. (15)

We introduce the Ritz projection R : H1
0 (�) → S3 as the orthogonal projection with

respect to the inner product (∇ϕ,∇χ), thus

(∇Rϕ,∇χ) = (∇ϕ,∇χ), ∀χ ∈ S3, f or ϕ ∈ H1
0 . (16)

Lemma 2 (Thomée 1986) For ϕ ∈ Hs ∩ H1
0 and 1 ≤ s ≤ r , if

‖ϕ − χ‖ + h‖∇(ϕ − χ)‖ ≤ Chs‖ϕ‖s, χ ∈ Sr−1 (17)

holds, then we have

‖Rϕ − ϕ‖ + h‖∇(Rϕ − ϕ)‖ ≤ Chs‖ϕ‖s, (18)

where C is a positive constant.

Since we discuss the test function in Hermite piecewise-cubic space, so let r = 4 in
Lemma 2.

3.1 Convergence analysis

Theorem 1 Let u and U be the solutions of (1) and (12), respectively. For t ∈ [n, n+ 1)(n ∈
Z), if ‖v̄ − v‖ ≤ Ch4‖v‖4 and ‖w̄ − w‖ ≤ Ch4‖w‖4, then

‖U (t) − u(t)‖

≤ C(t)h4
{

‖v‖4 + ‖w‖4 +
∫ t

0
‖us(s)‖ds +

∫ t

0

(∫ t

0
‖uss(s)‖24ds

) 1
2

dt

}

,
(19)

where C(t) is a function of t .

Proof From R(u)t t = Rutt , (14) and (15) we have

(utt (t) − Rutt (t), χ) =(Utt (t), χ) − ((Ru)t t (t), χ) + a2(∇U (t),∇χ)

− a2(∇Ru(t),∇χ) + b(∇U ([t]),∇χ) − b(∇RU ([t]),∇χ).
(20)

Denote

U (t) − u(t) = (U (t) − Ru(t)) + (Ru(t) − u(t)) � μ(t) + ν(t), (21)

then by (20) we get

(μt t (t), χ) + a2(∇μ(t),∇χ) + b(∇μ([t]),∇χ) = (−νt t (t), χ). (22)
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Now, we begin to estimate ν(t) and μ(t). For ν(t), t ∈ [n, n + 1), by Lemma 2 we have

‖ν(t)‖ = ‖Ru(t) − u(t)‖ ≤ Ch4‖u(t)‖4 = Ch4
∥
∥
∥
∥u(0) +

∫ t

0
usds

∥
∥
∥
∥
4

≤ Ch4
(

‖v‖4 +
∫ t

0
‖us‖4ds

)

. (23)

To estimate μ(t), we begin with (22) by taking χ = a2μt (t) + bμt ([t]), so
(μt t (t), a

2μt (t) + bμt ([t])) + (a2∇μ(t) + b∇μ([t]), a2∇μt (t) + b∇μt ([t]))
= −(νt t (t), a

2μt (t) + bμt ([t])),
(24)

further

(μt t (t), a
2μt (t) + bμt ([t])) + 1

2

d

dt

∥
∥a2∇μ(t) + b∇μ([t])∥∥2

= −(νt t (t), a
2μt (t) + bμt ([t])), (25)

then we derive

(μt t (t), a
2μt (t) + bμt (n)) ≤ ‖νt t (t)‖‖a2μt (t) + bμt (n)‖ (26)

and

a2

2

d

dt
‖μt (t)‖2 + b

d

dt
(μt (t), μt (n)) ≤ ‖νt t (t)‖‖a2μt (t) + bμt (n)‖. (27)

Integrating (27) from n to t , we get

a2

2
‖μt (t)‖2 − a2

2
‖μt (n)‖2 + b(μt (t), μt (n)) − b‖μt (n)‖2

≤
∫ t

n
‖νss(s)‖‖a2μs(s) + bμs(n)‖ds,

(28)

then

a2

2
‖μt (t)‖2 − a2

2
‖μt (n)‖2 − |b|δ1

2
‖μt (t)‖2 − |b|

2δ1
‖μt (n)‖2 − b‖μt (n)‖2

≤ a2δ2
2

∫ t

n
‖νss(s)‖2ds + a2

2δ2

∫ t

n
‖μs(s)‖2ds + |b|δ3

2

∫ t

n
‖νss(s)‖2ds

+ |b|
2δ3

∫ t

n
‖μs(n)‖2ds,

(29)

by Schwarz–Cauchy inequality

b(μt (t), μt (n)) ≤ |b|‖μt (t)‖‖μt (n)‖ ≤ |b|δ1
2

‖μt (t)‖2 + |b|
2δ1

‖μt (n)‖2, δ1 > 0,

‖νss(s)‖‖a2μs(s)‖ ≤ a2δ2
2

‖νss(s)‖2 + a2

2δ2
‖μs(s)‖2, δ2 > 0,

‖νss(s)‖‖bμs(n)‖ ≤ |b|δ3
2

‖νss(s)‖2 + |b|
2δ3

‖μs(n)‖2, δ3 > 0.

(30)
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Thus
(
a2 − |b|δ1

2

)

‖μt (t)‖2 ≤
(
a2

2
+ |b|

2δ1
+ |b| + |b|

2δ3
(t − n)

)

‖μt (n)‖2

+ a2δ2 + |b|δ3
2

∫ t

n
‖νss(s)‖2ds + a2

2δ2

∫ t

n
‖μs(s)‖2ds.

(31)

Let α = (a2 − |b|δ1)/2 and make a2 − |b|δ1 > 0 hold by δ1 > 0, (31) turns into

‖μt (t)‖2 ≤
(
a2

2α
+ |b|

2δ1α
+ |b|

α
+ |b|

2δ3α
(t − n)

)

‖μt (n)‖2

+ a2δ2 + |b|δ3
2α

∫ t

n
‖νss(s)‖2ds + a2

2δ2α

∫ t

n
‖μs(s)‖2ds.

