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Abstract
In this paper, we discuss the further development of the theory of complex fuzzy sets (CFSs).
The motivation for this extension is the utility of complex-valued function in membership
grade which can express the two-dimensional ambiguous information that is prevalent in
time-periodic phenomena. We introduce partial order relation on complex fuzzy sets. This
partial order relation is then used to define the complex fuzzy maximal, minimal, maximum,
and minimum elements. We propose new distance measures such as complex fuzzy distance
measures and a complex fuzzy weighted distance measure. We establish some particular
examples and basic results of the partial order relations and distance measures. Moreover,
we utilize the complex fuzzy sets in signals and systems, because it is the specific form of the
Fourier transform by restricting the range of Fourier transform to a complex unit disc. We
establish a new algorithm based on the complex fuzzy distance measures and complex fuzzy
weighted distance measures for applications in signals and systems by which we determine
the degree of high resemblance of signals to the known signal. Further, the comparative study
of the proposed distance measures with the Zhang distance measure, Hamming distance
measure, and Normalized Hamming distance measure is discussed.
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1 Introduction

Many theories are proposed to cope with uncertainty and imprecision that handle in almost
all the real-life problems such as the theory of fuzzy sets (FSs) (Zadeh 1965), theory of rough
sets (Pawlak 1982), theory of intuitionistic fuzzy sets (IFSs) (Atanassov 2016), theory of
Pythagorean fuzzy sets (Peng and Yang 2015), theory of complex fuzzy sets (CFSs) (Ramot
et al. 2002), theory of soft sets (Molodtsov1999), and the theory of fuzzy soft sets (FSSs) (Maji
et al. 2001). All these models have their own limitations, advantages, and characteristics.
These models are used in many situations of uncertainties such as engineering, computer
science, decision-making problems, networking, pattern recognition, and many other fields
of science.

The concept of a fuzzy set was first given by Zadeh (1965). The FSs have desirable
applications in economics, engineering, decision-making problems, computer science, pat-
tern recognition, networking, etc. Ibrahim (2021) proposed the notion of (3,2)-fuzzy sets and
discussed their applications to topology and optimal choices. Türk et al. (2021) developed a
multi-criteria decision-making method based on the interval type-2 fuzzy sets for selecting
the best location for electric charging stations. Bulut and Ozcan discussed a new method
towards the evaluation of joint technology performances of battery energy storage system
under the fuzzy environment (Bulut andÖzcan 2021). A novel interval type-2 trapezoid fuzzy
multi-attribute group decision-making method was proposed by Meng et al. (2021). They
utilized this method to the applications of the evaluation of sponge city construction. Mishra
et al. (2021) extended the ARAS technique under the environment of hesitant fuzzy sets to
control complex decision-making problems.

Gehrke et al. (1996) proposed the theory of interval-valued fuzzy sets (IVFSs) in which
fuzzy values are interval. The interval-valued fuzzy sets have many applications in different
fields of science. Dutta (2017) introduced the distance measures for IVFSs and discussed
their applications in medical diagnosis. Pękala et al. (2021) defined the inclusion and similar-
ity measures for IVFSs. A multi-criteria decision-making method based on interval-valued
Fermatean fuzzy sets was proposed by Jeevaraj in Jeevaraj (2021). Huidobro et al. (2021)
defined the concept of convexity of IVFSs and utilized it in decision-making problems.

Atanassov gave the concept of intuitionistic fuzzy sets (IFSs) which is the generalization
of fuzzy sets (Atanassov 1986). The intuitionistic fuzzy set model is very useful in various
fields of science. Xue and Deng (2021) proposed the decision-making method under the
intuitionistic fuzzy environment. Yang and Yao (2021) discussed the two possible solutions
to the problem of constructing a shadowed set from an Atanassov IFS. Yang et al. (2022)
proposed a method for establishing a three way approximation of an intuitionistic fuzzy set
following the trisecting acting outcome framework of three way decision. In Duan and Li
(2021), defined four kinds of intuitionistic similarities utilizing the implication operator and
corresponding logical metric spaces. They discussed their applications in pattern recogni-
tion and robustness analysis. A novel knowledge measure based on intuitionistic fuzzy set
was developed by Wu et al. (2021). They utilized the proposed knowledge measure to the
multi-criteria decision-making problems. Garg and Rani (2021) defined a new similarity
measure based on the transformed right-angled triangles between intuitionistic fuzzy setsand
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investigated its applications to the decision-making problems.
In Yager (2014), introduced the notion of the Pythagorean fuzzy set (PFS) which is the

extension of intuitionistic fuzzy set. The Pythagorean fuzzy sets have been widely used
in uncertain problems. Ejegwa and Awolola (2021) introduced some new distance mea-
sures for Pythagorean fuzzy sets. They discussed their applications to pattern recognition
problems. Farhadinia (2022) defined novel similarity measures based on two notions of t-
norm and s-norm together with the distance measure between Pythagorean fuzzy sets. He
showed the potential of the proposed similarity measures in medical diagnosis and pattern
recognition problems. Boyacı and Şişman (2022) studied the methods used for site selec-
tion for a pandemic hospital in Atakum under the Pythagorean fuzzy environment. Ejegwa
(2021) generalized the Garg’s correlation coefficient for Pythagorean fuzzy sets and applied
it to multi-criteria decision-making problems. Some directional correlation coefficient mea-
sures for Pythagorean fuzzy sets were introduced by Lin et al. (2021), and discussed their
applications in medical diagnosis and cluster analysis. Molla et al. (2021) extended the
PROMETHEE method under the environment of Pythagorean fuzzy sets. They solved a
medical diagnosis problem utilizing the new proposed Pythagorean fuzzy PROMETHEE
method. Ejegwa et al. (2022a, 2021) proposed a three-way approach for the computation
of correlation coefficient between PFSs using the concepts of variance and covariance. They
discussed decision-making problems based on three-way approach for the computation of
correlation coefficient between PFSs. Somemethods of calculating the correlation coefficient
of PFSs which resolve the setbacks in the existing methods were discussed by Ejegwa et al.
(2022b). They studied their applications in decision-making problems. Moreover, a medical
diagnostic process based on modified composite relation on Pythagorean fuzzy multi-sets
was developed by Ejegwa et al. (2022c).

Fuzzy sets, interval-valued fuzzy sets, intuitionistic fuzzy sets, and Pythagorean fuzzy sets
can not control inconsistent, incomplete, and imprecise information of periodic nature. These
models are very useful in different uncertain problems, but these theories can not deal with
two-dimensional phenomena. To overcome this deficiency, Ramot et al. (2002) introduced
the concept of complex fuzzy sets. The capability of a complex fuzzy set for representing
two-dimensional phenomena makes it worthier than the fuzzy set model, intuitionistic fuzzy
set, and Pythagorean fuzzy set model. The complex fuzzy sets have desirable applications in
advanced control systems and periodic events. Jia et al. (2021) studied a new solution for
Z-numbers under the complex fuzzy environment and discussed its applications in decision-
making problems. Hu et al. (2017) introduced the orthogonality relation of complex fuzzy
sets and discussed its applications in signals and systems. Ma et al. (2019) proposed an
algorithm based on complex fuzzy sets for the identification of a high degree of resemblance
with the reference signal. Some new types of relations on complex fuzzy sets were proposed
by Khan et al. (2021). They developed a decision-making method based on complex fuzzy
relations. Khan et al. (2020) defined the notion of complex fuzzy soft matrices and applied it
to a decision-making problem in signal processing. Selvachandran et al. (2018) applied the
interval-valued complex fuzzy relations in economics problem. Song et al. (2021) proposed
the distance measures for interval-valued complex fuzzy sets and utilized them in decision-
making problems. Zhang et al. (2009) introduced distance measure between two complex
fuzzy sets. They utilized the distance measure to introduce δ − equali ties of CFSs. Dai
et al. (2019) developed some series of distance measures between interval-valued CFSs
using Hamming and Euclidean metrics. Hu et al. (2018) defined different types of distance
measures for CFSs and discussed their applications to continuity problems. The notions of
distance measures and cross entropy measures in the environment of CFSs were proposed by
Liu et al. (2020); Liu et al. (2022). They discussed the relation between them. Alkouri and
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Salleh (2014) introduced several distance measures based on CFSs. They suggested solutions
to some problems in different fields through complex fuzzy distancemeasures. The objectives
of this paper are to

