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Abstract
The relationship between prey and predator has been modelled, analysed from the early
nineteenth century by considering different types of functional responses and ecological
effects. Harvesting of predator in a prey-predator system for controlling their dynamics
has been receiving considerable attention from both ecological and economical points of
view. A lot of theoretical work has been done on harvesting and reveals that harvesting
has a significant impact due to its ecological and economical importance. The fear of prey
due to the appearance of predators in the ecological system also plays an important role
in drawing the shape of the dynamics of the interacting system. Another important fact, in
reality, the reproduction of predator is not instantaneous after the consumption of prey. A
constant time lag is necessary for each organism. In this paper, we have investigated the
dynamics of a delayed prey-predator model with Holling type III functional response and
fear of prey in the natural birth rate. The predator is assumed to be economically significant
and harvested linearly. The positivity, boundedness, local stability of equilibrium points and
local bifurcation (Transcritical, Hopf bifurcation) of the non-delayed system is established
here. We have discussed the local and global stability of the interior equilibrium point in
presence of delay. In terms of the delay parameter, the system undergoes through a Hopf
bifurcation and we determine in which direction the Hopf bifurcation will go. We carried
out some numerical simulations illustrate the theoretical findings using the MAPLE and
MATLAB software. Finally, we have drawn some concluding remarks.
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1 Introduction

The interaction between prey and predator is an important issue in bio-mathematical model-
ing. The first mathematical model was proposed by Malthus (1872) considering the fact that
the population expansion rate is directly proportional to the present population density. But
this model was unable to convey the appropriate prediction in the real-life scenario because of
its unbounded solution. Then introducing the logistic growth function the interaction model
was proposed by Lotka (1925) and Volterra (1926) independently to describe the dynamics
of the prey-predator model and competition model respectively. After this a large number of
research works have been done in this field considering different types of ecological effects
(Collings 1997; Panja 2019; Baek 2010; Sarkar and Khajanchi 2020; Zhanga et al. 2019).
Among them, the most important effects are the consumption mechanism of prey by the
predator which is also known as the functional response (Holling 1965; May 2001; Murray
2002; Freedman 1980; Mondal et al. 2022a, b; Ghosh et al. 2021), fear of prey due to preda-
tor (Wang et al. 2016), Allee (Debnath et al. 2019), harvesting (Majumdar et al. 2021) etc.
The functional response may be the function of both prey and predator density or only the
prey density of the populations (Gupta et al. 2015). Depending on the availability of prey
Holling (1965) defined three types of functional responses, namely: the Holling type I, II and
III. A Holling type III functional response occurs at high levels of prey population, almost
identical to a Holling type II functional response. For low levels of prey species, the number
of prey consumed may not follow a linear increase with prey species. Learning time or prey
switching or a combination of both can explain this specific response. As prey populations
increase, predators’ hunting and handling efficiency improve naturally. Predator finds prey
so seldom, it has not had enough experience to develop the best ways to capture prey. Holling
discovered this mechanism in shrews and deer mice feeding on sawflies (Holling 1959). At
low numbers of sawfly cocoons, the per capita growth rate of deer mice follows the expo-
nential rule as the density of cocoons increases, but at a certain density of cocoons, the deer
mouse consumption rate reached saturation level as the cocoon density increases. Morozov
(2010) demonstrated that Holling type III functional response is suitable for investigating
zooplankton feeding on algal blooms in deep-water ecosystems. Prey-predator models with
Holling type III functional responses have been tested on phytoplankton-zooplankton-fish by
the authors in Dubey et al. (2014). An analysis of phytoplankton-zooplankton system dynam-
ics with harvesting term and Holling III response is presented by Jiang et al. (2018). Using
Holling type III functional responses, Kempf et al. (2008) developed a mathematical model
of prey-predator interaction to study cod Gadus morhua and whiting Merlangius merlangus
population dynamics in the north sea.

The Allee effect in the population is characterized through a positive correlation between
the per capita growth rate and the population growth rate at very-low-density (Allee 1931;
Biswas 2017; Sen et al. 2014; Ferdy et al. 1999;Wangersky andCunningham1957). This type
of effect arises in the biological system due to complications in mate finding, reproductive
facilitation, inbreeding depression, etc. (Allee 1931; Biswas 2017; Ferdy et al. 1999).

Another important issue in this system is the fear of prey due to predator attack (Wang
et al. 2016). Due to the fear from a predator the song sparrows (Melospiza melodia) reduce
40% in offspring reproduction shown by Zanette et al. (2011) in 2001 experimentally. Thus
the presence of any predator can affect the birth rate due to anti-predator behaviour more
powerfully than direct predation. Also, the fear from a predator may affect the mental con-
dition and physiological condition of juvenile prey. The survivor of adult prey may also be
affected due to the fear of the predator. Mathematically, the fear effect was first proposed by
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Wang et al. in 2016 Wang et al. (2016). They show that the fear effect has no impact on the
stability dynamics of the prey-predatormodel consideringHolling type I functional response.
But the fear may stabilize the periodic dynamics when considering Holling type II functional
response. Panday et al. (2018) considered a three-species food chain model considering fear
in the growth function of prey and middle predator due to the presence of a middle predator
and top predator respectively. They have shown that fear can stabilize the chaotic system.
Recently a prey-predator model was studied by Kundu et al. (2018) considering discrete-time
and fear effect in the prey species.

On the other hand, the prey and predator both are ecological resources, so those can be used
for commercial purposes by human society (Onana et al. 2020). For example, the fishery,
forestry and wildlife systems are examples of resources that are used by human society’s
commercial purpose (Das et al. 2009). To study the effect of harvesting mathematically,
different types of harvesting policies are used, which are constant, linear and non-linear
harvesting.

(I) A constant harvesting function is H(x, E) = C , where C is suitable constant (Xiao
and Jennings 2005; Peng et al. 2009).

(II) The linear harvesting function is H(x, E) = qEx , where q is catchability constant
and E is harvesting effort (Zhang et al. 2000; Lenzini and Rebaza 2015).

(III) The non-linear harvesting function is H(x, E) = qEx

m1E + m2x
, where m1,m2 are

positive constants (Gupta et al. 2015; Hu and Cao 2017).

It is observed that the linear harvesting function has some unrealistic features such as
unbounded prey harvesting and stochastic search for prey. The above unrealistic features
are eliminated in the non-linear harvesting function and satisfies the following properties

lim
E→∞ H(x, E) = qx

m1
, lim
x→∞ H(x, E) = qE

m2
.

Thus the non-linear harvesting function shows the saturation properties in terms of inventory
abundance and harvesting efforts.

In prey-predator dynamics, the predator population consumes the prey biomass and the
energy transfer from one population to another population through the conversion of energy
(Biswas 2017; Sen et al. 2014). However, the conversion is not instantaneous, it takes some
time for the prey biomass to be converted into predator biomass through a complex mecha-
nism. In every biological phenomenon, there is a mechanism that takes time delay. Using the
delay differential equation, we can demonstrate how the delay affects an ecological model.
There is a great deal more complexity in the behavior of a delay differential equation than in
an ordinary differential equation. The said lag time is known as the delay and if the mecha-
nism is digestion then the delay is also referred to as gestational delay (Lin and Ho 2006).
In addition, the logistic growth of the prey incorporates a constant time delay. In ecology,
nearly all processes involve time delays, so it will be difficult to come up with a more realistic
model if we do not include time lags. Delay is considered in prey species because the prey
species take some time τ to produce growth from the food they eat. In ecological modeling,
the delay was first introduced by Sen et al. (2014), Wangersky and Cunningham (1957) to
address the gestation/maturation delay. A particular observation Kuangmakes is that animals
take a long time to digest their feed, which delays their activities (Kuang 1993). Using the
effect of habitat complexity on delay-induced predator-prey systems,Ma andWang proposed
and analyzed such a system (Ma and Wang 2018).The introduction of delay increases the
biological realism of the model, and sometimes the system shows chaotic dynamics.
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Authors in Xie and Zhang (2022) examined the effects of dread of predator species on anti-
predator behavior in a prey predator system with Holling III type functional responses and
prey shelters. They established that fear can stabilize the periodic system.A three-species food
chain model was studied by Sk et al. (2022), which included hunting cooperation between
predators and prey fear with delay in the system. The authors discover that the fear of the
middle predator creates stability while the fear of the top predator creates instability. Our
study considers a two-species prey-predator model with fear of prey, predator harvesting
and gestation delay in the predator population. Both delayed and non-delayed systems are
studied.

Inovation and major contributation of the proposed model are summarized below:

1. The model involves a two-dimensional prey-predator relationship with Holling type
III functional response and predation fear to the prey population.

2. We assume that predator populations are economically important and are harvested
linearly.

3. Furthermore, gestation delay is considered in order to determine how it affects the
richer dynamics.

Finally, the paper is organized in the following way: in Sect. 2, we formulate the mathe-
matical model for prey-predator by introducing the cost of fear andHolling type III functional
response for the interacting species. The basic dynamical results such as positivity and bound-
edness, the existence of the equilibria and their local stability and local bifurcation of the
non-delayed system are given in Sect. 3. In Sect. 4, we investigate the several mathemat-
ical analysis for delayed system viz., uniform persistence, local and global stability, Hopf
bifurcation and stability direction of Hopf bifurcating periodic solution. Also, in Sect. 5,
for the purpose of justifying our analytical results, we perform some numerical simulations,
which also show that interactions between prey and predator are influenced by the fear effect.
Finally, in Sect. 6, we summarize some biological indications from our analytical observation
and possible future scope for the upcoming research work.

2 Model formulation

In this paper, we have considered an ecological model having two interacting species, one of
them is prey and the other is a predator. We have assumed here that the prey species grows
logistically without the presence of any predator. This assumption leads to the following
differential equation

dx(t)

dt
= r x(t) − r0x(t) − r1x

2(t),with x(0) = x0, (1)

where x(t) is the prey density at any time t, r is the natural prey birth rate, r0 is the natural
mortality rate and r1 is the death rate due to the intra-species competition for the prey species.