(32)

Gronwall inequality implies that

‖μt (t)‖2 ≤
((

a2

2α
+ |b|

2δ1α
+ |b|

α
+ |b|

2δ3α
(t − n)

)

‖μt (n)‖2

+a2δ2 + |b|δ3
2α

∫ t

n
‖νss(s)‖2ds

)

e
a2
2αδ2

(t−n)

=
(
a2

2α
+ |b|

2δ1α
+ |b|

α
+ |b|

2δ3α
(t − n)

)

e
a2
2αδ2

(t−n)‖μt (n)‖2

+ a2δ2 + |b|δ3
2α

e
a2
2αδ2

(t−n)
∫ t

n
‖νss(s)‖2ds.

(33)

For convenience, denoting

β =
(
a2

2α
+ |b|

2δ1α
+ |b|

α
+ |b|

2δ3α

)

e
a2
2αδ2 , γ = a2δ2 + |b|δ3

2α
e

a2
2αδ2 , (34)

taking t = n + 1 we obtain

‖μt (n + 1)‖2 ≤β‖μt (n)‖2 + γ

∫ n+1

n
‖νss(s)‖2ds

≤β

(

β||μt (n − 1)||2 + γ

∫ n

n−1
||νss(s)||2ds

)

+ γ

∫ n+1

n
‖νss(s)‖2ds

=β2‖μt (n − 1)‖2 + βγ

∫ n

n−1
‖νss(s)‖2ds + γ

∫ n+1

n
‖νss(s)‖2ds

≤βn+1‖μt (0)‖2 + βnγ

∫ 1

0
‖νss(s)‖2ds + · · · + βγ

∫ n

n−1
‖νss(s)‖2ds

+ γ

∫ n+1

n
‖νss(s)‖2ds.

(35)

Furthermore, in view of (18) we have

‖μt (0)‖ = ‖w̄ − Rw‖ ≤ ‖w̄ − w‖ + ‖Rw − w‖ ≤ ‖w̄ − w‖ + Ch4‖w‖4 (36)

and

‖νt t (t)‖ = ‖Rutt (t) − utt (t)‖ ≤ Ch4‖utt (t)‖4, (37)
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then by (36) and (37), (35) gives

‖μt (n + 1)‖2 ≤ 2βn+1‖w̄ − w‖2 + βn+1Ch8‖w‖24 + βnγCh8
∫ 1

0
‖uss(s)‖24ds

+ · · · + βγCh8
∫ n

n−1
‖uss(s)‖24ds + γCh8

∫ n+1

n
‖uss(s)‖24ds, (38)

so

‖μt (t)‖2 ≤C(t)‖w̄ − w‖2 + C(t)h8‖w‖24 + C(t)h8
n−1∑

i=0

∫ i+1

i
‖uss(s)‖24ds

+ C(t)h8
∫ t

n
‖uss(s)‖24ds,

(39)

where C(t) is a function of t ∈ [n, n + 1).
Therefore, if ‖w̄ − w‖ ≤ Ch4‖w‖4, then

‖μt (t)‖ ≤ C(t)‖w̄ − w‖ + C(t)h4‖w‖4

+C(t)h4
(
n−1∑

i=0

∫ i+1

i
‖uss(s)‖24ds +

∫ t

n
‖uss(s)‖24ds

) 1
2

≤ C(t)h4
(

‖w‖4 +
(∫ t

0
‖uss(s)‖24ds

) 1
2
)

. (40)

Due to

‖μ(t)‖ =
∥
∥
∥
∥θ(0) +

∫ t

0
μs(s)ds

∥
∥
∥
∥ ≤ ‖μ(0)‖ +

∫ t

0
‖μs(s)‖ds (41)

and

‖μ(0)‖ = ‖v̄ − Rv‖ ≤ ‖v̄ − v‖ + ‖Rv − v‖ ≤ ‖v̄ − v‖ + Ch4‖v‖4, (42)

we get

‖μ(t)‖ ≤ C(t)h4 (‖v‖4 + ‖w‖4) + C(t)h4
∫ t

0

(∫ t

0
‖uss(s)‖24ds

) 1
2

dt . (43)

Hence

‖U (t) − u(t)‖ ≤ ‖μ(t)‖ + ‖ν(t)‖

≤ C(t)h4
{

‖v‖4 + ‖w‖4 +
∫ t

0
‖us(s)‖4ds +

∫ t

0

(∫ t

0
‖uss(s)‖24ds

) 1
2

dt

}

.
(44)

So U (t) → u(t) as h → 0. The proof is completed. ��

3.2 Stability analysis

In this subsection, we apply Fourier analysis method to discuss the numerical stability.
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Definition 2 If any solution U (x, t) of (12) satisfies

lim
t→∞U (x, t) = 0, x ∈ �, (45)

then the zero solution of (12) is asymptotically stable.

Using the bases of space S03 , we have

U (ξi,k1 , t) =
2N∑

j=1

β j (t)	 j (ξi,k1), (46)

where β j (t) are undetermined coefficients.
Let

β j (t)	 j (ξi,k1) = ζ j (t)e
ĩcξi,k1 , j = 1, 2, . . . , 2N , (ĩ)2 = −1, c = 1, 2, . . . , N , (47)

substituting (47) into the equation in (12) yields

2N∑

j=1

ζ ′′
j (t)e

ĩcξi,k1 = −a2c2
2N∑

j=1

ζ j (t)e
ĩcξi,k1 − bc2

2N∑

j=1

ζ j ([t])eĩcξi,k1 , (48)

that is

ζ ′′(t) = −a2c2ζ(t) − bc2ζ([t]), (49)

where ζ(t) = (ζ1(t), ζ2(t), . . . , ζ2N (t))T .
For convenience, we introduce z(t) = ζ ′(t), so (49) reduces to

W ′(t) = A1W (t) + A2W ([t]), (50)

where

W (t) =
(

ζ(t)
z(t)

)

, A1 =
(

O I
−a2c2 I O

)

, A2 =
(

O O
−bc2 I O

)

. (51)

From (50) we obtain

W (t) = M(t − n)W (n), t ∈ [n, n + 1), (52)

where

M(t − n) = eA1(t−n) + (eA1(t−n) − I )A−1
1 A2. (53)

Let t = n + 1, (53) gives

W (n + 1) = M(1)W (n), (54)

hereM(1) is called as a growthmatrix in Fourier analysismethod, it is convenient to introduce
the following lemma to verify max|λM(1)| < 1.