(i) define a new distance measure between two CFSs,
(ii) propose a new algorithm based on the complex fuzzy distance measures and complex

fuzzy weighted distance measures for applications in signals and systems,
(iii) numerically verify the superiority of the proposed algorithm on CFSs over the existing

one.
In this paper, we introduce the partial order relation on complex fuzzy sets. This partial order
relation is then used to define the complex fuzzymaximal, minimal, maximum, andminimum
elements. We propose new distance measures such as complex fuzzy distance measures and
complex fuzzyweighted distancemeasures.We establish some particular examples and basic
results of the partial order relations and distance measures. Moreover, we utilize the complex
fuzzy sets in signals and systems. We establish a new algorithm based on the complex fuzzy
distance measures and complex fuzzy weighted distance measures for applications in signals
and systems by which we determine the degree of high resemblance of signals to the known
signal. Further, the comparative study of the proposed distance measures with the Zhang
distance measure, Hamming distance measure, and normalized Hamming distance measure
is discussed.

2 Complex fuzzy sets

In this section, we will recall the notions of complex fuzzy sets.

Definition 1 (Ramot et al. 2002) A CFS �, defined on a universe of discourse U , is char-
acterized by a grade value Z�(κ) that assigns any element κ ∈ U a complex-valued grade
of membership in �. Mathematically, membership function of CFS � can be represented
by Z�(κ) = ��(κ)ei Arg�(κ) where ��(κ) and Arg�(κ) are known as amplitude term
and phase term respectively. Both these functions are real-valued and ��(κ) ∈ [0, 1]. The
function ei Arg�(κ) is a periodic function whose periodic law and principal period are, respec-

tively, 2π and 0 < arg�(κ) ≤ 2π. Then, Arg�(κ) = arg�(κ) + 2kπ, k = 0,
−+1,

−+2, . . . .
The principle argument arg�(κ) will used on the following text.

Mathematically,
CFS can be expressed as a set of ordered pairs given by

� = {(κ; Z�(κ)) : κ ∈ U }.
Definition 2 (Zhang et al. 2009) Let �m, m = 1, 2, 3, . . . , M be M CFS defined on U and
Z�m (κ) = ��m (κ)ei arg�m (κ) their membership functions. The complex fuzzy Cartesian
product of �m denoted by �1 × �2 × �3 × · · · × �m is specified by a function

Z�1×�2×�3×···×�m (κ) = ��1×�2×�3×···×�m (κ)ei arg�1×�2×�3×···×�m (κ)

= min(��1(κ1),��2(κ2), . . . ,��m (κm))

ei min(arg�1
(κ1),arg�2

(κ2),...,arg�m (κm ))
.

Definition 3 (Ramot et al. 2002) Let �1 and �2 be two complex fuzzy sets on U , and
Z�1(κ) = ��1(κ)ei arg�1

(κ) and Z�2(κ) = ��2(κ)ei arg�2
(κ) their grade values, respec-

tively. The intersection of these two complex fuzzy sets �1 and �2, denoted �1 ∩ �2, is
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specified by a function

�1 ∩ �2 = ��1(κ)ei arg�1
(κ) ∩ ��2(κ)ei arg�2

(κ)

= min
[
��1(κ),��2(κ)

]
e
i min

[
arg�1

(κ),arg�2
(κ)

]

.

Definition 4 (Ramot et al. 2002) Let �1 and �2 be two complex fuzzy sets on U , and
Z�1(κ) = ��1(κ)ei arg�1

(κ) and Z�2(κ) = ��2(κ)ei arg�2
(κ) their grade values, respec-

tively. The union of these two complex fuzzy sets �1 and �2, denoted �1 ∪ �2, is specified
by a function

�1 ∪ �2 = ��1(κ)ei arg�1
(κ) ∪ ��2(κ)ei arg�2

(κ)

= max
[
��1(κ),��2(κ)

]
e
i max

[
arg�1

(κ),arg�2
(κ)

]

.

Definition 5 Let�1 and�2 be twocomplex fuzzy sets onU , andZ�1(κ) = ��1(κ)ei arg�1
(κ)

and Z�2(κ) = ��2(κ)ei arg�2
(κ) their grade values, respectively. Then, �1 is said to be a

subset of �2, denoted by �1 ⊆ �2 if ��1(κ) ≤ ��2(κ) and arg�1
(κ) ≤ arg�2

(κ).

Definition 6 A relation≤ is said to be a partial order on a complex fuzzy set� if the following
properties hold.

(i) ��(κi ) ≤ ��(κi ) and arg�(κi ) ≤ arg�(κi ).

(ii) If ��(κi ) ≤ ��(κ j ), arg�(κi ) ≤ arg�(κ j ) and ��(κi ) ≥ ��(κ j ), arg�(κi ) ≥
arg�(κ j ) then, ��(κi ) = ��(κ j ), arg�(κi ) = arg�(κ j ).

(iii) If ��(κi ) ≤ ��(κ j ), arg�(κi ) ≤ arg�(κ j ) and ��(κ j ) ≤ ��(κk), arg�(κ j ) ≤
arg�(κk) then, ��(κi ) ≤ ��(κk), arg�(κi ) ≤ arg�(κk).

Definition 7 Let � be a complex fuzzy partial order set and Z�(κi ) ∈ Z�(κ). We define

(i) Z�(κi ) is complex fuzzy minimal if Z�(κi ) ≥ Z�(κ j ) then Z�(κi ) = Z�(κ j ), that
is, ��(κi ) ≥ ��(κ j ), arg�(κi ) ≥ arg�(κ j ) then, ��(κi ) = ��(κ j ), arg�(κi ) =
arg�(κ j ) for all Z�(κ j ) ∈ Z�(κ).

(ii) Z�(κi ) is complex fuzzy maximal if Z�(κi ) ≤ Z�(κ j ) then Z�(κi ) = Z�(κ j ), that
is, ��(κi ) ≤ ��(κ j ), arg�(κi ) ≤ arg�(κ j ) then, ��(κi ) = ��(κ j ), arg�(κi ) =
arg�(κ j ) for all Z�(κ j ) ∈ Z�(κ).

(iii) Z�(κi ) is a complex fuzzy minimum element if Z�(κi ) ≤ Z�(κ j ), that is, ��(κi ) ≤
��(κ j ), arg�(κi ) ≤ arg�(κ j ) for all Z�(κ j ) ∈ Z�(κ).

(iv) Z�(κi ) is a complex fuzzy maximum element ifZ�(κi ) ≥ Z�(κ j ), that is,��(κi ) ≥
��(κ j ), arg�(κi ) ≥ arg�(κ j ) for all Z�(κ j ) ∈ Z�(κ).

Theorem 1 Let � be a complex fuzzy partial order set and Z�(κ) = ��(κ)ei arg�(κ) be its
membership function. Then,

(i) Complex fuzzy maximum elements are complex fuzzy maximal.
(ii) Complex fuzzy minimum elements are complex fuzzy minimal.
(iii) There can be at most one complex fuzzy maximum element.
(iv) There can be at most one complex fuzzy minimum element.

Proof (i) Let Z�(κi ) ∈ Z�(κ) is a complex fuzzy maximum element then,

Z�(κi ) ≥ Z�(κ j ) (1)
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for all Z�(κ j ) ∈ Z�(κ). We prove that a complex fuzzy maximum element is a complex
fuzzy maximal. If

Z�(κi ) ≤ Z�(κ j ) (2)

From inequalities 1 and 2, we have Z�(κi ) = Z�(κ j ). Thus, Z�(κi ) is a complex fuzzy
maximal. Since Z�(κi ) is an arbitrary complex fuzzy maximal elements. Therefore, all the
complex fuzzy maximum elements are complex fuzzy maximal.

