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Abstract
In this article, we numerically study overtaking collisions of two solitary waves for the
Whitham equation. We find regimes in which solitary wave interactions maintain two well
separated crests at any given time and regimes where the number of local maxima varies
according to the laws 2 → 1 → 2 → 1 → 2 or 2 → 1 → 2. It shows that the geometric
Lax-categorization of the Korteweg-de Vries equation (KdV) for two-soliton collisions still
holds for theWhitham equation. However, differently from the KdV and the Euler equations,
we show that an algebraic Lax-categorization for the Whitham equation based on the ratio
of the amplitude of the initial solitary waves is not possible.

Keywords Whitham equation · KdV equation · Soliton collisions

Mathematics Subject Classification 76B15 · 76B20 · 76B25 · 76B55

1 Introduction

A soliton or solitary wave is considered to be a localised wave that maintains its shape while
it propagates at a constant speed. It has a wide number of applications, for instance, tsunami
modelling in water waves, propagation of signals in neuroscience and optical fibers, the study
of proteins and DNA in biology, propagation of a localised magnetisation in magnets and
nuclear physics (Joseph 2016).

The Korteweg-de Vries equation (KdV)

ut + ux − 1

6
uxxx − 3

2
uux = 0, (1)

where u = u(x, t) represents the wave elevation at the position x and time t , is widely
used to describe the propagation and interaction of solitons. In a remarkable work, Zabusky
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and Kruskal (1965) investigated numerically the interactions of two solitons during colli-
sions for the KdV equation. They observed that after the collision the waves return to their
initial forms. Later, Lax (1968) classified the two-soliton interactions geometrically and alge-
braically according to the number of local maxima during the collision into three categories.
This classification only depends on the ratio of the initial amplitudes of the two solitons.

Conducting laboratory experiments in a tank filled with water, Weidman and Maxworthy
(1978) studied soliton collisions and verified the Lax-categorization. Later, Mirie and Su
(1982) used numerical methods to verify the Lax classification for a higher-order model.
More recently, Craig et al. (2006) investigated experimentally and numerically two-soliton
interactions and verified that the Lax-geometric categorization holds for the Euler equations,
however the algebraic categorization has a different range from the one predicted by Lax.

It is well established in the literature that in the long-wave limit, the KdV equation (1)
is an asymptotic approximation of the full Euler equations, however this simple model fails
to capture many nonlinear phenomena such as sharp crests, wave breaking and peaking.
Whitham (1967, 1974) proposed in an ad-hocmanner a nonlocal model substantially simpler
than the full Euler equations that has the samenonlinearity of theKdVmodel and its dispersion
relation reproduces the unidirectional dispersion relation of the Euler equations. This model
bears his name and one of its forms is

ut + K ∗ ux − 3

2
uux = 0, (2)

where K is the nonlocal operator whose Fourier multiplier is defined by

̂K (k) =
√

tanh k

k
.

Notice that in the long-wave limit (k ≈ 0) we have the approximation
√

tanh k

k
≈ 1 − k2

6
. (3)

Therefore, the KdV equation (1) is an asymptotic approximation to Eq. (2).
TheWhitham equation has been extensively studied mathematically in the past few years.

It is hard to give a comprehensive overview of contributions. For the interested reader, we
recommend a few articles and references therein. Regarding the existence of traveling wave
solutions and the proof of the Whitham conjecture we recommend the works of Ehrnström
and Kalisch (2009) and Ehrnström andWahlén (2019). For the stability of periodic solutions
the articles of Hur and Pandey (2019) and Stanford et al. (2014). For a comparative study of
the Whitham equation and shallow water models we recommend the works of Klein et al.
(2018), Trillo et al. (2016) and Carter (2018). Comparisons between solitary waves of the
Whitham equation and the full Euler equations can be found in the work of Moldabayev
et al. (2015). Regarding the stability of traveling wave solutions to the Whitham equation we
recommend the work of Deconinck and Trichtchenko (2015). Extensions of the Whitham
equation can be found in the recent work of Carter et al. (2021).

In this work, we investigate numerically overtaking collisions of two solitary waves using
the Whitham equation. We find that the three geometric categories described by Lax (1968)
are hold. However, we show that an algebraic categorization similar to the one presented by
Lax is not possible for the Whitham equation.

This article is organized as follows. In Sect. 2 we present the numerical methods to solve
the Whitham equation. The results are presented in Sect. 3 and the conclusion in Sect. 4.
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2 Numerical methods

TheWhitham equation (2) is solved numerically using a Fourier pseudospectral method with
an integrating factor similar to the one reported by Flamarion et al. (2019). The integrating
factor solves the linear part of Eq. (2) exactly, which avoids numerical instabilities due to the
dispersive term.

Equation (2) can be written in the Fourier frequency space as

ût + ik K̂ (k)û − 3

4
̂∂xu2 = 0. (4)

Defining the integrating factor E(k, t) = exp(ik K̂ (k)t), Û (k, t) = E(k, t)û(k, t) and replac-
ing in Eq. (4) we obtain the equation

Ût − 3

4
EF

[

∂xF−1
(

E−1Û
)2] = 0, (5)

where F denotes the Fourier transform and F−1 its inverse. Notice that once Û (k, t) is
computed we can recover u as

u(x, t) = F−1
[

E−1Û (k, t)
]

.

