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Abstract
The rising level of atmospheric carbon dioxide (CO2) gas is a matter of concern due to its
impact on global climate change. The accomplishment of the goal of climate change miti-
gation requires a reduction in the CO2 concentration in near future. The forest management
programs offer an avenue to regulate atmospheric CO2 levels. This paper presents a four-
dimensional nonlinearmathematicalmodel to study the impact of forestmanagement policies
on the mitigation of atmospheric CO2 concentrations. It is assumed that forest management
programs are applied according to the difference of forest biomass density from its carrying
capacity. The forest management programs are assumed to work twofold: first, they increase
the forest biomass and secondly they reduce the deforestation rate. Model analysis shows that
the atmospheric level of CO2 can be effectively curtailed by increasing the implementation
rate of forest management options and their efficacy. It is found that as the deforestation rate
coefficient exceeds a critical value, loss of stability of the interior equilibrium state occurs and
sustained oscillations arise about interior equilibrium throughHopf-bifurcation. The stability
and direction of bifurcating periodic solutions are discussed using center manifold theory.
Further, it is observed that the amplitude of periodic oscillation dampens as the maximum
efficacy of forest management programs to reduce the deforestation rate increases and above
a critical value of the maximum efficacy of forest management programs, the periodic oscil-
lations die out and the interior equilibrium becomes stable. The strategies for the optimal
control of CO2 concentration while minimizing the execution cost of forest management
programs are also investigated using the optimal control theory. The theoretical results are
demonstrated via numerical simulations.
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1 Introduction

The past few decades witnessed a rapid rise in atmospheric carbon dioxide (CO2) concen-
trations. The excessive increase in carbon dioxide levels has negative impacts on air quality
and human health, and is the prime driver of the problem of global warming. Global warm-
ing has many adverse effects on the humans and ecosystem, like melting of ice covers and
permafrost, storm surges, flood and erosion in the coastal regions, increase in the chances
of extinction of endangered animal and plant species, change in rainfall patterns affecting
global food and water supply, increase in vector-borne, food-borne and water-borne dis-
eases, increase in heat-related illness, etc. (McMichael et al. 2006; Casper 2010; Shuman
2010; Yang et al. 2021). The carbon dioxide concentration has reached a level of 418 ppm
in the year 2022, which is approximately 49% above the level of 280 ppm that existed at the
beginning of the industrial revolution (Prentice et al. 2001; NOAA 2022). Deforestation is
one of the largest human-caused sources of CO2 emissions. Since 1990, nearly 420 million
ha (hectare) of forests are lost worldwide due to deforestation with an annual rate of 10 mil-
lion ha per year between 2015-2020 (FAO 2020). Reforestation and afforestation activities
are of great importance to compensate for the forest loss caused by deforestation and are
adopted by many countries across the globe. The reforestation rate in 2015 was estimated to
be 27 million ha with an annual increase of 1.57 % (FAO 2016). To attain the objective of
mitigation of increased carbon dioxide levels in the atmosphere, plantation on a large scale is
required, however, a number of demographic and economic constraints restrict reforestation
on the desired scale (Jackson and Baker 2010). In this scenario, countries are adopting forest
management policies that increase forest biomass and reduce deforestation rates, thus aiding
in reducing the atmospheric burden of CO2. Costa Rica is the first tropical country that has
successfully reversed the deforestation and restored forest cover from 24.4% in 1985 to more
than 50% by 2011 using the forest management policies (Tafoya et al. 2020).

Worldwide concern about the degradation of forests is leading to new approaches to
forest management. Use of the genetically engineered plants having elongated roots, high
growth rate, and biomass productivity is one of the emerging techniques to increase the forest
biomass per unit forest area and reduce the atmospheric level of carbon dioxide (Harfouche
et al. 2011; Ye et al. 2011; Dubouzet et al. 2013; Chang et al. 2018; Verma et al. 2021).
In Brazil, the genetically modified eucalyptus trees are found to grow faster and absorb
more carbon dioxide, resulting in larger forest biomass productivity per unit area (Ledford
2014). Agroforestry is another practice widely used nowadays to increase productivity and
forest cover. Agroforestry refers to a land-use system that integrates trees in farms and
agriculture landscapes to enhance productivity and ecosystem sustainability (Zomer et al.
2016). In many countries, agroforestry is considered to be an important part of the overall
regional strategy for forest management and climate change mitigation (Van Noordwijk et al.
2003). The average carbon sequestration potential of Indian agroforestry is estimated to be
25 tonnes of carbon per hectare (Basu 2014). The rural population relies very much on the
forests for their livelihood, fuel for cooking and heating purposes, etc. The dependence of
the population on forestry resources is often a result of a lack of availability of alternatives
to the forest resources or the inability of the population to afford them (Badola et al. 2012).
The programs that provide economic incentives to the rural people for their livelihood, like
fuel efficient stoves and biogas, fiber, tin, subsidy on those products which are the alternate
of forest resources, etc., are fruitful to reduce the deforestation rates (Misra and Lata 2015a).
In recent years, many climate change mitigation frameworks are developed that focus on
the reduction of carbon dioxide emissions from deforestation and forest degradation. One
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of the main international policies in this regard is developed by UNFCCC (United Nations
Framework Convention on Climate Change) Conference of the Parties, which is known as
REDD+ (reducing emissions from deforestation and degradation plus) mechanism. REDD+
mechanism is aimed to guide and provide economic support to the activities in the forest
sector which reduces the deforestation rate and increases the existing forest carbon stocks
using sustainable forest management (UNFCCC 2010; Bottazzi et al. 2013). It is found that a
national-level REDD+ program can significantly reduce the forest cover loss and associated
carbon emissions. A study has shown that the Norway-Guyana REDD+ program caused
a decrease in the tree cover loss by 35% during the period 2010 to 2015 and avoided 12.8
million tons of CO2 emissions (Roopsind et al. 2019). Thus, the forest management activities
contribute significantly in reduction of deforestation rate and enhancement of forest biomass.