Lemma 3 (Smith 1985) The sets of eigenvalues of the matrix Q consist of all the eigenvalues
of the following family of matrices

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Q11 Q12 Q13 · · · Q1n

Q21 Q22 Q23 · · · Q2n
. . .

. . .
. . .

Q(n−1)1 · · · Q(n−1)(n−2) Q(n−1)(n−1) Q(n−1)n
Qn1 · · · Qn(n−2) Qn(n−1) Qnn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (55)
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Lemma 4 (Kosmala et al. 2000) The polynomial x2 − d1x − d2(d1, d2 ∈ R) is Schur poly-
nomial if and only if |d1| < 1 − d2 < 2.

Theorem 2 Under the condition (2), the zero solution of (12) is asymptotically stable.

Proof By the Taylor expansion of matrix exponential, M(1) can be written in following
fashion

M(1) =
(

b
a2

(cos(acI ) − I ) + cos(acI ) (acI )−1 sin(acI )
−( b

a2
+ 1)(acI ) sin(acI ) cos(acI )

)

. (56)

From Lemma 3, the characteristic equation of M(1) is
∣
∣
∣
∣
∣
∣

λ −
(

b
a2

(cos(ac) − 1) + cos(ac)
)

−(ac)−1 sin(ac)
(

b
a2

+ 1
)

(ac) sin(ac) λ − cos(ac)

∣
∣
∣
∣
∣
∣
= 0, (57)

where ac is the eigenvalue of acI .
Thus

λ2 −
(

b

a2
cos(ac) − b

a2
+ 2 cos(ac)

)

λ + 1 + b

a2
(1 − cos(ac)) = 0. (58)

It is easy to verify

b

a2
cos(ac) − b

a2
+ 2 cos(ac) < 2 + b

a2
(1 − cos(ac)),

b

a2
(cos(ac) − 1) + 2 cos(ac) > − b

a2
(1 − cos(ac)) − 2,

and

2 + b

a2
(1 − cos(ac)) < 2.

Therefore, in view of Lemma 4 we get max|λM(1)| < 1. The proof is finished. ��

4 Discrete-time collocationmethod

Let {tn} be the uniform partition of [0, T ] with tn = np (n = 0, 1, 2, · · · ), Un be the
approximation in S3 of u(t) at tn and denote ∂t tUn = (Un+1 − 2Un + Un−1)/p2, then (1)
can be written as

Un+1(ξi,k) − 2Un(ξi,k) +Un(ξi,k)

p2
= a2Un

xx (ξi,k) + bUn,p
xx (ξi,k),

i = 1, 2, . . . , N , k = 1, 2,

U 0(ξi,k) = v̄(ξi,k),
U 1(ξi,k) −U 0(ξi,k)

p
= w̄(ξi,k),

Un(x0) = Un(xN ) = 0,

(59)

where Un,p
xx denotes a given approximation to uxx (x, [tn]), n = 1, 2, 3, . . ..

Using the similar technique as in Sect. 3.1 apply the central Euler Galerkin method to (1)
gives

(∂t tU
n, χ) + a2(∇Un,∇χ) + b(∇Un,p,∇χ) = 0,∀χ ∈ S3. (60)
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Let n = km + l, k = 0, 1, 2, . . . , l = 1, 2, . . . ,m, then Un,p can be written as Ukm

according to Definition 1. So (60) turns into

(∂t tU
km+l , χ) + a2(∇Ukm+l ,∇χ) + b(∇Ukm,∇χ) = 0,∀χ ∈ S3, (61)

that is

(Ukm+l+1, χ) = 2(Ukm+l , χ) − a2 p2(∇Ukm+l ,∇χ)

−(Ukm+l−1, χ) − bp2(∇Ukm,∇χ). (62)

4.1 Convergence analysis

Theorem 3 Let Un and u be the solution of (59) and (1), respectively. If ‖v̄−v‖ ≤ Ch4‖v‖4,
then

‖Un − u(tn)‖ ≤Ch4
(

‖v‖4 + p

6

n∑

i=1

∫ ti+1

ti−1

‖uttt‖4dt +
n∑

i=1

‖u(ti )‖4 +
∫ tn

0
‖us‖4ds

)

+ Cp

(
n∑

i=1

1

6

∫ ti+1

ti−1

‖utttt‖dt
)

,

(63)

where C is a positive constant.

Proof Similar to (20) and (21), from (14) and (61) we have

(∂t tμ
km+l , χ) + a2(∇μkm+l ,∇χ) + b(∇μkm,∇χ) = −(ηkm+l , χ), χ ∈ S3, (64)

where

ηkm+l = R∂t t u(tkm+l) − utt (tkm+l)

= (R − I )∂t t u(tkm+l) + (∂t t u(tkm+l) − utt (tkm+l))

� ηkm+l
1 + ηkm+l

2 ,

Ukm+l − u(tkm+l) = (Ukm+l − Ru(tkm+l)) + (Ru(tkm+l) − u(tkm+l))

� μkm+l + νkm+l .

(65)

The following work mainly focuses on the estimates for μkm+l and νkm+l . We notice that
νkm+l = ν(tkm+l) is bounded as claimed in (23), so we only to estimate μkm+l as follows.

Substituting χ = a2(μkm+l+1 − μkm+l) + bμkm into (64), Schwarz-Cauchy inequality
gives

