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Abstract
At present, there are several tasks automated by robotic systems that require a precise regu-
lation of the applied force to achieve an adequate robot–environment interaction. To address
this control problem, this paper presents an explicit force control structure that has two
very relevant features for interaction tasks: (1) the operation of robot actuators within a safe
region is guaranteed without exceeding their torque limits, and (2) the parametric uncertainty
related to gravitational forces and environment stiffness is compensated. The structure of the
proposed control scheme is based on generalized saturation functions; therefore, bounded
control actions are obtained without restricting the tuning of gain parameters to achieve an
adequate performance. In addition, in order to achieve a compliant robot–environment inter-
action, the controller structure also includes a speed-dependent active damping term that uses
generalized saturation functions to obtain a bounded response. Furthermore, the proposed
explicit force controller is supported by a rigorous stability analysis via Lyapunov’s theory.
Finally, a numerical simulation test is presented to validate its correct performance, using
the dynamic model of a three-degree-of-freedom robot manipulator interacting with a rigid
environment.
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1 Introduction

In recent years, robotic systems have been used in increasingly complex applications that
require physical contact with different types of environments or interactionwith humans (Gao
and Chien 2017; Mekki et al. 2018; Peters et al. 2018). For example, in space exploration
tasks, robotic systems are required to operate in unknown environments and collect samples
of different materials through precise manipulation that requires force regulation (Zuo et al.
2018; Schuster et al. 2019). On the other hand, in the medical area, robots must interact with
humans either to support them in rehabilitation therapies, assist them with prosthetic devices
or perform surgical procedures, applying in all cases appropriate force levels (Arnold and Lee
2021; Khoshdel et al. 2018; Karar 2018; Fu and Santello 2018; Osa et al. 2017). All robotic
tasks or applications described above require ensuring the safety of both the robot and the
environment/humans, and one way to achieve it is through control schemes with bounded
actions (He et al. 2020; Zanchettin et al. 2015).

An effective approach to solving this problem is robot force control, in general interaction
control algorithms canbe classified into explicit and implicit force control (Winkler andSuchý
2015). In explicit force control, the desired contact forces/torques for robot–environment
interaction can be predefined, thus it is possible to achieve an adequate interaction by applying
a specific force level (Sheng et al. 2017). On the other hand, by mechanical impedance or
stiffness in implicit force controllers, it is possible to modify the desired movement of the
robot without specifying a force value required to interact correctly, then it is not necessary
to directly set the desired contact force (Lakshminarayanan et al. 2021).

Within an industrial environment, several tasks require precise regulation of the contact
force, including polishing, deburring and component assembly. In order to achieve a stable
closed-loop response in this kind of tasks, Chávez-Olivares et al. propose a family of explicit
force controllers for robot manipulators which is supported on a stability analysis in the
Lyapunov sense (Chávez-Olivares et al. 2015). In addition, a study on the influence of posture
in the force control of redundant robots and how it affects robot interaction capabilities is
presented in Ajoudani et al. (2017). Now, for medical purposes, Karar proposes an adaptive
force control scheme that uses fuzzy logic to tune a PID controller and thus let a robotic probe
to interact with different desired force levels (Karar 2018). In a bilateral teleoperation system,
the information flows bilaterally between the human operator and the remote environment,
these systems are normally used in hostile environments or in applications that require precise
haptic sensations (as robot-assisted surgery or tele-rehabilitation), then a force control scheme
that seek to improve the monitoring of slave/environment contact force or the human/haptic-
device interaction is quite appropriate (Na 2017). All these works focus on aspects that are
aimed at improving performance in interaction tasks; however, they do not completely solve
the problem of achieving safe interaction and assume that the robotic system has the torque
capability to perform any type of task.