In recent years, several mathematical models are proposed to explore the effect of various
factors, including human population and forest biomass, on the dynamics of CO2 gas in the
atmosphere (Tennakone 1990; Lonngren and Bai 2008; Caetano et al. 2011;Misra andVerma
2013, 2015; Misra et al. 2015; Shukla et al. 2015; Verma and Misra 2018; Devi and Gupta
2018, 2020; Devi andMishra 2020; Verma et al. 2021; Verma andVerma 2021;Misra and Jha
2021). In particular, Tennakone (1990) has proposed a simplemathematicalmodel to examine
the stability conditions of the biomass and atmospheric CO2 equilibrium. It is found that for
a critically high deforestation rate, the biomass-carbon dioxide equilibrium may become
unstable accompanied by an increase in CO2 concentration. Misra and Verma (2013) have
proposed a three-dimensional model to assess the interplay between the human population,
forest biomass and atmospheric CO2. In this study, it is found that the deforestation rate has
destabilizing effect over system’s dynamics. Further, Misra et al. (2015) have proposed a
mathematical model to examine the effect of delay involved in applying reforestation efforts
on the control ofCO2 levels in the atmosphere.Devi et al. (2018) presented a study of the effect
of the varying capability of plants to uptake CO2 on atmospheric CO2 levels. Misra and Jha
(2021) have developed a mathematical framework to study the effect of population pressure
on the dynamics of carbon dioxide gas. They have found that an increase in the reduction rate
coefficient of forest biomass due to population pressure leads to an increase in the equilibrium
CO2 level. Many studies presented nonlinear mathematical models for the conservation of
forest biomass (Shukla andDubey 1997;Dubey et al. 2009;Misra and Lata 2015a, b; Lata and
Misra 2017). These studies show that the forest biomass can be conserved using technological
efforts like plantation of genetically engineered plants and providing economic incentives
to the people which ultimately reduce the deforestation rate. However, these studies do not
explore the effect of forest conservation on the CO2 levels. In the present study, we have
formulated a mathematical model to study the impact of forest management programs on
atmospheric CO2 levels. We have assumed that the forest management programs focus to
reduce the deforestation rate via providing economic incentives and motivating people to
switch to alternate resources. Apart from reducing the deforestation rates, these programs
also focus to increase the forest biomass through afforestation, plantation of genetically
modified trees, etc.

2 Themodel

Consider a geographical region in which forests are depleting due to an increase in the human
population. The forest management programs are executed to reduce the deforestation rate
and increase the forest biomass. Forest biomass is one of the prime sinks of carbon dioxide,
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so the depletion and conservation of forest biomass will affect the dynamics of atmospheric
carbon dioxide. To model this scenario, we have considered four dynamic variables, namely
the atmospheric CO2 concentration (C(t)), human population (N (t)), forest biomass (B(t)),
and a measure of forest management programs (P(t)). The forest management programs can
be measured in terms of their execution cost. The natural emission rate of carbon dioxide
is assumed to be a constant while the anthropogenic emission rate is considered to be pro-
portional to the human population (Onozaki 2009; Jorgenson and Clark 2013). The removal
rate of CO2 by forest biomass during photosynthesis is assumed to depend on both the con-
centration of carbon dioxide and the density of forest biomass. It is also assumed that the
CO2 removal rate by other natural sinks, like ocean, etc., is proportional to atmospheric CO2

concentration (Nikol’kii 2010). Under the above assumptions, the dynamics of CO2 is given
as

Ċ = Q + λN − αC − λ1BC . (1)

In the above equation Ċ denotes time derivative of C(t), Q is the natural emission rate of
CO2, λ is the anthropogenic emission rate coefficient of CO2, λ1 and α are the uptake rate
coefficients of CO2 from the atmosphere by forest biomass and natural sinks other than forest
biomass, respectively.

The population and forest biomass are assumed to grow logistically. The population cut
down forests for their use which supports the population growth. Thus, an increase in pop-
ulation is assumed to reduce forest biomass while an increase in biomass boosts population
growth. Further, it is considered that the implementation of forest management programs
causes a reduction in deforestation rate and an increase in forest biomass. The reduction in
deforestation rate due to forest management programs can not increase indefinitely with the
increase in management programs so it is taken as a saturating function of forest management
programs. Similarly, the forest biomass can not be increased indefinitely with an increase in
management programs, therefore we have taken that growth rate of forest biomass due to
the application of management programs as a saturating function of management programs.
The Earth’s surface temperature will increase due to the increase in radiative forcing created
by enhanced atmospheric CO2 concentration (IPCC 2014). The climate changes caused by
enhanced surface temperature have many adverse impacts on the population (Ichikawa 2004;
McMichael et al. 2006; Kurane 2010; Misra 2014); therefore, it is considered that popula-
tion declines due to elevated CO2 concentration. Under these assumptions, the following
differential equations capture the dynamics of population and forest biomass:

Ṅ = sN

(
1 − N

L

)
+ ξNB − θCN , (2)

Ḃ = uB

(
1 − B

M

)
−

(
φ − φ1P

k1 + P

)
NB + η1PB

l1 + P
. (3)

In the above differential equations, s and L are the intrinsic growth rate and carrying capacity
of the population, respectively. The constant ξ is the growth rate coefficient of the population
due to forest biomass and θ is the declination rate coefficient of population due to an increase
in CO2 level. The constants u and M are the intrinsic growth rate and carrying capacity of
forest biomass, respectively. φ is the deforestation rate coefficient whereas φ1 and η1 denote
the maximum efficiencies of forest management programs to reduce the deforestation rate
and to increase the forest biomass, respectively. The constant k1 is a half-saturation constant
representing the level of forestmanagement programs atwhichhalf of themaximumreduction
in deforestation rate due to forest management programs is reached. The constant l1 is a half-
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saturation constant representing the level of forest management programs at which half of
the maximum increase in growth rate of forest biomass due to forest management programs
is reached.

We assumed that forest management programs are implemented at a rate proportional
to the difference of current forest biomass density from its carrying capacity. Some of the
forest management programs will diminish due to their ineffectiveness or some economical
barriers. Let ν and ν0 denote the implementation and declination rate coefficients of forest
management programs, respectively, then the dynamics of forest management programs is
given as

Ṗ = ν(M − B) − ν0P. (4)

Thus, the following model describes the dynamics of the problem:

Ċ = Q + λN − αC − λ1BC,

Ṅ = sN

(
1 − N

L

)
+ ξNB − θCN ,

Ḃ = uB

(
1 − B

M

)
−

(
φ − φ1P

k1 + P

)
NB + η1PB

l1 + P
,

Ṗ = ν(M − B) − ν0P, (5)

where C(0) = C0 > 0, N (0) = N0 ≥ 0, B(0) = B0 ≥ 0 and P(0) = P0 ≥ 0. All the
parameters of system (5) are positive constants.

2.1 Region of attraction

The region of attraction for all solution of system (5) initiating in positive orthant is given
by set

	 = {(C, N , B, P) : 0 < C ≤ Cm; 0 ≤ N ≤ Nm; 0 ≤ B ≤ M; 0 ≤ P ≤ Pm},
where Cm = (Q + λNm)/α, Nm = L + (ξLM/s) and Pm = νM/ν0.

3 Mathematical analysis of system(5)

Toanalyze the qualitative behavior of the dynamical system (5),we employ the stability theory
of differential equations. We find the equilibrium points and check the stability behavior of
these equilibrium points to access the behavior of the system in the long term.

3.1 Equilibrium analysis

System (5) has four nonnegative equilibria, which are listed below:

1. S1
(
Q
α

, 0, 0, νM
ν0

)
always exists.

2. S2
(

Q
α+λ1M

, 0, M, 0
)

always exists.

3. S3(C3, N3, 0, P3) exists, provided the following condition is satisfied:

s − θQ

α
> 0, (6)
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where C3 = s(Q+λL)
sα+θλL , N3 = L(sα−θQ)

sα+θλL , P3 = νM
ν0

.

