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Abstract
We consider the strong convergence of the stochastic theta (ST) method for highly nonlinear
hybrid stochastic differential equations with piecewise continuous arguments (SDEPCAs).
There are threemajor ingredients. The first is the pth moment boundedness of the STmethod.
Second, the mean square convergence rate of the STmethod for hybrid SDEPCAs is given by
means of the forward–backwardEuler–Maruyamamethod.The third ingredient is a numerical
simulation, which shows the agreement with the theoretical convergence rate.

Keywords Stochastic differential equations with piecewise continuous arguments
(SDEPCAs) · Stochastic theta (ST) method · Forward–backward Euler–Maruyama (FBEM)
method · Convergence rate

Mathematics Subject Classification 65C30 · 60H35

1 Introduction

Stochastic differential equations with piecewise continuous arguments (SDEPCAs) play an
important role in stochastic theory. Such models are applicable in a variety areas including
biology, control science and neural networks (Li 2014; Mao et al. 2014; You et al. 2015;
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Xie and Zhang 2020). Component failures, changes in subsystem interconnections and sud-
den environmental disturbances can lead to abrupt changes of structures and parameters in
many practical systems. To tackle these problems, hybrid systems driven by continuous-time
Markov chains have become a powerful tool (Jobert and Rogers 2006; Smith 2002; Song
and Mao 2018). Furthermore, it is well known that Markov chain can work as a stabiliz-
ing factor (Li and Mao 2020; Hu et al. 2020), that is, the whole system can be stable even
though some subsystems are stable and others are unstable, such property is referred to as
switching-dominated stability in Zhang et al. (2019).

Since explicit solutions are almost impossible to obtain for such systems, it becomes
extremely important to solve them numerically. Finite time convergence analysis of an Euler
typemethod for stochastic differential equations (SDEs)withMarkovian switchingwas given
in Mao et al. (2007) and Yuan and Mao (2004). It has been extended to stochastic differen-
tial delay equations (SDDEs) with Markovian switching (Li and Hou 2006; Milošević and
Jovanović 2011; Zhang and Xie 2019), SDDEs with Markovian switching and Poisson jump
(Li and Chang 2007; Wang and Xue 2007) and neutral SDDEs with Markovian switching
(Yin and Ma 2011; Zhou and Wu 2009), etc. Numerical invariant measure of the backward
Euler–Maruyama method for SDEs with Markovian switching was investigated in Li et al.
(2018). It is worth mentioning that most of previous studies for hybrid systems is devoted to
those equations driven by a continuous-time and homogeneous Markov chain independent
of the Brownian motion, and the switching process r(t) was assumed to have a finite state
space. Recently, Yin et al. extended the study to the Markov process (X(t), r(t)) by allowing
the generator r(t) to depend on the current state X(t) and to have a countable state space
(Yin and Zhu 2010; Nguyen and Yin 2016).

To our best knowledge, there are few works on SDEPCAs with Markovian switching.
An SDEPCA belongs to the SDDEs, but the delay term is different from t − τ and may be
a discontinuous function. Moreover, although the SDEPCAs are retarded, the solutions of
these equations are determined by only a finite set of initial data, rather than a function, as in
the case of general SDDEs (Wiener 1993; Mao 2007). Because of these characteristics, we
cannot simply generalize the properties of hybrid SDDEs to hybrid SDEPCAs.

In this work, we concentrate on the numerical solutions for highly nonlinear hybrid SDEP-
CAs, the stochastic theta (ST) scheme, which is an extension of the Euler–Maruyamamethod
and the backward Euler–Maruyama, is adopted. The rest of this paper is organized as follows.
Some basic notations and assumptions are introduced in Sect. 2. The ST method for hybrid
SDEPCAs is established in Sect. 3. Section 4 is devoted to the pth moment boundedness of
the ST method. Then we go further to reveal the strong convergence rate of the numerical
method in Sect. 5. Finally, a numerical experiment is given in Sect. 6 to verify our theoretical
convergence order.

2 Notations and preliminaries

Throughout this paper, unless otherwise specified, we let (�,F, {Ft }t≥0 ,P) be a complete
probability space with a filtration {Ft }t≥0 satisfying the usual conditions (i.e., it is right
continuous andF0 contains all P-null sets). If A is a vector or matrix, its transpose is denoted
by AT. Let B(t) = (B1(t), . . . , Bd(t))T be a d-dimensional Brownian motion defined on
the probability space. If x is a vector, ‖x‖ denotes its Euclidean norm. 〈x, y〉 denotes the
inner product of vectors x and y. If A is a matrix, its trace norm is denoted by ‖A‖ =√
trace(AT A). For two real numbers a and b, we will use a ∨ b and a ∧ b for the max {a, b}
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andmin {a, b}, respectively. LetLp
Ft

(�;Rn) denotes the family ofFt -measurableRn-valued
random variables ξ with E‖ξ‖p < ∞. Let Lp([a, b];Rn) denotes the family of Rn-valued
Ft -adapted processes { f (t)}a≤t≤b such that

∫ b
a ‖ f (t)‖pdt < ∞, a.s., Lp(R+;Rn) denotes

the family of processes { f (t)}t≥0 such that for every T > 0,{ f (t)}0≤t≤T ∈ Lp([0, T ];Rn).
Mp([a, b];Rn) denotes the family of processes { f (t)}a≤t≤b in Lp([a, b];Rn) such that
E
∫ b

a ‖ f (t)‖pdt < ∞. [·] denotes the greatest integer function.
Let r(t), t ≥ 0, be a right-continuousMarkov chain on the probability space taking values

in a finite state space S = {1, 2, . . . , N } with generator � = (γi j )N×N given by

P {r(t + �) = j |r(t) = i} =
{

γi j� + o(�), if i �= j,

1 + γi i� + o(�), if i = j,

where � > 0. Here γi j ≥ 0 is the transition rate from i to j when i �= j , and

γi i = −
∑

j �=i

γi j .

We assume that the Markov chain r(·) is independent of the Brownian motion B(·).
Consider the following hybrid SDEPCAs

dx(t) = f (x(t), x([t]), r(t))dt + g(x(t), x([t]), r(t))dB(t), t ≥ 0, (1)

with initial data x(0) = x0 ∈ R
n and r(0) = i0 ∈ S, where

f : Rn × R
n × S → R

n and g : Rn × R
n × S → R

n×d .

Let us give the definition of the solution.

Definition 1 An R
n-valued stochastic process {x(t)}t≥0 is called a solution of (1) if it has

the following properties:

(1) {x(t)} is continuous and Ft -adapted;
(2) { f (x(t), x([t]), r(t))} ∈ L1(R+;Rn), {g(x(t), x([t]), r(t))} ∈ L2(R+;Rn×d);
(3) Equation (1) is satisfied on each interval [n, n + 1) ⊂ [0,∞) with integral end-points

almost surely.

A solution {x(t)} is said to be unique if any other solution {x̄(t)} is indistinguishable from
{x(t)}, that is

P {x(t) = x̄(t) for all t ≥ 0} = 1.

We impose some assumptions:

Assumption 2.1 For every integer R ≥ 1, there exists a constant L(R) > 0 such that

‖ f (x, y, i) − f (x̄, ȳ, i)‖ ∨ ‖g(x, y, i) − g(x̄, ȳ, i)‖ ≤ L(R)(‖x − x̄‖ + ‖y − ȳ‖),
for all i ∈ S and those x, y, x̄, ȳ ∈ R

n with ‖x‖ ∨ ‖y‖ ∨ ‖x̄‖ ∨ ‖ȳ‖ ≤ R.

Assumption 2.2 There exists a constant α > 0 such that

xT f (x, y, i) ≤ α(1 + ‖x‖2 + ‖y‖2), ∀x, y ∈ R
n, ∀i ∈ S.

Assumption 2.3 There exist constants L1 > 0 and h1 ≥ 1 such that

‖ f (x, y, i)‖ ≤ L1(1 + ‖x‖h1 + ‖y‖h1), ∀x, y ∈ R
n, ∀i ∈ S.
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Assumption 2.4 There exist constants L2 > 0 and h2 ≥ 1 such that

‖g(x, y, i)‖ ≤ L2(1 + ‖x‖ + ‖y‖h2), ∀x, y ∈ R
n, ∀i ∈ S.

Theorem 2.5 Under Assumptions 2.1–2.4, for any T > 0, there exists a unique global solu-
tion x(t) to Eq. (1) on t ∈ [0, T ] with the initial data x0. Moreover, the solution has the
property that E‖x(t)‖p < ∞ for all t ∈ [0, T ].