In recent years,many control schemeswith bounded actions have been proposed; however,
in most cases, they have mainly addressed the problems of regulation and tracking in tasks
where the robot moves freely (Zavala-Río et al. 2016; López-Araujo et al. 2015; Zamora-
Gómez et al. 2020, 2019). To date, very few interaction control schemes with bounded
actions have been proposed. In the case of implicit force control, a couple of stiffness control
algorithms have been presented, the first being a scheme requiring exact compensation of
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gravitational forces (Rodríguez-Liñán et al. 2017) and the second being a vision-based con-
troller that has the limitation of working only on a plane (Vidrios-Serrano et al. 2021). On
the other hand, the explicit force controllers presented in Pliego-Jiménez et al. (2019) and
Ohhira et al. (2021) consider torque constraints in the robotic system. However, the structure
proposed in Pliego-Jiménez et al. (2019) restricts the range of gain values that can be selected
to achieve bounded actions at the cost of limiting performance or convergence to zero of force
error, while the controller proposed in Ohhira et al. (2021) represents a kinematic solution
that controls the interaction indirectly. Therefore, as far as we know, our proposal is one
of the first to address the problem of explicit force control by ensuring the generation of
bounded actions without limiting the selection of controller gain parameters. Thus, in this
work, an adaptive force controller for robot manipulators is proposed, which aims to improve
the robot–environment interaction in a safer way. The proposed control scheme is based on
the use of generalized saturation functions, which makes it possible to ensure that the actua-
tors of the robotic system operate within a safe region without exceeding their torque limits.
Likewise, to compensate for the parametric uncertainty related to gravitational forces and
the environment stiffness, the scheme includes an adaptive term within its structure. In addi-
tion, the proposed control scheme has a rigorous stability analysis that validates its proper
functioning and, as an example, numerical simulation results are presented using a robot
manipulator of three degrees of freedom.

2 Preliminaries

2.1 Notation and definitions

Let A ∈ R
n×m and y ∈ R

n ; while Ai is the i-th row vector of matrix A, Ai j is the element
of matrix A located in the i-th row and the j-th column, and yi represents the i-th element
of vector y. The origin of Rn is denoted by 0n and the n × n identity matrix is represented
as In . The Euclidean norm of vectors and the induced norm of matrices are denoted by
‖y‖ = √

yT y and ‖A‖ = √
λmax{AT A}, respectively, where λmax{AT A} is the maximum

eigenvalue of matrix AT A.
Let ζ : R �−→ R be a continuously differentiable scalar function and ϕ : R �−→ R

be a locally Lipschitz, continuous, scalar function, both vanishing at zero, i.e., ζ (0) =
ϕ (0) = 0. In addition, ζ ′ represents the derivative of ζ with respect to its argument, i.e.,
ζ ′ (ς) = ∂ζ (ς) /∂ς . While the upper right-hand derivative of ϕ is given by D+ϕ (ς) =
lim suph→0+ [ϕ(ς + h) − ϕ(ς)]h, ∀ς ∈ R, thus ϕ (ς) = ∫ ς

0 D+ϕ (r) dr (Khalil 2002).

Definition 1 Anondecreasing Lipschitz-continuous function σ : R → R bounded by M > 0
is a generalized saturation function (GSF) if

(a) ςσ(ς) > 0,∀ς �= 0.
(b) |σ(ς)| ≤ M,∀ς ∈ R.
(c) In addition, if σ(ς) = ς when |ς | ≤ L , for some 0 < L ≤ M , then σ is a linear

generalized saturation function (L-GSF) for (L, M).

Furthermore, the function σ satisfies the following properties for a constant k > 0 (Vidrios-
Serrano et al. 2021):

1. lim|ς |→∞ D+σ(ς) = 0.
2. ∃σ ′

M ∈ (0,∞) : 0 ≤ D+σ(ς) ≤ σ ′
M ,∀ς ∈ R.

3. σ 2(kς)

2kσ ′
M

≤ ∫ ς

0 σ(kr)dr ≤ kσ ′
M ς2

2 ,∀ς ∈ R.
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4.
∫ ς

0 σ(kr)dr > 0,∀ς �= 0.
5.

∫ ς

0 σ(kr)dr → ∞ as ς → ∞.
6. If σ is strictly increasing, then

a. ς[σ(ς + η) − σ(η)] > 0, ∀ς �= 0, ∀η ∈ R.
b. σ̄ (ς) = σ(ς + a) − σ(a) is a strictly increasing generalized saturation function

(SI-GSF), for any constant a ∈ R and bounded by M̄ = M + |σ(a)|.
7. If σ is a linear saturation for (L, M) then, for any continuous function ν : R �→ R such

that |ν(η)| < L , it holds that ς[σ(ς + ν(η)) − σ(ν(η))] > 0, ∀ς �= 0,∀η ∈ R.