4. S∗(C∗, N∗, B∗, P∗) exists, provided the following conditions are satisfied :

u −
(

φ − φ1νM

k1ν0 + νM

) (
sα − θQ

sα + θλL

)
L + η1νM

l1ν0 + νM
> 0, (7)

s − θQ

α + λ1M
+ ξM > 0. (8)

The existence of equilibria S1, S2 and S3 is obvious. In the following, the existence of equi-
libria S∗ is established. The values of components C∗, N∗, B∗ and P∗ may be obtained by
solving the following set of algebraic equations:

Q + λN − αC − λ1BC = 0, (9)

s

(
1 − N

L

)
+ ξ B − θC = 0, (10)

u

(
1 − B

M

)
−

(
φ − φ1P

k1 + P

)
N + η1P

l1 + P
= 0, (11)

ν(M − B) − ν0P = 0. (12)

From equation (12), we have

P = ν(M − B)

ν0
= q(B). (13)

From equation (9), we have

C = Q + λN

α + λ1B
. (14)

Using equation (14) in equation (10) , we have

N = L

[
(s + ξ B)(α + λ1B) − θQ

s(α + λ1B) + θλL

]
= g(B). (15)

Using equation (13) and equation (15) in equation (11), we obtain the following equation in
B:

h(B) = u

(
1 − B

M

)
−

(
φ − φ1q(B)

k1 + q(B)

)
g(B) + η1q(B)

l1 + q(B)
= 0. (16)

From equation (16), we may easily note that

(i)

h(0) = u − L

(
φ − φ1νM

k1ν0 + νM

) (
sα − θQ

sα + θλL

)
+ η1νM

l1ν0 + νM
,

which is positive under the condition (7).
(ii)

h(M) = −φg(M) = −φL

[
(s + ξM)(α + λ1M) − θQ

s(α + λ1M) + θλL

]
,

which is negative under the condition (8).
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(iii) The derivative of h(B) w.r.t. B is given by

h′(B) = − u

M
−

(
φ − φ1q(B)

k1 + q(B)

)
g′(B) + g(B)

k1φ1q ′(B)

(k1 + q(B))2
+ l1η1q ′(B)

(l1 + q(B))2

< 0 for B ∈ (0, M),

as

g′(B) = L

[
sξ(α + λ1B)2 + sλ1θQ + θλLξ(α + λ1B) + θλLλ1(s + ξ B)

(s(α + λ1B) + θλL)2

]
> 0,

and q ′(B) = − ν
ν0

< 0.

Thus, a unique positive root B∗ of equation (16) lies in the interval (0, M) provided the
conditions (7) and (8) hold. Using this value of B∗ in equations (13)-(15), we get the positive
values of P = P∗,C = C∗ and N = N∗, respectively.

3.2 Local stability analysis

The behavior of the trajectories starting in a small neighbourhood of non-negative equilibria
S1, S2, S3 and S∗ of system (5) are examined and the following results are obtained:

Theorem 1 (i) The equilibrium S1 is always unstable.
(ii) The equilibrium S2 is unstable whenever S∗ exists.
(iii) The equilibrium S3 is unstable whenever S∗ exists.
(iv) The equilibrium S∗ is locally asymptotically stable iff the following condition holds

D3(D1D2 − D3) − D2
1D4 > 0, (17)

where Di (i = 1, 2, 3, 4) are defined in the proof.

Proof The Jacobian matrix Ĵ for system (5) is given by:

Ĵ =

⎛
⎜⎜⎜⎝

−(α + λ1B) λ −λ1C 0
−θN s

(
1 − 2N

L

) + ξ B − θC ξN 0

0 −
(
φ − φ1P

k1+P

)
B u

(
1 − 2B

M

) −
(
φ − φ1P

k1+P

)
N + η1P

l1+P
φ1k1NB
(k1+P)2

+ η1l1B
(l1+P)2

0 0 −ν −ν0

⎞
⎟⎟⎟⎠ .

Let ĴS1 , ĴS2 , ĴS3 and ĴS∗ are the Jacobian matrix Ĵ evaluated at S1, S2, S3 and S∗, respec-
tively. Then (i) The eigenvalues of ĴS1 are −α, s − θQ

α
, u + η1νM

l1ν0+νM and −ν0. Since one
eigenvalue is always positive; therefore, S1 is always unstable.

(i i) Two eigenvalues of ĴS2 are −(α + λ1M),
(
s + ξM − θQ

α+λ1M

)
and the other two

eigenvalues are either negative or with negative real part. We note that one of the eigenvalue

of ĴS2 is
(
s + ξM − θQ

α+λ1M

)
, which is always positive if the condition (8) holds. Thus, S2

is unstable whenever S∗ exists.
(i i i) From ĴS3 , we find that two of its eigenvalues are u −

(
φ − φ1P3

k1+P3

)
N3 + η1P3

l1+P3
and

−ν0 and the other two eigenvalues are roots of equation

ψ2 +
(

α + sN3

L

)
ψ + αsN3

L
+ λθN3 = 0
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which are either negative or with negative real part. Further u −
(
φ − φ1P3

k1+P3

)
N3 + η1P3

l1+P3
is

positive if the condition (7) holds. Thus S3 is unstable whenever S∗ exists.
(iv) The characteristic equation for ĴS∗ is given by

ψ4 + D1ψ
3 + D2ψ

2 + D3ψ + D4 = 0, (18)

where

D1 = (α + λ1B
∗) + sN∗

L
+ uB∗

M
+ ν0,

D2 = ν0(α + λ1B
∗) + (α + λ1B

∗ + ν0)

(
sN∗

L
+ uB∗

M

)
+ sN∗

L

uB∗

M
+

ξ

(
φ − φ1P∗

k1 + P∗

)
N∗B∗ + θN∗λ + ν

(
φ1k1N∗B∗

(k1 + P∗)2
+ η1l1B∗

(l1 + P∗)2

)
,

D3 = ν0(α + λ1B
∗)

(
sN∗

L
+ uB∗

M

)
+ (α + λ1B

∗ + ν0)
sN∗

L

uB∗

M
+

ν

(
α + λ1B

∗ + sN∗

L

) (
φ1k1N∗B∗

(k1 + P∗)2
+ η1l1B∗

(l1 + P∗)2

)
+ ξ

(
φ − φ1P∗

k1 + P∗

)

N∗B∗(ν0 + α + λ1B
∗) + λ1θ

(
φ − φ1P∗

k1 + P∗

)
N∗C∗B∗ + θλN∗

(
ν0 + uB∗

M

)
,

D4 = ν0(α + λ1B
∗)

{
sN∗

L

uB∗

M
+ ξN∗B∗

(
φ − φ1P∗

k1 + P∗

)}
+ ν(α + λ1B

∗) sN
∗

L(
φ1k1N∗B∗

(k1 + P∗)2
+ η1l1B∗

(l1 + P∗)2

)
+ λ1ν0θ

(
φ − φ1P∗

k1 + P∗

)
N∗B∗C∗ +

θλN∗
{
ν0

uB∗

M
+ ν

(
φ1k1N∗B∗

(k1 + P∗)2
+ η1l1B∗

(l1 + P∗)2

)}
.