Now the appearance of any predator in the system affects the prey population. We assume
that the predator consumes the prey population according to the prey-dependent Holling type
III functional response. Thus the prey-predator system incorporating the Holling type III
functional response developed to

dx(t)

dt
= r x(t) − r0x(t) − r1x

2(t) − mx2(t)y(t)

a + x2(t)
, (2a)

dy(t)

dt
= −dy(t) + βmx2(t)y(t)

a + x2(t)
, (2b)
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with initial condition x(0) > x0, y(0) = y0; y(t) is the predator density at any time t, d is
the natural death rate of a predator, m is the maximum predation rate, a is the environmental
protection parameter for the prey population, β is the conversion efficiency of the predator
population.

It is observed that the appearance of any predator not only affects the prey species by
direct predation. Predator-induced hunting fears the prey species. The survivor of the prey
population is highly affected due to predator hunting. The natural birth rate of the prey
population reduces due to the predator fear effect. We introduce the fear function φ(k, y) =

1

1 + ky(t)
(Wang et al. 2016; Debnath et al. 2021; Sk et al. 2022) , which is monotonically

decreasing function of both k and y, in the prey birth rate r . Then the model system (2)
developed as the following

dx(t)

dt
= r x(t)

1 + ky(t)
− r0x(t) − r1x

2(t) − mx2(t)y(t)

a + x2(t)
, (3a)

dy(t)

dt
= −dy(t) + βmx2(t)y(t)

a + x2(t)
, (3b)

with same initial condition and k is the fear parameter.
The fear functions φ(k, y) satisfies following biological consequences :

1. φ(0, y) = 1; i.e., if there is no fear in prey due to the predator species, then there will
be no loss of reproduction in prey species

2. φ(k, 0) = 1; i.e., as long as predator species do not exist, prey species do not suffer a
loss of reproduction.

3. limk→∞ φ(k, y) = 0; i.e., if the fear parameter goes to very large, then prey reproduc-
tion ultimately becomes zero.

4. limy→∞ φ(k, y) = 0; i.e., a large predator species density reduces prey reproduction
and ultimately eliminates it.

5.
∂φ

∂k
< 0; i.e., increased fear of predators leads to a reduction in prey species reproduc-

tion.

6.
∂φ

∂ y
< 0; i.e., increased predator density reduces the reproduction of prey species.

Predator populations are assumed to be economically significant here, and we harvest them.
In order to harvest predator populations, we utilize linear harvesting policy. Consequently,
when predator hunting is linear, the model system (3) becomes

dx(t)

dt
= r x(t)

1 + ky(t)
− r0x(t) − r1x

2(t) − mx2(t)y(t)

a + x2(t)
, (4a)

dy(t)

dt
= −dy(t) + βmx2(t)y(t)

a + x2(t)
− qEy(t). (4b)

In a real-life application, every organism needs a constant time lag to reproduce its new
program. Keeping this in mind we assume that the reproduction of new prey is not immediate
after the prey consumption. We assumed that the predator takes τ time lag for the gestation
of prey and the rate of change of predator density depends on the density of prey, predator
present at the previous τ time. Thus involving the discrete-time lag the model system (4)
reduces to

dx(t)

dt
= r x(t)

1 + ky(t)
− r0x(t) − r1x

2(t) − mx2(t)y(t)

a + x2(t)
, (5a)
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dy(t)

dt
= −dy(t) + mβx2(t − τ)y(t − τ)

a + x2(t − τ)
− qEy(t), (5b)

subject to the following non-negative conditions :

x(θ) = φ(θ) ≥ 0, y(θ) = ψ(θ) ≥ 0

θ ∈ [−τ, 0], φ(0) > 0, ψ(0) > 0,

where φ(θ) and ψ(θ) are bounded continuous functions in the interval [−τ, 0].
Now we shall establish the positivity, boundedness and persistence of the system which

will refers that the system is well-behaved.

3 Themodel analysis in the absence of delay

In this section, we shall discuss positivity, boundedness of solutions, finding equilibrium
points and analysis the local stability of the non delayed system.

3.1 Positivity and boundedness of the solution of the proposed system

In this subsection, we show that positivity of solutions of the non delayed system. After that,
we show the boundedness of the solution of the non delayed system. In biological point of
view, the positivity of solutions of the system means that the species exist and boundedness
means that the species exist finitely. The system (4) can be written as

dx

dt
= x f1(x, y),

dy

dt
= y f2(x, y) (6)

where f1 = r

1 + ky
− r0 − r1x − mxy

a + x2
, f2 = −d + βmx2

a + x2
− qE .

After that, integrating the above equations and using the initial value, we get,

x(t) = x0 exp

(∫ t

0
[ f1(x(s), y(s))ds]

)
> 0,

y(t) = y0 exp

(∫ t

0
[ f2(x(s), y(s))ds]

)
> 0,

with initial conditions x0 > 0 and y0 > 0.

Theorem 1 The set Ω = {(x, y) : 0 ≤ x ≤ M1, 0 ≤ y ≤ M2} is a region of attraction for

all solutions initiating in the positive quadrant, where M1 = r

r1
and M2 = (d + r − r1)2

4r1
.

Proof From the first equation of the system (4) we have,
dx

dt
≤ r x − r1x2 which implies

lim
t→∞ sup x(t) ≤ r

r1
= M1. Now we consider, P(t) = x(t)+ 1

β
y(t) then differentiating both

side of this expression we get,

dP

dt
= dx

dt
+ 1

β

dy

dt

= r x

1 + ky
− r0x − r1x

2 − d

β
y − qEy

β
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≤ r x − r0x − r1x
2 − d

β
y

d P

dt
+ dP = (d + r − r0)x − r1x

2

dP

dt
+ dP ≤ (d + r − r1)2

4r1
.

Hence, we solve the above inequality and using initial conditions we get,

P(t) ≤ P(0)e−dt + (d + r − r1)2

4r1
(1 − e−dt ).

Moreover, we get lim
t→+∞ supP(t) ≤ (d + r − r1)2

4r1
= M2, which is independent of the initial

condition since, all solutions of the non-delayed system are bounded. ��

3.2 Equilibrium points and stability

The equilibrium points of the proposed system (4) are given at the intersection of prey and
predator nullclines,

x f1(x, y) = 0, y f2(x, y) = 0.

Equilibrium points of our proposed system (4) are:

(i) The trivial equilibrium point E0(0, 0).

(ii) The prey only (axial) equilibrium point E1

(
r − r0
r1

, 0

)
.

(iii) Interior or co-existence equilibrium points of the system (4) are positive solutions of
f1(x, y) = 0 and f2(x, y) = 0. Let E∗(x∗, y∗) be the interior equilibrium point of the

system (4), so x∗ =
(

qaE + ad

mβ − d − qE

)1/2

and y∗ is a positive roots of the following

equation

A1y
∗2 + A2y

∗ + A3 = 0,

where A1 = mkx∗, A2 = (mx∗ + akr0 + akr1x∗ + kr0x∗2 + kr0x∗3), A3 = ar0 +
ar1x∗ + r0x∗2 + r1x∗3 − ar − r x∗2.

Here, A1 and A2 are positive, so the above equation can have at most only one positive
root depending on the sign of A3, if A3 < 0 then the above equation have one positive root
otherwise no positive root of the above equation. So, the above discussion we can conclude
that the system (4) have at most one interior equilibrium points.

Here, we shall show that the local stability of the system (4) with time delay τ = 0 by
using the eigenvalue linearised method about all the above mentioned equilibrium points.

Theorem 2 The trivial equilibrium point E0(0, 0) is locally stable if r < r0 and unstable
r > r0.

Proof Eigenvalues of the Jacobian matrix of the system (4) at trivial point E0(0, 0) are r −r0
and −Eq − d . Here, one eigenvalue is negative and other eigenvalue is negative if r < r0.
Hence trivial equilibrium point is stable if r < r0 otherwise unstable. All the species will go
extinct when the birth rate is less than the growth rate of the prey population, which is very
dangerous in the sub-ecosystem. ��
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Theorem 3 The axial equilibrium point E1

(
r − r0
r1

, 0

)
is locally asymptotically stable if

Eaqr21 + Eqr2 + Eqr20 +adr21 +2βmrr0 +dr2 +dr20 < 2Eqrr0 +βmr2 +βmr20 +2drr0
and unstable if the reverse inequality holds.

Proof Eigenvalues of the Jacobianmatrix at the equilibriumpoint E1

(
r − r0
r1

, 0

)
are−r+r0

and − (Eaqr21+Eqr2−2Eqrr0+Eqr20+adr21−βmr2+2βmrr0−βmr20+dr2−2drr0+dr20 )

(ar21+r2−2rr0+r20 )
. Thus the equilib-

rium point is locally asymptotically stable if Eaqr21 + Eqr2 + Eqr20 + adr21 + 2βmrr0 +
dr2 + dr20 < 2Eqrr0 + βmr2 + βmr20 + 2drr0, otherwise the equilibrium point is unstable.

��
Theorem 4 The interior equilibriumpoint E∗(x∗, y∗) locally asymptotically stable if Ttr < 0
and Ddet > 0 holds, where Ttr and Ddet are defined in the text.

Proof The variation matrix at E∗(x∗, y∗) is given by

J ∗
E =

⎛
⎜⎜⎝

r

(ky∗ + 1)
− r0 − 2r1x∗ − 2amx∗y∗

(x∗2 + a)2
− rkx∗

(ky∗ + 1)2
− mx∗2

(x∗2 + a)
2maβx∗y∗

(x∗2 + a)2

mβx∗2

(x∗2 + a)
− d − qE

⎞
⎟⎟⎠ .

The trace and determinant values of the variation matrix at the interior equilibrium point are

given by Ttr = tr(JE∗) = r

(ky∗ + 1)
− r0 − 2r1x∗ − 2amx∗y∗

(x∗2 + a)2
+ mβx∗2

(x∗2 + a)
− d − qE ,

and

Ddet = det(JE∗) =
(

r

(ky∗ + 1)
− r0 − 2r1x

∗ − 2amx∗y∗

(x∗2 + a)2

)(
mβx∗2

(x∗2 + a)
− d − qE

)

+
(

rkx∗

(ky∗ + 1)2
+ mx∗2

(x∗2 + a)

)(
2maβx∗y∗

(x∗2 + a)2

)
.