2.2 Dynamic model of robot manipulators

TheEuler–Lagrange dynamical equation in joint space for robotmanipulators, with n degrees
of freedom, is given by

H(q)q̈ + C(q, q̇)q̇ + Fq̇ + g(q) = τ − J T (q) fe (1)

where q ∈ R
n , q̇ ∈ R

n and q̈ ∈ R
n are the joint position, velocity and acceleration vec-

tors, respectively. H(q) ∈ R
n×n , C(q, q̇) ∈ R

n×n and F ∈ R
n×n are matrices of inertia,

centripetal and Coriolis, and viscous friction torques, respectively. While J (q) ∈ R
m×n rep-

resents the analytical Jacobian matrix of the robot. Finally, g(q) ∈ R
n , τ ∈ R

n and fe ∈ R
m

are vectors of gravitational, control and external interaction torques, respectively.
The following properties of the dynamic model (1) are useful for the further analysis

(Kelly et al. 2006; Rodríguez-Liñán et al. 2017).

Property 1 H(q) and F are positive definite symmetric matrices, even F is diagonal.

Property 2 For robots with only revolute joints, g(q) is bounded on R
n in such a way that

|gi (q)| ≤ Bgi , ∀q ∈ R
n and non-negative constants Bgi , i = 1, . . . , n.

Property 3 The vector g(q) can be represented as g(q, θg) = G(q)θg , where G(q) ∈ R
n×p

is a regression matrix and θg ∈ R
p is a constant vector of parameters associated with gravity.

Property 4 For the gravity vector g(q, θg), let θMl be an upper bound such that
∣∣θgl

∣∣ ≤
θMl , ∀ l ∈ {1, . . . , p}, and let θM � (θM1, . . . , θMp )T and � � [−θM1, θM1] × · · · ×
[−θMp, θMp]. According to Properties 2 and 3, there are constants BθM

gi > 0 such that

|gi (y, w)| = |Gi (y)w| ≤ BθM
gi , ∀ y ∈ R

n and ∀ w ∈ �. In addition, there are non-
negative constants such that |Gil(y)| ≤ BGil , ‖Gi (y)‖ ≤ BGi and ‖G(y)‖ ≤ BG , ∀y ∈ R

n ,
∀l ∈ {1, . . . , p}, i = 1, . . . , n.

Property 5 For robots with only revolute joints, there are non-negative constants such that∣∣∣J T
i j (y)

∣∣∣ ≤ BJi j , ‖J T
i (y)‖ ≤ BJi and ‖J T (y)‖ ≤ BJ ,∀y ∈ R

n , i = 1, . . . , n, j = 1, . . . , m.

Assumption 1 For robots with bounded inputs, each element of vector τ is bounded by
Ti > 0, i.e., |τi | ≤ Ti , i = 1, . . . , n. Assume that

τi = Ti sat

(
ui

Ti

)
(2)

where sat(·) is the standard saturation function, i.e., sat(ς) = sign(ς)min{|ς |, 1} and ui

denotes the i-th control signal. In addition, assume that Ti > Bgi , ∀i ∈ {1, . . . , n}.
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Using the forward kinematics, x = K(q) ∈ R
m , the robot dynamics (1) can be rewritten

in task space as
Hx ẍ + Cx ẋ + Fx ẋ + gx = fx − fe (3)

where ẋ = J (q)q̇ ∈ R
m and ẍ = J̇ (q, q̇)q̇ + J (q)q̈ ∈ R

m are the vectors of task-space
velocity and acceleration, respectively. fx is a vector of control forces such that τ = J T (q) fx .
While Hx = [J−1(q)]T H(q)J−1(q),Cx = {[J−1(q)]T C(q, q̇)−Hx J̇ (q, q̇)}J−1(q), Fx =
[J−1(q)]T F J−1(q) and gx = [J−1(q)]T g(q). This model is valid only if the robot is away
from kinematic singularities and the right pseudo-inverse of J (q) can be considered when
the robot is redundant (Canudas et al. 2012).

In order to model the forces of robot–environment interaction, the following assumption
is considered:

Assumption 2 The external forces fe can be represented as a generalized spring such that

fe = Ke [x − xe] (4)

where Ke ∈ R
m×m is a positive definite diagonal stiffness matrix and xe ∈ R

m is the spring
rest position.

The dynamicmodel (3) has the following properties (Chávez-Olivares et al. 2015; Vidrios-
Serrano et al. 2021):

Property 6 For some constants μM ≥ μm > 0, Hx ∈ R
m×m satisfies μm Im ≤ Hx ≤ μM Im .