Proof For any given i ∈ S, we first prove that there exists a unique global solution to the
SDEPCA

dx(t) = f (x(t), x([t]), i)dt + g(x(t), x([t]), i)dB(t) (2)

on t ∈ [0, T ] with the initial data x0 and the solution has the property that E‖x(t)‖p < ∞
for all t ∈ [0, T ]. To distinguish between the solution of (1) and that of (2), we denote the
solution of (2) by y(t).

In a similar way as the proof of Theorem 3.15 in Mao and Yuan (2006), there is a unique
maximal local solution y(t) exists on [0, ηe) under the local Lipschitz condition, where ηe

is the explosion time. Then for each integer R ≥ ‖x0‖, define the stopping time ηR =
inf{t ∈ [0, ηe) : ‖y(t)‖ ≥ R}. Clearly, ηR is increasing as R → ∞. We denote that
η∞ = limR→∞ ηR and inf ∅ = ∞. Hence, η∞ ≤ ηe almost surely. If we can obtain
η∞ = ∞ almost surely, then ηe = ∞ almost surely. In what follows, we will prove η∞ = ∞
almost surely and E‖y(t)‖p < ∞.

Applying Itô’s formula to ‖y(t)‖p, p ≥ 2, we have

d(‖y(t)‖p) ≤p‖y(t)‖p−2
(

yT(t) f (y(t), y([t]), i) + p − 1

2
‖g(y(t), y([t]), i)‖2

)
dt

+ p‖y(t)‖p−2yT(t)g(y(t), y([t]), i)dB(t).

(3)

• Take any t ∈ [0, 1), integrating both sides of (3) from 0 to t ∧ ηR , then

‖y(t ∧ ηR)‖p

≤ ‖y(0)‖p + p
∫ t∧ηR

0
‖y(s)‖p−2

(
yT(s) f (y(s), y(0), i) + p − 1

2
‖g(y(s), y(0), i)‖2

)
ds

+ p
∫ t∧ηR

0
‖y(s)‖p−2yT(s)g(y(s), y(0), i)dB(s).

Hence,

E‖y(t ∧ ηR)‖p

≤ ‖x0‖p + pE
∫ t∧ηR

0
‖y(s)‖p−2

(
yT(s) f (y(s), x0, i) + p − 1

2
‖g(y(s), x0, i)‖2

)
ds.
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By Assumptions 2.2 and 2.4, together with Young’s inequality, one has

E‖y(t ∧ ηR)‖p ≤‖x0‖p + pE
∫ t∧ηR

0
‖y(s)‖p−2

(
α(1 + ‖y(s)‖2 + ‖x0‖2)

+ (p − 1)L2
2

2
(1 + ‖y(s)‖ + ‖x0‖h2 )2

)
ds

≤‖x0‖p + pE
∫ t∧ηR

0

{(
γ0 + α‖x0‖2 + 3(p − 1)L2

2/2‖x0‖2h2
)

‖y(s)‖p−2

+ γ0‖y(s)‖p
}
ds

≤‖x0‖p + pE
∫ t∧ηR

0

{
γ

p
2
0 + α

p
2 ‖x0‖p + (3(p − 1)L2

2/2)
p
2 ‖x0‖ph2

+ (3 + γ0)‖y(s)‖p
}
ds

≤ptγ
p
2
0 + (1 + ptα

p
2 )‖x0‖p + pt(3(p − 1)/2)

p
2 L p

2 ‖x0‖ph2

+ (3 + γ0)p
∫ t

0
E‖y(s ∧ ηR)‖pds,

where γ0 = α + 3(p − 1)L2
2/2. Now it can be obtained from Gronwall’s inequality that

E‖y(t ∧ ηR)‖p ≤
(

ptγ
p
2
0 + (1 + ptα

p
2 )‖x0‖p + pt(3(p − 1)/2)

p
2 L p

2 ‖x0‖ph2

)
e(3+γ0)pt

≤β0e(3+γ0)p,

(4)

where

β0 = pγ
p
2
0 + (1 + pα

p
2 )‖x0‖p + p(3(p − 1)/2)

p
2 L p

2 ‖x0‖ph2 < ∞.

Thus,

E‖y(1 ∧ ηR)‖p = lim
t→1

E‖y(t ∧ ηR)‖p ≤ β0e(3+γ0)p. (5)

Let IG denote the indicator function of the set G, then

β0e(3+γ0)p ≥ E‖y(1 ∧ ηR)‖p ≥ E
(‖y(ηR)‖p I{ηR≤1}

) ≥ R p
P(ηR ≤ 1);

hence,

P(ηR ≤ 1) ≤ β0e(3+γ0)p

R p
.

Let R → ∞, we have P(η∞ ≤ 1) = 0, which gives

P(η∞ > 1) = 1,

combining (4) and (5), it can be obtained that

E‖y(t)‖p ≤ β0e(3+γ0)p, t ∈ [0, 1].
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• For any t ∈ [1, 2), similar to the process above, integrating both sides of (3) from 1 to
t ∧ ηR , and then taking the expectations, we can arrive at

E‖y(t ∧ ηR)‖p

≤E‖y(1)‖p + pE
∫ t∧ηR

1
‖y(s)‖p−2

(
yT(s) f (y(s), y(1), i) + p − 1

2
‖g(y(s), y(1), i)‖2

)
ds

≤ E‖y(1)‖p + pE
∫ t∧ηR

1
‖y(s)‖p−2

(
α(1 + ‖y(s)‖2 + ‖y(1)‖2)

+ (p − 1)L2
2

2
(1 + ‖y(s)‖ + ‖y(1)‖h2 )2

)
ds

≤ E‖y(1)‖p + pE
∫ t∧ηR

1

{(
γ0 + α‖y(1)‖2 + 3(p − 1)L2

2/2‖y(1)‖2h2
)

‖y(s)‖p−2

+ γ0‖y(s)‖p
}
ds

≤ E‖y(1)‖p + pE
∫ t∧ηR

1

{
γ

p
2
0 + α

p
2 ‖y(1)‖p + (3(p − 1)L2

2/2)
p
2 ‖y(1)‖ph2

+ (3 + γ0)‖y(s)‖p
}
ds

≤ p(t − 1)γ
p
2
0 + (1 + p(t − 1)α

p
2 )E‖y(1)‖p + p(t − 1)(3(p − 1)/2)

p
2 L p

2E‖y(1)‖ph2

+ (3 + γ0)p
∫ t

1
E‖y(s ∧ ηR)‖pds.

By Gronwall’s inequality, one has

E‖y(t ∧ ηR)‖p ≤ β1e(3+γ0)p, (6)

where

β1 =
(

pγ
p
2
0 + (1 + pα

p
2 )E‖y(1)‖p + p(3(p − 1)/2)

p
2 L p

2E‖y(1)‖ph2

)
< ∞.

Hence,

E‖y(2 ∧ ηR)‖p = lim
t→2

E‖y(t ∧ ηR)‖p ≤ β1e(3+γ0)p, (7)

it gives

β1e(3+γ0)p ≥ E‖y(2 ∧ ηR)‖p ≥ E
(‖y(ηR)‖p I{ηR≤2}

) ≥ R p
P(ηR ≤ 2).

Taking R → ∞, yields

P(η∞ ≤ 2) ≤ lim
R→∞

β1e(3+γ0)p

R p
= 0,

which implies

P(η∞ > 2) = 1,

then combining (6) and (7), it can be obtained that

E‖y(t)‖p ≤ β1e(3+γ0)p, t ∈ [1, 2].
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• Repeating this procedure we can deduce that, for any integer j ≥ 1,

P(η∞ > j) = 1,

and

E‖y(t)‖p ≤ β j e
(3+γ0)p, t ∈ [ j, j + 1], (8)

where

β j =
(

pγ
p
2
0 + (1 + pα

p
2 )E‖y( j)‖p + p(3(p − 1)/2)

p
2 L p

2E‖y( j)‖ph2

)
< ∞.

Since j ≥ 1 is an arbitrary integer, we can conclude that η∞ = ∞ almost surely and
E‖y(t)‖p < ∞,∀t ≥ 0.

Nowwe are in a position to prove Eq.(1) has a unique global solution x(t) and the solution
has the property that E‖x(t)‖p < ∞.

It is well known (see Anderson 2012) that almost every sample path of the Markov chain
r(·) is a right-continuous step function with a finite number of sample jumps in any finite
subinterval of R+. Hence, there is a sequence of stopping times 0 = τ0 < τ1 < · · · < τk <

· · · such that

r(t) =
∞∑

k=0

r(τk)I[τk ,τk+1)(t), t ≥ 0.