Here, it can be easily noted that all Di
′s(i = 1, 2, 3, 4) are positive. Using Routh–Hurwitz

criterion, it is inferred that all the roots of equation (18) will lie in negative half of plane iff
condition (17) is satisfied. ��

3.3 Global stability analysis

Theorem 2 The equilibrium S∗, if exists, is globally asymptotically stable in 	 provided the
following conditions are satisfied:

λ21C
2
m < (α + λ1B

∗) ξλu

Mθ
(
φ − φ1P∗

k1+P∗
) , (19)

max

{
φ2
1N

2
m

(k1 + P∗)2
,

η21

(l1 + P∗)2

}
<

1

9

u2ν20
M2ν2

. (20)

Proof To prove the theorem, we define a positive definite function:

V = 1

2
(C − C∗)2 + m1

(
N − N∗ − N∗ ln N

N∗

)
+ m2

(
B − B∗ − B∗ ln B

B∗

)

+m3

2
(P − P∗)2, (21)
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where m1,m2 and m3 are positive constants to be chosen appropriately.
The time derivative of V along the solution of system (5) is given as

dV

dt
= −(α + λ1B

∗)(C − C∗)2 − m1s

L
(N − N∗)2 − m2u

M
(B − B∗)2

−m3ν0(P − P∗)2 + (λ − m1θ)(C − C∗)(N − N∗) − λ1C(C − C∗)(B − B∗)

+
{
m1ξ −

(
φ − φ1P∗

k1 + P∗

)
m2

}
(B − B∗)(N − N∗) − m3ν(B − B∗)(P − P∗)

+ m2φ1k1N

(k1 + P)(k1 + P∗)
(B − B∗)(P − P∗) + m2η1l1

(l1 + P)(l1 + P∗)
(B − B∗)(P − P∗).

Choosing m1 = λ
θ
and m2 = ξ(

φ− φ1P
∗

k1+P∗
)m1 = ξλ

θ
(
φ− φ1P

∗
k1+P∗

) , we get

dV

dt
= −(α + λ1B

∗)(C − C∗)2 − λs

Lθ
(N − N∗)2 − ξλu

Mθ
(
φ − φ1P∗

k1+P∗
) (B − B∗)2

−m3ν0(P − P∗)2 − λ1C(C − C∗)(B − B∗) − m3ν(B − B∗)(P − P∗)

+ ξλ

θ
(
φ − φ1P∗

k1+P∗
) φ1k1N

(k1 + P)(k1 + P∗)
(B − B∗)(P − P∗)

+ ξλ

θ
(
φ − φ1P∗

k1+P∗
) η1l1

(l1 + P)(l1 + P∗)
(B − B∗)(P − P∗). (22)

Thus, dV/dt is negative definite inside 	 if following inequalities hold:

λ21C
2
m < (α + λ1B

∗) ξλu

Mθ
(
φ − φ1P∗

k1+P∗
) , (23)

m3 <
1

3

ξλuν0

ν2Mθ
(
φ − φ1P∗

k1+P∗
) , (24)

m3 >
3Mξλφ2

1N
2
m

uν0θ(k1 + P∗)2
(
φ − φ1P∗

k1+P∗
) , (25)

m3 >
3Mξλη21

uν0θ(l1 + P∗)2
(
φ − φ1P∗

k1+P∗
) . (26)

From above inequalities (24)–(26), we can choose m3 > 0 provided condition (20) holds.
Thus dV /dt is negative definite in 	 provided conditions (19) and (20) are satisfied. Hence
the proof. ��

3.4 Hopf-bifurcation analysis

In this section, we examine the criterion under which the system (5) undergoes Hopf-
bifurcation at interior equilibrium S∗(C∗, N∗, B∗, P∗) by taking φ as bifurcation parameter.
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Theorem 3 The model system (5) undergoes Hopf-bifurcation about the interior equilibrium
S∗ iff there exists φ = φc such that

(i) D3(φc)(D1(φc)D2(φc) − D3(φc)) − D2
1(φc)D4(φc) = 0,

(i i)

[
d

dφ
(D1D2D3 − D2

3 − D2
1D4)

]
φ=φc

	= 0. (27)

Proof The characteristic equation (18) can be written as

ψ4 + D1(φ)ψ3 + D2(φ)ψ2 + D3(φ)ψ + D4(φ) = 0. (28)

Let at φ = φc,

D3(φc)(D1(φc)D2(φc) − D3(φc)) − D2
1(φc)D4(φc) = 0.

Then, at φ = φc, the characteristic equation can be written as
(

ψ2 + D3

D1

) (
ψ2 + D1ψ + D1D4

D3

)
= 0. (29)

Above equation has four roots, say ψi (i = 1, 2, 3, 4), with a pair of purely imaginary roots
ψ1,2 = ±iω0 where ω0 = (D3/D1)

1/2.
For existence of Hopf-bifurcation, the root other than ±iω0(i.e., ψ3 and ψ4) should have

negative real parts. To identify the nature of remaining two roots, we have

ψ3 + ψ4 = −D1, (30)

ω2
0 + ψ3ψ4 = D2, (31)

ω2
0(ψ3 + ψ4) = −D3, (32)

ω2
0ψ3ψ4 = D4. (33)

If ψ3 and ψ4 are complex conjugate, then from equation (30), we have 2
(ψ3) = −D1

i.e., ψ3 and ψ4 have negative real parts. If ψ3 and ψ4 are real roots, then equations (30)
and (33) yield that ψ3 and ψ4 are negative. Thus the roots ψ3 and ψ4 are either negative
or with negative real part. Now, we will find out the transversality condition under which
Hopf-bifurcation occurs at S∗. Let at any point φ ∈ (φc − ε, φc + ε), ψ1,2 = κ(φ) ± iρ(φ).

Substituting this in equation (28), we get

κ4 + D1κ
3 + D2κ

2 + D3κ + D4 + ρ4 − 6κ2ρ2 − 3D1κρ
2 − D2ρ

2 = 0 (34)

and

4κρ(κ2 − ρ2) − D1ρ
3 + 3D1κ

2ρ + 2D2κρ + D3ρ = 0. (35)

As ρ(φ) 	= 0, from equation (35), we get

−(4κ + D1)ρ
2 + 4κ3 + 3D1κ

2 + 2D2κ + D3 = 0.