(ii) It is easy to prove.
(iii) Let Z�(κi ) and Z�(κ j ) be two complex fuzzy maximum elements of a complex fuzzy

set �. Since Z�(κi ) is a complex fuzzy maximum element then,

Z�(κi ) ≥ Z�(κ j ) (3)

for all Z�(κ j ) ∈ Z�(κ).

Also, Z�(κ j ) is a complex fuzzy maximum element then,

Z�(κ j ) ≥ Z�(κi ) (4)

for all Z�(κi ) ∈ Z�(κ). from inequality 3 and 4 we have Z�(κ j ) = Z�(κi ). Thus, there
exists at most one complex fuzzy maximum element.

(iv). It is easy to prove. 	


3 Distancemeasures of complex fuzzy sets

In this section, we recall some distance measures for complex fuzzy sets such as Zhang dis-
tance, Normalized Hamming distance measure, and Hamming distance measure. Moreover,
we propose the distance measure and weighted distance measure of CFSs.

(ii) The Zhang distance,

�(�i ,� j ) = max

[

sup
κq∈U

|��i (κq) − �� j (κq)|, 1

2π
sup

κq∈U
| arg�i

(κq) − arg� j
(κq)|

]

.

(iv) The Normalized Hamming distance,

�(�i ,� j ) = 1

2n

⎡

⎣
n∑

q=1

|��i (κq) − �� j (κq)| + 1

2π

n∑

q=1

| arg�i
(κq) − arg� j

(κq)|
⎤

⎦ .

(iii) The Hamming distance,

�(�i ,� j ) = 1

2

⎡

⎣
n∑

q=1

|��i (κq) − �� j (κq)| + 1

2π

n∑

q=1

| arg�i
(κq) − arg� j

(κq)|
⎤

⎦ .

Definition 8 A distance measure of CFSs is a function � : �∗(U ) × �∗(U ) → [0, 1] with
the properties: for any �1, �2, �3 ∈ �∗(U )(collection of CFSs)

(i) 0 ≤ �(�1,�2) ≤ 1, �(�1,�2) = 0 if and only if �1 = �2.

(ii) �(�1,�2) = �(�2,�1).

(iii) �(�1,�3) ≤ �(�1,�2) + �(�2,�3).
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We introduce the distance measure � as

�(�i ,� j ) = 1

n

n∑

q=1

[ |��i (κq) − �� j (κq)|
1 + |��i (κq) − �� j (κq)| + | arg�i

(κq) − arg� j
(κq)|

2π + | arg�i
(κq) − arg� j

(κq)|

]

.

(5)

Note that the distance measure � plays a key role in the remainder of this paper.

Example 1 Let

�1 =
{
0.3e1π

a
+ 0.8e1.5π

b
+ 0.5e2π

c

}

,

�2 =
{
0.7e2π

a
+ 0.4e0.5π

b
+ 0.9e1π

c

}

,

then

�(�1,�2) = 1

3

⎡

⎣

( |0.3−0.7|
1+|0.3−0.7| + |1π−2π |

2π+|1π−2π |
)

+
( |0.8−0.4|
1+|0.8−0.4| + |1.5π−0.5π |

2π+|1.5π−0.5π |
)

+
( |0.5−0.9|
1+|0.5−0.9| + |2π−1π |

2π+|2π−1π |
)

⎤

⎦ ,

= 1

3
[0.29 + 0.33 + 0.29 + 0.33 + 0.29 + 0.33]

= 0.62.

Theorem 2 The function � defined by the equality 5 is a distance function of CFSs on U .

Proof The condition �(�i ,� j ) ≥ 0 obviously holds true. Next consider

�(�i ,� j ) = 1

n

n∑

q=1

[ |��i (κq) − �� j (κq)|
1 + |��i (κq) − �� j (κq)| + | arg�i

(κq) − arg� j
(κq)|

2π + | arg�i
(κq) − arg� j

(κq)|

]

= 1

n

n∑

q=1

[
1

1 + 1
+ 2π

2π + 2π

]

= 1

n

n∑

q=1

[
1

2
+ 2π

4π

]
= 1

n

[
1

2
+ 1

2

]

= 1

n
≤ 1.

Therefore, 0 ≤ �(�i ,� j ) ≤ 1, and

�(�i ,�i ) = 1

n

n∑

q=1

[
|��i (κq) − ��i (κq)|

1 + |��i (κq) − ��i (κq)| + | arg�i
(κq) − arg�i

(κq)|
2π + | arg�i

(κq) − arg�i
(κq)|

]

= 0 + 0 = 0.
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Condition (ii) is straightforward. To prove (iii), we have

�(�i ,�k) =
n

1

n

∑

q=1

⎡

⎣
|��i (κq )−��k (κq )|

1+|��i (κq )−��k (κq )|+
| arg�i

(κq )−arg�k
(κq )|

2π+| arg�i
(κq )−arg�k

(κq )|

⎤

⎦

=
n

1

n

∑

q=1

⎡

⎢
⎣

|��i (κq )−�� j (κq )+�� j (κq )−��k (κq )|
1+|��i (κq )−�� j (κq )+�� j (κq )−��k (κq )|+
| arg�i

(κq )−arg� j
(κq )+arg� j

(κq )−arg�k
(κq )|

2π+| arg�i
(κq )−arg� j

(κq )+arg� j
(κq )−arg�k

(κq )|

⎤

⎥
⎦

�(�i ,�k) ≤
n

1

n

∑

q=1

⎡

⎢
⎣

|��i (κq )−�� j (κq )|+|�� j (κq )−��k (κq )|
1+|��i (κq )−�� j (κq )|+|�� j (κq )−��k (κq )|+
| arg�i

(κq )−arg� j
(κq )|+| arg� j

(κq )−arg�k
(κq )|

2π+| arg�i
(κq )−arg� j

(κq )|+| arg� j
(κq )−arg�k

(κq )|

⎤

⎥
⎦

≤ 1

n

n∑

q=1

⎡

⎢
⎢
⎢
⎢
⎢⎢⎢⎢
⎣

|��i (κq )−�� j (κq )|
1+|��i (κq )−�� j (κq )|+|�� j (κq )−��k (κq )|+

|�� j (κq )−��k (κq )|
1+|��i (κq )−�� j (κq )|+|�� j (κq )−��k (κq )|+

| arg�i
(κq )−arg� j

(κq )|
2π+| arg�i

(κq )−arg� j
(κq )|+| arg� j

(κq )−arg�k
(κq )|+

| arg� j
(κq )−arg�k

(κq )|
2π+| arg�i

(κq )−arg� j
(κq )|+| arg� j

(κq )−arg�k
(κq )|

⎤

⎥
⎥
⎥
⎥
⎥⎥⎥⎥
⎦

= 1

n

n∑

q=1

⎡

⎢
⎣

|��i (κq )−�� j (κq )|
1+|��i (κq )−�� j (κq )|+|�� j (κq )−��k (κq )|+

| arg�i
(κq )−arg� j

(κq )|
2π+| arg�i

(κq )−arg� j
(κq )|+| arg� j

(κq )−arg�k
(κq )|

⎤

⎥
⎦

+
n

1

n

∑

q=1

⎡

⎢
⎣

|�� j (κq )−��k (κq )|
1+|��i (κq )−�� j (κq )|+|�� j (κq )−��k (κq )|+

| arg� j
(κq )−arg�k

(κq )|
2π+| arg�i

(κq )−arg� j
(κq )|+| arg� j

(κq )−arg�k
(κq )|

⎤

⎥
⎦

≤
n

1

n

∑

q=1

[ |��i (κq) − �� j (κq)|
1 + |��i (κq) − �� j (κq)| + | arg�i

(κq) − arg� j
(κq)|

2π + | arg�i
(κq) − arg� j

(κq)|

]

+ 1

n

n∑

q=1

[ |�� j (κq) − ��k (κq)|
1 + |�� j (κq) − ��k (κq)| + | arg� j

(κq) − arg�k
(κq)|

2π + | arg� j
(κq) − arg�k

(κq)|

]

= �(�i ,� j ) + �(� j ,�k).