Property 7 For some constant kc ≥ 0, Cx ∈ R
m×m satisfies ‖Cx ẋ‖ ≤ kc‖ẋ‖2, ∀ẋ ∈ R

m .

Property 8 For some constants fM ≥ fm > 0, Fx ∈ R
m×m satisfies fm Im ≤ Fx ≤ fM Im .

Property 9 The matrices Cx and Ḣx � dHx/dt satisfy ẋ T
[
Ḣx − 2Cx

]
ẋ = 0, ∀ẋ ∈ R

m , and
actually Ḣx = Cx + CT

x .

Property 10 The dynamic equation (3) is linear with respect to its parameters, therefore, by
considering Assumption 2 and Property 3, the gravitational and interaction forces can be
rewritten as

gx + fe = Yxθ (5)

where Yx ∈ R
m×r is a regression matrix and θ ∈ R

r is a constant vector of gravitational and
stiffness parameters associated with the robot and the environment, respectively.

Assumption 3 Because τ = J T (q) fx and according to Property 5 and Assumption 1, each
element of fx is bounded by F j > 0, i.e.,

∣∣ fx j
∣∣ ≤ F j , j = 1, . . . , m. Assume that

fx j = F j sat

(
ux j

F j

)
(6)

Therefore, u = J T (q)ux .

3 Adaptive force controller with active damping

In order to control the robot–environment interaction while respecting the saturation limits
of the robotic system, the following adaptive structure is proposed:

ux = −sF (K F f̄ ) − sD(K D ẋ) + Yx θ̂ (7)
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where f̄ = fe − fd with fd ∈ R
m being any constant desired interaction force; K F =

diag[kF1, . . . , kFm] and K D = diag[kD1, . . . , kDm] are positive definite matrices of gain
parameters; sF (y) = (σF1(y1), . . . , σFm(ym))T with σF j (·) being SI-GSFs bounded by
MF j ; sD(y) = (σD1(y1), . . . , σDm(ym))T with σDj (·) being GSFs bounded by MDj and the
active damping function sD(·) satisfying

sD(K D ẋ) ≤ κ‖ẋ‖ (8)

∀ẋ ∈ R
m with κ > 0; and θ̂ ∈ R

r is the estimated parameter vector obtained from the
following auxiliary dynamics:

φ̇ = −�Y T
x

[
ẋ + εsF (K F f̄ )

]
(9)

θ̂ = sa(φ) (10)

where � ∈ R
r×r is a constant positive definite diagonal matrix, ε > 0 is a constant, sa(y) =

(σa1(y1), . . . , σar (yr ))
T with σal(·) being SI-GSFs bounded by Mal such that

|θl | < Mal (11)

B Ma
gi �

p∑

l=1

BGil Mal < Ti (12)

3.1 Closed-loop analysis

Suppose that there exists a constant vector φ∗ such that sa(φ∗) = θ , or equivalently φ∗
l =

σ−1
al (θl), ∀l ∈ {1, . . . , r}. Therefore, Yx sa(φ∗) = gx + fe, then by combining the robot model

(3), the environment model (4) and the control scheme (7)–(10), the closed-loop dynamics
can be represented as

˙̄f = Keẋ (13)

Hx ẍ = −sF
(
K F f̄

) − sD (K D ẋ) + Yx s̄a
(
φ̄
) − Cx ẋ − Fx ẋ (14)

˙̄φ = −�Y T
x

[
ẋ + εsF (K F f̄ )

]
(15)

where φ̄ = φ −φ∗ represents the vector of parameter estimation error and s̄a
(
φ̄
) = sa(φ)−

sa(φ∗) = sa(φ̄ + φ∗) − sa(φ∗). Now, under stationary conditions ˙̄f = ẍ = ẋ = 0m and
˙̄φ = 0r , we obtain that

− sF
(
K F f̄

) + Yx s̄a
(
φ̄
) = 0m (16)

Y T
x sF (K F f̄ ) = 0r (17)

Then, f̄ = ẋ = 0m is the unique equilibrium vector, while the parameter estimation error
equilibrium vector φ̄E turns out to be defined by the solutions of the equation Yx E s̄a

(
φ̄E

) =
0m and consequently s̄a

(
φ̄E

) ∈ ker{Yx E }.