Substituting this in equation (34) and differentiating with respect to φ and using the fact that
κ(φc) = 0, we have

[
dκ

dφ

]
φ=φc

=
[ d

dφ
(D1D2D3 − D2

3 − D2
1D4)

−2D1(D1D3 + (2D3/D1 − D2)2)

]
φ=φc

	= 0
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if [
d

dφ
(D1D2D3 − D2

3 − D2
1D4)

]
φ=φc

	= 0. (36)

The inequality (36) gives the transversality condition. ��

3.5 Stability and direction of Hopf-bifurcation

We shift the origin to S∗ by applying the transformation

z1 = C − C∗, z2 = N − N∗, z3 = B − B∗, z4 = P − P∗

on the model system (5) and obtain the following system

Ż = ĴS∗ Z + G(Z), (37)

where

Z =

⎛
⎜⎜⎝
z1
z2
z3
z4

⎞
⎟⎟⎠ , ĴS∗ =

⎛
⎜⎜⎜⎝

−(α + λ1B∗) λ −λ1C∗ 0
−θN∗ −sN∗

L ξN∗ 0

0 −
(
φ − φ1P∗

k1+P∗
)
B∗ −uB∗

M
φ1k1N∗B∗
(k1+P∗)2 + η1l1B∗

(l1+P∗)2
0 0 −ν −ν0

⎞
⎟⎟⎟⎠ .

and

G =

⎛
⎜⎜⎝
g1
g2
g3
g4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−λ1z1z3−s
L z22 + ξ z2z3 − θ z1z2−u

M z23 − d1z2z3 + d2z2z4 + d3z3z4 − d4z24
0

⎞
⎟⎟⎠ .

where, d1 =
(
φ − φ1P∗

k1+P∗
)

, d2 = φ1k1B∗
(k1+P∗)2 , d3 = η1l1

(l1+P∗)2 + φ1k1N∗
(k1+P∗)2 , d4 = φ1k1N∗B∗

(k1+P∗)3 +
η1B∗

(l1+P∗)2 − η1P∗B∗
(l1+P∗)3 .

The eigenvectors v1, v2 and v3 of Jacobian matrix ĴS∗ corresponding the eigenvalues
iω0, ψ3 and ψ4, respectively, at φ = φc are given as

v1 =

⎛
⎜⎜⎝
a11 − ia12
a21 − ia22
a31 − ia32
a41 − ia42

⎞
⎟⎟⎠ , v2 =

⎛
⎜⎜⎝
a13
a23
a33
a43

⎞
⎟⎟⎠ and v3 =

⎛
⎜⎜⎝
a14
a24
a34
a44

⎞
⎟⎟⎠ ,

where

a11 = ν0

(
λξN∗ − λ1s

L
C∗N∗

)
+ ω2

0λ1C
∗, a12=−ω0

(
λξN∗ − λ1s

L
C∗N∗ − ν0λ1C

∗
)

,

a21 = ν0
[
(α + λ1B

∗)ξN∗ + θλ1C
∗N∗] − ω2

0ξN
∗,

a22 = −ω0
[
(α + λ1B

∗)ξN∗ + θλ1C
∗N∗ + ν0ξN

∗] ,

a31 = ν0

[
θλN∗ + (α + λ1B

∗) sN
∗

L
− ω2

0

]
− ω2

0

(
α + λ1B

∗ + sN∗

L

)
,

a32 = −ω0

[
θλN∗ + (α + λ1B

∗) sN
∗

L
− ω2

0 + ν0

(
α + λ1B

∗ + sN∗

L

)]
,
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a41 = −ν

[
θλN∗ + (α + λ1B

∗) sN
∗

L
− ω2

0

]
, a42 = ω0ν

(
α + λ1B

∗ + sN∗

L

)
,

a13 = (ν0 + ψ3)

[
λξN∗ − λ1C

∗
(
sN∗

L
+ ψ3

)]
,

a23 = (ν0 + ψ3)
[
(α + λ1B

∗ + ψ3)ξN
∗ + θλ1C

∗N∗] ,

a33 = (ν0 + ψ3)

[
θλN∗ + (α + λ1B

∗ + ψ3)

(
sN∗

L
+ ψ3

)]
,

a43 = −ν

[
θλN∗ + (α + λ1B

∗ + ψ3)

(
sN∗

L
+ ψ3

)]
,

a14 = (ν0 + ψ4)

[
λξN∗ − λ1C

∗
(
sN∗

L
+ ψ4

)]
,

a24 = (ν0 + ψ4)
[
(α + λ1B

∗ + ψ4)ξN
∗ + θλ1C

∗N∗] ,

a34 = (ν0 + ψ4)

[
θλN∗ + (α + λ1B

∗ + ψ4)

(
sN∗

L
+ ψ4

)]
,

a44 = −ν

[
θλN∗ + (α + λ1B

∗ + ψ4)

(
sN∗

L
+ ψ4

)]
.

Define

A = (
(v1),−�(v1), v2, v3)

=

⎛
⎜⎜⎝
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎞
⎟⎟⎠ .

Matrix A is a nonsingular matrix such that

A−1 ĴS∗ A =

⎛
⎜⎜⎝

0 −ω0 0 0
ω0 0 0 0
0 0 ψ3 0
0 0 0 ψ4

⎞
⎟⎟⎠ .

Let the inverse of matrix A is given by

A−1 =

⎛
⎜⎜⎝
q11 q12 q13 q14
q21 q22 q23 q24
q31 q32 q33 q34
q41 q42 q43 q44

⎞
⎟⎟⎠ .

Let Z = AY or Y = A−1Z , where Y = (y1, y2, y3, y4)T . Under this linear transformation
system (37) becomes

Ẏ = (A−1 ĴS∗ A)Y + F̂(Y ) (38)

where, F̂(Y ) = A−1G(AY ),

This can be written as

ẏ1 = −ω0y2 + F1(y1, y2, y3, y4) (39)

ẏ2 = ω0y1 + F2(y1, y2, y3, y4) (40)

ẏ3 = ψ3y3 + F3(y1, y2, y3, y4) (41)
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ẏ4 = ψ4y4 + F4(y1, y2, y3, y4) (42)

where F̂ = (F1, F2, F3, F4)T ,

F1 = q11g1 + q12g2 + q13g3 + q14g4,

F2 = q21g1 + q22g2 + q23g3 + q24g4,

F3 = q31g1 + q32g2 + q33g3 + q34g4,

F4 = q41g1 + q42g2 + q43g3 + q44g4,

g1 = −λ1(a11y1 + a12y2 + a13y3 + a14y4)(a31y1 + a32y2 + a33y3 + a34y4),

g2 = − s

L
(a21y1 + a22y2 + a23y3 + a24y4)

2

+ξ(a21y1 + a22y2 + a23y3 + a24y4)(a31y1 + a32y2 + a33y3 + a34y4)

−θ(a11y1 + a12y2 + a13y3 + a14y4)(a21y1 + a22y2 + a23y3 + a24y4),

g3 = − u

M
(a31y1 + a32y2 + a33y3 + a34y4)

2

−
(

φ − φ1P∗

k1 + P∗

)
(a21y1 + a22y2 + a23y3 + a24y4)(a31y1 + a32y2+a33y3+a34y4)

+
[

φ1k1B∗

(k1 + P∗)2

]
(a21y1 + a22y2 + a23y3 + a24y4)(a41y1 + a42y2 + a43y3 + a44y4)

+
[

η1l1
(l1 + P∗)2

+ φ1k1N∗

(k1 + P∗)2

]
(a31y1 + a32y2 + a33y3 + a34y4)

×(a41y1 + a42y2 + a43y3 + a44y4)

−
[

φ1k1N∗B∗

(k1 + P∗)3
+ η1B∗

(l1 + P∗)2
− η1P∗B∗

(l1 + P∗)3

]
(a41y1 + a42y2 + a43y3 + a44y4)

2,

g4 = 0.