Thus, �(�i ,�k) ≤ �(�i ,� j ) + �(� j ,�k). 	


Note that in the above theorem, if n = 1 then, �(�i ,� j ) = 1.

Corollary 1 The distance measure � of complex fuzzy sets is a fuzzy set.

Proof The proof is obvious from the definition. 	


Proposition 1 The distance measure � of complex fuzzy sets is closed with respect to the
operations of fuzzy union, fuzzy intersection, and fuzzy complement.

Proof It is easy to prove. 	
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Definition 9 Let � be a distance measure of complex fuzzy sets. Then, the complement
distance measure �((�i )

c, (� j )
c) of two complex fuzzy sets is defined as

�((�i )
c, (� j )

c) = 1

n

n∑

q=1

⎡

⎢
⎣

|(1−��i (κq ))−(1−�� j (κq ))|
1+|(1−��i (κq ))−(1−�� j (κq ))|+

| arg�i
(κq )−arg� j

(κq )|
2π+| arg�i

(κq )−arg� j
(κq )|

⎤

⎥
⎦ .

Example 2 Let

�1 = 0.9e1π

a
+ 1e1.5π

b
+ 0.1e2π

c
,

�2 = 0.2e2π

a
+ 0.3e0.5π

b
+ 0.8e1π

c
,

then

�((�1)
c, (�2)

c) = 0.74.

Definition 10 Let� be a distance measure of complex fuzzy sets. Then, the distance measure
�(�i ∪ � j ,�i ∩ � j ) of two complex fuzzy sets is defined as

�(�i ∪ � j ,�i ∩ � j ) = 1

n

n∑

q=1

⎡

⎢
⎣

|(��i (κq )∨�� j (κq ))−(��i (κq )∧�� j (κq ))|
1+|(��i (κq )∨�� j (κq ))−(��i (κq )∧�� j (κq ))|+
|(arg�i

(κq )∨arg� j
(κq ))−(arg�i

(κq )∧arg� j
(κq ))|

2π+|(arg�i
(κq )∨arg� j

(κq ))−(arg�i
(κq )∧arg� j

(κq ))|

⎤

⎥
⎦ ,

where ∨ and ∧ denote the max and min operator of complex fuzzy sets.

Example 3 Let

�1 = 0.5e0.5π

a
+ 0.6e2π

b
+ 0.9e0.2π

c
,

�2 = 1e1π

a
+ 0.1e1.2π

b
+ 0.7e1.5π

c
then

�(�1 ∪ �2,�1 ∩ �2) = 0.57.

Theorem 3 Let � be a distance measure of complex fuzzy sets. Then, the following hold.

(i) �((�i )
c,� j ) = �(�i , (� j )

c),

(ii) �((�i )
c, (� j )

c) = �(�i ,� j ).

Proof (i) For �(�i ,� j ) = 1
n

n∑

q=1

[ |��i (κq )−�� j (κq )|
1+|��i (κq )−�� j (κq )| + | arg�i

(κq )−arg� j
(κq )|

2π+| arg�i
(κq )−arg� j

(κq )|
]

, we

have the following:

�((�i )
c,� j ) = 1

n

n∑

q=1

[ |(1 − ��i (κq )) − �� j (κq )|
1 + |(1 − ��i (κq )) − �� j (κq )| + | arg�i

(κq ) − arg� j
(κq )|

2π + | arg�i
(κq ) − arg� j

(κq )|

]

= 1

n

n∑

q=1

[ |(1 − �� j (κq )) − ��i (κq )|
1 + |(1 − �� j (κq )) − ��i (κq )| + | arg�i

(κq ) − arg� j
(κq )|

2π + | arg�i
(κq ) − arg� j

(κq )|

]

= 1

n

n∑

q=1

[ |��i (κq ) − (1 − �� j (κq ))|
1 + |��i (κq ) − (1 − �� j (κq ))| + | arg�i

(κq ) − arg� j
(κq )|

2π + | arg�i
(κq ) − arg� j

(κq )|

]

= �(�i , (� j )
c).
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(ii)

�((�i )
c, (� j )

c) = 1

n

n∑

q=1

⎡

⎢
⎣

|(1−��i (κq ))−(1−�� j (κq ))|
1+|(1−��i (κq ))−(1−�� j (κq ))|+

| arg�i
(κq )−arg� j

(κq )|
2π+| arg�i

(κq )−arg� j
(κq )|

⎤

⎥
⎦

= 1

n

n∑

q=1

[ |�� j (κq) − ��i (κq))|
1 + |�� j (κq) − ��i (κq)| + | arg�i

(κq) − arg� j
(κq)|

2π + | arg�i
(κq) − arg� j

(κq)|

]

= 1

n

n∑

q=1

[ |��i (κq) − �� j (κq))|
1 + |��i (κq) − �� j (κq)| + | arg�i

(κq) − arg� j
(κq)|

2π + | arg�i
(κq) − arg� j

(κq)|

]

= �(�i ,� j ).

	

Theorem 4 Let � be a distance measure of complex fuzzy sets. Then, the following hold.

(i) �(�i ∪ � j ,�i ∩ � j ) = �(�i ,� j ),

(ii) �(�i ,�i ∩ � j ) = �(� j ,�i ∪ � j ),

(iii) �(�i ,�i ∪ � j ) = �(� j ,�i ∩ � j ).

Proof (i) To prove 1 there are many cases arise here.
Case 1.

��i (κq) ≤ �� j (κq) and arg�i
(κq) ≤ arg� j

(κq)

�(�i ∪ � j ,�i ∩ � j ) = 1

n

n∑

q=1

⎡

⎢
⎣

|(��i (κq )∨�� j (κq ))−(��i (κq )∧�� j (κq ))|
1+|(��i (κq )∨�� j (κq ))−(��i (κq )∧�� j (κq ))|+
|(arg�i

(κq )∨arg� j
(κq ))−(arg�i

(κq )∧arg� j
(κq ))|

2π+|(arg�i
(κq )∨arg� j

(κq ))−(arg�i
(κq )∧arg� j

(κq ))|

⎤

⎥
⎦

= 1

n

n∑

q=1

[ |�� j (κq)) − ��i (κq)|
1 + |�� j (κq) − ��i (κq))| + | arg� j

(κq) − arg�i
(κq)|

2π + |(arg� j
(κq) − arg�i

(κq)|

]

= 1

n

n∑

q=1

[ |��i (κq)) − �� j (κq)|
1 + |��i (κq) − �� j (κq))| + | arg�i

(κq) − arg� j
(κq)|

2π + |(arg�i
(κq) − arg� j

(κq)|

]

= �(�i ,� j ).

Case 2.

�� j (κq) ≤ ��i (κq) and arg� j
(κq) ≤ arg�i

(κq)

�(�i ∪ � j ,�i ∩ � j ) =
n

1

n

∑

q=1

⎡

⎢
⎣

|(��i (κq )∨�� j (κq ))−(��i (κq )∧�� j (κq ))|
1+|(��i (κq )∨�� j (κq ))−(��i (κq )∧�� j (κq ))|+
|(arg�i

(κq )∨arg� j
(κq ))−(arg�i

(κq )∧arg� j
(κq ))|

2π+|(arg�i
(κq )∨arg� j

(κq ))−(arg�i
(κq )∧arg� j

(κq ))|

⎤

⎥
⎦

= 1

n

n∑

q=1

⎡

⎢
⎣

|��i (κq ))−�� j (κq )|
1+|��i (κq )−�� j (κq ))|+

| arg�i
(κq )−arg� j

(κq )|
2π+|(arg�i

(κq )−arg� j
(κq )|

⎤

⎥
⎦

= �(�i ,� j ).
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Case 3.