We solve Eq. (5) in a periodic computational domain [−L, L] with a uniform grid with
even points N . The spatial points are discretised as

x j = −L + ( j − 1)Δx, j = 1, 2, . . . , N, where Δx = 2L/N , (6)

and the frequencies as

(k1, k2, . . . , kN ) = π

L
(0, 1, . . . , N/2 − 1, 0,−N/2 + 1, . . . ,−1). (7)

Fourier transforms are computed through the Fast Fourier Transform (FFT) and spatial deriva-
tives spectrally (Trefethen 2001). The time advance is computed using the Runge–Kutta
fourth-order method (RK4) with time step Δt .

Whitham solitary waves with speed c, amplitude A and crest located at x = 0 are
computed through a Newton method’s type by solving the equations

− cux + K ∗ ux − 3

2
uux = 0,

u(0) − A = 0.
(8)

On the grid points defined in Eq. (6), we denote by u j = u(x j ) and ux, j = ux (x j ). The
discretised version of Eq. (8) gives rise to a system of (N + 1) equations with (N + 1)
unknowns

G j (x1, x2, . . . , xN , c) := −cux, j + K ∗ ux, j − 3

2
u jux, j = 0, for j = 1, 2, . . . , N.

GN+1(x1, x2, . . . , xN , c) := uN/2+1 − A = 0.
(9)

The discretisation chosen allow us to compute all spatial derivatives and the nonlocal operator
K in equations (8) with spectral accuracy in Fourier space through the FFT (Trefethen 2001).
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The system’s Jacobian for the Newton iteration is found by finite variations in the unknowns
and the stopping criterion is

∑N+1
j=1 |Gn(x1, x2, . . . , xN , c)|

N + 1
< δ,

where δ is a given tolerance. In all simulations, the initial guess (u0, c0) is taken as the soliton
solutions of the KdV equation (1)

u0 = A sech2
(

√

3

4
Ax

)

and c0 = − A

2
. (10)

Inwhat followsweuse the set of parameters:Δx = 0.01, N = 212, L = NΔx/2,Δt = 0.001
and for the stopping criteria in the Newton’s method we choose δ = 10−12. In addition, all
simulations are repeated considering Δx = 0.01, Δx = 0.02, Δx = 0.04 and Δx = 0.08,
which assures the accuracy of the results.

To verify the accuracy of the Newton’s method, the computed solitary waves are set as
initial data of the Whitham equation (2). For Δx = 0.01, Δx = 0.02, Δx = 0.04 and
Δx = 0.08, the solitary waves remain steady (in the moving wave frame) without presenting
any type of numerical instability. In addition, the error

Error = max(x,t)∈[−L,L]×[0,300] ||u(x, t) − u(x, 0)||∞
maxx∈[−L,L] ||u(x, 0)||∞

is at least order O(10−10) for solitary waves with amplitudes in the interval A ∈ [0, 0.6].

3 Results

We investigate overtaking collisions of two solitary waves for the Whitham equation in the
same fashion as Flamarion and Ribeiro-Jr (2021). For this purpose, we compute two solitons
S1 and S2 of amplitudes A1 and A2 respectively with A1 < A2 for the Whitham equation
(2) using the Newton’s method (8). We set them far apart so that initially we have two well
separated crests. To this end, the initial data is taken as

u(x, 0) = S1(x + 5) + S2(x − 10). (11)

We recall that Lax classified the details of two-soliton interactions for the KdV equation
according to the ratio of the initial amplitudes A1 < A2 of two solitons as follows:

(A) For A2/A1 < (3 + √
5)/2 ≈ 2.62, at any time t , the solution of the KdV has two

well-defined and separate crests, in other words, the solution has two local maxima at
any given time.

(C) When A2/A1 > 3, the number of local maxima changes as 2 → 1 → 2 during the
interaction. It means that in a period of time the solitons join together to form a wave
with a single local maximum.

(B) This case has features of cases (A) and (C). More precisely, the two-soliton interaction
can be described into the following steps: (i) initially, the solitons are well separated
which defines two distinct crests; (ii) as time elapses, the solitons fuse to form a wave
with a single local maximum; (iii) the wave splits into two again, and two local maxima
arise; (iv) then, these two waves fuse to form one single maximum again; (v) lastly, the
crest separates and the twowaveswith two crests reappear at large times.Mathematically,
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Fig. 1 Top: collision of two solitons for the Whitham equation—category (A). Bottom (left): crest trajectories
of S2 (thicker line) and S1 (thinner line) before and after collision. Bottom (right): the local maxima of the
solution as a function of time. Parameters A1 = 0.10, A2 = 0.30

we observe that during the collision the number of local maxima varies according to the
law 2 → 1 → 2 → 1 → 2. This case happens when (3 + √

5)/2 < A2/A1 < 3.