(
a2
(
μkm+l+1 − μkm+l

)
, μkm+l − μkm+l−1

)
≤ a2s1

2

∥
∥
∥μ

km+l+1 − μkm+l
∥
∥
∥
2

+ a2

2s1

∥
∥
∥μ

km+l − μkm+l−1
∥
∥
∥
2
,

(
μkm+l+1 − μkm+l , bμkm

)
≤ |b|s2

2

∥
∥
∥μ

km+l+1 − μkm+l
∥
∥
∥
2 + |b|

2s2

∥
∥
∥μ

km
∥
∥
∥
2
,

(
μkm+l − μkm+l−1, bμkm

)
≤ |b|s3

2

∥
∥
∥μ

km+l − μkm+l−1
∥
∥
∥
2 + |b|

2s3

∥
∥
∥μ

km
∥
∥
∥
2
,

(
a2∇
(
μkm+l+1 − μkm+l

)
, a2∇μkm+l

)
≤ a4

2s4

∥
∥
∥∇
(
μkm+l+1 − μkm+l

)∥
∥
∥
2
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+ a4s4
2

∥
∥
∥∇μkm+l

∥
∥
∥
2
,

(
a2∇μkm+l , b∇μkm

)
≤ a2|b|s5

2

∥
∥
∥∇μkm+l

∥
∥
∥
2 + a2|b|

2s5

∥
∥
∥∇μkm

∥
∥
∥
2
,

(
a2∇
(
μkm+l+1 − μkm+l

)
, b∇μkm

)
≤ a2|b|s6

2

∥
∥
∥∇
(
μkm+l+1 − μkm+l

)∥
∥
∥
2

+ a2|b|
2s6

∥
∥
∥∇μkm

∥
∥
∥
2
,

a2 p2
∥
∥
∥η

km+l
∥
∥
∥

∥
∥
∥μ

km+l+1 − μkm+l
∥
∥
∥ ≤ a2 p2

2s7

∥
∥
∥μ

km+l+1 − μkm+l
∥
∥
∥
2

+ a2 p2s7
2

∥
∥
∥η

km+l
∥
∥
∥
2
,

|b|p2
∥
∥
∥η

km+l
∥
∥
∥

∥
∥
∥μ

km
∥
∥
∥ ≤ |b|p2s8

2

∥
∥
∥η

km+l
∥
∥
∥
2 + |b|p2

2s8

∥
∥
∥μ

km
∥
∥
∥
2
,

si > 0, i = 1, 2, . . . , 8, (66)

then we have

a2
∥
∥
∥μ

km+l+1 − μkm+l
∥
∥
∥
2 ≤ a2s1

2

∥
∥
∥μ

km+l+1 − μkm+l
∥
∥
∥
2 + a2

2s1

∥
∥
∥μ

km+l − μkm+l−1
∥
∥
∥
2

+ | b | s2
2

∥
∥
∥μ

km+l+1 − μkm+l
∥
∥
∥
2 + |b|

2s2

∥
∥
∥μ

km
∥
∥
∥
2 + |b|

2s3

∥
∥
∥μ

km
∥
∥
∥
2

+ |b|s3
2

∥
∥
∥μ

km+l − μkm+l−1
∥
∥
∥
2 + a4

2s4

∥
∥
∥∇
(
μkm+l+1 − μkm+l

)∥
∥
∥
2 + a4s4

2

∥
∥
∥∇μkm+l

∥
∥
∥
2

+ a2|b|s5
2

∥
∥
∥∇μkm+l

∥
∥
∥
2 + a2|b|

2s5

∥
∥
∥∇μkm

∥
∥
∥
2 + a2|b|s6

2

∥
∥
∥∇
(
μkm+l+1 − μkm+l

)∥
∥
∥
2

+ a2|b|
2s6

∥
∥
∥∇μkm

∥
∥
∥
2 + b2

∥
∥
∥∇μkm

∥
∥
∥
2 + a2 p2s7

2

∥
∥
∥η

km+l
∥
∥
∥
2 + a2 p2

2s7

∥
∥
∥μ

km+l+1 − μkm+l
∥
∥
∥
2

+ |b|p2s8
2

∥
∥
∥η

km+l
∥
∥
∥
2 + |b|p2

2s8

∥
∥
∥μ

km
∥
∥
∥
2
, (67)

that is
(

a2 − a2s1
2

− |b|s2
2

− a2 p2

2s7

)∥
∥
∥μ

km+l+1 − μkm+l
∥
∥
∥
2

≤
(
a2

2s1
+ |b|s3

2

)∥
∥
∥μ

km+l − μkm+l−1
∥
∥
∥
2 +
( |b|
2s3

+ |b|p2
2s8

)∥
∥
∥μ

km
∥
∥
∥
2

+
(
a4s4
2

+ a2|b|s5
2

)∥
∥
∥∇μkm+l

∥
∥
∥
2 +
(
a2|b|
2s5

+ a2|b|
2s6

+ b2
)∥
∥
∥∇μkm

∥
∥
∥
2

+
(
a4

2s4
+ a2|b|s6

2

)∥
∥
∥∇(μkm+l+1 − μkm+l)

∥
∥
∥
2 +
(
a2 p2s7

2
+ |b|p2s8

2

)∥
∥
∥η

km+l
∥
∥
∥
2
.

(68)

From (68), we notice the items ‖∇ (μkm+l+1 − μkm+l
) ‖2, ‖∇μkm+l‖2 and ‖∇μkm‖2

should be estimated so that the recurrence relation between
∥
∥μkm+l+1 − μkm+l

∥
∥ and

∥
∥μkm+l − μkm+l−1

∥
∥ can be obtained. Substituting χ = μkm+l and χ = bμkm into (64),
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respectively, we have

a2‖∇μkm+l‖2 ≤‖ηkm+l‖‖μkm+l‖ + |b|‖∇μkm‖‖∇μkm+l‖ + ‖∂t tμkm+l‖‖μkm+l‖ (69)

and

b2‖∇μkm‖2 ≤|b|‖ηkm+l‖‖μkm‖ + a2|b|‖∇μkm+l‖‖∇μkm‖ + |b|‖∂t tμkm+l‖‖μkm‖. (70)
By Poincaré inequality

‖μkm+l‖ ≤ C2‖∇μkm+l‖,C2 = C2(�),

‖μkm‖ ≤ C̃2‖∇μkm‖, C̃2 = C̃2(�),
(71)

we obtain the value range of ‖∇μkm+l‖2 in (69) and ‖∇μkm‖2 in (70) related to items

‖ηkm+l‖, ‖μkm+l+1 − μkm+l‖, ‖μkm+l − μkm+l−1‖. (72)