��i (κq) ≤ �� j (κq) and arg� j
(κq) ≤ arg�i

(κq)

�(�i ∪ � j ,�i ∩ � j ) = 1

n

n∑

q=1

⎡

⎢
⎣

|(��i (κq )∨�� j (κq ))−(��i (κq )∧�� j (κq ))|
1+|(��i (κq )∨�� j (κq ))−(��i (κq )∧�� j (κq ))|+
|(arg�i

(κq )∨arg� j
(κq ))−(arg�i

(κq )∧arg� j
(κq ))|

2π+|(arg�i
(κq )∨arg� j

(κq ))−(arg�i
(κq )∧arg� j

(κq ))|

⎤

⎥
⎦

= 1

n

n∑

q=1

⎡

⎢
⎣

|�� j (κq ))−��i (κq )|
1+|�� j (κq )−��i (κq ))|+

| arg�i
(κq )−arg� j

(κq )|
2π+|(arg�i

(κq )−arg� j
(κq )|

⎤

⎥
⎦

= 1

n

n∑

q=1

⎡

⎢
⎣

|��i (κq ))−�� j (κq )|
1+|��i (κq )−�� j (κq ))|+

| arg�i
(κq )−arg� j

(κq )|
2π+|(arg�i

(κq )−arg� j
(κq )|

⎤

⎥
⎦

= �(�i ,� j ).

Case 4.

�� j (κq) ≤ ��i (κq) and arg�i
(κq) ≤ arg� j

(κq)

�(�i ∪ � j ,�i ∩ � j ) = 1

n

n∑

q=1

⎡

⎢
⎣

|(��i (κq )∨�� j (κq ))−(��i (κq )∧�� j (κq ))|
1+|(��i (κq )∨�� j (κq ))−(��i (κq )∧�� j (κq ))|+
|(arg�i

(κq )∨arg� j
(κq ))−(arg�i

(κq )∧arg� j
(κq ))|

2π+|(arg�i
(κq )∨arg� j

(κq ))−(arg�i
(κq )∧arg� j

(κq ))|

⎤

⎥
⎦

= 1

n

n∑

q=1

⎡

⎢
⎣

|��i (κq ))−�� j (κq )|
1+|��i (κq )−�� j (κq ))|+

| arg� j
(κq )−arg�i

(κq )|
2π+|(arg� j

(κq )−arg�i
(κq )|

⎤

⎥
⎦

= 1

n

n∑

q=1

⎡

⎢
⎣

|��i (κq ))−�� j (κq )|
1+|��i (κq )−�� j (κq ))|+

| arg�i
(κq )−arg� j

(κq )|
2π+|(arg�i

(κq )−arg� j
(κq )|

⎤

⎥
⎦

= �(�i ,� j ).

Thus, in all cases, we have

�(�i ∪ � j ,�i ∩ � j ) = �(�i ,� j ).

(ii) To prove (ii), we use the same cases.
Case 1.

��i (κq ) ≤ �� j (κq ) and arg�i
(κq ) ≤ arg� j

(κq )

�(�i ,�i ∩ � j ) = 1

n

n∑

q=1

⎡

⎢
⎣

|��i (κq )−(��i (κq )∧�� j (κq ))|
1+|��i (κq )−(��i (κq )∧�� j (κq ))|+
| arg�i

(κq )−(arg�i
(κq )∧arg� j

(κq ))|
2π+| arg�i

(κq )−(arg�i
(κq )∧arg� j

(κq ))|

⎤

⎥
⎦

= 1

n

n∑

q=1

[
|��i (κq ) − ��i (κq )|

1 + |��i (κq ) − ��i (κq ))| + | arg�i
(κq ) − arg�i

(κq )|
2π + |(arg�i

(κq ) − arg�i
(κq )|

]

= 0. (6)
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�(� j ,�i ∪ � j ) = 1

n

n∑

q=1

⎡

⎢
⎣

|�� j (κq )−(��i (κq )∨�� j (κq ))|
1+|�� j (κq )−(��i (κq )∨�� j (κq ))|+
| arg� j

(κq )−(arg�i
(κq )∨arg� j

(κq ))|
2π+| arg� j

(κq )−(arg�i
(κq )∨arg� j

(κq ))|

⎤

⎥
⎦

= 1

n

n∑

q=1

[ |�� j (κq ) − �� j (κq )|
1 + |�� j (κq ) − �� j (κq ))| + | arg� j

(κq ) − arg� j
(κq )|

2π + |(arg� j
(κq ) − arg� j

(κq )|

]

= 0. (7)

From 5 and 7, we have

�(�i ,�i ∩ � j ) = �(� j ,�i ∪ � j ).

Case 2.

�� j (κq) ≤ ��i (κq) and arg� j
(κq) ≤ arg�i

(κq)

�(�i ,�i ∩ � j ) = 1

n

n∑

q=1

⎡

⎢
⎣

|��i (κq )−(��i (κq )∧�� j (κq ))|
1+|��i (κq )−(��i (κq )∧�� j (κq ))|+
| arg�i

(κq )−(arg�i
(κq )∧arg� j

(κq ))|
2π+| arg�i

(κq )−(arg�i
(κq )∧arg� j

(κq ))|

⎤

⎥
⎦

= 1

n

n∑

q=1

⎡

⎢
⎣

|��i (κq )−�� j (κq )|
1+|��i (κq )−�� j (κq ))|+

| arg�i
(κq )−arg� j

(κq )|
2π+|(arg�i

(κq )−arg� j
(κq )|

⎤

⎥
⎦

= �(�i ,� j ) (8)

�(� j ,�i ∪ � j ) = 1

n

n∑

q=1

⎡

⎢
⎣

|�� j (κq )−(��i (κq )∨�� j (κq ))|
1+|�� j (κq )−(��i (κq )∨�� j (κq ))|+
| arg� j

(κq )−(arg�i
(κq )∨arg� j

(κq ))|
2π+| arg� j

(κq )−(arg�i
(κq )∨arg� j

(κq ))|

⎤

⎥
⎦

= 1

n

n∑

q=1

⎡

⎢
⎣

|�� j (κq )−��i (κq )|
1+|�� j (κq )−��i (κq ))|+

| arg� j
(κq )−arg�i

(κq )|
2π+|(arg� j

(κq )−arg�i
(κq )|

⎤

⎥
⎦

= �(�i ,� j ). (9)

From 8 and 9, we have

�(�i ,�i ∩ � j ) = �(� j ,�i ∪ � j ).

The proof is similar for other cases.
(iii) The Proof of (iii) is similar to the Proof of (ii). 	


Corollary 2 Let � be a distance measure of complex fuzzy sets. Then,

(i) �(�i ∪ � j ,�i ∪ � j ) = 0,
(ii) �(�i ∩ � j ,�i ∩ � j ) = 0.

Proof It is easy to prove. 	

Definition 11 A weighted distance measure of CFSs is a function �w : �∗(U ) × �∗(U ) →
[0, 1] with the properties: for any �1, �2, �3 ∈ �∗(U )(collection of CFSs)

(i) 0 ≤ �w(�1,�2) ≤ 1, �w(�1,�2) = 0 if and only if �1 = �2.
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(ii) �w(�1,�2) = �w(�2,�1).

(iii) �w(�1,�3) ≤ �w(�1,�2) + �w(�2,�3).

We introduce the weighted distance measure �w as

�w(�i ,� j ) = 1

n
n∑

q=1
wq

⎡

⎢
⎣

n∑

q=1

⎡

⎢
⎣wq

⎡

⎢
⎣

|��i (κq )−�� j (κq )|
1+|��i (κq )−�� j (κq )|+

| arg�i
(κq )−arg� j

(κq )|
2π+| arg�i

(κq )−arg� j
(κq )|

⎤

⎥
⎦

⎤

⎥
⎦

⎤

⎥
⎦

(10)

where wq is a weighted vector.

Theorem 5 The function �w defined by the equality 10 is a distance function of CFSs on U .