Here the above both the expressions Ttr and Ddet can be positive or negative, so the stability
of the system at the interior equilibrium point depends on both expressions Ttr and Ddet

of the variation matrix. Therefore, by the theorem of Routh-Hurwitz criterion, the interior
equilibrium point is locally asymptotically stable if Ttr < 0 and Ddet > 0. ��

3.3 Local bifurcation analysis

In this subsection, we shall discuss Transcritical and Hopf bifurcation analysis of the system
(4). Here, we first discuss Transcritical bifurcation about the trivial equilibrium point E0(0, 0)
with r is the bifurcation parameter. After that, the same bifurcation about axial equilibrium

point E1

(
r − r0
r1

, 0

)
with E as the bifurcation parameter.

Theorem 5 The system (4) admits a transcritical bifurcation for E0(0, 0) at the parameter
threshold r = r [TC] = r0.

Proof The jacobian matrix of the system (4) at the equilibrium point E0(0, 0) for the param-

eter value r [TC] = r0 is

J
(
E0; r = r [TC])

)
=
[
0 0
0 −Eq − d

]
.
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Clearly, the above jacobian matrix have one zero eigenvalue. Now, we find eigenvectors of
the above jacobian matrix corresponding the zero eigenvalue. Eigenvectors of the jacobian
matrix and its transpose matrix are v = [1 0]t and w = [1 0]t respectively. Now, we use
the Sotomayor’s theorem for transcritical bifurcation, then the transversality condition are

wt Fr (E0; r = r [TC]) = 0

wt DFr (E0; r = r [TC])v = 1 
= 0

wt D2F(E0; r = r [TC])(v, v) = −2r1 
= 0.

Since all the transversality conditions are satisfied therefore the system (4) undergoes a trans-
critical bifurcation at r = r [TC].Biologically, transcritical bifurcation is of great importance.
In this case, the system admits a suitable value of prey birth rate (r ), below which no species
will survive; however, after crossing the critical value of prey growth rate, only prey species
will survive. Numerically, we can verify that the system experiences another transcritical
bifurcation at the next critical value of r . Here, the predator-free equilibrium point becomes
unstable from stable and a stable interior equilibrium point arises i.e., both populations will
survive after crossing the second critical value (see Fig. 2). ��

Theorem 6 The system (4) admits a transcritical bifurcation for E1

(
r − r0
r1

, 0

)
at the

parameter threshold E [TC] = (adr21 + βmr2 − 2βmrr0 + βmr20 − dr2 + 2drr0 − dr20 )

(ar21 + r2 − 2rr0 + r20 )q
.

Proof The jacobian matrix of the system (4) at the equilibrium point E1

(
r − r0
r1

, 0

)
for the

parameter value E [TC] = (adr21 + βmr2 − 2βmrr0 + βmr20 − dr2 + 2drr0 − dr20 )

(ar21 + r2 − 2rr0 + r20 )q
is

J
(
E1; E = E [TC])

)
=
⎡
⎣r0 − r

(r0 − r)(akrr21 + kr3 − 2kr2r0 + krr20 + mrr1 − mr0r1)

r1(ar21 + r2 − 2rr0 + r20 )

0 0

⎤
⎦ .

Clearly, from the above jacobian matrix have one zero eigenvalue. Now, we find the eigen-
vectors of the above jacobian matrix corresponding the zero eigenvalue. The eigenvectors of
the jacobian matrix and its transpose matrix are v

=
[

(2kr2r0 − krr20 − mrr1 + mr0r1 − akrr21 − kr3)

r1(ar21 + r2 − 2rr0 + r20 )
1

]t
and w = [0 1]t respectively.

Now we use the Sotomayor’s theorem for transcritical bifurcation, then the transversality
conditions are

wt FE (E1; E = E [TC]) = 0,

wt DFE (E1; E = E [TC])v = −d 
= 0,

wt D2F(E1; E = E [TC])(v, v)

= 2r31aβm(r − r0)(2kr2r0 − krr20 − mrr1 + mr0r1 − akrr21 − kr3)

r1(ar21 + r2 − 2rr0 + r20 )(ar21 + r2 − 2rr0 + r20 )2

= 0.

Since all the transversality conditions are satisfied, therefore the system (4) undergoes a
transcritical bifurcation at E = E [TC]. Hence, transcritical bifurcation arises with respect
to predator harvesting. There is a critical value of the predator harvesting rate below which
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both populations will survive and above which predator population goes to extinction (see
Fig. 4). It is clear from the above analysis that moderate harvesting is biologically acceptable
but extreme harvesting is venerable for the system. ��

In the next theorem, we shall investigate the possibility of Hopf-bifurcation about the
interior equilibrium point E∗, taking the fear factor (k) as the bifurcation parameter and
keeping other parameters fixed. In this regard, we have the following theorem

Theorem 7 The necessary and sufficient conditions for the occurrence of Hopf-bifurcation
at the interior equilibrium E∗ are that there exists a critical value k = k[HB] such that

(1) tr(JE∗)|k=k[HB] = 0,

(2)

[
dRe(λ(k))

dk

]
k=k[HB]


= 0.

Proof The characteristic equation of the system (4) about the interior equilibrium point is
given by

λ2 + C1λ + C2 = 0, (7)

where C1 = −tr(J ∗
E ) and C2 = det(J ∗

E ). Let λ(k) = u(k) + iv(k) be the roots of eq. (7).
Now, we substituting this value in eq. (7), separating real and imaginary parts, we get

u2 − v2 + C1u + C2 = 0, (8)

2uv + C1v = 0. (9)

Anecessary condition for the change of stability of the system (4) through interior equilibrium
E∗ is that the eq. (7)must have purely imaginary roots.We set k = k[HB] such thatu(k[HB]) =
0, and put in (8). Then, we have

− v2 + C2 = 0, (10)

C1v = 0, v 
= 0. (11)

From Eqs. (10), we have C1(k[HB]) = 0 and v(k[HB]) = √
C2(k[HB]), which implies

λ((k[HB])) = i
√
C2((k[HB])). The eigenvalues of equation (7) are

λ1,2 =
−C1 ±

√
C2
1 − 4C2

2
.

Here, C1 and C2 are the functions of the parameter k, when the value of other parameters
are fixed. Moreover, we assume there exists some k = k[HB] such that C1(k[HB]) = 0 and
C2(k[HB]) > 0. Therefore, the real parts of these eigenvalues change the sign when k passes
through the critical value k = k[HB]. Thus, the system switches its stability provided that
the transversality condition is satisfied. Differentiating Eqs. (8), (9) with respect to k and put
u = 0, we have

C1
du

dk
− 2v

dv

dk
= −dC2

dk
,

2v
du

dk
+ C1

dv

dr
= −v

dC1

dk
.
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Solving the above system of equations, we have

[
dRe(λ(k))

dk

]
k=k[HB]

= −
⎡
⎢⎣
2v2

dC1

dk
+ C1

dC2

dk
C2
1 + 4v2

⎤
⎥⎦
k=k[HB]


= 0

provided

[
2v2

dC1

dk
+ C1

dC2

dk

]
k=k[HB]


= 0.

Having Hopf bifurcation concerning the fear parameter indicates that there is a particular
value of the fear parameter at which the system’s stability switches (from stable to limit cycle
or from limit cycle to stable). Biologically, the Hopf bifurcation threshold parameter values
guarantee the persistence of both species in a steady or oscillatory mode for a long time. ��

4 Analysis of themodel in presence of delay

In this section, we shall discuss the persistence, local stability, Hopf bifurcation and global
stability analysis about the interior equilibrium points of the delay system (5).

4.1 Positivity and boundedness of system solutions

In this section, we shall present the condition of positivity and boundedness of the delay
system (5). From the first equation of the system (5) we have,

dx

x
=
(

r

1 + ky
− r0 − r1x − mxy

a + x2

)
dt .

Now integrating both side of the above equation between the limits 0 to t , we get,

x(t) = x0 exp

(∫ t

0

[
r

1 + ky(s)
− r0 − r1x(s) − mx(s)y(s)

a + x2(s)

]
ds

)
.

And, similarly from the second equation of the delay system (1) we get,

y(t) = y0 exp

(∫ t

0

[
−d + mβx2(s − τ)y(s − τ)

a + x2(s − τ)
− qE

]
ds

)
,

where x0 > 0 and y0 > 0. Therefore, x(t) > 0 and y(t) > 0.

Lemma 1 All solutions of the delay system (5) starting in int(R2+) are uniformly bounded
with an ultimate bound.

Proof The first equation of the delay system (5) we get,

dx

dt
≤ r x − r1x

2.

Therefore, lim
t→∞ sup x(t) ≤ r

r1
.

Now, defined a function V = x(t−τ)+ 1

β
y(t). After that, taking its time derivative along

the solution of the delay system (5), we have

V̇ = ẋ(t − τ) + 1

β
ẏ
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= r x(t − τ)

1 + ky(t − τ)
− r0x(t − τ) − r1x

2(t − τ) − mx2(t − τ)y(t − τ)

a + x2(t − τ)

− d

β
y + mx2(t − τ)y(t − τ)

a + x2(s − τ)
− 1

β
qEy

≤ (d + r − r0)x(t − τ) − r1x
2(t − τ)

V̇ ≤ −r0V + (d + r − r1)2

4r1

which given, limt→∞ sup V (t) ≤ (d + r − r1)2

4r0r1
.

Let M = max

(
r

r1
,
(d + r − r1)2

4βr1

)
. ��

Lemma 2 Here, for any positive solution of system (5), the relations y(t) ≥ y(t − τ)e−dτ

and y(t − τ) ≥ y(t)e−m1τ are always satisfied, where m1 = βMedτ .

4.2 Local stability and Hopf Bifurcation with delay system about the interior
equilibrium point E∗

In this subsection, we shall discuss dynamics of the system in presence of delay.