Moreover, subtracting a2(∇μkm+l+1,∇χ) on both sides of (23) and taking χ =
μkm+l+1 + μkm+l and χ = μkm+l+1 − μkm+l , respectively, we derive

a2
∥
∥
∥∇
(
μkm+l+1 − μkm+l

)∥
∥
∥
2

≤
∥
∥
∥η

km+l
∥
∥
∥

∥
∥
∥μ

km+l+1 − μkm+l
∥
∥
∥

+
∥
∥
∥∂t tμ

km+l
∥
∥
∥

∥
∥
∥μ

km+l+1 − μkm+l
∥
∥
∥

+ a2
∥
∥
∥∇μkm+l+1

∥
∥
∥

∥
∥
∥∇(μkm+l+1 − μkm+l)

∥
∥
∥

+ |b|
∥
∥
∥∇μkm

∥
∥
∥

∥
∥
∥∇
(
μkm+l+1 − μkm+l

)∥
∥
∥ (73)

and

a2
∥
∥
∥∇μkm+l+1

∥
∥
∥
2 − a2

∥
∥
∥∇μkm+l

∥
∥
∥
2

≤
∥
∥
∥η

km+l
∥
∥
∥

∥
∥
∥μ

km+l+1 + μkm+l
∥
∥
∥+
∥
∥
∥∂t tμ

km+l
∥
∥
∥

∥
∥
∥μ

km+l+1 + μkm+l
∥
∥
∥

+ a2
∥
∥
∥∇μkm+l+1

∥
∥
∥

∥
∥
∥∇
(
μkm+l+1 + μkm+l

)∥
∥
∥

+ |b|
∥
∥
∥∇μkm

∥
∥
∥

∥
∥
∥∇(μkm+l+1 + μkm+l)

∥
∥
∥ , (74)

so the value range of item ‖∇(μkm+l+1 − μkm+l)‖2 in (73) is related to items

‖ηkm+l‖, ‖μkm+l+1 − μkm+l‖, ‖μkm+l − μkm+l−1‖. (75)

And we can handle (73) and (74) with corresponding Poincaré inequality like (69) and (70).
Based on the above discussion on ‖∇(μkm+l+1 − μkm+l)‖2, ‖∇μkm+l‖2 and ‖∇μkm‖2,

(68) turns into
∥
∥
∥μ

km+l+1 − μkm+l
∥
∥
∥
2 ≤ r1

∥
∥
∥μ

km+l − μkm+l−1
∥
∥
∥
2 + r2

∥
∥
∥η

km+l
∥
∥
∥
2

≤ r1

(

r1
∥
∥
∥μ

km+l−1 − μkm+l−2
∥
∥
∥
2 + r2

∥
∥
∥η

km+l−1
∥
∥
∥
2
)

+ r2
∥
∥
∥η

km+l
∥
∥
∥
2
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= r21

∥
∥
∥μ

km+l−1 − μkm+l−2
∥
∥
∥
2 + r1r2

∥
∥
∥η

km+l−1
∥
∥
∥
2

+ r2
∥
∥
∥η

km+l
∥
∥
∥
2

≤ rl1

∥
∥
∥μ

km+1 − μkm
∥
∥
∥
2 +

l∑

i=1

rl−i
1 r2

∥
∥
∥η

km+i
∥
∥
∥
2

≤ rl1

∥
∥
∥μ

km+1
∥
∥
∥
2 + rl1

∥
∥
∥μ

km
∥
∥
∥
2 +

l∑

i=1

rl−i
1 r2

∥
∥
∥η

km+i
∥
∥
∥
2
, (76)

where r1, r2 > 0 and they are determined by (68)–(71), (73) and (74).
Hence, we have

∥
∥
∥μ

km+l+1
∥
∥
∥ ≤
∥
∥
∥μ

km+l
∥
∥
∥+ rl1

∥
∥
∥μ

km+1
∥
∥
∥+ rl1

∥
∥
∥μ

km
∥
∥
∥+

l∑

i=1

rl−i
1 r2

∥
∥
∥η

km+i
∥
∥
∥

≤
∥
∥
∥μ

km+1
∥
∥
∥+ lr l1

∥
∥
∥μ

km+1
∥
∥
∥+ lr l1

∥
∥
∥μ

km
∥
∥
∥+ l

l∑

i=1

rl−i
1 r2

∥
∥
∥η

km+i
∥
∥
∥

=
(
1 + lr l1

) ∥
∥
∥μ

km+1
∥
∥
∥+ lr l1

∥
∥
∥μ

km
∥
∥
∥+ l

l∑

i=1

rl−i
1 r2

∥
∥
∥η

km+i
∥
∥
∥

≤
(
1 + lr l1

)2 ∥∥
∥μ

km
∥
∥
∥+ l

(
1 + lr l1

)
rl1

∥
∥
∥μ

km
∥
∥
∥+ l(1 + lr l1)

l∑

i=1

rl−i
1 r2

∥
∥
∥η

km+i
∥
∥
∥

+ lr l1

∥
∥
∥μ

km
∥
∥
∥+ l

l∑

i=1

rl−i
1 r2

∥
∥
∥η

km+i
∥
∥
∥

=
((

1 + lr l1

)2 + l
(
1 + lr l1

)
rl1 + lr l1

)∥
∥
∥μ

km
∥
∥
∥+ l

(
2 + lr l1

) l∑

i=1

rl−i
1 r2

∥
∥
∥η

km+i
∥
∥
∥ .

(77)

Denote

K1 =
(
1 + (m − 1)rm−1

1

)2 + (m − 1)
(
1 + (m − 1)rm−1

1

)
rm−1
1 + (m − 1)rm−1

1 ,

K2 =(m − 1)
(
2 + (m − 1)rm−1

1

)
,

then (77) gives

∥
∥
∥μ

(k−1)m
∥
∥
∥ ≤K1

∥
∥
∥μ

km
∥
∥
∥+ K2

m∑

i=2

rm−i
1 r2

∥
∥
∥η

km+i−1
∥
∥
∥

≤K 2
1

∥
∥
∥μ

(k−1)m
∥
∥
∥+ K1K2

m∑

i=2

rm−i
1 r2

∥
∥
∥η

(k−1)m+i−1
∥
∥
∥

+ K2

m∑

i=2

rm−i
1 r2

∥
∥
∥η

km+i−1
∥
∥
∥
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≤Kk+1
1

∥
∥
∥μ

(0)
∥
∥
∥+ Kk

1K2

m∑

i=2

rm−i
1 r2

∥
∥
∥η

i−1
∥
∥
∥

+ · · · + K2

m∑

i=2

rm−i
1 r2

∥
∥
∥η

km+i−1
∥
∥
∥ , (78)

here μ(0) = μ(0) is bounded as desired in (42). We notice that

ηi1 =(R − I )∂t t u(ti )