We first consider Eq. (1) on t ∈ [τ0, τ1), which becomes

dx(t) = f (x(t), x([t]), i0)dt + g(x(t), x([t]), i0)dB(t), (9)

with initial data x0. By the existence-and-uniqueness proof for SDEPCA (2), we know that
Eq. (9) has a unique continuous solution which belongs to M2([τ0, τ1);Rn) and has the
property that E‖x(t)‖p < ∞. In particular, x(τ1) = limt→τ−

1
x(t) ∈ L2

Fτ1
(�;Rn). We next

consider Eq. (1) on t ∈ [τ1, τ2), which becomes

dx(t) = f (x(t), x([t]), r(τ1))dt + g(x(t), x([t]), r(τ1))dB(t), (10)

with initial data x(τ1) given by the solution of Eq. (9). Again we know that Eq. (10) has
a unique continuous solution which belongs to M2([τ1, τ2);Rn) and has the property that
E‖x(t)‖p < ∞. Repeating this procedure, we see that Eq. (1) has a unique solution x(t) on
[0, T ] and has the property that

E‖x(t)‖p < ∞, ∀t ∈ [0, T ].
The proof is completed. ��

3 Stochastic thetamethod

To define the ST scheme, let us first explain how to simulate the discrete Markov chain{
r�

k , k = 0, 1, 2, . . .
}
. Recall the property of the embedded discrete Markov chain:

Given a step size � > 0, let r�
k = r(k�) for k ≥ 0. Then

{
r�

k , k = 0, 1, 2, . . .
}
is a

discrete Markov chain with the one-step transition probability matrix

P(�) = (Pi j (�))N×N = e��.
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Hence, the discrete Markov chain
{
r�

k , k = 0, 1, 2, . . .
}
can be simulated as follows: Let

r�
0 = i0 and compute a pseudo-random number ζ1 from the uniform [0, 1] distribution.
Define

r�
1 =

{
i1, if i1 ∈ S − {N } such that

∑i1−1
j=1 Pi0, j (�) ≤ ζ1 <

∑i1
j=1 Pi0, j (�),

N , if
∑N−1

j=1 Pi0, j (�) ≤ ζ1,

where we set
∑0

j=1 Pi0, j (�) = 0 as usual. In other words, we ensure that the probability

of state s being chosen is given by P(r�
1 = s) = Pi0,s(�). Generally, having calculated

r�
0 , r�

1 , . . . , r�
k , we compute r�

k+1 by drawing a uniform [0, 1] pseudo-random number ζk+1

and setting

r�
k+1 =

⎧
⎪⎪⎨

⎪⎪⎩

ik+1, if ik+1 ∈ S − {N } such that
∑ik+1−1

j=1 Pr�
k , j (�) ≤ ζk+1 <

∑ik+1
j=1 Pr�

k , j (�),

N , if
∑N−1

j=1 Pr�
k , j (�) ≤ ζk+1.

This procedure can be carried out independently to obtain more trajectories.
After explaining how to simulate the discrete Markov chain, we can now define the ST

approximate solution to Eq. (1). Let� = 1/m be a given step size with integerm ≥ 1, and let
the gridpoints tk be defined by tk = k�(k ∈ N). Since for arbitrary k ∈ N, there exist s ∈ N

and l = 0, 1, 2, . . . , m −1 such that k = sm + l, the adaptation of the ST method to (1) leads
to a numerical process of the following type by setting X0 = x(0) = x0, r�

0 = r(0) = i0,

Xsm+l+1 =Xsm+l + (1 − θ) f
(
Xsm+l , Xsm, r�

sm+l

)
�

+ θ f
(
Xsm+l+1, Xsm, r�

sm+l+1

)
� + g

(
Xsm+l , Xsm, r�

sm+l

)
�Bsm+l ,

(11)

for s ∈ N and l = 0, 1, 2, . . . , m − 1, where �Bsm+l = B(tsm+l+1) − B(tsm+l), θ ∈ [0, 1]
is a free parameter that is specified a priori. Xsm+l is an approximation to the exact solution
x(tsm+l).

Since the ST scheme is semi-implicit when θ �= 0, the first item that need to be considered
is the existence and uniqueness of solutions of these equations. In that sense, we will employ
the one-sided Lipschitz condition in the first argument of the function f , which is given in
the following.

Assumption 3.1 There exists a positive constant L such that

〈x − x̄, f (x, y, i) − f (x̄, y, i)〉 ≤ L‖x − x̄‖2,
for all x, x̄, y ∈ R

n .

Remark 1 By Lemma 3.1 in Mao and Szpruch (2013), it is obvious to obtain that the ST
method has a unique solution if � < 1

Lθ
. In the rest of this paper, we always assume that

� < 1
Lθ

.

To implement numerical scheme (11), we define a map F , let

F(Xκm+ j ) = Xκm+ j − θ f (Xκm+ j , Xκm , r�
κm+ j )�, κ ∈ N, j = 0, 1, . . . , m − 1, (12)

then we can represent (11) as follows:

F(Xsm+l+1) = F(Xsm+l ) + f (Xsm+l , Xsm , r�
sm+l )� + g(Xsm+l , Xsm , r�

sm+l )�Bsm+l , (13)
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for l = 0, 1, . . . , m − 2,

F(X(s+1)m ) =F(X(s+1)m−1) + f (X(s+1)m−1, Xsm , r�
(s+1)m−1)�

+ g(X(s+1)m−1, Xsm , r�
(s+1)m−1)�B(s+1)m−1

+ θ
(

f (X(s+1)m , Xsm , r�
(s+1)m ) − f (X(s+1)m , X(s+1)m , r�

(s+1)m )
)

�,

(14)

for l = m − 1.
According to Assumption 3.1, there exists an inverse mapping F−1 and the solution to

(11) can be represented in the following form:

Xsm+l+1 = F−1
(

Xsm+l + (1 − θ) f (Xsm+l , Xsm , r�
sm+l )� + g(Xsm+l , Xsm , r�

sm+l )�Bsm+l

)
,

for l = 0, 1, . . . , m − 2,

Xsm+l+1 = F−1
(

Xsm+l + (1 − θ) f (Xsm+l , Xsm , r�
sm+l )� + g(Xsm+l , Xsm , r�

sm+l )�Bsm+l

+θ
(

f (X(s+1)m , Xsm , r�
(s+1)m ) − f (X(s+1)m , X(s+1)m , r�

(s+1)m )
)

�

)
,

for l = m − 1. Clearly, Xsm+l+1 is Ftsm+l+1 -measurable.

4 pth moment boundedness of the STmethod

Throughout this section, we fix T > 0 be arbitrary and show that the pth moment of the
ST method is bounded. The following lemma shows that to guarantee the boundedness of
moments for Xsm+l it is enough to bound the moments of F(Xsm+l), where F(Xsm+l) is
defined by (12).

Lemma 4.1 Suppose that Assumption 2.2 holds. Let δ be any given constant with 1−4αθ� ≥
δ > 0. Then for any p ≥ 2,

‖Xsm+l‖p ≤ 3
p
2 −1δ− p

2

{
‖F(Xsm+l)‖p + (1 − δ)

p
2 ‖Xsm‖p + (1 − δ)

p
2

}
.

Moreover,

‖Xsm+l‖p ≤ 3
p
2 −1δ− p

2

{
‖F(Xsm+l)‖p + (1/δ − 1)

p
2 ‖F(Xsm)‖p + (1 − δ)

p
2

}
.