3.2 Lyapunov stability analysis

Proposition 1 Consider the closed-loop system (13)–(15) and Assumptions 1 and 3. Thus,
for any positive definite diagonal matrices K F and K D, and any ε fulfilling the following
inequality:

ε < εM � min {ε1, ε2} (18)
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where

ε1 �
√

μm

μ2
MβF

(19)

ε2 � 4 fm

4βM + ( fM + κ)2
(20)

with

βF � max
j

{σ ′
F j M kF j kej } (21)

βM � kc

√√√√
m∑

j=1

M2
F j + μMβF (22)

where σ ′
F j M are the positive bounds of D+σF j (·) (see item 2 of Definition 1), μm, μM , kc,

fm and fM as defined in Properties 6, 7 and 8, respectively, and κ as defined in (8); the
asymptotic stability of the closed-loop equilibrium vector is guaranteed.

Proof In order to analyze the stability (in the Lyapunov sense) of closed-loop equilibrium
vector consider the following scalar candidate function:

V
(

f̄ , ẋ, φ̄
) = 1

2
ẋ T Hx ẋ +

∫ f̄

0m

sT
F (K F z) K −1

e dz + ε ẋ T Hx sF
(
K F f̄

)

+
∫ φ̄

0r

s̄T
a (z) �−1dz (23)

Note that this function is positive definite and to prove it we can lower bound some terms,
according to Property 6 and item 3 of Definition 1, so that

V
(

f̄ , ẋ, φ̄
) ≥ μm

2
‖ẋ‖2 + α

2βF
‖sF (K F f̄ )‖2 − εμM‖sF (K F f̄ )‖‖ẋ‖

+(1 − α)

∫ f̄

0m

sT
F (K F z) K −1

e dz +
∫ φ̄

0r

s̄T
a (z) �−1dz (24)

where 0 < α < 1, then

V
(

f̄ , ẋ, φ̄
) ≥ W1( f̄ , ẋ) + (1 − α)

∫ f̄

0m

sT
F (K F z) K −1

e dz +
∫ φ̄

0r

s̄T
a (z) �−1dz (25)

with

W1
(

f̄ , ẋ
) = 1

2

[ ‖sF (K F f̄ )‖
‖ẋ‖

]T [ α
βF

−εμM

−εμM μm

] [ ‖sF (K F f̄ )‖
‖ẋ‖

]
(26)

Therefore, by choosing
ε2

ε21
< α < 1 (27)

W1
(

f̄ , ẋ
)
is positive definite, according to inequality (18), and W1 (0m, ẋ) → ∞ as ‖ẋ‖ →

∞. Thus, from inequality (27) and items 4 and 5 of Definition 1, we can concluded that
V

(
f̄ , ẋ, φ̄

)
is a radially unbounded positive definite function.
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Now, the upper right-hand derivative of (23) along the trajectories of the closed-loop
system (13)–(15) is

V̇
(

f̄ , ẋ, φ̄
) = 1

2
ẋ T Ḣx ẋ + ẋ T Hx ẍ + sT

F

(
K F f̄

)
K −1

e
˙̄f + εsT

F

(
K F f̄

)
Hx ẍ

+ε ẋ T Ḣx sF
(
K F f̄

) + ε ẋ T Hx s′
F

(
K F f̄

)
K F

˙̄f + s̄T
a

(
φ̄
)
�−1 ˙̄φ

= −ẋ T sD (K D ẋ) − εsT
F

(
K F f̄

)
sF

(
K F f̄

) − εsT
F

(
K F f̄

)
sD (K D ẋ)

−εsT
F

(
K F f̄

)
Fx ẋ − ε ẋ T Cx sF

(
K F f̄

) + ε ẋ T Hx s′
F

(
K F f̄

)
K F Keẋ

−ẋ T Fx ẋ (28)

where Property 9 was used. Then, by employing Properties 6–8, this function can be upper
bounded by

V̇
(

f̄ , ẋ, φ̄
) ≤ −ẋ T sD (K D ẋ) − W2( f̄ , ẋ) (29)

where

W2( f̄ , ẋ) = 1

2

[ ‖sF (K F f̄ )‖
‖ẋ‖

]T [
2ε −ε ( fM + κ)

−ε ( fM + κ) 2 ( fm − εβM )

] [ ‖sF (K F f̄ )‖
‖ẋ‖

]
(30)

Thus, by satisfying (18), W2
(

f̄ , ẋ
)
is a positive definite function and V̇

(
f̄ , ẋ, φ̄

) ≤ 0 and
according to LaSalle’s invariance principle (Khalil 2002), consider the following set

� = {
f̄ , ẋ ∈ R

m, φ̄ ∈ R
r : V̇

(
f̄ , ẋ, φ̄

) = 0
}

= {
f̄ = ẋ = 0m, φ̄ ∈ R

r} (31)

Therefore, f̄ = ẋ = 0m ⇒ ˙̄f = ẍ = 0m and from the closed-loop dynamics (13)–(15),
Yx s̄a

(
φ̄
) = 0m . Therefore, the closed-loop equilibrium vector is asymptotically stable, which

completes the proof.