=(R − I )p−2(u(ti+1) − 2u(ti ) + u(ti−1))

= 1

6p2

(∫ ti

ti−1

(t − ti−1)
3(R − I )utttdt −

∫ ti+1

ti
(t − ti+1)

3(R − I )utttdt

+6p2(R − I )u(ti )
)
,

(79)

so

‖ηi1‖ ≤ 1

6p2

(

p3
∫ ti

ti−1

‖(R − I )uttt‖ dt + p3
∫ ti+1

ti
‖(R − I )uttt‖ dt + 6p2 ‖(R − I )u(ti )‖

)

≤1

6

(

p
∫ ti

ti−1

Ch4 ‖uttt‖4 dt + p
∫ ti+1

ti
Ch4 ‖uttt‖4 dt + 6Ch4 ‖u(ti )‖4

)

=Ch4
(
p

6

∫ ti+1

ti−1

‖uttt‖4 dt + ‖u(ti )‖4
)

.

(80)

Further

ηi2 = ∂t t u(ti ) − utt (ti )

= 1

p2
(u(ti+1) − 2u(ti ) + u(ti−1) − p2utt (ti ))

= 1

6p2

(∫ ti

ti−1

(t − ti−1)
3utttt dt −

∫ ti+1

ti
(t − ti+1)

3uttttdt

)

,

(81)

so

‖ηi2‖ = 1

6p2

∥
∥
∥
∥

∫ ti

ti−1

(t − ti−1)
3utttt dt −

∫ ti+1

ti
(t − ti+1)

3uttttdt

∥
∥
∥
∥

≤ 1

6p2

(

p3
∫ ti

ti−1

‖utttt‖dt + p3
∫ ti+1

ti
‖utttt‖dt

)

≤ p

6

∫ ti+1

ti−1

‖utttt‖dt .
(82)

Thus together with (23) we have
∥
∥Un − u(tn)

∥
∥ ≤ ∥∥νn∥∥+ ∥∥μn

∥
∥

≤ Ch4
(

‖v‖4 + p

6

n∑

i=1

∫ ti+1

ti−1

‖uttt‖4dt +
n∑

i=1

‖u(ti )‖4 +
∫ tn

0
‖us‖4ds

)

+Cp

(
n∑

i=1

1

6

∫ ti+1

ti−1

‖utttt‖dt
)

. (83)
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Therefore, Un → u(tn) as h → 0 and p → 0. This completes the proof. ��

4.2 Stability analysis

In this subsection, the stability of numerical scheme (59) is analyzed with Fourier analysis
method in analogy with continuous-time collocation method.

Definition 3 If any solution Un of (59) satisfies

lim
n→∞Un = 0, x ∈ �, (84)

then the zero solution of (59) is asymptotically stable.

Similar with (46) and (47), we take

Un(ξi,k1) =
2N∑

j=1

βn
j 	 j (ξi,k1), (85)

where βn
j are unknown coefficients and

βn
j 	 j (ξi,k1) = ζ n

j e
ĩcξi,k1 , j = 1, 2, · · · , 2N , (ĩ)2 = −1, c = 1, 2, · · · , N , (86)

and the first part of (59) can be written as

2N∑

j=1

ζ km+l+1
j =

2N∑

j=1

(2 − a2c2 p2)ζ km+l
j −

2N∑

j=1

ζ km+l−1
j −

2N∑

j=1

bc2ζ km
j . (87)

Since (87) holds for all k ≥ 1, we derive that

ζ km+l+1
j = (2 − a2c2 p2)ζ km+l

j − ζ km+l−1
j − bc2ζ km

j . (88)

Let zkm+l+1
j = ζ km+l

j and Wkm+l+1 = (ζ km+l+1
j , zkm+l+1

j )T , so (88) becomes

Wkm+l+1 = CWkm+l + DWkm, (89)

where

C =
(
2 − a2c2 p2 −1

1 0

)

, D =
(−bc2 p2 0

0 0

)

. (90)

Therefore, from (89) we derive

Wkm+l+1 = CWkm+l + DWkm

= C2Wkm+l−1 + (C + I )DWkm

=
(
Cl+1 + (Cl+1 − I )(C − I )−1D

)
Wkm, (91)

that is

W (k+1)m = MWkm, (92)

where M = Cm + (Cm − I )(C − I )−1D.
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Theorem 4 Under the condition (2), if

4

a2N 2 = min

{
4

a2c2

}

< p2 < max

{
4

a2c2

}

= 4

a2
(93)

for m is even or

p2 > min

{
4

a2c2

}

= 4

a2N 2 (94)

for m is odd, then the zero solution of (59) is asymptotically stable.

Proof As we know, the zero solution of (59) is asymptotically stable if and only if the
eigenvalue of growth matrix satisfies max|λM | < 1, where M is defined in (92). From
Lemma 3 we know the eigenvalues of C consist of the roots of the following equation

λ2 − (2 − a2c2 p2)λ + 1 = 0. (95)

It is worthy noticing that neither λ = 0 nor λ = 1 is the root of (95). For convenience,
denote

f (λ) = λ2 − (2 − a2c2 p2)λ + 1,

so the symmetry axis of f (λ) is

λ̄ = 2 − a2c2 p2

2
.

(i) When m is even, we can obtain f (λ̄) < 0 from p2 > min
{

4
a2c2

}
, while f (0) = 1 > 0

and f (1) = a2c2 p2 > 0 hold. In addition, p2 < max
{

4
a2c2

}
guarantees f (−1) > 0 so

the root of (95) exists in (0,1) and (−1, 0). Therefore, we get 0 < |λ| < 1.
(ii) When m is odd, from (94) we get f (λ̄) < 0 which implies the root of (95) lies in (0, 1).

Hence, we obtain 0 < λ < 1.