4.2.1 Local stability and Hopf bifurcation analysis of the delayedmodel

Now, we will study the local stability of various equilibrium points for the delayed system
(5). The Jacobian matrix of the system (5) at any equilibrium point E(x, y) is given by

JE =

⎡
⎢⎢⎣

r

1 + ky
− r0 − 2r1x − 2maxy

(a + x2)2
−
(

rkx

(ky + 1)2
+ mx2

x2 + a

)

2maβxy

(a + x2)2
e−λτ −d + mβx2

a + x2
− qE

⎤
⎥⎥⎦ .

It is obvious that the stability of trivial and axial equilibrium points remain same as in the
non-delayed model i.e., the effect of delay has no impact on the stability of trivial and axial
equilibrium points.

Let (x∗, y∗) be the only interior equilibrium point of the system (5), using the transfor-
mation X = x − x∗, Y = y − y∗ and Linearizing the system (5) we get

dX

dt
= b1X + b2Y , (12a)

dY

dt
= b3X(t − τ) + b4Y (t − τ) + b5Y , (12b)

where,

b1 = r

1 + ky∗ − r0 − 2r1x
∗ − 2max∗y∗

(a + x∗2)2
, b2 = −

(
rkx∗

(ky∗ + 1)2
+ mx∗2

x∗2 + a

)
,

b3 = 2maβx∗y∗

(a + x∗2)2
, b4 = mβx∗2

a + (x∗)2
, b5 = −(d + qE).
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After that we find the characteristic equation of the above linearised system (12) which is
given in the following form:

λ2 + A0λ + B0 + (C0λ + D0)e
−λτ = 0 (13)

where, A0 = −(b1 + b5), B0 = b1b5,C0 = −b4 and D0 = b1b4 − b2b3.
In non-linear delay equation exist two types of stability among them: absolute stability,

which is independent on delay and other one conditional stability, which is dependent on
delay.
Case - I: τ = 0.

Then the characteristic eq. (13) becomes

λ2 + (A0 + C0)λ + B0 + D0 = 0 (14)

The interior equilibrium point E∗(x∗, y∗) is locally asymptotically stable if and only if the
roots of the eq. (14) have negative real parts, which is true if

(i) A0 + C0 > 0,
(ii) B0 + D0 > 0.

Case - II: τ 
= 0.
Let iω is a root of the eq. (13), then putting iω in 13 separating the real and imaginary

parts, we gen in the following form

D0 cosωτ + C0ω sinωτ = ω2 − B0, (15)

C0ω cosωτ − D0 sinωτ = −A0ω. (16)

From above two equation we obtain,

ω4 − (C2
0 − A2

0 + 2B0)ω
2 + (B2

0 − D2
0) = 0, (17)

and cosωτ = D0(ω
2 − B0 − ω2A0C0)

ω2C2
0 + D2

0

and sinωτ = ωC0(ω
2 − B0 + ωA0D0)

ω2C2
0 + D2

0

.

From (17), we see that, if
(iii) (A2

0 − C2
0 − 2B0) > 0 and (B2

0 − D2
0) > 0, then the equation (17) does not have any

positive roots. So, the characteristic eq. (13) does not have any purely imaginary roots. Since
(i) and (i i) secure that all roots of (14) have negative real parts by Rouche’s theorem, it
follows that the roots of (17) have negative real part too. The abridge of the above discussion
is summarize in the following theorem:

Theorem 8 If the conditions (i)–(iii) hold, then all the roots of (13) have negative real parts
for all τ ≥ 0 i.e. E∗ will be stable.

On the other hand, if (iv) (B2
0 − D2

0) < 0, then (17) has a unique positive root ω2
0.

After that we substitute ω2
0 into (15) and solving for τ , we get

τn = 1

ω0
arctan

(
ω0A0D0 + ω0C0(ω

2
0 − B0)

D0(ω
2
0 − B0) − ω2

0A0C0

)
+ 2nπ

ω0
, n = 0, 1, 2, 3... (18)

If
(v) (C2

0 − A2
0 + 2B0) > 0, (B2

0 − D2
0), and (C2

0 − A2
0 + 2B0)

2 > 4(B2
0 − D2

0), then (17)
has two positive roots ω2+ and ω2−.
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Now substituting ω2± into (14), we get

τ±
k = 1

ω±
arctan

(
ω±A0D0 + ω±C0(ω

2± − B0)

D0(ω
2± − B0) − ω2±A0C0

)
+ 2nπ

ω±
, n = 0, 1, 2, 3... (19)

Now, differentiating the eq. (13) with respect to τ , we get

dλ

dτ
= (C0λ

2 + D0λ)e−λτ

(2λ + A0) + (C0 − C0λτ − D0τ)e−λτ
,

(
dλ

dτ

)−1

= C0

λ(C0λ + D0)
− (2λ + A0)

λ(λ2 + A0λ + B0)
− τ

λ
(20)

by using e−λτ = −
(

λ2+A0λ+B0
C0λ+D0

)
.

Thus

sign

(
d

dτ
(Reλ)

)
λ=iω

= sign

(
Re

(
dλ

dτ

)−1
)

λ=iω

= sign

(
2ω2 − (C2

0 − A2
0 + 2B0)

C2
0ω

2 + D2
0

)
, (21)

by using (ω2 − B0)
2 + A2

0ω
2 = D2

0 + C2
0ω

2.

Theorem 9 If (i), (ii) and (iv) hold, then the interior equilibrium point E∗(x∗, y∗) is asymp-
totically stable if τ < τ0 and unstable τ > τ0. Further, if τ increases through the critical value
of τ0, then interior equilibrium point E∗(x∗, y∗) bifurcates with small amplitude periodic
solutions, where

τ0 = 1

ω0
arctan

(
ω0A0D0 + ω0C0(ω

2
0 − B0)

D0(ω
2
0 − B0) − ω2

0A0C0

)
. (22)

Proof The interior equilibrium point E∗(x∗, y∗) is asymptotically stable for τ = 0 if (i) and
(ii) hold. From Butler’s lemma, we conclude that the interior equilibrium point remain stable
for τ < τ0. We have to show now

d

dτ
(Reλ)

∣∣∣∣
τ=τ0,ω=ω0

> 0. (23)

However, the conditions of Hopf bifurcation of the system are then satisfied the required
periodic solution.

Now from (19), we have

sign

(
d

dτ
(Reλ)

)
λ=iω0

= sign

⎛
⎝
√

(C2
0 − A2

0 + 2B0)2 − 4(B2
0 − D2

0)

C2
0ω

2
0 + D2

0

⎞
⎠ . (24)

Therefore,

d

dτ
(Reλ)

∣∣∣∣
τ=τ0,ω=ω0

> 0. (25)

The transversality condition are hold for Hopf bifurcation at ω = ω0, τ = τ0. ��
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4.3 Global stability of the delay system about the interior equilibrium point E∗

In this section,we shall discuss the global stability of the interior equilibriumpoint E∗(x∗, y∗)
in presence of dealy.

Theorem 10 The interior equilibrium point E∗(x∗, y∗) of the system (5) is Globally asymp-
totically stable if min{p1m1, p2m2} > 0 where p1

=
(
r1 − m(a + x∗2)y∗

(a + m2
1)(a + x∗2)

− (1 + kM2)

(1 + km2)(1 + ky∗)
− (a2 + τ

) 2M2
1βm

a(a + x∗2)

)
and p2 =

(
km1

(1 + kM2)(1 + ky∗)
− m(a + x∗2)x∗

(a + m2
1)(a + x∗2)

)
and m1,m2 are defined in the proof of this

theorem.

Proof Let usfirst define a set D = {(x, y) : m1 < x < M1, m2 < y < M2},wherem1,m2 >

0 and 0 < M1, M2 < ∞, obviously D is compact in R
2 and using the transformation

x(t) = x∗ev1(t), y = y∗ev2(t).

Therefore, the system (5) becomes
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv1
dt

= (1 + ky)x∗(ev1(t) − 1)

(1 + ky)(1 + ky∗)
− kxy∗(ev2(t) − 1)

(1 + ky)(1 + ky∗)
+ m(a + x∗2)x∗y∗(ev2(t) − 1)

(a + x2)(a + x∗2)

+m(a + x∗2)x∗y∗(ev1(t) − 1)

(a + x2)(a + x∗2)
− r1x∗(ev1(t) − 1),

dv2
dt

= amβx∗(ev1(t−τ) − 1)(x(t − τ) + x∗)
(a + x2(t − τ))(a + x∗2)

.

(26)

The above transformation changes the interior equilibrium points E∗ to (0, 0) in v1 − v2
plane. Let V1 = |v1(t)| then computing the upper Dini derivative of V1(t) along the system
(5), we obtain that,

D+V1(t) ≤ (1 + kM2)x∗|(ev1(t) − 1)|
(1 + km2)(1 + ky∗)

− km1y∗|(ev2(t) − 1)|
(1 + kM2)(1 + ky∗)

+ m(a + x∗2)x∗y∗|(ev2(t) − 1)|
(a + m2

1)(a + x∗2)

+ m(a + x∗2)x∗y∗|(ev1(t) − 1)|
(a + m2

1)(a + x∗2)
− r1x

∗|(ev1(t) − 1)|

≤ −
[
r1x

∗ − m(a + x∗2)x∗y∗

(a + m2
1)(a + x∗2)

− (1 + kM2)x∗

(1 + km2)(1 + ky∗)

]
|(ev1(t) − 1)|

−
[

km1y∗

(1 + kM2)(1 + ky∗)
− m(a + x∗2)x∗y∗

(a + m2
1)(a + x∗2)

]
|(ev2(t) − 1)|.

Now, we consider the functional as

V22(t) = V2(t) + 2M2
1βm

a

∫ t

t−τ

∫ t

x

[(
1

(a + x∗2)(a + M1)

)
x∗∣∣ev1(s−τ) − 1

∣∣] dsdx .
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Therefore,

D+V22(t) = D+V2(t) + 2τM2
1βm

a

[(
1

(a + x∗2)(a + M1)

)
x∗∣∣ev1(t−τ) − 1

∣∣]

− 2M2
1βm

a

∫ t

t−τ

[(
1

(a + x∗2)(a + M1)

)
x∗∣∣ev1(s−τ) − 1

∣∣] ds
≤ D+V2(t) + 2τM2

1βm

a

[(
1

(a + x∗2)(a + M1)

)
x∗∣∣ev1(t−τ) − 1

∣∣]

≤ (a2 + τ
) 2M2

1βm

a(a + x∗2)
x∗∣∣ev1(t − 1

∣∣.
Now, construct a Lyapunov functional V (t) = V1(t) + V22(t) > |v1(t)| + |v2(t)|.