Proof Using Assumption 2.2, we can arrive at

‖F(Xsm+l)‖2 =‖Xsm+l − θ f (Xsm+l , Xsm, r�
sm+l)�‖2

≥‖Xsm+l‖2 − 2θ�XT
sm+l f (Xsm+l , Xsm, r�

sm+l)

≥‖Xsm+l‖2 − 2αθ�(1 + ‖Xsm+l‖2 + ‖Xsm‖2),
(15)

which implies

‖Xsm+l‖2 ≤ (1 − 2αθ�)−1‖F(Xsm+l)‖2 + 2αθ�

1 − 2αθ�
‖Xsm‖2 + 2αθ�

1 − 2αθ�
, (16)

then applying the inequality (x + y + z)
p
2 ≤ 3

p
2 −1(x

p
2 + y

p
2 + z

p
2 ),∀x, y, z > 0, and the

fact that 1 − 4αθ� ≥ δ, we obtain

‖Xsm+l‖p ≤3
p
2 −1δ− p

2

{
‖F(Xsm+l)‖p + (1 − δ)

p
2 ‖Xsm‖p + (1 − δ)

p
2

}
. (17)
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Furthermore, if l = 0, one can get that

‖Xsm‖2 ≤ (1 − 4αθ�)−1‖F(Xsm)‖2 + 2αθ�

1 − 4αθ�
, (18)

from (15) directly, substituting (18) into (16), then

‖Xsm+l‖2 ≤ (1 − 2αθ�)−1‖F(Xsm+l)‖2

+ 2αθ�

(1 − 2αθ�)(1 − 4αθ�)
‖F(Xsm)‖2 + 2αθ�

1 − 4αθ�
, (19)

which gives

‖Xsm+l‖p ≤ 3
p
2 −1δ− p

2

{
‖F(Xsm+l)‖p + (1/δ − 1)

p
2 ‖F(Xsm)‖p + (1 − δ)

p
2

}
. (20)

In particular, it from (18) that

‖Xsm‖p ≤ 2
p
2 −1δ− p

2

{
‖F(Xsm)‖p + (1 − δ)

p
2

}
. (21)

��
Inwhat follows, for notational simplicity,we use the convention thatC represents a generic

positive constant independent of �, the value of which may vary with each appearance. For
example, C = C + C and C = C × C are understood in an appropriate sense. Moreover, we
may give specific expressions of C when needed. Let us begin to establish the fundamental
result of this paper that reveals the boundedness of the pth moment for the ST scheme.

Theorem 4.2 Let Assumptions 2.2–2.4 and 3.1 hold, and θ ≥ 0.5. Then for any p ≥ 2, the
ST scheme (11) has the following property:

E

{

sup
0≤tsm+l≤T

‖Xsm+l‖p

}

≤ C .

Proof For any s ∈ N, l = 0, 1, . . . , m − 2, using Assumption 2.2 and θ ≥ 0.5, we have

‖F(Xsm+l+1)‖2
= ‖F(Xsm+l) + f (Xsm+l , Xsm, r�

sm+l)� + g(Xsm+l , Xsm, r�
sm+l)�Bsm+l‖2

= ‖F(Xsm+l)‖2 + 2〈Xsm+l , f (Xsm+l , Xsm, r�
sm+l)〉�

+ (1 − 2θ)‖ f (Xsm+l , Xsm, r�
sm+l)‖2�2 + ‖g(Xsm+l , Xsm, r�

sm+l)�Bsm+l‖2
+ 2〈F(Xsm+l) + f (Xsm+l , Xsm, r�

sm+l)�, g(Xsm+l , Xsm, r�
sm+l)�Bsm+l〉

≤ ‖F(Xsm+l)‖2 + 2α�(1 + ‖Xsm+l‖2 + ‖Xsm‖2) + ‖�Msm+l‖2 + �Nsm+l , (22)

where

�Msm+l =g(Xsm+l , Xsm, r�
sm+l)�Bsm+l ,

�Nsm+l =2〈F(Xsm+l) + f (Xsm+l , Xsm, r�
sm+l)�,�Msm+l〉.

Then we can infer that

‖F(Xsm+l+1)‖2 ≤‖F(Xsm)‖2 + 2α + 2α‖Xsm‖2 + 2α�

sm+l∑

i=sm

‖Xi‖2

+
sm+l∑

i=sm

‖�Mi‖2 +
sm+l∑

i=sm

�Ni ,

123



Strong convergence rate of the stochastic... Page 11 of 26 372

substituting (18) and (19) into the last equation and recalling that 1−4αθ� ≥ δ, we acquire

‖F(Xsm+l+1)‖2 ≤2α�

δ

sm+l∑

i=sm

‖F(Xi )‖2 +
(
1 + 2α

δ2

)
‖F(Xsm)‖2 + 2α

δ

+
sm+l∑

i=sm

‖�Mi‖2 +
sm+l∑

i=sm

�Ni .

Thus, according to the inequality
(∑k

i=1 |ai |
)p ≤ k p−1 ∑k

i=1 |ai |p , p ≥ 1, one can arrive
at

E

{

sup
j=0,1,...,l

‖F(Xsm+ j+1)‖p

}

≤ C1�

sm+l∑

i=sm

E‖F(Xi )‖p + C2E‖F(Xsm)‖p + C1

+ C3(l + 1)
p
2 −1

sm+l∑

i=sm

E‖�Mi‖p + C3 E

⎛

⎝ sup
j=0,1,...,l

sm+ j∑

i=sm

�Ni

⎞

⎠

p
2

︸ ︷︷ ︸
A

,

(23)

where C1 = 5
p
2 −1 ( 2α

δ

) p
2 , C2 = 5

p
2 −1

(
1 + 2α

δ2

) p
2

, C3 = 5
p
2 −1, and we use the fact that

l� ≤ 1, l = 0, 1, . . . , m − 2.
Since �Bi is Fti -independent, with the help of Hölder’s inequality and Assumption 2.4,

we have

E‖�Mi‖p ≤E‖g(Xi , Xsm, r�
i )‖p(E‖�Bi‖2p)

1
2

≤C�
p
2 L p

2 3
p−1

E

(
1 + ‖Xi‖p + ‖Xsm‖ph2

)
,

(24)

combining (20) and (21), we can obtain that

E‖�Mi‖p ≤C�
p
2

(
C4E‖F(Xi )‖p + C5E‖F(Xsm)‖p + C6E‖F(Xsm)‖ph2 + C7

)
, (25)

where

C4 = L p
2 3

3p
2 −2δ− p

2 , C5 = L p
2 3

3p
2 −2 (1 − δ)

p
2 δ−p, C6 = L p

2 3
p−12

ph2
2 −1δ− ph2

2 ,

C7 = L p
2 3

p−1
(
1 + 3

p
2 −1 (1 − δ)

p
2 δ− p

2 + 2
ph2
2 −1 (1 − δ)

ph2
2 δ− ph2

2

)
.

According to the definition of �Nsm+l and F(Xsm+l), using the time discrete Burkholder–
Davis–Gundy type inequality, we yield

A ≤
(
2

θ

) p
2
E

⎛

⎝ sup
j=0,1,...,l

sm+ j∑

i=sm

(Xi + (θ − 1)F(Xi ))
T g(Xi , Xsm , r�

i )�Bi

⎞

⎠

p
2

≤ p

2

(
2

θ

) p
2

�
p
4

⎛

⎝
sm+l∑

i=sm

(
E‖(Xi + (θ − 1)F(Xi ))

Tg(Xi , Xsm , r�
i )‖ p

2

) 4
p

⎞

⎠

p
4
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≤ p

2

(
2

θ

) p
2

�
p
4 (l + 1)

p
4 −1

sm+l∑

i=sm

E‖(Xi + (θ − 1)F(Xi ))
Tg(Xi , Xsm , r�

i )‖ p
2

≤ p

4

(
2

θ

) p
2

�

sm+l∑

i=sm

(
E‖Xi + (θ − 1)F(Xi )‖p + E‖g(Xi , Xsm , r�

i )‖p
)

≤2
3p
2 −3 p�θ− p

2

sm+l∑

i=sm

{
E‖Xi ‖p + E‖F(Xi )‖p} + 2

p
2 −2 pθ− p

2 �

sm+l∑

i=sm

E‖g(Xi , Xsm , r�
i )‖p.

(26)

Similar to (24) and (25), one can get that

E‖g(Xi , Xsm, r�
i )‖p ≤ C4E‖F(Xi )‖p + C5E‖F(Xsm)‖p + C6E‖F(Xsm)‖ph2 + C7.

(27)

By substituting (20) and (27) into (26), we have

A ≤ C8�

sm+l∑

i=sm

E‖F(Xi )‖p + C9E‖F(Xsm)‖p + C10E‖F(Xsm)‖ph2 + C11, (28)

where

C8 = 2
3p
2 −3 pθ− p

2

(
1 + 3

p
2 −1δ− p

2

)
+ 2

p
2 −2θ− p

2 pC4,

C9 = 2
3p
2 −3 pθ− p

2 3
p
2 −1 (1 − δ)

p
2 δ−p + 2

p
2 −2θ− p

2 pC5,

C10 = 2
p
2 −2θ− p

2 pC6, C11 = 2
3p
2 −3 pθ− p

2 3
p
2 −1 (1 − δ)

p
2 δ− p

2 + 2
p
2 −2θ− p

2 pC7.