Further, we obtain the eigenvalues of (C − I )−1D are λ1 = 0 and λ2 = b/a2. Therefore,
we have

max|λM | = max|(λC )m + ((λC )m − 1
)
λ(C−I )−1D|

≤ max(|(λC )m | + |(λC )m − 1||λ(C−I )−1D|)
< max(|(λC )m | + |(λC )m − 1|)
= max((λC )m + 1 − (λC )m) = 1, (96)

which completes the proof. ��

5 Numerical experiments

In this section, we present some numerical simulations based on Hermite piecewise-cubic
polynomials to verify the corresponding theoretical results.

Consider the following problem

utt (x, t) = 9uxx (x, t) − uxx (x, [t]), (x, t) ∈ [0, 1] × (0,+∞),

u(x, 0) = sin(πx), ut (x, 0) = 0, x ∈ [0, 1],
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u(0, t) = u(1, t) = 0, t ∈ (0,+∞). (97)

It is easy to check that condition (2) holds.Moreover, according to themethod of separation
of variables, we obtain the analytic solutions of (97) is the first component of

ũ(x, t) = sin(πx)G(t − [t])G[t](1)b1, (98)

where b1 = (1, 0)T and

G(t) =
(

(1 + ba−2) cos(aπ t) − ba−2 (aπ)−1 sin(aπ t)
−(ba−2 + 1)(aπ) sin(aπ t) cos(aπ t)

)

, (99)

in fact, when t is an integer, ũ(x, t) = sin(πx)(G(1))t b1.
Since φi (0) = φi (1) = 0, substituting

U (ξi,k1 , t) = β1(t)	1(ξi,k1) + β2(t)	2(ξi,k1) + · · · + β2N (t)	2N (ξi,k1) (100)

and

Un(ξi,k1) = βn
1	1(ξi,k1) + βn

2	2(ξi,k1) + · · · + βn
2N	2N (ξi,k1) (101)

into (12) and (59), respectively, where βi (t) and βn
i are undetermined coefficients, then we

obtain the continuous-time collocation scheme

B1β
′′
(t) = a2B2β(t) + bB2β([t]) (102)

and the discrete-time collocation scheme

B1β
km+l+1 = (2B1 + a2 p2B2)β

km+l − B1β
km+l−1 + bp2B2β

km, (103)

where the coefficient matrices B1 = (	 j (ξi,k1)) and B2 = (	
′′
j (ξi,k1)) are following almost

block diagonal form with dimension 2N

B1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

B1,1

B1,2
. . .

B1,N−1

B1,N

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, B2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

B2,1

B2,2
. . .

B2,N−1

B2,N

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (104)

here

B1,1 =
(

	1(ξ0,1) 	2(ξ0,1) 	3(ξ0,1)

	1(ξ0,2) 	2(ξ0,2) 	3(ξ0,2)

)

,

B1,2 =
(

	2(ξ1,1) 	3(ξ1,1) 	4(ξ1,1) 	5(ξ1,1)

	2(ξ1,2) 	3(ξ1,2) 	4(ξ1,2) 	5(ξ1,2)

)

,

B1,N−1 =
(

	2N−4(ξN−2,1) 	2N−3(ξN−2,1) 	2N−2(ξN−2,1) 	2N−1(ξN−2,1)

	2N−4(ξN−2,2) 	2N−3(ξN−2,2) 	2N−2(ξN−2,2) 	2N−1(ξN−2,2)

)

,

B1,N =
(

	2N−2(ξN−1,1) 	2N−1(ξN−1,1) 	2N (ξN−1,1)

	2N−2(ξN−1,2) 	2N−1(ξN−1,2) 	2N (ξN−1,2)

)

,

B2,1 =
(

	
′′
1(ξ0,1) 	

′′
2(ξ0,1) 	

′′
3(ξ0,1)

	
′′
1(ξ0,2) 	

′′
2(ξ0,2) 	

′′
3(ξ0,2)

)

,

B2,2 =
(

	
′′
2(ξ1,1) 	

′′
3(ξ1,1) 	

′′
4(ξ1,1) 	

′′
5(ξ1,1)

	
′′
2(ξ1,2) 	

′′
3(ξ1,2) 	

′′
4(ξ1,2) 	

′′
5(ξ1,2)

)

,
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Table 1 Error estimations of
continuous-time collocation
scheme for Problem (97) at t = 2

h AE2 Order AE∞ Order

1/4 1.7477e−4 – 2.4717e−4 –

1/8 1.1882e−5 3.8787 1.6803e−5 3.8787

1/16 7.4190e−7 4.0014 1.0491e−6 4.0014

1/32 4.6176e−8 4.0060 6.5302e−8 4.0060

Table 2 Error estimations of
continuous-time collocation
scheme for Problem (97) at t = 3

h AE2 Order AE∞ Order

1/4 1.4116e−4 – 1.9963e−4 –

1/8 9.4990e−6 3.8934 1.3434e−5 3.8934

1/16 5.7740e−7 4.0401 8.1657e−7 4.0401

1/32 3.6047e−8 4.0016 5.0978e−8 4.0016

B2,N−1 =
(

	
′′
2N−4(ξN−2,1) 	

′′
2N−3(ξN−2,1) 	

′′
2N−2(ξN−2,1) 	

′′
2N−1(ξN−2,1)

	
′′
2N−4(ξN−2,2) 	

′′
2N−3(ξN−2,2) 	

′′
2N−2(ξN−2,2) 	

′′
2N−1(ξN−2,2)

)

,

B2,N =
(

	
′′
2N−2(ξN−1,1) 	

′′
2N−1(ξN−1,1) 	

′′
2N (ξN−1,1)

	
′′
2N−2(ξN−1,2) 	

′′
2N−1(ξN−1,2) 	

′′
2N (ξN−1,2)

)

. (105)

In continuous-time collocation scheme and discrete-time collocation scheme, the order of
convergence is defined as

order = log(AE∗(hi )/AE∗(hi+1))

log(hi/hi+1)
, (106)

where AE∗(hi ) is the error calculated in L∞ norm and L2 norm by the following formulas
when taking step-size hi and ∗ represents 2-norm or ∞-norm:

L∞ = ‖u −U‖L∞ = max
0≤i≤N

|u(xi , t) −U (xi , t)|, (107)

L2 = ‖u −U‖L2 =
√∫

�

(u −U )2dx ≈
√
√
√
√h

N−1∑

i=1

(u(xi , t) −U (xi , t))2. (108)

For convenience,we take spatial step h = 1/N . Firstly,we consider the case of continuous-
time collocation scheme. In Table 1 and Table 2 we list AE∗ in different norms and their
order of convergence for different h, respectively. From these Tables we can see that the
continuous-time collocation scheme has a good convergence, which validates the theoretical
results in Theorem 1. Moreover, in Figs. 1 and 2 we plot the numerical solutions of the
continuous-time collocation scheme. These two figures illustrate that the continuous-time
collocation scheme can achieve unconditional stability, which coincides Theorem 2 well.