3.3 Boundedness analysis

The adaptive force controller (7)–(10) ensures that the generated torques are inside the limits
of robot actuators. First, in robot–environment interaction tasks, the environment deformation
is bounded and there are positive constants Bej such that

∣∣x j − xej
∣∣ ≤ Bej , j = 1, . . . , m.

Then, we are assuming that strictly increasing LGSFs can reproduce the force–deformation
relationship before fracture and the following assumption turns out to be crucial.

Assumption 4 A bounded version of model (4) can be represented by

fe = Kese(x − xe) (32)

where se(y) = (σe1(y1), . . . , σem(ym))T with σej (·) being strictly increasing LGSFs
bounded by Mej . Thus, the vector of parameters θ can be represented as

θ =
[
θg

θe

]
(33)

where θe ∈ R
m is a constant vector which depends on the environment stiffness, then r =

p + m and
Yxθ = Gxθg + Feθe (34)

where Gx = [J−1(q)]T G(q) ∈ R
m×p and Fe = diag[σe1(x1 − xe1), . . . , σem(xm − xem)] ∈

R
m×m are regression matrices.
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Now, by consideringAssumption 4, the controller (7) can be rewritten asux = uF D+Gx θ̂g

where
uF D = −sF (K F f̄ ) − sD(K D ẋ) + Fe θ̂e (35)

Then, in order to avoid the actuator saturation, we have that

|ui | =
∣∣∣J T

i (q)ux

∣∣∣ =
∣∣∣J T

i (q)uF D + Gi (q)θ̂g

∣∣∣ < Ti (36)

and according to Eqn. (10) and Property 4, there are non-negative constants B Ma
gi such that

∣∣∣Gi (q)θ̂g

∣∣∣ ≤ B Ma
gi (37)

i = 1, . . . , n; and now (36) can be rewritten as
∣∣∣J T

i (q)uF D

∣∣∣ ≤ ‖J T
i (q)‖‖uF D‖ < Ti − B Ma

gi (38)

Therefore, from Property 5, the following sufficient condition to avoid actuator saturation
can be set:

√√√√
m∑

j=1

[
MF j + MDj + Ma(p+ j)Mej

]2
< min

i

{
Ti − B Ma

gi

BJi

}

� uM (39)

However, being (39) a condition only sufficient and not necessary, successful results avoiding

saturation can be obtained with values of
[
Ti − B Ma

gi

]
/BJi greater than uM .

4 Simulation example

To illustrate the type of applications in which the proposed force control scheme can be
used, this section presents a numerical simulation of an interaction task that was performed
using the model of a robot manipulator of 3 degrees of freedom. The configuration of the
robot is anthropomorphic and its nominal parameters were previously reported in Chávez-
Olivares et al. (2012), then it is known that maximum joint torques are T1 = 50 Nm, T2 =
150 Nm and T3 = 15 Nm, respectively, the positive constants that satisfy Properties 5 to
8 are BJ1 = 0.93, BJ1 = 0.9, BJ1 = 0.45, μm = 0.531, μM = 3589, kc = 39925,
fm = 0.722 and fM = 3295, respectively; while the parameters associated with gravity are
θ = [55.628, 0.273, 1.996, 0.696]T Nm.

The robot manipulator must interact at a point on a flat and rigid surface as shown in
Fig. 1. In order to simplify the interaction task planning, it was represented with respect to the
coordinated frame (x p, yp, z p) attached to the environment (surface) and which in industrial
robotics is called user frame. The origin of user reference frame is located at (0.480, 0.378, -
0.538)mand the surface is an inclined planewhose orientation is determined by a composition
of successive rotations X -Z -X of 30, 90 and 20 degrees, respectively, and with a stiffness
value normal to the plane of 2000 N/m, therefore, Ke = diag{684.04, 939.69, 1627.60}N/m.
Assume then that the position of the robot end effector with respect to the user frame is