It follows from (23), (25) and (28) that

E

{

sup
j=0,1,...,l

‖F(Xsm+ j+1)‖p

}

≤C12�

l−1∑

i=0

E

{

sup
j=0,1,...,i

‖F(Xsm+ j+1)‖p

}

+ (C12� + C13)E‖F(Xsm)‖p + C14E‖F(Xsm)‖ph2 + C15,

where we set
∑−1

i=0 E‖F(Xsm+i+1)‖p = 0 as usual. Here C12 = C1 + C3C4C + C3C8,
C13 = C2 + C3C5C + C3C9, C14 = C3C6C + C3C10, C15 = C1 + C3C7C + C3C11. Using
the discrete Gronwall inequality (Theorem 2.5 in Mao and Yuan 2006), we obtain

E

{

sup
j=0,1,...,l

‖F(Xsm+ j+1)‖p

}

≤
(
(C12� + C13)E‖F(Xsm)‖p + C14E‖F(Xsm)‖ph2 + C15

)
eC12 . (29)

By induction, we divide the proof into several steps to show

E

{

sup
0≤tsm+l≤T

‖Xsm+l‖p

}

≤ C .

Step 1. For s = 0, l = 0, 1, . . . , m − 2, (29) implies

E

{

sup
j=0,1,...,l

‖F(X j+1)‖p

}

≤
(
(C12� + C13)‖F(X0)‖p + C14‖F(X0)‖ph2 + C15

)
eC12 .
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(30)

Noting that F(X0) = X0 − f (X0, X0, i0)�, X0 = x0, using Assumption 2.3, we can easily
get that

‖F(X0)‖p ≤ C(p, ‖x0‖, L1, h1) and ‖F(X0)‖ph2 ≤ C(p, ‖x0‖, L1, h1, h2).

Substituting the last equations into (30) we have

E

{

sup
j=0,...,m−1

‖F(X j )‖p

}

≤ C, (31)

and it follows from Lemma 4.1 that

E

{

sup
j=0,1,...,m−1

‖X j‖p

}

≤ C . (32)

Repeating the procedures as discussed above, we can also get that

E

{

sup
j=0,...,m−1

‖F(X j )‖ph2

}

≤ C and E

{

sup
j=0,1,...,m−1

‖X j‖ph1

}

≤ C . (33)

Next we show thatE‖Xm‖p ≤ C andE‖F(Xm)‖p ≤ C . Applying (12), (13) and (14) again,
by Assumptions 2.3 and 2.4, one has

‖Xm − θ f (Xm, X0, r�
m )�‖2

= ‖F(Xm−1) + f (Xm−1, X0, r�
m−1)� + g(Xm−1, X0, r�

m−1)�Bm−1‖2
≤ 3‖F(Xm−1)‖2 + 3‖ f (Xm−1, X0, r�

m−1)�‖2 + 3‖g(Xm−1, X0, r�
m−1)�Bm−1‖2,

hence by (31)–(33), we infer that

E‖Xm − θ f (Xm , X0, r�
m )�‖p

≤ 3p−1
{
E‖F(Xm−1)‖p + E‖ f (Xm−1, X0, r�

m−1)�‖p + E‖g(Xm−1, X0, r�
m−1)�Bm−1‖p

}

≤ 3p−1
{
E‖F(Xm−1)‖p + 3p−1L p

1 (1 + E‖Xm−1‖ph1 + ‖X0‖ph1 )�p

+ 3p−1L p
2 (1 + E‖Xm−1‖p + ‖X0‖ph2 )(E‖�Bm−1‖2p)

1
2

}

≤ C .

Moreover, repeating the process (15)–(17), one can get that

E‖Xm‖p ≤3
p
2 −1

{
δ− p

2 E‖Xm − θ f (Xm, X0, r�
m )�‖p +

(
1 − δ

δ

) p
2 ‖X0‖p +

(
1 − δ

δ

) p
2
}

≤C .

Using F(Xsm+l) = Xsm+l − θ f (Xsm+l , Xsm, r�
sm+l)� again, we obtain

E‖F(Xm)‖p =E‖Xm − θ f (Xm, Xm, r�
m )�‖p

≤2p−1
E‖Xm‖p + 2p−1θ p�p

E‖ f (Xm, Xm, r�
m )‖p

≤2p−1
E‖Xm‖p + 6p−1θ p�p L p

1 (1 + 2E‖Xm‖p)

≤C .
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Step 2. For s = 1, according to (29), we have

E

{

sup
j=0,1,...,m−2

‖F(Xm+ j+1)‖p

}

≤
(
(C12� + C13)E‖F(Xm)‖p + C14E‖F(Xm)‖ph2 + C15

)
eC12

≤ ((C12� + C13)C + C14C + C15) eC12 := C,

which gives

E

{

sup
j=1,2...,m−1

‖F(Xm+ j )‖p

}

≤ C,

then it follows from Lemma 4.1 that

E

{

sup
j=1,2...,m−1

‖Xm+ j‖p

}

≤ C .

Adopting the same procedures as in the Step 1, we can arrive at E‖X2m‖p ≤ C , then
E‖F(X2m)‖p ≤ C follows from (12).

Step 3. For s ∈ {2, 3, . . . , [T ]}, the following assertion can be proved in the same way as
shown before, for any fixed T , there exists a constant C independent of � such that

E

{

sup
j=1,...,m

‖F(Xsm+ j )‖p

}

≤ C and E

{

sup
j=1,...,m

‖Xsm+ j‖p

}

≤ C .

Combining Steps 1–3, we can get that

E

{

sup
0≤tsm+l≤T

‖Xsm+l‖p

}

≤ C,

for any fixed T . The proof is completed. ��

5 Rate of strong convergence

It is convenient to work with a continuous extension of a numerical method here, because
the continuous extension enables us to use the powerful continuous-time stochastic analysis
to formulate theorems on numerical approximations. For this purpose, we introduce a new
numerical scheme,which is called the forward–backwardEuler–Maruyama (FBEM) scheme,
to help us get a well-defined continuous-time numerical approximation.

First we compute the discrete values Xsm+l from the ST method, then we define the
discrete FBEM scheme on [s, s + 1) ⊂ [0,∞), s ∈ N by

X̂sm+l+1 = X̂sm+l + f (Xsm+l , Xsm, r�
sm+l)� + g(Xsm+l , Xsm, r�

sm+l)�Bsm+l , (34)

where l = 0, 1, . . . , m − 1, X̂0 = X0 = x(0).
Let X(t) = Xsm+l , X̄(t) = X̂sm+l , r�(t) = r�

sm+l for t ∈ [tsm+l , tsm+l+1), and the
continuous FBEM scheme is defined by

X̂(t) = X̂0 +
∫ t

0
f (X(u), X(s), r�(u))du +

∫ t

0
g(X(u), X(s), r�(u))dB(u), (35)
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on each interval [tsm+l , tsm+l+1). We would like to remark that the continuous and discrete
FBEM schemes coincide at the grid points, that is, X̂(tsm+l) = X̂sm+l .

Now we impose some stronger versions of Assumptions 2.2–2.4 to get the convergence
rate.

Assumption 5.1 For any constant K > 0, there exists a positive constant K1 such that

(x − x̄)T( f (x, y, i) − f (x̄, ȳ, i)) + K‖g(x, y, i) − g(x̄, ȳ, i)‖2
≤ K1(‖x − x̄‖2 + ‖y − ȳ‖2),

for all i ∈ S and x, x̄, y, ȳ ∈ R
n .

Assumption 5.2 There exist constants K2 > 0 and ρ1 ≥ 1 such that

‖ f (x, y, i) − f (x̄, ȳ, i)‖ ≤ K2(1 + ‖x‖ρ1 + ‖y‖ρ1 + ‖x̄‖ρ1

+ ‖ȳ‖ρ1) (‖x − x̄‖ + ‖y − ȳ‖) ,

for all i ∈ S and x, y, x̄, ȳ ∈ R
n .

Assumption 5.3 There exist constants K3 > 0, K4 > 0 and ρ2 ≥ 1 such that

‖g(x, y, i) − g(x̄, y, i)‖ ≤ K3‖x − x̄‖,
‖g(x, y, i) − g(x, ȳ, i)‖ ≤ K4(1 + ‖y‖ρ2 + ‖ȳ‖ρ2)‖y − ȳ‖,

for all i ∈ S and x, y, x̄, ȳ ∈ R
n .

Assumption 5.4 There exists a positive constant K5 such that

‖ f (0, 0, i)‖ ∨ ‖g(0, 0, i)‖ ≤ K5,

for all i ∈ S.