After the collision the solitary waves are phase shifted, i.e., their crest are slightly shifted
from the trajectories of the incoming centers.

The following graphs are displayed in the moving frame of S1. Thus, S2 propagates from
right to left and collides with the stationary solitary wave S1. It is worth to mention that
the Whitham equation is not integrable, however the two solitary waves have almost the
same shape after their collision. We point out though, that this is not an exact two-soliton
solution because there is a small dispersive radiation which propagates to the right. The small
dispersive tail developed is similar to the one reported by Kalisch et al. (2022) for the cubic
Whitham equation.

Figure 1 (top) displays the collision of two solitons. Initially, they are set apart and as time
elapses, S2 propagates towards S1 and a collision takes place. During the collision, S2 begins
to shrink while S1 begins to grow until the two waves interchange their roles (see Fig. 1
(bottom-right)). We point out that at any time, there are two local maxima, which means that
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Fig. 2 Top: collision of two solitons for the Whitham equation—category (C). Bottom (left): crest trajectories
of S2 (thicker line) and S1 (thinner line) before and after collision. Bottom (right): the local maxima of the
solution as a function of time. Parameters A1 = 0.10, A2 = 0.42

the two wave crests never meet, see Fig. 1 (bottom-left). This case fits into case (A) of Lax
categorization.

Figure 2 (top) displays the collision of two solitonswith S2 much larger than S1 (A2 = 0.42
and A1 = 0.10). In this case there is a period of time that the two solitons join together to
form only one local maximum. Throughout the collision S2 absorbs S1, then S2 is reemitted
later along with a phase lag in the trajectories of the crest, see Fig. 2 (bottom).

Now, we present themore complex interaction between two solitary waves, see Fig. 3. The
initial solitons S1 and S2 have amplitudes A1 = 0.10 and A2 = 0.35 respectively. During
the interaction S2 swallows S1 to form a single local maximum, then it splits into two waves,
and right after that only a single local maximum is observed again. As time goes on, the
waves are farther apart and the two waves with well defined crests emerge again. This case
is displayed in great detail in a series of snapshots in Fig. 4. Although we do not show in this
article, other simulations were carried out and their categorization is listed in Table 1.

Although it is possible to classify the interaction of two solitarywaves according to the ratio
of the amplitude of the two initial solitary waves for the KdV (Lax 1968) and for the full Euler
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Fig. 3 Top: collision of two solitons for the Whitham equation—category (B). Bottom (left): crest trajectories
of S2 (thicker line) and S1 (thinner line) before and after collision. Bottom (right): the local maxima of the
solution as a function of time. Parameters A1 = 0.1, A2 = 0.35

Table 1 Classification of the collision for different values of A1 and A2

Amplitudes Ratio Category of Whitham equation
A1 A2 A2/A1 Δx = 0.01 Δx = 0.02 Δx = 0.04 Δx = 0.08

0.10 0.45 4.50 C C C C

0.10 0.44 4.40 C C C C

0.10 0.43 4.30 C C C C

0.10 0.42 4.20 C C C C

0.10 0.41 4.10 C C C C

0.10 0.40 4.00 B B B B

0.10 0.39 3.90 B B B B

0.10 0.38 3.80 B B B B

0.10 0.37 3.70 B B B B

0.10 0.36 3.60 B B B B
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Fig. 4 A series of snapshots of the interaction of the solitary waves of Fig. 3 during the collision-category (B)

Table 1 continued

Amplitudes Ratio Category of Whitham equation
A1 A2 A2/A1 Δx = 0.01 Δx = 0.02 Δx = 0.04 Δx = 0.08

0.10 0.35 3.50 B B B B

0.10 0.34 3.40 B B B B

0.10 0.33 3.30 B B B B

0.10 0.32 3.20 B B B B

0.10 0.31 3.10 A A A A

0.10 0.30 3.00 A A A A

0.10 0.29 2.90 A A A A

0.10 0.28 2.80 A A A A

0.10 0.27 2.70 A A A A

0.10 0.26 2.60 A A A A

0.10 0.25 2.50 A A A A
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Table 2 Classification of the collision for different values of A1 and A2

Amplitudes Ratio Category of Whitham equation
A1 A2 A2/A1 Δx = 0.01 Δx = 0.02 Δx = 0.04 Δx = 0.08

0.09 0.38 4.22 B B B B

0.12 0.52 4.33 B B B B

0.12 0.39 3.25 A A A A

equations (Craig et al. 2006), such classification is not possible for the Whitham equation.
Table 2 displays three particular cases that show that a Lax-algebraic categorization based
on the ratio of the initial amplitudes of two solitary waves is not possible for the Whitham
equation.

4 Conclusion

In this article, we have investigated numerically two-soliton interactions during collisions for
the Whitham equation. We showed that the Lax-geometric categorization for the KdV two-
soliton interaction still holds for theWhitham equation. However, an algebraic categorization
based on the ratio of the amplitude of the initial solitary waves is not possible.
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