Proof The condition �w(�i ,� j ) ≥ 0 obviously holds true. Next consider

�w(�i ,� j ) = 1
n

n
∑

q=1
wq

⎡

⎢
⎣

n∑

q=1

⎡

⎢
⎣wq

⎡

⎢
⎣

|��i (κq )−�� j (κq )|
1+|��i (κq )−�� j (κq )|+

| arg�i
(κq )−arg� j

(κq )|
2π+| arg�i

(κq )−arg� j
(κq )|

⎤

⎥
⎦

⎤

⎥
⎦

⎤

⎥
⎦

= 1

n
n∑

q=1
wq

⎡

⎣
n∑

q=1

[
wq

[
1

1 + 1
+ 2π

2π + 2π

]]⎤

⎦

= 1
n

n
∑

q=1
wq

⎡

⎣
n∑

q=1

[
wq

[
1

2
+ 1

2

]]⎤

⎦

= 1

n
n∑

q=1
wq

⎡

⎣
n∑

q=1

wq .1

⎤

⎦ = 1

n
.

∴ 0 ≤ �w(�i ,� j ) ≤ 1, and

�w(�i ,�i ) = 1
n

n
∑

q=1
wq

⎡

⎣
n∑

q=1

⎡

⎣wq

⎡

⎣
|��i (κq )−��i (κq )|

1+|��i (κq )−��i (κq )|+
| arg�i

(κq )−arg�i
(κq )|

2π+| arg�i
(κq )−arg�i

(κq )|

⎤

⎦

⎤

⎦

⎤

⎦

= 1

n
n∑

q=1
wq

⎡

⎣
n∑

q=1

wq [0 + 0]

⎤

⎦ = 0.
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Condition (ii) is straightforward. To prove (iii), we have

�w(�i ,�k) = 1

n
n∑

q=1
wq

⎡

⎣
n∑

q=1

⎡

⎣wq

⎡

⎣
|��i (κq )−��k (κq )|

1+|��i (κq )−��k (κq )|+
| arg�i

(κq )−arg�k
(κq )|

2π+| arg�i
(κq )−arg�k

(κq )|

⎤

⎦

⎤

⎦

⎤

⎦

= 1
n

n
∑

q=1
wq

⎡

⎢
⎣

n∑

q=1

⎡

⎢
⎣wq

⎡

⎢
⎣

|��i (κq )−�� j (κq )+�� j (κq )−��k (κq )|
1+|��i (κq )−�� j (κq )+�� j (κq )−��k (κq )|+
| arg�i

(κq )−arg� j
(κq )+arg� j

(κq )−arg�k
(κq )|

2π+| arg�i
(κq )−arg� j

(κq )+arg� j
(κq )−arg�k

(κq )|

⎤

⎥
⎦

⎤

⎥
⎦

⎤

⎥
⎦

≤ 1
n

n
∑

q=1
wq

⎡

⎢
⎣

n∑

q=1

⎡

⎢
⎣wq

⎡

⎢
⎣

|��i (κq )−�� j (κq )|+|�� j (κq )−��k (κq )|
1+|��i (κq )−�� j (κq )|+|�� j (κq )−��k (κq )|+
| arg�i

(κq )−arg� j
(κq )|+| arg� j

(κq )−arg�k
(κq )|

2π+| arg�i
(κq )−arg� j

(κq )|+| arg� j
(κq )−arg�k

(κq )|

⎤

⎥
⎦

⎤

⎥
⎦

⎤

⎥
⎦

≤ 1
n

n
∑

q=1
wq

⎡

⎢
⎢
⎢
⎢⎢⎢⎢⎢
⎣

n∑

q=1

⎡

⎢
⎢
⎢
⎢⎢⎢⎢⎢
⎣

wq

⎡

⎢
⎢
⎢
⎢⎢⎢⎢⎢
⎣

|��i (κq )−�� j (κq )|
1+|��i (κq )−�� j (κq )|+|�� j (κq )−��k (κq )|+

|�� j (κq )−��k (κq )|
1+|��i (κq )−�� j (κq )|+|�� j (κq )−��k (κq )|+

| arg�i
(κq )−arg� j

(κq )|
2π+| arg�i

(κq )−arg� j
(κq )|+| arg� j

(κq )−arg�k
(κq )|+

| arg� j
(κq )−arg�k

(κq )|
2π+| arg�i

(κq )−arg� j
(κq )|+| arg� j

(κq )−arg�k
(κq )|

⎤

⎥
⎥
⎥
⎥⎥⎥⎥⎥
⎦

⎤

⎥
⎥
⎥
⎥⎥⎥⎥⎥
⎦

⎤

⎥
⎥
⎥
⎥⎥⎥⎥⎥
⎦

= 1

n
n∑

q=1
wq

⎡

⎢
⎣

n∑

q=1

⎡

⎢
⎣wq

⎡

⎢
⎣

|��i (κq )−�� j (κq )|
1+|��i (κq )−�� j (κq )|+|�� j (κq )−��k (κq )|+

| arg�i
(κq )−arg� j

(κq )|
2π+| arg�i

(κq )−arg� j
(κq )|+| arg� j

(κq )−arg�k
(κq )|

⎤

⎥
⎦

⎤

⎥
⎦

⎤

⎥
⎦

+ 1

n
n∑

q=1
wq

⎡

⎢
⎣

n∑

q=1

⎡

⎢
⎣wq

⎡

⎢
⎣

|�� j (κq )−��k (κq )|
1+|��i (κq )−�� j (κq )|+|�� j (κq )−��k (κq )|+

| arg� j
(κq )−arg�k

(κq )|
2π+| arg�i

(κq )−arg� j
(κq )|+| arg� j

(κq )−arg�k
(κq )|

⎤

⎥
⎦

⎤

⎥
⎦

⎤

⎥
⎦

≤ 1
n

n
∑

q=1
wq

⎡

⎢
⎣

n∑

q=1

⎡

⎢
⎣wq

⎡

⎢
⎣

|��i (κq )−�� j (κq )|
1+|��i (κq )−�� j (κq )|+

| arg�i
(κq )−arg� j

(κq )|
2π+| arg�i

(κq )−arg� j
(κq )|

⎤

⎥
⎦

⎤

⎥
⎦

⎤

⎥
⎦

+ 1

n
n∑

q=1
wq

⎡

⎢
⎣

n∑

q=1

⎡

⎢
⎣wq

⎡

⎢
⎣

|�� j (κq )−��k (κq )|
1+|�� j (κq )−��k (κq )|+

| arg� j
(κq )−arg�k

(κq )|
2π+| arg� j

(κq )−arg�k
(κq )|

⎤

⎥
⎦

⎤

⎥
⎦

⎤

⎥
⎦

= �w(�i ,� j ) + �w(� j ,�k).

Thus �w(�i ,�k) ≤ �w(�i ,� j ) + �w(� j ,�k). 	


4 Application in signal processing

In this section, we will discuss a real-life application of complex fuzzy sets in signals and
systems. Especially, the complex fuzzy set explains how to get the highest resemblance of
the signal with the known signal R.
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Table 1 Received and reference
signals

Signals κ1 κ2 κ3 . . . κn R

1 κ1(1) κ2(1) κ3(1) . . . κn(1) R(1)

2 κ1(2) κ2(2) κ3(2) . . . κn(2) R(2)

3 κ1(3) κ2(3) κ3(3) . . . κn(3) R(3)

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

m κ1(m) κ2(m) κ3(m) . . . κn(m) R(m)

We propose the following definitions utilized in decision-making algorithm taking the
idea of a complex fuzzy set into account:

Definition 12 The Mth inverse discrete Fourier transform (IDFT) coefficient of a length M
sequence {κ(M)} of the signal κn(m) is defined as

κn(m) = 1

M

M−1∑

q=0

κ
′(q)ei

2π
M mq , m, q ∈ {0, 1, 2, . . . , M − 1},

where κ
′(q) has different values (Selesnick and Schuller 2001).

Ifwe restrictκ′(q) to a closed interval [0, 1] and tale 2π
M mq = arg�(κ), then,κ′(q)ei

2π
M mq

is called a complex fuzzy set.

Definition 13 Let κ1(m), κ2(m), . . . , κn(m) be different electromagnetic signals and R(m)

be a known signal received by a particular receiver. Then, these signals can be arranged by
Table 1.