Remark 2 Assumptions 5.1–5.4 imply Assumptions 2.2–2.4. Suppose that Assumptions 5.1–
5.4 hold, we can easily get that

xT f (x, y, i) =(x − 0)T( f (x, y, i) − f (0, 0, i)) + xT f (0, 0, i)

≤K1(‖x‖2 + ‖y‖2) + 1

2
‖x‖2 + 1

2
‖ f (0, 0, i)‖2

≤
(

K1 + 1

2
+ 1

2
K 2
5

)
(1 + ‖x‖2 + ‖y‖2),

which is Assumption 2.2, and

‖ f (x, y, i)‖ ≤‖ f (x, y, i) − f (0, 0, i)‖ + ‖ f (0, 0, i)‖
≤K2(1 + ‖x‖ρ1 + ‖y‖ρ1)(‖x‖ + ‖y‖) + K5

≤(6K2 + K5)
(
1 + ‖x‖2ρ1 + ‖y‖2ρ1) ,

which is Assumption 2.3, as well as

‖g(x, y, i)‖ ≤‖g(x, y, i) − g(0, y, i)‖ + ‖g(0, y, i) − g(0, 0, i)‖ + ‖g(0, 0, i)‖
≤K3‖x‖ + K4(1 + ‖y‖ρ2)‖y‖ + K5

≤K6(1 + ‖x‖ + ‖y‖ρ2+1),

which is Assumption 2.4, where K6 = K3 + 2K4 + K5.
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Under the assumptions above, we can determine the rate of strong convergence for ST
scheme (11) to the solution of (1). First, we need some lemmas.

Lemma 5.5 Let Assumptions 5.1–5.4 hold, and θ ≥ 0.5. Then for any p ≥ 2 and sufficiently
small step size �, X̂sm+l and Xsm+l obey

E

{

sup
0≤tsm+l≤T

‖X̂sm+l − Xsm+l‖p

}

≤ C�p. (36)

Proof For any s ∈ N, l = 0, 1, . . . , m − 1, summing up both schemes of the discrete FBEM
(34) and ST (11), respectively, we have

X̂sm+l+1 − Xsm+l+1 = X̂sm − Xsm + θ
(

f (Xsm, Xsm, r�
sm)

− f (Xsm+l+1, Xsm, r�
sm+l+1)

)
�, (37)

then we can infer that

X̂sm+l+1 − Xsm+l+1 =θ�
(

f (X0, X0, r�
0 ) − f (Xsm+l+1, Xsm, r�

sm+l+1)
)

+ θ�

s∑

i=1

(
f (Xim, Xim, r�

im) − f (Xim, X(i−1)m, r�
im)

)
.

Thus, we obtain

‖X̂sm+l+1 − Xsm+l+1‖p

≤ 4p−1θ p�p (‖ f (X0, X0, r�
0 )‖p + ‖ f (Xsm+l+1, Xsm, r�

sm+l+1)‖p)

+2p−1θ p�ps p−1
s∑

i=1

‖ f (Xim, Xim, r�
im) − f (Xim, X(i−1)m, r�

im)‖p. (38)

According toAssumptions 5.2, 5.4 and the inequality (|a|+|b|)p ≤ 2p−1(|a|p+|b|p), p ≥ 1,
we can acquire

‖ f (Xsm+l+1, Xsm, r�
sm+l+1)‖p

≤ 2p−1‖ f (Xsm+l+1, Xsm, r�
sm+l+1) − f (0, 0, r�

sm+l+1)‖p + 2p−1‖ f (0, 0, r�
sm+l+1)‖p

≤ 2p−1K p
2 (1 + ‖Xsm+l+1‖ρ1 + ‖Xsm‖ρ1)p(‖Xsm+l+1‖ + ‖Xsm‖)p + 2p−1K p

5

≤ 2p−2K p
2

(
32p−1 (1 + ‖Xsm+l+1‖2pρ1 + ‖Xsm‖2pρ1

)

+22p−1 (‖Xsm+l+1‖2p + ‖Xsm‖2p)
)

+ C . (39)

Similarly, one can also get that

‖ f (Xim, Xim, r�
im) − f (Xim, X(i−1)m, r�

im)‖p

≤ 1

2
K p
2

(
32p−1(1 + 32p‖Xim‖2pρ1 + ‖X(i−1)m‖2pρ1)

+22p−1(‖Xim‖2p + ‖X(i−1)m‖2p)
)
. (40)

Substituting (39) and (40) into (38), with the help of Theorem 4.2, for s ∈ [0, [T ]], we yield

E

{

sup
0≤tsm+l+1≤T

‖X̂sm+l+1 − Xsm+l+1‖p

}

≤ C�p,

and the assertion follows. ��
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Lemma 5.6 Let Assumptions 5.1–5.4 hold, and θ ≥ 0.5. Then for any p ≥ 2,

E

{

sup
0≤tsm+l≤T

‖X̂sm+l‖p

}

≤ C, E

{

sup
0≤t≤T

‖X̂(t)‖p

}

≤ C .

Proof It follows from Theorem 4.2 and Lemma 5.5 that

E

{

sup
0≤tsm+l≤T

‖X̂sm+l‖p

}

≤2p−1
E

{

sup
0≤tsm+l≤T

‖X̂sm+l − Xsm+l‖p

}

+ 2p−1
E

{

sup
0≤tsm+l≤T

‖Xsm+l‖p

}

≤ C .

(41)

Moreover, according to (35) and Hölder’s inequality,

sup
tsm+l≤t<tsm+l+1

‖X̂(t)‖p ≤3p−1
(

‖X̂sm+l‖p + �p‖ f (Xsm+l , Xsm, r�
sm+l)‖p

+ sup
tsm+l≤t<tsm+l+1

∥∥∥∥

∫ t

tsm+l

g(Xsm+l , Xsm, r�
sm+l)dB(u)

∥∥∥∥

p )
,

it follows that

E

{

sup
0≤t≤T

‖X̂(t)‖p

}

≤ E

{

sup
0≤tsm+l≤T

sup
tsm+l≤t<tsm+l+1

‖X̂(t)‖p

}

≤ 3p−1
E

{

sup
0≤tsm+l≤T

‖X̂sm+l‖p

}

+ 3p−1�p
E

{

sup
0≤tsm+l≤T

‖ f (Xsm+l , Xsm, r�
sm+l)‖p

}

+ 3p−1
E

{

sup
0≤tsm+l≤T

sup
tsm+l≤t<tsm+l+1

∥∥∥∥

∫ t

tsm+l

g(Xsm+l , Xsm, r�
sm+l)dB(u)

∥∥∥∥

p
}

︸ ︷︷ ︸
I

.

(42)

Similar to (39), from Theorem 4.2 we can get that

E

{

sup
0≤tsm+l≤T

‖ f (Xsm+l , Xsm, r�
sm+l)‖p

}

≤ C . (43)

According to Remark 2 and Theorem 1.7.2 in Mao (2007), together with Theorem 4.2 again,
we can infer that

I ≤
[T ]∑

s=0

m−1∑

l=0

E

{

sup
tsm+l≤t<tsm+l+1

∥∥∥∥

∫ t

tsm+l

g(Xsm+l , Xsm, r�
sm+l)dB(u)

∥∥∥∥

p
}

≤
[T ]∑

s=0

m−1∑

l=0

(
p3

2(p − 1)

) p
2

�
p
2 E‖g(Xsm+l , Xsm, r�

sm+l)‖p

≤ 4p−1
(

p3

2(p − 1)

) p
2

K p
6 �

p
2

[T ]∑

s=0

m−1∑

l=0

(
1 + E‖Xsm+l‖p + E‖Xsm‖p(ρ2+1)

)
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≤ 4p−1
(

p3

2(p − 1)

) p
2

K p
6 �

p
2 −1([T ] + 1)

(
1 + E

{

sup
0≤tsm+l≤T

‖Xsm+l‖p

}

+ E

{

sup
0≤tsm+l≤T

‖Xsm‖p(ρ2+1)

})

≤ C�
p
2 −1. (44)

Substituting (41), (43) and (44) into (42), one has E
{
sup0≤t≤T ‖X̂(t)‖p

}
≤ C . ��

Lemma 5.7 Let Assumptions 5.1–5.4 hold, and θ ≥ 0.5, then for any p ≥ 2,

sup
0≤t≤T

E‖X̂(t) − X(t)‖p ≤ C�
p
2 .