Now, we calculate the upper right-hand derivative of V (t) along with the solutions of the
system (5), we get

D+V (t) = D+V1(t) + D+V22(t)

≤ −
[
r1x

∗ − m(a + x∗2)x∗y∗

(a + m2
1)(a + x∗2)

− (1 + kM2)x∗

(1 + km2)(1 + ky∗)

− (a2 + τ
) 2M2

1βm

a(a + x∗2)
x∗
]

|(ev1(t) − 1)|

−
[

km1y∗

(1 + kM2)(1 + ky∗)
− m(a + x∗2)x∗y∗

(a + m2
1)(a + x∗2)

]
|(ev2(t) − 1)|

≤ −p1x
∗|(ev1(t) − 1)| − p2y

∗|(ev2(t) − 1)|,

where, p1 = r1− m(a + x∗2)y∗

(a + m2
1)(a + x∗2)

− (1 + kM2)

(1 + km2)(1 + ky∗)
−(a2 + τ

) 2M2
1βm

a(a + x∗2)
, p2 =

km1

(1 + kM2)(1 + ky∗)
− m(a + x∗2)x∗

(a + m2
1)(a + x∗2)

.

Since the model system (5) is permanent, then, for all t > T , we have x∗ev1(t) = x(t) ≥
m1, y∗ev2(t) = x(t) ≥ m2.

Now, we applying the mean value theorem, we get

x∗|ev1(t)| = x∗eθ1 |v1(t)| > m1|v1(t)|,
y∗|ev2(t)| = y∗eθ2 |v2(t)| > m2|v2(t)|,

where, x∗eθ1(t) lies between x∗ and x(t); y∗eθ2(t) lies between y∗ and y(t). There-
fore, D+V (t) ≤ p1m1|v1(t)| − c2m2|v2(t)| ≤ −ρ(|v1(t)| + |v2(t |), where ρ =
min{p1m1, p2m2}. Therefore, the coexisting equilibrium point E∗ of the delayed model
(5) will be globally asymptotically stable if min{p1m1, p2m2} > 0. ��

4.4 Direction and stability of Hopf-bifurcation

Now, in this section we discuss the direction and stability of the coexisting equilibrium
point through Hopf-bifurcation. To verify the direction of Hopf-bifurcation and stability of
equilibrium points we shall use the center manifold theorem and normal form (Hassard et al.

123



Effect of fear and delay on a prey-predator model... Page 17 of 36 357

1981). In the previous section, we see that, when τ crosses the critical value τ ∗ then the
system (5) has experience the Hopf-bifurcation.

Now, consider the transformation X1(t) = x(t) − x∗, X2(t) = y(t) − y∗ and τ =
τ ∗ +μ,μ ∈ R, therefore, μ = 0 is a Hopf-bifurcation value of the transferred model. Using
the above transformation the system (5) transformed into

Ẋ(t) = Lμ(Xt ) + g(μ, Xt ), (27)

where X(t) = (X1(t), X2(t))T ∈ R
2. For ψ = (ψ1, ψ2)

T ∈ C([−1, 0],R2+); Lμ : C → R

and g : R × C → R are given by

Lμ(ψ) = (τ ∗ + μ)A(0)
(

ψ1(0)
ψ2(0)

)
+ (τ ∗ + μ)A(1)

(
ψ1(−1)
ψ2(−1)

)
(28)

and g(μ,ψ) = (τ ∗ + μ)A(2), where A(0) =
(
b1 b2
0 b5

)
, A(1) =

(
0 0
b3 b4

)
, A(2) =(

q1ψ2
1 (0) + q2ψ1(0)ψ2(0) + q3ψ2

2 (0)
q4ψ2

1 (−1) + q5ψ1(−1)ψ2(−1)

)
,

q1 = my∗a(a − 3x∗2)
(x∗2 + a)3

;

q2 = −rk(ky∗ + 1)

(ky∗ + 1)3
− 2amx∗

(x∗2 + a)2
;

q3 = rk2x∗

(ky∗ + 1)3
;

q4 = βamy∗(a − 3x∗2)
(x∗2 + a)3

;

q5 = 2βmx∗a
(x∗2 + a)2

.

After that the Riesz representation theorem, there exist two dimensional matrix η(φ, μ) are
function of bounded variation such that

Lμψ =
∫ 0

−1
dη(φ, μ)ψ(φ), for ψ ∈ C, (29)

where φ ∈ [−1, 0]. Now, we choose η(φ, μ) = (τ ∗ + μ)A(0)δ(φ) − (τ ∗ + μ)A(1)δ(φ + 1),
where δ is the Dirac delta function and it is defined as

δ(φ) =
{
1, φ = 0,

0, φ 
= 0.

For ψ ∈ C1([−1, 0],R2+), define

H(μ)ψ =
⎧⎨
⎩
dψ(φ)

dφ
φ ∈ [−1, 0]∫ 0

−1 dη(μ, p)ψ(p) φ = 0.
and R(μ)ψ =

{
0 φ ∈ [−1, 0]
g(μ,ψ) φ = 0.

Then the system (27) becomes

Ẋt = H(μ)Xt + R(μ)Xt (30)
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where Xt (φ) = Xt (t + φ) for φ ∈ [−1, 0]. For ν ∈ C1([0, 1], (R2+)∗), define

H∗ν(p) =
⎧⎨
⎩

−dν(p)

dp
, p ∈ (0, 1],∫ 0

−1 dηT (t, 0)ν(−t), p = 0,

and the bilinear inner product is given below

〈ν(p), ψ(φ)〉 = ν̄(0)ψ(0) −
∫ 0

−1

∫ φ

γ=0
ν̄(γ − φ)dη(φ)ψ(γ )dγ, (31)

where η(φ) = η(φ, 0).
Now,whenμ = 0 i.e. τ = τ ∗ then the system (27) experiences the Hopf-bifurcation about

the interior equilibrium point E∗. After that we use the eq. (28), we can say the characteristic
equation of the system (27) has a pair of imaginary roots ±iω0τ

∗.
Clearly H(0) and H∗ are adjoint operators. Here, ±iω0τ

∗ are the eigenvalues of H(0),
so ±iω0τ

∗ are eigenvalues of H∗. After that, we will find the eigenvectors of H(0) and H∗
for the eigenvalue iω0τ

∗ and −iω0τ
∗ respectively.

Now, we consider that q(φ) = (1, α1)
T eiω0τ

∗φ and q∗(p) be the eigenvectors of H(0)
and H∗ corresponding to the eigenvalues of iω0τ

∗ and −iω0τ
∗ respectively. Therefore we

have H(0)q(φ) = iω0τ
∗q(φ). After that we use the definition of H(0) and eq. (29), we find

that τ ∗
(
b1 − iω0 b2
b3e−iω0τ

∗
b4e−iω0τ

∗ + b5 − iω0

)
q(0) =

(
0
0

)
.

Therefore we get q(0) = (1, α1)
T and q∗(p) = D(1, α∗

1)
T eiω0τ

∗ p ,

where α1 = b3e−iω0τ
∗

−b4e−iω0τ∗ − b5 + iω0
and α∗

1 = − b2
b4eiω0τ∗ + b5 + iω0

. Now we

choose the value of D such that 〈q∗(p), q(φ)〉 = 1 and 〈q∗(p), q̄(φ)〉 = 0 as D =
1

1 + ᾱ1α
∗
1 + (b3 + b4ᾱ1)α

∗
1τ

∗eiω0τ∗ .

After that we will defined the center manifold C0 at μ = 0. Now we use the same way
which is introduce by Hassard to compute the coordinates of the manifold.

Let us first assume that Xt be the solution of the eq. (30) when μ = 0.
Define

Z(t) = 〈q∗, xt 〉,W (t, φ) = Xt (φ) − 2Re{Z(t)q(φ)}. (32)

On the center manifold C0, we have

W (t, φ) = W
(
Z(t), Z̄(t), φ

) = W20(φ)
Z2

2
+ W11(φ)Z Z̄ + W02(φ)

Z̄2

2

+ W30(φ)
Z3

6
+ ...,

where Z and Z̄ are the local coordinates along q∗ and q̄∗ of the center manifold C0 respec-
tively. Also W is real when Xt is real. Now μ = 0, then the solution Xt ∈ C0 of the eq. (30)
is

Ż(t) = iω0τ
∗Z + 〈q̄∗(φ), F

(
0,W (Z , Z̄ , φ) + 2Re{Zq(φ)})〉

= iω0τ
∗Z + q̄∗(0)F

(
0,W (Z , Z̄ , 0) + 2Re{Zq(0)}) = iω0τ

∗Z + q̄∗(0)F0(Z , Z̄),

so this equation can be written as in the form Ż = iω0τ
∗ + l(Z , Z̄) with

l(Z , Z̄) = q̄∗(0)F0(Z , Ż) = l20
Z2

2
+ l11Z Z̄ + l02

Z̄2

2
+ l21

Z2 Ż

2
+ ..., (33)
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Then from the eq. (32) we have

Xt (φ) = (X1t (φ), X2t (φ)) = W
(
Z(t), Z̄(t), φ) + 2Re{Z(t)q(φ)}) (34)

= W20(φ)
Z2

2
+ W11(φ)Z Z̄ + W02(φ)

Z̄2

2
+ (1, α1)

T eiω0τ
∗φZ

+ (1, ᾱ1)
T e−iω0τ

∗φ Z̄ + O(|(Z , Z̄)|3).