In this table, take all the signals in columns and each column containsm samples of every
signal.

Note that the samples of known signals take in the last column of the table.
To compare the similarity of the received signals with the known signal, we apply the

following method.

5 Algorithm

In the following, we develop an algorithm for the identification of receiving signals with the
known signal using the proposed concepts of complex fuzzy distance measure and complex
fuzzy weighted distance measure.

Step 1. If a digital receiver receives different signals κ1(m), κ2(m), . . . , κn(m) from any
source. These n signals are sampled M times by the receiver. Let κi (m) (1 = 1, 2, . . . , n)

be the nth signal. The inverse discrete Fourier transform of κi (m) is

κn(m) = 1

M

M−1∑

q=0

κ
′(q)ei

2π(q−1)(k−1)+βκ,q
M , m, q ∈ {0, 1, 2, . . . , M − 1}. (11)

In Eq. 11 κ
′(q)ei

2π
M mq shows the membership function of complex fuzzy sets.
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We use the complex fuzzy sets in signals and systems utilizing new kinds of complex
fuzzy distance measures to identify a particular signal out of large signals detected by a
digital receiver. For this, we have a known signal R(m). The IDFT of the known signal R(m)

is

R(m) = 1

M

M−1∑

q=0

R[q]ei
2π(q−1)(k−1)+β

R,q
M ; m, q = 0, 1, 2, . . . , M − 1. (12)

The received signals κ1(m), κ2(m), . . . , κn(m) can be recognized with respect to the
known signal.

Step 2.
Obtain the information about the received signals andknown signals in the formof complex

fuzzy sets. Then, rearrange by the table defined in (13).
Step 3.
Compute the complex fuzzy distance measure and complex fuzzy weighted distance mea-

sure of the received signals and known signal.
Step 4.
Rank the complex fuzzy distance measure and complex fuzzy weighted distance measure

to identify the reference signal out of large signals detected by a digital receiver.
Note that the least distance measure of the received signal with the known signal shows

a high degree of resemblance.

Example 4 let us assume that the four different electromagnetic signals, κ1(m), κ2(m),

κ3(m), and κ4(m) from four different aircraft S1, S2, S3, and S4, have been received by
a radar system. Each of these time domain signals is sampled four times. Let R(m) be the
known signal. The inverse discrete Fourier transform of the signal κn(m); m, n = 0, 1, 2, 3
is

κn(m) = 1

4

3∑

q=0

{
U [q]ei 2π(q−1)(k−1)+βκ,q

M

}
;m, q = 0, 1, 2, 3, (13)

where

U [q] ∈ [0, 1].
Also,

R(m) = 1

4

3∑

q=0

{
R[q]ei

2π(q−1)(k−1)+β
R,q

M

}
;m, q = 0, 1, 2, 3, (14)

where

R[q] ∈ [0, 1].
Now each signal is compared with a known signal to get a high degree of resemblance

with the known signal R(m).

Following steps 1 and 2 in the above algorithm, we take the particular values of amplitude
terms and phase terms to explain our proposed method (Table 2).

Step 3. Now the complex fuzzy distance measures and complex fuzzy weighted distance
measures of the received signals and known signal are calculated in the following and given
in Tables 3 and 4, that is,
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Table 2 Particular values of the
received signals and reference
signal

Signals κ1(m) κ2(m) κ3(m) κ4(m) R(m)

0 0.6ei1.3π 0.1ei0.8π 0.9ei1π 1ei2π 1ei2π

1 0.3ei1π 0.8ei2π 0.7ei0.5π 0ei0.5π 1ei2π

2 0.9ei2π 0.4ei0.5π 0.1ei1.2π 0.9ei1π 1ei2π

3 0.5ei0.5π 0.1ei1π 0.2ei2π 0.3ei1.5π 1ei2π

Table 3 Values of the proposed distance measures

�(κ1(m), R(m)) �(κ2(m), R(m)) �(κ3(m), R(m)) �(κ4(m), R(m))

0.54 0.66 0.57 0.49

�(κ1(m), R(m)) = 1

4

4∑

q=1

[
|U [q] − R[q]|

1 + |U [q] − R[q]| + | arg
κ1

− arg
R

|
2π + | arg

κ1
− arg

R
|

]

,

= 1

4

⎡

⎢⎢⎢
⎣

( |0.6−1|
1+|0.6−1| + |1.3π−2π |

2π+|1.3π−2π |
)

+
( |0.3−1|
1+|0.3−1| + |1.π−2π |

2π+|1.π−2π |
)

+
( |0.9−1|
1+|0.9−1| + |2π−2π |

2π+|2π−2π |
)

+
( |0.5−1|
1+|0.5−1| + |0.5π−2π |

2π+|0.5π−2π |
)

⎤

⎥⎥⎥
⎦

,

= 1

4

[ ( 0.4
1.4 + 0.7π

2.7π

) + ( 0.7
1.7 + 1.π

3.π

) + ( 0.1
1.1 + 0.π

2π

)

+
(
0.5
1.5 + 1.5π

3.5π

)
]

,

= 1

4
[0.29 + 0.26 + 0.41 + 0.33 + 0.09 + 0 + 0.33 + 0.43]

= 0.54.

�(κ2(m), R(m)) = 1

4

⎡

⎢⎢⎢
⎣

( |0.1−1|
1+|0.1−1| + |0.8π−2π |

2π+|0.8π−2π |
)

+
( |0.8−1|
1+|0.8−1| + |2π−2π |

2π+|2π−2π |
)

+
( |0.4−1|
1+|0.4−1| + |0.5π−2π |

2π+|0.5π−2π |
)

+
( |0.1−1|
1+|0.1−1| + |1π−2π |

2π+|1π−2π |
)

⎤

⎥⎥⎥
⎦

,

= 1

4

[ ( 0.9
1.9 + 1.2π

3.2π

) + ( 0.2
1.2 + 0.π

2.π

) +
(
0.6
1.6 + 1.5π

3.5π

)

+ ( 0.9
1.9 + 1.π

3π

)

]

,

= 1

4
[0.47 + 0.38 + 0.17 + 0 + 0.38 + 0.43 + 0.47 + 0.33] ,

= 0.66.

similarly,

�(κ3(m), R(m)) = 0.57,

�(κ4(m), R(m)) = 0.49.

If the weighted vector w = (0.2, 0.3, 0.2, 0.3) is assigned to each sample of the signal,
then the complex fuzzy weighted distance measure is
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Table 4 Values of the proposed weighted distance measures

�w(κ1(m), R(m)) �w(κ2(m), R(m)) �w(κ3(m), R(m)) �w(κ4(m), R(m))

0.14 0.16 0.15 0.14

�w(κ1(m), R(m)) = 1

n
n∑

q=1
wq

⎡

⎣
n∑

q=1

⎡

⎣wq

⎡

⎣
|U [q]−R[q]|

1+|��i (κq )−��k (κq )|+
| arg�i

(κq )−arg�k
(κq )|

2π+| arg�i
(κq )−arg�k

(κq )|

⎤

⎦

⎤

⎦

⎤

⎦

= 1

4

⎡

⎢⎢
⎢
⎣

(0.2)
( |0.6−1|
1+|0.6−1| + |1.3π−2π |

2π+|1.3π−2π |
)

+
(0.3)

( |0.3−1|
1+|0.3−1| + |1.π−2π |

2π+|1.π−2π |
)

+ (0.2)
( |0.9−1|
1+|0.9−1| + |2π−2π |

2π+|2π−2π |
)

+(0.3)
( |0.5−1|
1+|0.5−1| + |0.5π−2π |

2π+|0.5π−2π |
)

⎤

⎥⎥
⎥
⎦

,

= 1

4

[
(0.2)

( 0.4
1.4 + 0.7π

2.7π

) + (0.3)
( 0.7
1.7 + 1.π

3.π

) + (0.2)
( 0.1
1.1 + 0.π

2π

)

+(0.3)
(
0.5
1.5 + 1.5π

3.5π

)
]

,

= 1

4

[
(0.2)(0.47 + 0.38) + (0.3)(0.17 + 0)+
(0.2)(0.38 + 0.43) + (0.3)(0.47 + 0.33)

]

,

�w(κ1(m), R(m)) = 1

4(1)

⎡

⎢⎢⎢
⎣

(0.2)
( |0.6−1|
1+|0.6−1| + |1.3π−2π |

2π+|1.3π−2π |
)

+
(0.3)

( |0.3−1|
1+|0.3−1| + |1.π−2π |

2π+|1.π−2π |
)

+ (0.2)
( |0.9−1|
1+|0.9−1| + |2π−2π |

2π+|2π−2π |
)

+(0.3)
( |0.5−1|
1+|0.5−1| + |0.5π−2π |

2π+|0.5π−2π |
)

⎤

⎥⎥⎥
⎦

,

= 1

4

[
(0.2)(0.47 + 0.38) + (0.3)(0.17 + 0)+
(0.2)(0.38 + 0.43) + (0.3)(0.47 + 0.33)

]
,

= 1

4
(0.623) = 0.16.