Furthermore, we can calculate g11, g02, g20, G21, G1
110, G2

110, G1
101, G2

101, ω1
11, ω2

11,

ω1
20, ω2

20 following the procedure given in Hassard et al. (1981).
Now, we have

g21 = G21 + 2(G1
110ω

1
11 + G2

110ω
2
11) + G1

101ω
1
20 + G2

101ω
2
20. (43)

c1(0) = i

2ω0

(
g11g20 − 2|g11|2−|g02|2

3

)
+ g21

2
, (44)

μ2 = −
c1(0)

γ
′
(0)

(45)

τ2 = −�c1(0) + μ2ω
′
(0)

ω0
(46)

β2 = −2μ2γ
′
(0), (47)

where γ
′
(0) = d

dφ
(
ψ1(φ))|φ=φc and ω

′
(0) = d

dφ
(�ψ1(φ))|φ=φc .

Theorem 4 TheHopf-bifurcation occurring atφ = φc about S∗ is supercritical or subcritical
according as μ2 > 0 or μ2 < 0 and the bifurcating periodic solutions exist for φ > φc or
φ < φc. The periodic orbits are stable or unstable according to β2 < 0 or β2 > 0 and the
period of orbits increases or decreases depending on τ2 > 0 or τ2 < 0.
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4 The optimal control problem

The execution cost of forest management programs restricts their implementation on large
scale. Thus, the policymakers sought management policies that reduce the CO2 emission at
minimum implementation cost. The optimal control theory can be effectively used to design
the cost effective forest management policies. For this purpose, we modify the model system
(5) by taking a Lebesgue measurable function v(t) as the increased execution rate of forest
management programs, on some finite time interval [0, t f ]. With this assumption, the model
system (5) can be rewritten as

Ċ = Q + λN − αC − λ1BC,

Ṅ = sN

(
1 − N

L

)
+ ξNB − θCN ,

Ḃ = uB

(
1 − B

M

)
−

(
φ − φ1P

k1 + P

)
NB + η1PB

l1 + P
,

Ṗ = (ν + v(t))(M − B) − ν0P, (48)

where

C(0) = C0 > 0, N (0) = N0 ≥ 0, B(0) = B0 ≥ 0, P(0) = P0 ≥ 0. (49)

Our problem is to minimize the cost functional

J =
∫ t f

0
[w1C(t) + w2v

2(t)]dt, (50)

subject to the system (48) with initial conditions (49). In the objective functional, the coef-
ficients w1 and w2 are the weight parameters balancing the effect of both the terms in the
objective functional. The first term in the cost functional represents the cost for carbon diox-
ide mitigation, and the second term represents the cost associated with the implementation of
forest management programs. The quadratic expression of control shows the nonlinear cost
arising at a high implementation level. We seek optimal control v∗(t) such that

J (v∗(t)) = min
v(t)∈U J (v(t)), (51)

where U = {
v(t) : v(t) is measurable , 0 ≤ v(t) ≤ vmax, t ∈ [0, t f ]

}
is the control set.

Theorem 5 There exists an optimal control v∗ such that J (v∗(t)) = minv(t)∈U J (v(t)),
subject to system (48) with initial conditions (49).

Proof The boundedness of the solutions of the system (48) assures the existence of solution
to the control system using the result in Lukes (1982). Thus, it can be concluded that the set
of controls and corresponding state variables is non-empty. It can be seen that the set U is
closed. Further,U is convex and the integrand w1C(t) + w2v

2(t) of the cost functional (50)
is convex on U . Using the boundedness of solutions, it can be deduced that the right-hand
side of system (48) is bounded by a linear function of control and state variables. In addition,
the integrand of functional (50) satisfies the following inequality:

w1C(t) + w2v
2(t) ≥ c1(|v(t)|)ρ − c2, (52)

for some c1, c2 > 0 and ρ > 1. The above arguments prove the existence of optimal control
v∗ following the results from Fleming and Rishel (1975). ��
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The optimal control is characterized using Pontryagin’s maximum principle. The Hamil-
tonian H is given by

H(C, N , B, P, v, ν1, ν2, ν3, ν4) = w1C(t) + w2v
2(t)

+ν1(Q + λN − αC − λ1BC)

+ν2

{
sN

(
1 − N

L

)
+ ξNB − θCN

}

+ν3

{
uB

(
1 − B

M

)
−

(
φ − φ1P

k1 + P

)
NB + η1PB

l1 + P

}

+ν4((ν + v(t))(M − B) − ν0P), (53)

where νi (i = 1, 2, 3, 4) are the adjoint variables. The adjoint variables satisfy the following
equations:

ν̇1 = −∂H

∂C
= −w1 + (α + λ1B)ν1 + θNν2,

ν̇2 = −∂H

∂N
= −ν1λ − ν2

{
s

(
1 − 2N

L

)
+ ξ B − θC

}
+ ν3B

(
φ − φ1P

k1 + P

)
,

ν̇3 = −∂H

∂B
= ν1λ1C − ξNν2 − ν3

{
u

(
1 − 2B

M

)

−
(

φ − φ1P

k1 + P

)
N + η1P

l1 + P

}
+ ν4(ν + v(t)),

ν̇4 = −∂H

∂P
= −ν3

{
φ1k1NB

(k1 + P)2
+ η1l1B

(l1 + P)2

}
+ ν4ν0. (54)

The transversality conditions are

ν1(t f ) = ν2(t f ) = ν3(t f ) = ν4(t f ) = 0. (55)

With the help of the optimality condition, i.e., ∂H
∂v

= 0 at v = v∗, we get v∗ = − ν4(M−B)
2w2

.

Taking into account the bound constraints for control, we get

v∗ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if
−ν4(M − B)

2w2
≤ 0,

−ν4(M − B)

2w2
, if 0 <

−ν4(M − B)

2w2
< vmax,

vmax, if
−ν4(M − B)

2w2
≥ vmax.

Thus, the characterization of optimal control v∗, which minimizes J subjected to the state
system (48) over the set U, is given by

v∗(t) = max

{
min

(
−ν4(M − B)

2w2
, vmax

)
, 0

}
. (56)

The optimality system comprises of the state system (48), the adjoint system (54) with
optimal control (56), and conditions (49) and (55).
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5 Numerical simulation

To depict the effect of deforestation and forest management programs on the dynamics of
atmospheric carbon dioxide, the numerical simulations are performed for the set of parameter
values given inTable 1. For these parameter values, the eigenvalues of ĴS∗ are−0.02613526±
0.01840753 i and −0.08977696 ± 0.01470386 i , which lie in the left half of the complex
plane, inferring the local asymptotic stability of S∗. Figure 1 depicts the global stability of S∗
in C − N − B and C − B − P spaces. We may see that the solution trajectories of system (5)
with different initial starts are approaching the equilibrium values. Figure 2 shows the effect
of changes in the deforestation rate φ on the time evolutions of CO2 and forest biomass.
It can be seen that as the deforestation rate φ increases, the CO2 level increases and that
of forest biomass decreases. Figure 3 depicts that an increase in the implementation rate of
forest management programs causes an increase in the equilibrium level of forest biomass
and a decrease in that of CO2.