⎡

⎢⎢
⎣

x pe1

x pe2

x pe3

1

⎤

⎥⎥
⎦ = H−1

e

⎡

⎢⎢
⎣

x1
x2
x3
1

⎤

⎥⎥
⎦ (40)
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Fig. 1 Graphical representation of the interaction task, where (x p, yp, z p) represents the coordinate frame
attached to the plane (user frame) and (x0, y0, z0) is the reference frame at the origin of the robot

where He is the following homogeneous transformation matrix:

He =

⎡

⎢⎢
⎣

0 −0.940 0.342 0.480
0.866 −0.171 −0.470 0.378
0.5 0.296 0.814 −0.538
0 0 0 1

⎤

⎥⎥
⎦ (41)

At the beginning of the interaction with the environment, the robot has the following
joint configuration q(0) = [−5, 100,−70]T degrees or equivalently the end effector is
located in x(0) = (0.307, 0.644,−0.312) m and it must apply a desired constant force
fd = [3.420,−4.698, 8.138]T N (which is equivalent to a normal force of 10 N).

4.1 Configuration of the adaptive force controller

For the implementation of the controller (7)–(10), the following generalized saturation func-
tions were used:

σh(ς; M) = Msat(ς/M) (42)

σs(ς; L, M) =
{

ς, ∀|ς | ≤ L
ρs(ς), ∀|ς | > L

(43)

where

ρs(ς) = sign(ς)L + (M − L) tanh

(
ς − sign(ς)L

M − L

)
(44)

Then, the proportional action of force, the derivative action and the adaptive term were
implemented with

σF j (ς) = σs(ς; L F j , MF j ) (45)

σDj (ς) = σh(ς; MDj ) (46)
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σal(ς) = σs(ς; Lal , Mal) (47)

j = 1, 2, 3 and l = 1, 2, . . . , 7. Therefore, σ ′
F j M = σ ′

Dj M = σ ′
al = 1 and κ = max j {kDj }.

While the regression matrix is given by

Yx =
⎡

⎣
Gx11 Gx12 Gx13 Gx14 Fe11 0 0
Gx21 Gx22 Gx23 Gx24 0 Fe22 0
Gx31 Gx32 Gx33 Gx34 0 0 Fe33

⎤

⎦ (48)

where

Gx11 = δ1 sin q2 sin (q2 + q3)

Gx12 = δ1 cos q2 sin (q2 + q3)

Gx13 = −δ1 sin q2 sin (q2 + q3)

Gx14 = −δ1 sin q2 cos (q2 + q3)

Gx21 = δ2 sin q2 sin (q2 + q3)

Gx22 = δ2 cos q2 sin (q2 + q3)

Gx23 = −δ2 sin q2 sin (q2 + q3)

Gx24 = −δ2 sin q2 cos (q2 + q3)

Gx31 = δ3 sin q2 cos (q2 + q3)

Gx32 = δ3 cos q2 cos (q2 + q3)

Gx33 = −δ3 cos q2 sin (q2 + q3)

Gx34 = −δ3 cos q2 cos (q2 + q3)

Fe11 =
{
0, ∀x pe3 ≥ 0
σe1

(
x pe3

)
, ∀x pe3 < 0

Fe22 =
{
0, ∀x pe3 ≥ 0
−σe2

(
x pe3

)
, ∀x pe3 < 0

Fe33 =
{
0, ∀x pe3 ≥ 0
σe3

(
x pe3

)
, ∀x pe3 < 0

with

δ1 = 1

a sin q3

[
d cos q1

a [sin q2 + sin (q2 + q3)]
− sin q1

]

δ2 = 1

a sin q3

[
d sin q1

a [sin q2 + sin (q2 + q3)]
+ cos q1

]

δ3 = − 1

a sin q3
σej (ς) = σs(ς; Lej , Mej )

j = 1, 2, 3; a = 0.45 m and d = 0.25 m.