Similarly,

�w(κ3(m), R(m)) = 0.15,

�w(κ4(m), R(m)) = 0.14,

Step 4.Using Eq. 5 the rank of the distancemeasures of the received signals and the known
signal is

�(κ2(m), R(m)) > �(κ3(m), R(m)) > �(κ1(m), R(m)) > �(κ4(m), R(m)). (15)

From the rank of distance measures, we conclude that the signal κ4(m) has the least
distance measure. Thus, the signal κ4(m) shows a high degree of resemblance with the
known signal R(m).

Also, using Eq. 10, the rank of the distance measures of the received signals and known
signal is

�(κ1(m), R(m)) > �(κ3(m), R(m)) > �(κ4(m), R(m)) > �(κ2(m), R(m)). (16)

From the rank of weighted distance measures, we conclude that the signal κ2(m) has the
least weighted distance measure. Thus, in this case, the signal κ2(m) shows the high degree
of resemblance with the known signal R(m).
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6 Comparison analysis

In this section, we discussed the comparison of the proposed distance measures of complex
fuzzy sets with the Zhang distance (Zhang et al. 2009), Hamming distance (Alkouri and
Salleh 2014), and Normalized Hamming distance.

Note that our proposed distance measures are different from all the distance measures that
exist in the literature.

(i) The proposed distance,

�(�i ,� j ) = 1

n

n∑

q=1

[ |��i (κq) − �� j (κq)|
1 + |��i (κq) − �� j (κq)| + | arg�i

(κq) − arg� j
(κq)|

2π + | arg�i
(κq) − arg� j

(κq)|

]

.

(17)

(ii) The Zhang distance,

�(�i ,� j ) = max

[

sup
κq∈U

|��i (κq) − �� j (κq)|, 1

2π
sup

κq∈U
| arg�i

(κq) − arg� j
(κq)|

]

.

(18)

(iv) The Normalized Hamming distance,

�(�i ,� j ) = 1

2n

⎡

⎣
n∑

q=1

|��i (κq) − �� j (κq)| + 1

2π

n∑

q=1

| arg�i
(κq) − arg� j

(κq)|
⎤

⎦ . (19)

(iii) The Hamming distance,

�(�i ,� j ) = 1

2

⎡

⎣
n∑

q=1

|��i (κq) − �� j (κq)| + 1

2π

n∑

q=1

| arg�i
(κq) − arg� j

(κq)|
⎤

⎦ . (20)

Using Eq. 18 the values of the distance measures of the received signals and known signals
are given in Table 5.

�(κ1(m), R(m)) = max

[

sup
κq∈U

|��i (κq) − �� j (κq)|, 1

2π
sup

κq∈U
| arg�i

(κq) − arg� j
(κq)|

]

,

= max

[
|1 − 0.3|, 1

2π
|0.5π − 2π |

]
,

= max [0.7, 0.75] = 0.75.

�(κ2(m), R(m)) = max

[
|0.1 − 1|, 1

2π
|0.5π − 2π |

]
,

= max [0.9, 0.75] = 0.9.

Similarly,

�(κ3(m), R(m)) = 0.9,

�(κ3(m), R(m)) = 1,

From Table 5, we conclude that κ1(m) shows a high degree of resemblance with the
known signal R(m).
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Table 5 Values of Zhang distance measures

�(κ1(m), R(m)) �(κ2(m), R(m)) �(κ3(m), R(m)) �(κ4(m), R(m))

0.75 0.9 0.9 1

Table 6 Values of Normalized Hamming distance measures

�(κ1(m), R(m)) �(κ2(m), R(m)) �(κ3(m), R(m)) �(κ4(m), R(m))

0.42 0.56 0.47 0.41

Using Eq. 19, the values of the distance measures of the received signals and known signal
are given in Table 6, that is,

�(κ1(m), R(m)) = 1

2n

⎡

⎣
n∑

q=1

|��i (κq) − �� j (κq)| + 1

2π

n∑

q=1

| arg�i
(κq) − arg� j

(κq)|
⎤

⎦ ,

= 1

2(4)

[ (|0.6 − 1| + 1
2π |1.3π − 2π |) + (|0.3 − 1| + 1

2π |1π − 2π |)
+ (|0.9 − 1| + 1

2π |2π − 2π |) + (|0.5 − 1| + 1
2π |0.5π − 2π |)

]
,

= 1

8
[0.4 + 0.35 + 0.7 + 0.5 + 0.1 + 0 + 0.5 + 0.75] ,

= 0.42.

�(κ2(m), R(m)) = 1

2(4)

[ (|0.1 − 1| + 1
2π |0.8π − 2π |) + (|0.8 − 1| + 1

2π |2π − 2π |)
+ (|0.4 − 1| + 1

2π |0.5π − 2π |) + (|0.1 − 1| + 1
2π |1π − 2π |)

]
,

= 1

8
[0.9 + 0.6 + 0.2 + 0 + 0.6 + 0.75 + 0.9 + 0.5] ,

= 0.56.

Similarly,

�(κ3(m), R(m)) = 0.47,

�(κ4(m), R(m)) = 0.41.

From Table 6, we conclude that κ4(m) shows the high degree of resemblance with the
known signal R(m).

Similarly, the Hamming distance defined in (5.4) can be applied to the problems in signals
and systems.

Comparison Table
Table 7 contains the values of the proposed distance measure and the existing distance

measures. It is clearly seen that the values of the proposed distance measure are smaller
than the values of the existing distance measures. From this, we conclude that our proposed
distance measure is more better than the existing distance measures.
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Table 7 Comparison Table

� �(κ1(m), R(m)) �(κ2(m), R(m)) �(κ3(m), R(m)) �(κ4(m), R(m))

Proposed DM 0.14 0.16 0.15 0.14

Zhang DM 0.75 0.9 0.9 1

Hammin DM 0.42 0.56 0.47 0.41

7 Conclusion

In this paper, we introduced the partial order relation on complex fuzzy sets. We defined
the complex fuzzy maximal, minimal, maximum, and minimum elements based on the par-
tial order relations. We proposed new distance measures such as complex fuzzy distance
measures and complex fuzzy weighted distance measures. We established some particular
examples and basic results of the partial order relations and distance measures. Moreover, we
utilized the complex fuzzy sets in signals and systems. We proposed a new decision-making
algorithm under the complex fuzzy environment, based on the complex fuzzy distance mea-
sures and complex fuzzy weighted distance measures for applications in signals and systems
by which we determined the degree of high resemblance of signals to the known signal.
Further, we studied the comparative study of the proposed distance measures with the Zhang
distance measure, Hamming distance measure, and Normalized Hamming distance measure
and proved that our proposed distance measure is more significant than the existing distance
measures because the values of the proposed distance measure are smaller than the values of
the Zhang distance measure and Hamming distance measure.

In future, we will use the proposed distance measures for interval-valued complex fuzzy
sets, complex neutrosophic sets, complex Pythagorean fuzzy sets, complex intuitionistic
fuzzy sets, etc., to improve the quality of the research works.
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