X1t (0) = Z + Z̄ + W 1
20(0)

Z2

2
+ W 1

11(0)Z Z̄ + W 1
02(0)

Z̄2

2
+ O(|(Z , Z̄)|3)

X1t (−1) = e−iω0τ
∗
Z + e−iω0τ

∗
Z̄ + W 1

20(−1)
Z2

2
+ W 1

11(−1)Z Z̄

+ W 1
02(−1)

Z̄2

2
+ O(|(Z , Z̄)|3)

X2t (0) = α1Z + ᾱ1 Z̄ + W 2
20(0)

Z2

2
+ W 2

11(0)Z Z̄ + W 2
02(0)

Z̄2

2
+ O(|(Z , Z̄)|3)

X2t (−1) = e−iω0τ
∗
α1Z + e−iω0τ

∗
ᾱ1 Z̄ + W 2

20(−1)
Z2

2
+ W 2

11(−1)Z Z̄

+ W 2
02(−1)

Z̄2

2
+ O(|(Z , Z̄)|3). (35)

Then from the eq. (33) we can find

l(Z , Z̄) = q̄∗(0)F0(Z , Z̄)

= D̄(1, ᾱ∗
1 )τ∗

(
q1X

2
1t (0) + q2X1t (0)X2t (0) + q3X

2
2t (0)

q4X
2
1t (−1) + q5X1t (−1)X2t (−1)

)

= D̄τ∗q1{Z + Z̄ + W 1
20(0)

Z2

2
+ W 1

11(0)Z Z̄ + W 1
02(0)

Z̄2

2
+ O(|(Z , Z̄)|3)}2

+ D̄τ∗q2{Z + Z̄ + W 1
20(0)

Z2

2
+ W 1

11(0)Z Z̄ + W 1
02(0)

Z̄2

2
+ O(|(Z , Z̄)|3)}

× {α1Z + ᾱ1 Z̄ + W 2
20(0)

Z2

2
+ W 2

11(0)Z Z̄ + W 2
02(0)

Z̄2

2
+ O(|(Z , Z̄)|3)}

+ D̄τ∗q3{α1Z + ᾱ1 Z̄ + W 2
20(0)

Z2

2
+ W 2

11(0)Z Z̄ + W 2
02(0)

Z̄2

2
+ O(|(Z , Z̄)|3)}2

+ D̄τ∗α∗
1q4{e−iω0τ

∗
Z + e−iω0τ

∗
Z̄ + W 1

20(−1)
Z2

2

+ W 1
11(−1)Z Z̄ + W 1

02(−1)
Z̄2

2
+ O(|(Z , Z̄)|3)}2

+ D̄τ∗α∗
1q5{e−iω0τ

∗
Z + e−iω0τ

∗
Z̄ + W 1

20(−1)
Z2

2

+ W 1
11(−1)Z Z̄ + W 1

02(−1)
Z̄2

2
+ O(|(Z , Z̄)|3)}

× {e−iω0τ
∗
α1Z + e−iω0τ

∗
ᾱ1 Z̄ + W 2

20(−1)
Z2

2

+ W 2
11(−1)Z Z̄ + W 2

02(−1)
Z̄2

2
+ O(|(Z , Z̄)|3)}
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Now, we comparing this above equation with the coefficient of (33) we get

l20 = 2D̄τ ∗[q1 + q2α1 + q3α1 + q4α
∗
1e

−2iω0τ
∗ + q5α1α

∗
1e

−2iω0τ
∗ ]

l11 = D̄τ ∗[2q1 + q2(α1) + 2q3α1ᾱ1 + 2α∗
1e

−2iω0τ
∗ + q5α

∗
1e

−2iω0τ
∗(α1)]

l02 = 2D̄τ ∗[q1 + q2ᾱ1 + q3ᾱ1 + q4α
∗
1e

−2iω0τ
∗ + q5ᾱ1α

∗
1e

−2iω0τ
∗ ]

l21 = D̄τ ∗[2q1
(
W 1

20(0) + 2W 1
11(0)

)+ q2
(
2W 2

11(0) + W 2
20(0) + ᾱ1W

1
20(0) + 2α1W

1
11

)
+ 2q3

(
W 2

20(0) + 2W 2
11(0)

)+ 2q4α
∗
1e

−iωτ∗ (
W 1

20(−1) + 2W 1
11(−1)

)
+ q5α

∗
1e

−iω0τ
∗ (
2W 2

11(−1) + W 2
20(−1) + ᾱ1W

1
20(−1) + α1W

1
11(−1)

)]
Now, we find the values ofW20(ω) andW11(ω). It is follows form the eqs. (30) and (32) that

Ẇ = Ẋt − Żq − ˙̄Zq̄ =
{
HW − 2Re{q̄∗(0)F0q(φ)}, φ ∈ [−1, 0),

HW − 2Re{q̄∗(0)F0q(φ)} + F0, φ = 0
(36)

= HW + N (Z , Z̄ , φ), (37)

where

N (Z , Z̄ , φ) = N20(φ)
Z2

2
+ N11(φ)Z Z̄ + N02(φ)

Z̄2

2
+ .... (38)

After that we expand this above series and comparing the coefficients, we can get

(H − i2ω0τ
∗)W20(φ) = −N20(φ), HW11(φ) = −N11(φ) (39)

Now, from eq. (36) we see that for φ ∈ [−1, 0),

N (Z , Z̄ , φ) = −q̄∗(0)F0q(φ) − q∗ F̄0q̄(φ) = −lq(φ) − l̄ q̄(φ). (40)

After that, if we compare the above coefficient with (38), we get

N20(φ) = −l20q(φ) − l̄02q̄(φ) (41)

and

N11(φ) = −l11q(φ) − l̄11q̄(φ). (42)

Now from (39) and (41), we have

Ẇ20(φ) = i2ω0τ
∗W20(φ) + l20q(φ) + l̄02q̄(φ).

Since q(φ) = (1, α1)
T eiω0τ

∗φ , therefore we have

W20(φ) = il20
ω0τ ∗ q(0)eiω0τ

∗φ + i l̄20
3ω0τ ∗ q̄(0)e−iω0τ

∗φ + E1e
i2ω0τ

∗φ, (43)

where E1 = (E (1)
1 , E (2)

1 ) ∈ R
2 be the constant vector.

Again from eqs. (39) and (42) give the following relation

W11(φ) = − il11
ω0τ ∗ q(0)eiω0τ

∗φ + i l̄11
ω0τ ∗ q̄(0)e−iω0τ

∗φ + E2, (44)

where E2 is a constant vector. Now, we shall find the actual value for E1 and E2 in (43) and
(44), respectively. Using the definition of H and eq. (39), we get∫ 0

−1
dη(φ)W20(φ) = i2ω0τ

∗W20(0) − N20(0) (45)
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and ∫ 0

−1
dη(φ)W11(φ) = −N11(0) (46)

where η(φ) = η(0, φ). From (39), we have

N20(0) = −l02q(0) − l̄02q̄(0) + 2τ ∗
(

q1 + q2α1 + q3
q4e−iω0τ

∗ + q5α1e−iω0τ
∗

)
(47)

and

N11(0) = −l11q(0) − l̄11q̄(0) + 2τ ∗
(

q2{φ}
q5{φ}eiω0τ

∗

)
. (48)

Again noting that (
iω0τ

∗ I −
∫ 0

−1
eiωτ∗φdη(φ)

)
q(0) = 0,

and (
−iω0τ

∗ I −
∫ 0

−1
e−iωτ∗φdη(φ)

)
q̄(0) = 0.

After that we substitute (43) and (47) into (45), we get(
i2ω0τ

∗ I −
∫ 0

−1
ei2ωτ∗φdη(φ)

)
E1 = 2τ ∗

(
q1 + q2α1 + q3

q4e−iω0τ
∗ + q5α1e−iω0τ

∗

)
,

which that(−b1 + 2iω0 −b2
−b3e−2iω0τ

∗ −b5 − b4e−2iω0τ
∗ + 2iω0

)
E1 = 2

(
q1 + q2α1 + q3

q4e−iω0τ
∗ + q5α1e−iω0τ

∗

)
(49)

which is implies that

E (1)
1 = |�11|

|�1| , E (2)
1 = |�12|

|�1| , (50)

where

�11 = 2

(
q1 + q2α1 + q3 −b2

q4e−iω0τ
∗ + q5α1e−iω0τ

∗ −b5 − b4e−2iω0τ
∗ + 2iω0

)
,

�12 = 2

(−b1 + 2iω0 q1 + q2α1 + q3
−b3e−2iω0τ

∗
q4e−iω0τ

∗ + q5α1e−iω0τ
∗

)
,

�1 =
(−b1 + 2iω0 −b2

−b3e−2iω0τ
∗ −b5 − b4e−2iω0τ

∗ + 2iω0

)
.

Again from (44) , (48) and (46), we get(∫ 0

−1
dη(φ)

)
E2 = 2τ ∗

(
q2{φ}

q5{φ}eiω0τ
∗

)
,

implies that (
b1 b2
b3 b5 + b4

)
E2 = −2

(
q2{φ}

q5{φ}eiω0τ
∗

)
,

123



357 Page 22 of 36 P. Majumdar et al.

and hence,

E (1)
2 = |�21|

|�2| , E (2)
2 = |�22|

|�2| , (51)

where

�21 = 2

( −q2{φ} b2
−q5{φ}eiω0τ

∗
b4 + b5

)
, �22 = 2

(
b1 −q2{φ}
b3 −q5{φ}eiω0τ

∗

)
, �2 =

(
b1 b2
b3 b5 + b4

)
.

We can then determine the values ofW20(0) andW11(0) based on (44) and (45), respectively.
Therefore, the delay and other biological parameters can be used to determine each value of
li j . Lastly, we can compute the coefficients as follows:

C1(0) = i

2ω0τ ∗

(
l20l11 − 2|l11|2 − 1

3
|l02|2 + 1

2
l21

)
,

μ2 = − Re{C1(0)}
Re{λ′

(τ ∗)} , β2 = 2Re{C1(0)}, (52)

T2 = − Im{C1(0)} + μ2 Im{λ′
(τ ∗)}

ω0τ ∗ . (53)

The direction of the Hopf bifurcation is depends on the sign of μ2, if μ2 > 0(< 0) then the
Hopf bifurcation is supercritical (subcritical); the stability of the bifurcating periodic solution
is depends on the sign of β2, if β2 < 0(> 0) then the bifurcated periodic solutions are stable
(unstable); the period of the bifurcating periodic solution is depends on the sign of T2, if
T2 > 0(< 0) then the period of the bifurcating periodic solution increases (decreases).