4.2 Results

To properly perform the robot–environment interaction task described above, the parameters
of controller (7)–(10) were selected according to the following procedure:
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Table 1 Tuning of controller parameters

Parameter Value

(Ma1, Ma2, Ma3, Ma4, Ma5, Ma6, Ma7) (58, 1, 3, 1, 2400, 2400, 2400)

Lal 0.9Mal , l = 1, 2, . . . , 7

(Me1, Me2, Me3) (0.005, 0.005, 0.005)

Lej 0.7Mej , j = 1, 2, 3

uM 96.666

(MF1, MF2, MF3) (5, 8, 20)

L F j 0.9MF j , j = 1, 2, 3

(MD1, MD2, MD3) (3, 5, 30)

K F diag{3500, 800, 1560}
K D diag{1000, 150, 92}
� diag{410, 82, 2080, 440, 9.8 × 108,

9.85 × 107, 4.75 × 107}
ε 2.59 × 10−11

1. Set the parameters Mal and Lal satisfying inequality (11) and compute the constants B Ma
gi

using (12).
2. Set the parameters Mej and Lej according to the maximum deformation values expected

during the interaction task.
3. Set the parameters MDj , MF j and L F j trying to satisfy inequality (39), if possible, or

increasing the value of uM as far as the maximum torque values permit it.
4. Run simulations/experiments with low control gains (kDj , kF j , γl ).
5. Increase the proportional gains, kF j , to reduce the rise time (speed up the closed-loop

response).
6. Increase the derivative gains, kDj , to reduce inertial effects, such as the overshoot.
7. Increase the adaptive gains, γl , to strengthen the elimination of force errors, by reducing

stabilization times (speed up the parameter convergence).
8. Adjust ε satisfying inequality (18), if possible, or increasing its value as far as the closed-

loop stability permits it.
9. Repeat steps 5–8 until the best possible response is obtained.

Therefore, the selected parameters are presented in Table 1. To implement the adaptive
term, we chose as initial condition θ̂ (0) = [51, 0.1, 1.2, 0.4, 200, 1500, 2200]T . The simu-
lation results are presented as follows: Fig. 2 shows the time evolution of force error, Fig. 3
depicts the applied control torques for all joints, while the evolution of the estimated param-
eters associated with gravity and stiffness are presented in Figs. 4 and 5, respectively.

It is worth mentioning that a very important feature of direct force control schemes is
that they can regulate the contact force during robot–environment interaction tasks. As it can
observed in Fig. 2, this is accomplished appropriatelywith the proposed force controller, since
all the components of force error present convergence to zero. Moreover, the most important
advantage of the proposed control scheme over the previously presented controllers is that
our force regulator ensures, by its formulation, that the control torques remain bounded all
the time. Figure 3 shows that the applied control torques exhibit a kind of micro oscillations
in the transient response, while the components of the force error (see Fig. 2) do not present
such oscillations. This is because the controller (7)–(10) is Cartesian while the robot is not,

123



Adaptive force control with active damping for… Page 13 of 17 266

0 0.5 1 1.5 2 2.5
-10

-8

-6

-4

-2

0

2

4

6

Fig. 2 Components of the force error
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Fig. 3 Components of the applied torque

since the robot is anthropomorphic and has revolute joints, therefore, the nonlinear mapping
of Jacobian matrix used to achieve the joint control generates this type of behavior. However,
Fig. 3 shows that all the applied torques remain within the nominal operation range of robot
actuators, that is, below of the torque limits defined above.
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Fig. 4 Estimation of parameters associated with gravity

Finally, it is important to highlight an important property of our control scheme, the
proposed force regulator can compensate for the parametric uncertainty of gravitational and
contact forces, since it includes an adaptive term related to such physical models. Figures 4
and 5 show a comparison between the nominal values and the estimation of parameters
associated with gravitational torques and environment stiffness. As it can observed, these
parameters are properly estimated in less than 0.5 s.

5 Conclusions

In the design of force controllers, greater efforts should be made to ensure safer interaction
tasks and to take into account that the actuators of robotic systems are not unlimited sources
of torque, that is, their torque and speed capabilities are bounded. With the adaptive force
controller proposed in this paper, we can guarantee the generation of bounded control actions
and have an unrestricted gain tuning process thanks to the use of generalized saturation
functions. In addition, the proposed structure includes an adaptive term that compensates
for the parametric uncertainty attributed to gravity and environment stiffness, while helping
to improve the regulation of the contact force at a desired value. Furthermore, the proposed
control law is supported by a rigorous stability analysis in the Lyapunov’s sense.

In particular, as far as we know, this is the first study to include saturation functions
that allow not to restrict gain selection in an explicit force controller with bounded actions
for interaction tasks. The numerical results obtained in the simulation are quite reliable as to
supports this theoretical development. Finally, as future work, it is suggested the development
of control schemes that operate in the joint space, to avoid the use of the robot’s Jacobian
that limits the region of closed-loop stability.
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