To show the effect of changes in the maximum efficacy of forest management programs
to reduce the deforestation rate, i.e., φ1 and half-saturation constant k1 on equilibrium levels
of C(t) and B(t), we have plotted the contour plots of equilibrium levels of CO2 and forest
biomass as a function of φ1 and k1 in Fig. 4. From this figure, we observe that the equilibrium
level of CO2 declines with an increase in the value of φ1 and a decrease in the value of
k1. The equilibrium level of forest biomass increases with an increase in the value of φ1

and a decrease in the value of k1. It should be noted that the low values of k1 represent
those forest management programs where reduction in deforestation rate caused by forest
management programs increases more rapidly at low values of P(t). Figure 4 clearly shows
that for low values of k1, an increase in maximum efficiency of management programs to

Table 1 Parameter values for system (5)

Parameter Value Unit Source

Q 1 ppm month−1 (Misra and Verma 2013)

λ 0.05 ppm (person month)−1 (Misra and Verma 2013)

α 0.003 (month)−1 (Misra and Verma 2013)

λ1 0.0001 (ton month)−1 (Misra and Verma 2013)

s 0.01 month−1 (Misra and Verma 2013)

L 1000 Person (Misra and Verma 2013)

ξ 0.0000002 (ton month)−1 Assumed

θ 0.00001 (ppm month)−1 (Misra and Verma 2013)

u 0.2 month−1 (Misra and Verma 2013)

M 2000 ton (Misra and Verma 2013)

φ1 0.00007 (person month)−1 Assumed

k1 100 Million dollar Assumed

l1 50 Million dollar Assumed

η1 0.01 month−1 Assumed

ν 0.01 Million dollar(ton month)−1 Assumed

ν0 0.1 (month)−1 Assumed

φ 0.0003 (person month)−1 Assumed
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Fig. 1 Global stability of S∗ in C − N − B space and C − B − P space

Fig. 2 Time evolution of atmospheric carbon dioxide and forest biomass for different values of φ. The other
parameter values are same as in Table 1

reduce deforestation rate φ1 causes more increase in forest biomass and consequently more
decline inCO2 level. Figure 5 depicts the contour plots of equilibrium levels of CO2 and forest
biomass as a function of the maximum efficiency of forest management programs to increase
forest biomass η1 and half saturation constant l1. From this figure, we can observe that the
equilibrium level of CO2 declines with an increase in the value of η1 and a decrease in the
value of l1. The equilibrium level of forest biomass increases with an increase in the value of
η1 and a decrease in the value of l1. It should be noted that the low values of l1 represent those
forest management programs where increase in forest biomass caused by forest management
programs increases more rapidly at low values of P(t). Figure 5 clearly shows that for low
values of l1, an increase in maximum efficiency of forest management programs to increase
the forest biomass η1 causes more increase in forest biomass and consequently more decline

123



320 Page 18 of 27 M. Verma, C. Gautam

Fig. 3 Time evolution of atmospheric carbon dioxide and forest biomass for different values of ν. The other
parameter values are same as in Table 1

(a) (b)

Fig. 4 Contour plots of equilibrium levels of a atmospheric carbon dioxide and b forest biomass as a function
of φ1 and k1

in CO2 level. Figure 6 presents a comparison between the time variations in atmospheric
CO2 and forest biomass when effect of forest management programs is not considered (φ1 =
0, η1 = 0), when forest management programs contain only those strategies which increase
forest biomass (φ1 = 0, η1 = 0.01), when forest management programs contain only those
strategies which focus on reducing deforestation rate (φ1 = 0.00007, η1 = 0), and when
forest management programs comprise of both kinds of strategies (φ1 = 0.00007, η1 =
0.01). This figure shows that in absence of forest management programs, the equilibrium
level of CO2 settles to a high level and forest biomass settles to low level in comparison
to the cases when forest management programs are applied. The reduction bring in the
equilibrium CO2 level by forest management programs is least when management programs
contain only those strategies which increase forest biomass (φ1 = 0, η1 = 0.01) and highest
when it comprise of both kinds of strategies (φ1 = 0.00007, η1 = 0.01).
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(a) (b)

Fig. 5 Contour plots of equilibrium levels of a atmospheric carbon dioxide and b forest biomass as a function
of η1 and l1

Fig. 6 Time evolution of atmospheric carbon dioxide and forest biomass for different values of φ1 and η1.
The other parameter values are same as in Table 1

The dynamics of the system (5) about interior equilibrium S∗ changes with an increase in
the deforestation rate parameter ‘φ’. For small values of φ, S∗ is stable while an increase in φ

above a critical value destabilizes the equilibrium S∗ and periodic solutions arise via Hopf-
bifurcation. The critical value ofφ atwhich stability loss occurs viaHopf-bifurcation has been
calculated for the set of parameter values given in Table 1 and is found to be φc = 0.0007067.
It is found that for φ ∈ [0, φc), all the eigenvalues of the Jacobian ĴS∗ lies in the left half
of the complex plane showing that the equilibrium S∗ is stable while for φ > φc, S∗ loses
stability and becomes unstable. Further, the computations ofμ2, τ2 and β2 show thatμ2 > 0,
τ2 > 0 and β2 < 0 at φ = φc. Using theorem 4, this can be inferred that supercritical Hopf-
bifurcation occurs at φ = φc yielding a family of stable periodic solutions with increasing
time period. Figures 7 and 8 show the time variations of atmospheric CO2 concentration
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Fig. 7 Time evolution of C, N , B and P for φ = 0.0003. The other parameter values are same as in Table 1

Fig. 8 Time evolution of C, N , B and P for φ = 0.0008. The other parameter values are same as in Table 1

C(t), human population N (t), forest biomass B(t) and forest management programs P(t)
for φ = 0.0003(< φc) and φ = 0.0008(> φc), respectively. These diagrams reveal that for
φ ∈ [0, φc), all the variables settle down to their equilibrium values but for φ > φc, all the
variables show oscillatory behaviour. This shows that an increase in deforestation rate above
the threshold value φc may destabilize the interior equilibrium and sustained oscillation may
arise. These oscillations may dampen gradually and eventually die out with an increase in the
maximum efficiency of forest management programs to reduce the deforestation rate, i.e. φ1.
To show this effect of increase in φ1 on system dynamics, we have plotted the time variations
of C(t), N (t), B(t) and P(t) for φ = 0.0008 and φ1 = 0.0003 in Fig. 9. From this figure, it
can be seen that all variables attain the equilibrium levels for φ = 0.0008 and φ1 = 0.0003.