Proof For any t ∈ [0, T ], there always exist s ∈ N and l ∈ {0, 1, . . . , m − 1} such that
t ∈ [tsm+l , tsm+l+1); hence,

E‖X̂(t) − X(t)‖p ≤ 2p−1
E‖X̂(t) − X̄(t)‖p + 2p−1

E‖X̄(t) − X(t)‖p

= 2p−1
E‖X̂(t) − X̄(t)‖p + 2p−1

E‖X̂sm+1 − Xsm+l‖p. (45)

Applying Hölder’s inequality and Theorem 1.7.1 in Mao (2007), for t ∈ [tsm+l , tsm+l+1),

E‖X̂(t) − X̄(t)‖p

= E

∥∥∥
∫ t

tsm+l

f (Xsm+l , Xsm, r�
sm+l)du +

∫ t

tsm+l

g(Xsm+l , Xsm, r�
sm+l)dB(u)

∥∥∥
p

≤ 2p−1�p
E‖ f (Xsm+l , Xsm, r�

sm+l)‖p

+ 2p−1
(

p(p − 1)

2

) p
2

�
p
2 E

∥∥g(Xsm+l , Xsm, r�
sm+l)

∥∥p
,

similar to (39), by Assumptions 5.2–5.4 and Theorem 4.2, we can easily get

E
∥∥ f (Xsm+l , Xsm, r�

sm+l)
∥∥p ≤ C and E

∥∥g(Xsm+l , Xsm, r�
sm+l)

∥∥p ≤ C,

which means

E‖X̂(t) − X̄(t)‖p ≤ C�p + C�
p
2 ≤ C�

p
2 .

By substituting the last equation and (36) into (45), the desired assertion follows. ��

Lemma 5.8 Let Assumptions 5.1–5.4 hold, and θ ≥ 0.5, then for any s ∈ N,

E

∫ s+1

s
‖ f (X(u), X(s), r�(u)) − f (X(u), X(s), r(u))‖2du ≤ C�,

E

∫ s+1

s
‖g(X(u), X(s), r�(u)) − g(X(u), X(s), r(u))‖2du ≤ C�.
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Proof Using Assumption 5.2, we have

E

∫ tsm+l+1

tsm+l

‖ f (X(u), X(s), r�(u)) − f (X(u), X(s), r(u))‖2du

= E

∫ tsm+l+1

tsm+l

‖ f (X(u), X(s), r�(u)) − f (X(u), X(s), r(u))‖2 I{r(u)�=r(tsm+l )}du

≤ 2E
∫ tsm+l+1

tsm+l

‖ f (X(u), X(s), r�(u)) − f (0, 0, r�(u))‖2 I{r(u)�=r(tsm+l )}du

+ 2E
∫ tsm+l+1

tsm+l

‖ f (X(u), X(s), r(u)) − f (0, 0, r(u))‖2 I{r(u)�=r(tsm+l )}du

≤ 24K 2
2

∫ tsm+l+1

tsm+l

E

{(
1 + ‖X(u)‖2ρ1 + ‖X(s)‖2ρ1) (‖X(u)‖2 + ‖X(s)‖2) I{r(u)�=r(tsm+l )}

}
du

= 24K 2
2

∫ tsm+l+1

tsm+l

E

(
E
{ (

1 + ‖Xsm+l‖2ρ1 + ‖Xsm‖2ρ1) (‖Xsm+l‖2 + ‖Xsm‖2) |r(tsm+l )
}

× E
{

I{r(u)�=r(tsm+l )}|r(tsm+l )
})

du,

where in the last step we use the fact that X(u) = Xsm+l , X(s) = Xsm and I{r(u)�=r(tsm+l )}
when tsm+l < u < tsm+l+1 are conditionally independent with respect to the σ -algebra
generated by r(tsm+l). By the property of Markov chain, one has

E
{

I{r(u)�=r(tsm+l )}|r(tsm+l)
} =

∑

i∈S

I{r(tsm+l )=i}P(r(u) �= i |r(tsm+l) = i)

=
∑

i∈S

I{r(tsm+l )=i}
∑

j �=i

(γi j (u − tsm+l) + o(u − tsm+l))

≤
(

max
1≤i≤N

(−γi i )� + o(�)
)∑

i∈S

I{r(tsm+l )=i}

≤C̄(� + o(�)),

where C̄ = max1≤i≤N (−γi i ). Hence,

E

∫ tsm+l+1

tsm+l

‖ f (X(u), X(s), r�(u)) − f (X(u), X(s), r(u))‖2du

≤ C(� + o(�))

∫ tsm+l+1

tsm+l

E
{(
1 + ‖Xsm+l‖2ρ1 + ‖Xsm‖2ρ1) (‖Xsm+l‖2 + ‖Xsm‖2)} du

≤ C�(� + o(�))
(
1 + E‖Xsm+l‖4ρ1 + E‖Xsm‖4ρ1 + E‖Xsm+l‖4 + E‖Xsm‖4) .

Then using Theorem 4.2, one can get that

E

∫ s+1

s
‖ f (X(u), X(s), r�(u)) − f (X(u), X(s), r(u))‖2du

=
m−1∑

l=0

E

∫ tsm+l+1

tsm+l

‖ f (X(u), X(s), r�(u)) − f (X(u), X(s), r(u))‖2du

≤ C(� + o(�))
(
1 + E‖Xsm+l‖4ρ1 + E‖Xsm‖4ρ1 + E‖Xsm+l‖4 + E‖Xsm‖4)

≤ C(� + o(�)). (46)

The second inequality can also be proved similarly. ��
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Theorem 5.9 Under Assumptions 5.1–5.4, and θ ≥ 0.5, the continuous FBEM method (35)
strongly converges to the solution of hybrid SDEPCAs (1), that is

E

{

sup
0≤t≤T

‖X̂(t) − x(t)‖2
}

≤ C�.

Proof Let e(t) = X̂(t) − x(t), e�(t) = X̂(t) − X(t). For any t ∈ [0, T ], there always exists
s ∈ N such that t ∈ [s, s + 1), hence

E

{

sup
0≤t≤T

‖e(t)‖2
}

≤ E

{

sup
0≤s≤[T ]

sup
s≤t<s+1

‖e(t)‖2
}

≤
[T ]∑

s=0

E

{

sup
s≤t<s+1

‖e(t)‖2
}

. (47)

For any t ∈ [s, s + 1), it follows from (34) and (35) that

e(t) =e(s) +
∫ t

s
( f (X(u), X(s), r�(u)) − f (x(u), x(s), r(u)))du

+
∫ t

s
(g(X(u), X(s), r�(u)) − g(x(u), x(s), r(u)))dB(u),

then according to the generalised Itô formula (Mao and Yuan 2006), one has

‖e(t)‖2 = ‖e(s)‖2 +
∫ t

s
2e(u)T( f (X(u), X(s), r�(u)) − f (x(u), x(s), r(u)))du

+
∫ t

s
‖g(X(u), X(s), r�(u)) − g(x(u), x(s), r(u))‖2du

+
∫ t

s
2e(u)T(g(X(u), X(s), r�(u)) − g(x(u), x(s), r(u)))dB(u).

Hence, it is easy to see that

E

{
sup

s≤u≤t
‖e(u)‖2

}
≤ E‖e(s)‖2 + 2E

{
sup

s≤u≤t
M(u)

}

+ 2E
∫ t

s
e(u)T

(
f (X(u), X(s), r�(u)) − f (x(u), x(s), r(u))

)
du

+ E

∫ t

s

∥∥g(X(u), X(s), r�(u)) − g(x(u), x(s), r(u))
∥∥2 du,

(48)

where

M(u) =
∫ u

s
e(v)T

(
g(X(v), X(s), r�(v)) − g(x(v), x(s), r(v))

)
dB(v).

Applying the Burkholder–Davis–Gundy inequality and 2ab ≤ a2 + b2, we obtain

E

{

sup
s≤u≤t

M(u)

}

≤ 4
√
2E

(∫ t

s

∥∥∥e(u)T
(

g(X(u), X(s), r�(u)) − g(x(u), x(s), r(u))
)∥∥∥

2
du

) 1
2

≤ 1

4
E

(

sup
s≤u≤t

‖e(u)‖2
)

+ 32E
∫ t

s
‖g(X(u), X(s), r�(u)) − g(x(u), x(s), r(u))‖2du.
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Substituting the last equation into (48), we get

1

2
E

{
sup

s≤u≤t
‖e(u)‖2

}

≤ E‖e(s)‖2 + 2E
∫ t

s
e(u)T

(
f (X(u), X(s), r�(u)) − f (x(u), x(s), r(u))

)
du

︸ ︷︷ ︸
J1

+ 65E
∫ t

s

∥∥g(X(u), X(s), r�(u)) − g(x(u), x(s), r(u))
∥∥2 du

︸ ︷︷ ︸
J2

.