Secondly, we consider the case of the discrete-time collocation scheme. We choose the
time step p = 1/N 4 as we expect to obtain one-order accuracy in time direction and four-
order accuracy in space direction, respectively. The AE∗ in two norms and their order of
convergence of the discrete-time collocation scheme at t = 2 and t = 3 are shown in Table
3 and Table 4, which are in accordance with Theorem 3. Moreover, what are shown in Table
5 and Table 6 are comparisons of the absolute error (AE) between numerical solution and
analytic solution with the discrete-time collocation scheme (DTCS), finite element method
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Fig. 1 The continuous-time collocation numerical solutions of Problem (97) with N = 40
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Fig. 2 The continuous-time collocation numerical solutions of Problem (97) with N = 70

(FEM) (Liang et al. 2010b) and Crank-Nicolson method (CNM) by different spatial steps
and time steps. Meanwhile, the comparison results are plotted in Figs. 3 and 4 either. It is not
difficult to see that the AE of discrete-time collocation scheme is relatively smaller than those
of finite element method and Crank-Nicolson method for the same step-size and the discrete-
time collocation scheme can achieve same error magnitude with lower computational cost
than other methods, which can reflect that the discrete-time collocation scheme possesses
better accuracy. Further, Figs. 5 and 6 are presented to describe the stability of numerical
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Fig. 3 Error curve for three methods at (1/4,2)
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Fig. 4 Error curve for three methods at (1/2,3)

solution under the discrete-time situation by different time steps. The two figures are in
accordance with Theorem 4. Some detailed analysis are presented as follows.

When N = 10,m = 120 and N = 15,m = 180, then

4

a2N 2 = 0.0044 < p2 = 0.0100 <
4

a2
= 0.4444
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Fig. 5 The discrete-time collocation numerical solutions of Problem (97) with N = 10, m = 120
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Fig. 6 The discrete-time collocation numerical solutions of Problem (97) with N = 15, m = 180

and

p2 = 0.0044 >
4

a2N 2 = 0.0029,

that is, (93) and (94) hold. So the numerical solutions of Problem (97) are asymptotically
stable.
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Table 3 Error estimations of
discrete-time collocation scheme
for Problem (97) at t = 2

h p AE2 Order AE∞ Order

1/4 1/256 1.3684e−4 – 1.9351e−4 –

1/6 1/1296 3.8126e−5 3.1517 5.3919e−5 3.1517

1/8 1/4096 1.1838e−5 4.0656 1.6742e−5 4.0655

1/10 1/10000 4.7796e−6 4.0644 6.7384e−6 4.0784

Table 4 Error estimations of
discrete-time collocation scheme
for Problem (97) at t = 3

h p AE2 Order AE∞ Order

1/4 1/256 1.3263e−4 – 1.8757e−4 –

1/6 1/1296 2.5567e−5 4.0603 3.6157e−5 4.0603

1/8 1/4096 9.4402e−6 3.4633 1.3351e−5 3.4631

1/10 1/10000 3.7629e−6 4.1220 5.2925e−6 4.1466

Table 5 Comparison of AE with three methods at (1/4, 2)

h p DTCS CPU-time (s) FEM CPU-time (s) CNM CPU-time (s)

1/4 1/64 6.0080e−4 0.5578 4.1459e−2 0.1666 6.1188e−2 0.0015

1/8 1/128 7.2686e−5 1.0865 1.2366e−2 3.5043 2.3225e−2 0.0055

1/16 1/256 9.2302e−6 2.2101 3.5703e−3 7.1292 1.0124e−2 0.0258

1/32 1/512 1.1731e−6 4.6719 1.0986e−3 14.9498 4.7072e−3 0.0972

1/64 1/1024 1.4808e−7 9.3815 3.7512e−4 30.4590 2.2651e−3 0.3520

1/128 1/2048 1.8831e−8 18.7758 1.4380e−4 67.7603 1.1104e−3 5.2732

Table 6 Comparison of AE with three methods at (1/2, 3)

h p DTCS CPU-time (s) FEM CPU-time (s) CNM CPU-time (s)

1/4 1/64 1.1918e−3 0.6870 7.4828e−2 2.2288 1.2334e−1 0.0033

1/8 1/128 1.3055e−4 1.3055 2.3076e−2 4.0697 4.2724e−2 0.0058

1/16 1/256 1.5985e−5 2.5878 6.6034e−3 7.6325 1.7396e−2 0.0238

1/32 1/512 1.9828e−6 5.1860 1.9875e−3 15.2469 7.7416e−3 0.1146

1/64 1/1024 2.4728e−7 9.7204 6.5950e−4 30.3873 3.3631e−3 1.1437

1/128 1/2048 3.1285e−8 19.3518 2.4577e−4 62.8249 1.7554e−3 12.6736

6 Conclusions

The spectral collocation method is proposed to deal with hyperbolic PEPCA in this paper.
We choose Hermite piecewise-cubic function as test function, which has been verified to
be effective for approximation in numerical experiments. The error estimations for both
continuous-time and discrete-time collocation schemes are obtained by means of equivalent
schemes. The stability analysis for the two schemes are also conducted with Fourier analysis
method. We present some numerical experiments to illustrate the accuracy of schemes. The
advantage of spectral collocation method is that it can achieve higher approximate accuracy
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with less nodes compared with FEM and CNM. In our future work, we will deal with the
multidimensional and nonlinear problems.
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