To get a more clear picture, we have drawn a bifurcation diagram of the system (5) by
taking φ as a bifurcation parameter in Fig. 10. This figure shows that for small values of
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Fig. 9 Time evolution ofC, N , B and P for φ=0.0008 and φ1 = 0.0003. The other parameter values are same
as in Table 1

Fig. 10 Bifurcation diagrams of atmospheric carbon dioxide, human population, forest biomass and forest
management programs with respect to φ. The other parameters take same values as in Table 1

φ, all the variables approach their equilibrium values. However, as the deforestation rate φ

crosses the Hopf-bifurcation threshold φc, interior equilibrium losses stability and sustained
oscillations of increasing amplitude are observed. Further, for φ = 0.0008, if we increase the
value of φ1, then the amplitude of the period of oscillation decreases, and beyond a critical
value of φ1, the periodic oscillation dies out and the system gets stabilized (see Fig. 11). The
same dynamic behavior is observed when the value of η1 is increased. From figure 12, it can
be observed that an increase in the maximum efficiency of forest management programs to
increase the forest biomass (η1) dampens the periodic oscillations and after a critical value
of η1 the periodic oscillation dies out and the solution trajectories of the system (5) settle
to a positive equilibrium state. This shows that the implementation of forest management
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Fig. 11 Bifurcation diagrams of atmospheric carbon dioxide, human population, forest biomass and forest
management programs with respect to φ1 at φ = 0.0008. The other parameters take same values as in Table
1

Fig. 12 Bifurcation diagrams of atmospheric carbon dioxide, human population, forest biomass and forest
management programs with respect to η1 at φ = 0.0008. The other parameters take same values as in Table 1

programs not only decreases the atmospheric CO2 level but can enhance the stability of the
positive equilibrium state of the system.

The optimality system is solved numerically by taking weight factors w1 = 1 and w2 =
15000, vmax = 0.02, and t f = 100. The atmospheric CO2 concentration and forest biomass
in the absence and presence of optimal control, and the profile of the time -dependent control
v(t) is shown in figure 13. This figure shows an increase in forest biomass and a drop in
atmospheric CO2 concentration in the presence of time-dependent control v(t). The optimal
profile of v(t) shows that it is optimal to execute the forest management programs at the
maximum level for first 67 months and reduce gradually afterward. The optimal profile
of the control parameter for different values of vmax is depicted in the first plot of figure
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Fig. 13 Future concentration of CO2 and forest biomass with and without optimal control and optimal profile
of control parameter v(t). The other parameter values are same as in Table 1 with t f = 100, vmax =
0.02, w1 = 1 and w2 = 15000

(a) (b)

Fig. 14 The optimal profile of v(t) for different values of a vmax at w1 = 1 and w2 = 15000, and b for
different values of w1 and w2 at vmax = 0.02. The other parameters take same value as in Table 1 with
t f = 100

14, showing that time span over which the forest management programs are executed at
maximum level reduces with an increase in the value of vmax. The second plot of figure
14 shows that the time span over which the management programs are implemented at a
maximum rate also reduces with an increase in w2 while it increases with an increase in
w1. Thus if the weight of the cost of implementation of management programs is high, the
programs are applied at the maximum rate for a lesser period and reduced afterward. The
effect of varying some parameters namely, φ1, η1, l1, k1, and vmax on the cost functional J
is illustrated in figure 15. This indicates that the cost functional increases with the increase
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Fig. 15 Effect of varying φ1, η1, l1, k1 and vmax on cost functional J and the other parameter values are same
as in Table 1 with t f = 100, vmax = 0.02, w1 = 1 and w2 = 15000

in the half-saturation constants k1 and l1 and decreases with the increase in the maximum
efficacy of forest management programs to reduce the deforestation rate φ1, the maximum
efficacy of forest management programs to increase the forest biomass η1 and the maximum
implementation rate of control vmax.

6 Conclusion

The sustainable management of forests can play a key role in climate change mitigation by
reducing the atmospheric burden of the prime greenhouse gas, carbon dioxide. In the present
work, amathematicalmodel is presented to analyze the effect of forestmanagement programs
over the control of CO2 levels in the Earth’s atmosphere. The model under consideration is
governed by four nonlinear differential equations capturing the dynamic relationship between
CO2 concentration, human population, forest biomass and forest management programs. It
is considered that the forest management programs focus on increasing the forest biomass
and reducing the deforestation rate. The reduction in the deforestation rate and increase in
the growth rate of forest biomass due to forest management programs are taken to be a
nonlinear saturating function of forest management programs. A comprehensive stability
analysis of the equilibrium states of the proposed model is performed and the conditions
for the local and global stability of the equilibria are derived. The model analysis shows
that the equilibrium levels of CO2 can be reduced by increasing the implementation rate
and maximum efficiencies of forest management programs to reduce the deforestation rate
and increase the forest biomass, respectively. It is shown that the use of forest management
policies inwhich the reduction in the deforestation rate and increase in the growth rate of forest
biomass increase more rapidly at low implementation cost are more beneficial in increasing
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the forest cover and reducing the atmospheric burden of CO2 gas. Model analysis shows that
a sudden change in the dynamics of the system about the positive equilibrium S∗ may occur
as the deforestation rate varies. It is found that the loss of stability of positive equilibrium S∗
occurs as the deforestation rate φ crosses a critical threshold φc with generation of sustained
oscillations about S∗ via Hopf-bifurcation. The conditions for existence of Hopf-bifurcation
with respect to parameter φ are derived. It is shown that if the deforestation rate φ < φc, the
positive equilibrium S∗ is stable, and the atmospheric CO2 and other model variables attain
positive equilibrium levels. However, for φ > φc, all the model variables show oscillator
characteristics. The stability and direction of periodic solutions are also analyzed using the
center manifold theory.

It is observed that an increase in the maximum efficiencies of the forest management pro-
grams to reduce the deforestation rate (φ1) and increase the forest biomass (η1), respectively,
can dampen the oscillations in the atmospheric CO2 level that have been arisen due to increase
in the deforestation rate above the threshold value φc. These periodic oscillations may even
die out and positive equilibrium S∗ again becomes stable as φ1 or η1 crosses the critical value.
This shows that an increase in maximum efficiencies of forest management programs to slow
down the deforestation rate and increase the forest biomass not only reduce the equilibrium
level of CO2 but exert a stabilizing effect on the system’s dynamics. Although the forest
management programs have the potential to reduce the atmospheric burden to CO2, but their
execution cost is one of the prime barriers to their execution on a large scale. Using optimal
control theory, we have derived the management policies that reduce the CO2 emission at
minimum implementation cost. For this purpose, we have taken the increased execution rate
of forest management programs as time dependent function v(t) on some finite time interval
and derived the optimal profile of v(t) that minimizes the cost functional. It is found that the
cost functional decreases with an increase in the maximum efficacy of forest management
programs to reduce the deforestation rate (φ1), the maximum efficacy of forest management
programs to increase the forest biomass (η1) and the maximum implementation rate of con-
trol (vmax). This suggests that the cost effective forest management policies must include
those technological options that have high efficiency to increase the forest biomass such as
plantation of genetically engineered trees. Apart from this, forest management policies must
include programs that cause reduction in deforestation rate, such as education programs that
motivate the people to reduce the use of wood based products, providing economic incentives
to rural population to switch to fuel efficient stoves and biogas, etc. Overall, the present study
provides a mathematical framework to assess the effect of forest management policies over
the reduction of CO2 level while minimizing the implementation cost.
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