(49)

Using Assumption 5.2, Lemma 5.8, Hölder’s inequality, Theorem 4.2, Lemmas 5.6, and 5.7,
one can acquire that

J1 ≤ 2E
∫ t

s
‖e(u)‖2du + E

∫ t

s
‖ f (X(u), X(s), r�(u)) − f (X(u), X(s), r(u))‖2du

+ E

∫ t

s
‖ f (X(u), X(s), r(u)) − f (X̂(u), X̂(s), r(u))‖2du

+ 2E
∫ t

s
e(u)T

(
f (X̂(u), X̂(s), r(u)) − f (x(u), x(s), r(u))

)
du

≤ 2E
∫ t

s
sup

s≤v≤u
‖e(v)‖2du + C�

+ 2E
∫ t

s
e(u)T

(
f (X̂(u), X̂(s), r(u)) − f (x(u), x(s), r(u))

)
du.

According to Lemma 5.8, Assumption 5.3, Theorem 4.2, Lemmas 5.6 and 5.7, we yield

J2 ≤ 3E
∫ t

s
‖g(X(u), X(s), r�(u)) − g(X(u), X(s), r(u))‖2du

+ 3E
∫ t

s
‖g(X(u), X(s), r(u)) − g(X̂(u), X̂(s), r(u))‖2du

+ 3E
∫ t

s
‖g(X̂(u), X̂(s), r(u)) − g(x(u), x(s), r(u))‖2du

≤ C� + 6E
∫ t

s

(
K 2
3‖e�(u)‖2 + 3K 2

4

(
1 + ‖X(s)‖2ρ2 + ‖X̂(s)‖2ρ2

)
‖e�(s)‖2

)
du

+ 3E
∫ t

s
‖g(X̂(u), X̂(s), r(u)) − g(x(u), x(s), r(u))‖2du

≤ C� + 18K 2
4

∫ t

s

{
E

(
1 + ‖X(s)‖2ρ2 + ‖X̂(s)‖2ρ2

)2}
1
2 {

E‖e�(s)‖4}
1
2 du

+ 3E
∫ t

s
‖g(X̂(u), X̂(s), r(u)) − g(x(u), x(s), r(u))‖2du

≤ C� + 3E
∫ t

s
‖g(X̂(u), X̂(s), r(u)) − g(x(u), x(s), r(u))‖2du.

123



372 Page 22 of 26 Y. Zhang et al.

Substituting J1 and J2 into (49), using Assumption 5.1, then

E

{
sup

s≤u≤t
‖e(u)‖2

}
≤2E‖e(s)‖2 + 8E

∫ t

s
sup

s≤v≤u
‖e(v)‖2du + C�

+ 8K1E

∫ t

s
(‖e(u)‖2 + ‖e(s)‖2)du

≤2E‖e(s)‖2 + 8(2K1 + 1)E
∫ t

s
sup

s≤v≤u
‖e(v)‖2du + C�.

(50)

For s = 0, t ∈ [0, 1), (50) implies

E

{

sup
0≤u≤t

‖e(u)‖2
}

≤ 8(2K1 + 1)E
∫ t

0
sup

0≤v≤u
‖e(v)‖2du + C�,

then according to the Gronwall inequality and the continuity of ‖e(u)‖2, we have

E

{

sup
0≤u≤1

‖e(u)‖2
}

≤ C�e8(2K1+1) = C�.

In particular, we know that E‖e(1)‖2 ≤ C�.
For s = 1, t ∈ [1, 2), (50) implies

E

{

sup
1≤u≤t

‖e(u)‖2
}

≤ 2E‖e(1)‖2 + 8(2K1 + 1)E
∫ t

1
sup

1≤v≤u
‖e(v)‖2du + C�,

using the Gronwall inequality and the continuity of ‖e(u)‖2 once more, we can also get

E

{

sup
1≤u≤2

‖e(u)‖2
}

≤ C�,

in particular, E‖e(2)‖2 ≤ C�.
Repeating the same procedures, for any s ∈ [0, [T ]], we always have

E

{

sup
s≤u≤s+1

‖e(u)‖2
}

≤ C�,

substituting this inequality into (47), which gives

E

{

sup
0≤t≤T

‖e(t)‖2
}

≤ C([T ] + 1)� = C�.

The proof is completed. ��
We are now ready to formulate the main theorem of this paper.

Theorem 5.10 Let Assumptions 5.1–5.4 hold, and θ ≥ 0.5, there exists a positive constant C,
independent of �, such that the ST method (11) strongly converges to the solution of hybrid
SDEPCAs (1), that is

sup
0≤t≤T

E‖X(t) − x(t)‖2 ≤ C�.
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Proof It is apparent from the triangle inequality that

sup
0≤t≤T

E‖X(t) − x(t)‖2 ≤ 2 sup
0≤t≤T

E‖X(t) − X̂(t)‖2 + 2 sup
0≤t≤T

E‖X̂(t) − x(t)‖2,

then the assertion follows from Lemma 5.7 and Theorem 5.9. ��

6 Numerical simulation

In this section, we consider the following scalar nonlinear hybrid SDEPCA

dx(t) = f (x(t), x([t]), r(t))dt + g(x(t), x([t]), r(t))dB(t), t ≥ 0, (51)

where f : R × R × S → R,

f (x(t), x([t]), i) =
{

−x3(t) + x(t), if i = 1,

−x3(t) + x([t]), if i = 2,

and g : R × R × S → R,

g(x(t), x([t]), i) =
{

x(t) + sin(x([t])), if i = 1,

sin(x(t)) + cos(x([t])), if i = 2,

with the initial conditions x0 = 1 and i0 = 1 ∈ S = {1, 2}. Here B(t) is a scalar Brownian
motion on (�,F, {Ft }t≥0,P), and r(t) is a right-continuous Markov chain taking values in

S with the generator � = (γi j )2×2 =
[−1 1
2 −2

]
.

By a straight calculation, one has

(x − x̄)( f (x, y, 1) − f (x̄, ȳ, 1)) + K‖g(x, y, 1) − g(x̄, ȳ, 1)‖2
= (x − x̄)(−x3 + x + x̄3 − x̄) + K |x + sin y − x̄ − sin ȳ|2
≤ −(x2 + x̄2)|x − x̄ |2 − x x̄ |x − x̄ |2 + |x − x̄ |2 + 2K |x − x̄ |2 + 2K | sin y − sin ȳ|2
≤ (2K + 1)(|x − x̄ |2 + |y − ȳ|2),

and

(x − x̄)( f (x, y, 2) − f (x̄, ȳ, 2)) + K‖g(x, y, 2) − g(x̄, ȳ, 2)‖2
= (x − x̄)(−x3 + y + x̄3 − ȳ) + K | sin x − sin x̄ + cos y − cos ȳ|2
= −(x2 + x̄2 + x x̄)|x − x̄ |2 + (x − x̄)(y − ȳ) + 2K |x − x̄ |2 + 2K |y − ȳ|2

≤
(
2K + 1

2

)
(|x − x̄ |2 + |y − ȳ|2),

which means the coefficients satisfy Assumption 5.1. Similarly we can also verify that the
coefficients satisfy other conditions of Theorem 5.10. We generate 2000 different discretized
Brownian paths and use the numerical solution of the backward EM method with step-size
� = 2−15 as the “exact solution”.
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Let ε and η denote the errors in mean square,

ε(T ) = E|x(T ) − XT m |2 = 1

2000

2000∑

i=1

|x(T , ωi ) − XT m(ωi )|2,

η(T ) = E

{

sup
0≤tsm+l≤T

|x(tsm+l) − Xsm+l |2
}

= 1

2000

2000∑

i=1

(
max

0≤tsm+l≤T
|x(tsm+l , ωi ) − Xsm+l(ωi )|2

)
.

We calculate the errors in mean square ε(1), ε(2), ε(3) and η(2), η(3) with step sizes
2−6, 2−7, 2−8, 2−9, 2−10, respectively. The log–log mean square error plots corresponding
to those chosen values of � and θ are given in Figs. 1 and 2. It is well known that the slope
of a line in the log–log error plot implies the order of convergence for the numerical method.
Graphically, the mean square error lines’ slopes are close to the reference lines’ slope. There-
fore, it can be seen from Figs. 1 and 2 that the order of convergence in mean square for the
ST method is close to 0.5.

Fig. 1 Convergence rate of the ST method for Eq. (51)

Fig. 2 Convergence rate (uniform) of the ST method for Eq. (51)
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