5 Numerical simulation

To demonstrate the validity of the theoretical findings derived in previous sections using
numerical simulations, we choose empirical values of parameters for the system (4) as
shown in Table 1. A range of parameter values are found in published articles as follows:
r ∈ [0.48, 1.1] (Majumdar et al. 2022; Mondal et al. 2022); k ∈ [0.4, 5] (Mondal et al.
2022; Majumdar et al. 2022); r0 ∈ [0.01, 0.5] (Wang et al. 2016; Das and Samanta 2021);
r1 ∈ [0.06, 0.28] (Mondal et al. 2022; Majumdar et al. 2022) 5;m ∈ [0.9, 4.5] (Mondal et al.
2022, a);a ∈ [0.4, 2] (Majumdar et al. 2021; Jiang et al. 2018);d ∈ [0.01, 0.06] (Mondal et al.
2022, a); β ∈ [0.38, 0.9] (Mondal et al. 2022a; Majumdar et al. 2022); q ∈ [0.2, 1] (Majum-
dar et al. 2022; Dubey et al. 2018); E ∈ [0.2, 0.76] (Majumdar et al. 2022; Chakraborty
et al. 2012). Based on the listed range, we present the values of system parameters in Table 1.
We shall investigate different types of bifurcations (transcritical, Hopf bifurcation) and local,
global stability of system solutions about various equilibrium points. For the considered set
of parametric values in Table 1, we observed that the system has three different types of equi-
librium points (trivial, axial and interior) through various parametric conditions (see Fig. 1).
In this article, our analysis is performed in two different parts : (a) analysis for τ = 0, i.e., for
non-delayed system, (b) analysis for different values of τ , i.e., analysis for delayed system.
In biological point of view, fear effect parameter (k) and harvesting effort parameter (E)
are most important parameters of the proposed model system (4). In theoretical sections, we
observed that intrinsic growth rate of prey (r ) plays significant role to change the dynamics
of system about corresponding equilibrium points. At first we shall discuss all numerical
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Table 1 The description and emfarcil values of system variables and parameters with their dimensions

Symbol Biological meaning Numerical value Dimension

r Prey intrinsic growth rate 0.8 time−1

k Level of fear effect 1 biomass−1

r0 Normal death rate of prey population 0.01 time−1

r1 Coefficient of intra-specific interference of prey 0.1 time−1

d Death rate of predator 0.05 biomass−1time−1

a Environmental protection coffecient to the prey 1.2 biomass−
1
2 time−1

β Conversion rate of prey into predator 0.5 biomass−
1
2 time−1

m Predation rate of prey by predator 1.2 time−1

E Harvesting effort 0.2 time−1

q The catchability coefficient 0.8 time−1

τ Time delay 1 time

simulation for the non-delayed system i.e., for τ = 0 and later for delayed system i.e., for
τ > 0.

(a) Numerical analysis for non-delayed system (τ = 0) :
In this discussion, we see how the dynamics of system (4) change for varying biologically

important parameters r and E separately. In Fig. 1, we have observed that growth rate prey
(r ) has an important role in the existence of various types of equilibrium points for different
parametric restrictions of r . In Fig. 2, we have presented the one parameter bifurcation
diagram with respect to r which is showing the stability-instability of different equilibrium
points of the system (4) and other parameters of the system are fixed as in Table 1. It is clear
from the Fig. 2 that in the range 0 ≤ r ≤ 0.01 only trivial equilibrium point E0 exists which
is stable ( the corresponding phase portrait and time series evolution of species are given by
Fig. 3a-b). For 0.01 ≤ r ≤ 0.09038, along with the trial equilibria an axial equilibrium point
exists and the trivial equilibrium point exchanges its stability through transcritical bifurcation
with the axial equilibria ( see the Fig. 3 (c), (d) for the corresponding phase diagram and time
series evolution). It is also observed that if we increase the value of r more from the value
0.09038, axial equilibrium point exchanges its stability through creation interior equilibrium
point. Thus the system again experiences transcritical bifurcation at axial equilibrium point
for the threshold value of r = r[TC] = 0.09038 with respect to the parameter r (see Fig.
2). Thus, when the system goes through critical value r = r[TC] = 0.09038, with trivial
and axial equilibrium points an interior equilibrium point arises and the interior equilibrium
point is stable spiral in nature. The corresponding phase diagram and time series evolution
of the system for r > r[TC] are given by Fig. 3(e), (f).

Biologically, the growth rate of prey r is a significant parameter of the model system (4).
We noticed that when prey growth rate is very low, any of the species do not exist, i.e., the
system goes to extinction. But, if we increase the parameter prey growth rate r more, only
prey species can survive and because of very low prey density, predator goes to extinction
for not availability of food. For more higher value of prey growth rate both the species can
survive with positive population density.

In the model system (4) another significant parameter is harvesting effort of predator. It
has an important role on stability of feasible equilibrium points of the model system (4).
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Fig. 1 The prey and predator nullclines for different parametric values of the prey intrinsic growth rate r like
as: a existence of only trivial equilibrium point for the value of r = 0.01, b existence of trivial and axial
equilibrium points for the value of r = 0.08 and c existence of trivial, axial and interior equilibrium points
for the value of r = 0.8
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Fig. 2 This figure represent one dimensional bifurcation diagram with respect to prey intrinsic growth rate
(r ). The transcritical bifurcation occur at E0 for threshold value r = r0 = 0.01 and at E1 for threshold value
r = r[TC] = 0.09038 where other values of parameters are taken from the Table 1. Also, in this figure green,
grey, red, magenta and blue lines represent stable node, stable node, saddle point, unstable spiral and stable
spiral of corresponding equilibrium points respectively.
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Fig. 3 These figures represent phase diagramwith changing various values of prey intrinsic growth rate(r ) and
corresponding time series evolution of species for the model system (4) like as: a, b for the value of r = 0.005;
c), d for the value of r = 0.07; e, f for the value of r = 0.15 when other values of parameters are choosen
from the Table 1
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Fig. 4 This figure represent one dimensional bifurcation diagramwith respect to the harvesting effort (E). The
transcritical bifurcation occurs at E1 for the threshold value E = 0.67335 while other values of the parameters
are choosen from the Table 1. Also, blue and red lines corresponds to slable and unstable equilibrium points of
the system. There are only two equilibrium points plotted here (E1 and E∗), not plotted E0, which is always
present
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Fig. 5 These figures represent phase diagram with changing various values of harvesting effort parameter
(E) and corresponding time series evolution of species for the model system (4) like as: a, b for the value of
E = 0.7; c, d for the value of E = 0.45 when other values of parameters are choosen from the Table 1
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Fig. 6 Phase diagram for two different values of the intrinsic growth rate parameter r of the model system (4)
such as: a r = 0.3 for stable interior equilibrium point, b r = 0.9 for unstable interior equilibrium point with
considering r1 = 0.01,m = 0.81 and other parameters are same as in Table 1

It is clear from Fig. 4 that for E > 0.67335 the axial equilibrium point is stable and for
E < 0.67335 the axial equilibria exchange its stability through the creation of an interior
equilibrium point i.e., a transcritical bifurcation occurs when the parameter E passes through
threshold value of E = E [TC] = 0.67335 (other parameters are fixed in Table 1). Therefore,
for E < 0.67335, trivial (which is always exist), axial and interior equilibrium exist. The
stability nature of trivial equilibria is saddle, axial equilibria is saddle and interior equilibrium
point is stable focus. Phase diagram and corresponding time series evolution are given by
Fig. 5 (a), (b). Again, for E > 0.67335 the system has two equilibrium points (trivial, axial)
and here the trivial equilibria is saddle and axial equilibria is stable node. This nature of the
system is depicted by phase diagram and corresponding time series evolution Fig. 5 (c), (d).

Froma biological point of view this behaviour is verymeaningful becausewhen harvesting
effort is low, predator and prey density remains at a certain level to co-exist both species.
But for higher harvesting effort, predator population will go to extinction and only prey
species can survive. Thus the businessman has to be conscious on do not to cross the limit
of harvesting for the survival of both species in the system.

Now, if we consider r1 = 0.01, m = 0.81 and other parameters are taken from the
Table 1, the system exhibits Hopf bifurcation at interior equilibrium point with respect to
significant system parameters r , k and E . The parameter r experinces Hopf bifurcation when
it passes through the threshold value r = r [HB] = 0.6010473853. The stable and unstable
phase diagram before and after the Hopf bifurcation are presented by Figs. 6(a) and 6(b),
respectively.

The system (4) experiences Hopf bifurcation with respect to fear effect parameter k.
The system undergoes Hopf bifurcation as it passes through critical value k = k[HB] =
1.729447669 when values of system parameters are r1 = 0.01,m = 0.81 and others are
fixed in Table 1. The corresponding phase diagram before and after Hopf bifurcation are
given by Fig. 7(a) for value of k = 0.3 and Fig. 7(b) for value of k = 0.8 respectively. Thus,
the parameter k has high impact to change the system behaviour.

Again, the system experiences Hopf bifurcation two times with respect to the harvesting
effort parameter E for threshold value E = E [HB] = 0.1982346549 and E = E [HB] =
0.4399812534. The system shows switching property by two times Hopf bifurcation with
respect to the parameter E . Three different phase portraits for different values of E such
as before the first Hopf bifurcation, between two Hopf bifurcations and after the second
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Fig. 7 Phase diagram for two different values of fear effect parameter k of the model system (4) such as: a
k = 0.8 for unstable interior equilibrium point, b k = 3 for stable interior equilibrium point, considering
r1 = 0.01,m = 0.81 and other parameters are same as in Table 1
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Fig. 8 Phase diagram for three different values of harvesting effort parameter E of the model system (4) such
as: a E = 0.17 for stable interior equilibrium point, b E = 0.202 for unstable interior equilibrium point and c
E = 0.44 for stable interior equilibrium point again, considering r1 = 0.01,m = 0.81 and other parameters
are same as in Table 1

Hopf bifurcation are given by Figs. 8 (a), 8 (b) and 8 (c). The biological significance of the
parameter harvesting effort E is that the system shows switching behaviour with respect to
the parameter E , which is most important in the biological aspect.

In Fig. 9 (a), (b) we have represented two dimensional projection of Hopf bifurcation
curves in E − r and E − k parametric planes. In Fig. 9 (a), (b), green and orange coloured
surfaces are showing stable and unstable regions for interior equilibrium point respectively.
From Fig. 9 (a), we observed that for lower values of E , the interior equilibrium point is
stable and from certain parametric values of E the interior equilibrium point is unstable.
In this case, the impact of r is very low on stability of the interior equilibrium point of the
system. Also for any value of r , the system enters into unstable region from the stable one
when E crosses a certain critical value. Again, from Fig. 9 (b), we observed that impact of
E and k both are high on stability of interior equilibrium point of the system. Here, for very
higher values of k the system is stable when value of the E remains in a certain range. Thus,
system parameters E and k both play important role on survive or destroy of species.

Now,wediscuss the significance of systemparameters on dynamics of population densities
of the model system (4). In Fig. 10, we have presented the variation of population densities of
both prey and predator species with respect to prey birth rate(r ), conversion rate of prey into
predator(β), and level of fear effect(k) respectively along with the change of the parameter
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Fig. 9 These figures represent two dimensional projection of Hopf bifurcation curves for the system (4) in
distinct parametric space, considering r1 = 0.01,m = 0.81 and other parameters are taken from the Table 1

predator harvesting effort(E). With the increase of prey birth rate, prey density increases and
consequently predator population density also increase. But the higher values of predator
harvesting effort reduces the predator density in the system and increase the availability
prey (see Fig. 10(a),(b)). If the system has a significantly good conversion rate of prey into
predator, the predator density increase along with the decrease of prey density (see Fig.
10(c),(d)). We also observe that the level of fear effect decreases the amount of available prey
in the environment and increase the predator density (see Fig. 10(e),(f)).

(b) Numerical analysis for delayed system (τ > 0) :
In this section, fear effect of predator on prey (k) and time delay (τ ) are very significant

parameters. From ecological point of view, these two parameters are sensitive to change the
dynamics of the system. Fixing other parameters as in Table 1, if we increase both values of
k and τ the dynamics of the system change quickly. Here, we see that for lower values of
delay parameter τ , the interior equilibria of system shows asymptotically stable behaviour.
If we increase the value of τ more the interior equilibrium point becomes an unstable spiral
and arise one periodic oscillation, then for further increasing τ , the oscillation becomes
double-periodic and with the increase of the value τ many periodic oscillation or chaotic
behaviour arise. In Fig. 11, green, orange, yellow and magenta coloured regions are denoted
locally asymptotically stable region, solutions with one periodic oscillation, solutions with
double-periodic oscillation and solutions with higher periodic or chaotic behaviour. Also, in
this Fig. 11, the separatrix curve of blue and green lines depicts the Hopf bifurcation curve
in the k − τ plane. Additionally, We also show one dimensional Hopf bifurcation curve of
the system with respect to time delay parameter τ by the Fig. 12. Here, we see that the
Hopf bifurcation occurs for threshold value of τ = 2.0325. Moreover, in Fig. 13, we have
presented a three dimensional Hopf bifurcation diagram with respect to the delay parameter
τ . The blue and red-colored parts in this figure show the equilibrium point’s stability and
instability, and their intersection represents the Hopf bifurcation for this threshold value τ .

Now, in green region of Fig. 11, the interior equilibrium point is locally asymptotically
stable and corresponding phase diagram and time series evolution are given by the Fig.
14 (a), (b). Then if we enter into orange region of Fig. 11, the nature of system solutions
becomes one periodic oscillationwhich are depicted by Fig. 14 (c) ,(d). Next, in yellow region
of Fig. 11, system solutions give double periodic oscillations and corresponding graphical
representation are given by Fig. 14 (e), (f). Finally for very higher value of τ , i.e., in magenta
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Fig. 10 Variations in population densities of prey(first column), and predator(second column) with respect to
(a), (b) E and r ; (c), (d) E and β and (e), (f) E and k when other values of parameters are chosen from the
Table 1

coloured region of Fig. 11, solutions of the system give many periodic oscillation showing
chaotic behaviour and the corresponding graphical representation are given by 14 (g), (h).

In Fig. 15, we have presented a three dimensional phase diagram by varying the delay
parameter τ from 0 to 50. Blue, green, and red colors represent asymptotically stable spirals,
limit cycles, and chaotic oscillations (or higher periodic oscillations). From this figure, it is
clear that with increasing the value of τ , the system shows unstable behaviour with stable
limit cycle, one periodic, two periodic, many periodic, or chaotic behavior from the stable of
the equilibrium point.

Figure 16 depicts one dimensional bifurcation diagram of system (5) with respect to
delay parameter τ (varying τ = 0 to 50) when values of other parameters of the system
are given in Table 1. The Fig. 16 describes one periodic, two periodic, many periodic and
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Fig. 11 Regions of stability or instability of the model system (5) in the k − τ parametric plane. Here green,
orange, yellow and magenta regions indicate locally asymptotically stable region, solutions with one periodic
oscillation, solutions with double-periodic oscillation and solutions with higher periodic or chaotic behaviour
respectively
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Fig. 12 Hopf bifurcation diagram with respect to time delay parameter τ of model system (5) when other
parameters are fixed as given in Table 1

chaotic behaviour of solutions of the system. Here, the Hopf bifurcation or one periodic
oscillation of solutions of the system occurs for the value of τ = τ0 = 2.0325, two periodic
oscillation of the solution occurs for τ = 13.324 and many periodic solution or chaotic
behaviour of the solution occurs for τ > 17.354. Thus with the increase of parameter τ

the dynamical behaviour of solutions of the system change through one period, two periods,
many periods and finally chaotic and for the very lower value of τ the interior equilibria is
locally asymptotically stable.

6 Conclusion and discussion

In this present article, we have proposed a two-dimensional prey-predator model where
prey grows logistically and the birth rate of prey reduces due to the fear of the predator. It is
assumed that predator consumes prey according to Holling type III functional response. Also,
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Fig. 13 This figure represents the three dimensional Hopf bifurcation diagram with respect to delay parameter
τ when other value of parameters are taken from the Table 1. Here blue portion in the figure presents the
interior equilibrium point is stable and in the red portion the interiornequilibrium point is unstable with stable
limit cycle

predators are economically significant and harvested linearly. Further, we introduce gestation
delay in the system to get much more realistic and richer dynamics. First, we study the model
dynamics without introducing the delay parameter. The positivity and boundedness of system
solutions have been established under certain parametric conditions. The system consists of
three different types of equilibrium points, trivial, axial and coexistence equilibrium points.
Local stability of all equilibrium points by using the eigenvalue analysis method has been
discussed under different parametric conditions. The intrinsic growth rate of prey (r ) plays an
important role to change the dynamics of the system through transcritical bifurcation at both
trivial and axial equilibrium points. Here, we observed that for the very lower, moderate and
higher values of the intrinsic growth rate of prey both species go to extinction, predator goes
to extinction and both species exist with positive density. Similarly, lower values of harvesting
effort (E) both species exist with positive density and for higher values predator species goes
to extinction. Again, we found that the system changes its stability through Hopf bifurcation
with respect to the intrinsic growth rate of prey, fear effect parameter and harvesting effort.
Additionally, the system shows switching property with changes of harvesting effort.We also
observed that any nominal change in prey birth rate or conversion rate of prey into predator
or level of fear effect along with the predator harvesting effort, the population density of both
species change dramatically and the system may enter into the stable state from the unstable
one and vise-versa.

In the delayed systemwe observed that the delay parameter (τ ) has a high impact to change
the system dynamics. For the delay parameter, the system changes its stability through Hopf
bifurcation with arising a stable limit cycle. Also, we observed that the system arises one
periodic, two periodic, higher periodic and chaotic oscillation with the increase of the value
of delay parameter. Again, we found the effect of fear and delay in the k − τ plane. Here,
the system shows stable, one periodic, two periodic, many periodic and chaotic for various
values of fear and delay. In comparison of the non-delayed and delayed system, we observed
that in the non-delayed system, the system arises only one periodic oscillation but for the
delay, the system arises one periodic, two periodic, many periodic and chaotic oscillation.
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Fig. 14 These figures depict phase portrait diagram for separate values of parameter τ and corresponding time
series evolution of species prey, predator for the model system (5) like as: a, b for the value of τ = 1.8; c, d
for the value of τ = 3.895; e, f for the value of τ = 25; g, h for the value of τ = 40 when other values of
parameters are chosen from the Table 1

Thus, the delay parameter has a high impact to change the stability dynamics of a system and
hence bifurcation dynamics of the delayed model can be regulated by the significant delay
parameter.

In Sk et al. (2022) authors showed that the fear of the middle predator creates stability
while the fear of the top predator creates instability in a three-dimensional model. According
to Xie and Zhang (2022), fear can stabilize the periodic system when considering the same
functional response. By using numerical simulation in this paper, it has been shown that
fear also stabilizes the system, but introducing gestation delay further makes it periodic
with one or more periodicities. Finally, the model can be further extended by replacing the
linear harvesting with the non-linear harvesting function, which will be more realistic and
perspective of the biological diversity. This type of work is most commonly applicable to
economically important species, such as marine sub ecosystems where harvesting provides
financial support.
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Fig. 15 This three dimensional figure represents the phase diagram of the model system (5) for variation
of τ from 0 to 50 when other parameter values are same as Table 1. Here, the blue, green phase attractors
describe that the interior equilibrium point is asymptotically stable spiral, stable limit cycle respectively and
red attractors represent two periodic, four periodic and many periodic or chaotic osillation of the interior
equilibrium point
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Fig. 16 Bifurcation diagram with respect to delay parameter τ for the model system (5) when values of other
parameters are fixed in the Table 1. The first one is bifurcation diagram for prey and second one is bifurcation
diagram for predator
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