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Abstract
In this paper, we study the direct/indirect stability of locally coupled wave equations with
local Kelvin-Voigt dampings/damping, where we assume that the supports of the dampings
and the coupling coefficients are disjoint. First, we prove the well-posedness, strong stability,
and polynomial stability for some one dimensional coupled systems. Moreover, under some
geometric control conditions, we prove the well-posedness and strong stability in the multi-
dimensional case.
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1 Introduction

The direct and indirect stability of locally coupled wave equations with local damping has
arouses much interests in recent years. The study of coupled systems is also motivated by
several physical considerations like Timoshenko and Bresse systems (see for instanceWehbe
andGhader 2021;Bassamet al. 2015;Akil et al. 2020, 2021;Akil andBadawi 2022;Abdallah
et al. 2018; Fatori et al. 2014; Fatori and Monteiro 2012). The exponential or polynomial
stability of the wave equation with local Kelvin-Voigt damping is considered in Liu and
Rao (2006), Tebou (2016), Burq and Sun (2022), for instance. On the other hand, the direct
and indirect stability of locally coupled wave equations with local viscous dampings are
analyzed in Alabau-Boussouira and Léautaud (2013), Kassem et al. (2019), Gerbi et al.
(2021). In this paper, we are interested in locally coupled wave equations with local Kelvin-
Voigt dampings. Before stating our main contributions, let us mention similar results for such
systems. In 2019, et al. in Hayek et al. (2020), studied the stabilization of amulti-dimensional
system of weakly coupled wave equations with one or two locally Kelvin-Voigt damping and
non-smooth coefficient at the interface. They established different stability results. In 2021, et
al. inWehbe et al. (2021), studied the stability of an elastic/viscoelastic transmission problem
of locally coupled waves with non-smooth coefficients, by considering:

⎧
⎨

⎩

utt − (aux + b0χ(α1,α3)utx
)

x + c0χ(α2,α4)yt = 0, in (0, L) × (0,∞),

ytt − yxx − c0χ(α2,α4)ut = 0, in (0, L) × (0,∞),

u(0, t) = u(L, t) = y(0, t) = y(L, t) = 0, in (0,∞),

where a, b0, L > 0, c0 �= 0, and 0 < α1 < α2 < α3 < α4 < L . They established a
polynomial energy decay rate of type t−1. In the same year, Akil et al. in 2021, studied the
stability of a singular local interaction elastic/viscoelastic coupled wave equations with time
delay, by considering:

⎧
⎨

⎩

utt − [aux + χ(0,β)(κ1utx + κ2utx (t − τ))
]

x + c0χ(α,γ )yt = 0, in (0, L) × (0,∞),

ytt − yxx − c0χ(α,γ )ut = 0, in (0, L) × (0,∞),

u(0, t) = u(L, t) = y(0, t) = y(L, t) = 0, in (0,∞),

where a, κ1, L > 0, κ2, c0 �= 0, and 0 < α < β < γ < L . They proved that the energy of
their system decays polynomially in t−1. In 2021, Akil et al. in 2021, studied the stability
of coupled wave models with locally memory in a past history framework via non-smooth
coefficients on the interface, by considering:

⎧
⎪⎪⎨

⎪⎪⎩

utt −
(

aux + b0χ(0,β)

∫ ∞

0
g(s)ux (t − s)ds

)

x
+ c0χ(α,γ )yt = 0, in (0, L) × (0,∞),

ytt − yxx − c0χ(α,γ )ut = 0, in (0, L) × (0,∞),

u(0, t) = u(L, t) = y(0, t) = y(L, t) = 0, in (0,∞),
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where a, b0, L > 0, c0 �= 0, 0 < α < β < γ < L , and g : [0,∞) �−→ (0,∞) is the convo-
lution kernel function. They established an exponential energy decay rate if the two waves
have the same speed of propagation. In case of different speed of propagation, they proved
that the energy of their system decays polynomially with rate t−1. In the same year, Akil et al.
in 2022, studied the stability of a multi-dimensional elastic/viscoelastic transmission prob-
lem with Kelvin-Voigt damping and non-smooth coefficient at the interface, they established
some polynomial stability results under some geometric control condition. In those previous
literature, the authors deal with the locally coupled wave equations with local damping and
by assuming that there is an intersection between the damping and coupling regions. The
aim of this paper was to study the direct/indirect stability of locally coupled wave equations
with Kelvin-Voigt dampings/damping localized via non-smooth coefficients/coefficient and
by assuming that the supports of the dampings and coupling coefficients are disjoint. In the
first part of this paper, we consider the following one dimensional coupled system:

utt − (aux + butx )x + cyt = 0, (x, t) ∈ (0, L) × (0,∞), (1.1)

ytt − (yx + dytx )x − cut = 0, (x, t) ∈ (0, L) × (0,∞), (1.2)

with fully Dirichlet boundary conditions,

u(0, t) = u(L, t) = y(0, t) = y(L, t) = 0, t ∈ (0,∞), (1.3)

and the following initial conditions

u(·, 0) = u0(·), ut (·, 0) = u1(·), y(·, 0) = y0(·) and yt (·, 0) = y1(·), x ∈ (0, L). (1.4)

In this part, for all b0, d0 > 0 and c0 �= 0, we treat the following three cases:
Case 1 (See Figure 1):

{
b(x) = b0χ(b1,b2)(x), c(x) = c0χ(c1,c2)(x), d(x) = d0χ(d1,d2)(x),
where 0 < b1 < b2 < c1 < c2 < d1 < d2 < L.

(C1)

Case 2 (See Figure 2):
{
b(x) = b0χ(b1,b2)(x), c(x) = c0χ(c1,c2)(x), d(x) = d0χ(d1,d2)(x),
where 0 < b1 < b2 < d1 < d2 < c1 < c2 < L.

(C2)

Case 3 (See Figure 3):
{
b(x) = b0χ(b1,b2)(x), c(x) = c0χ(c1,c2)(x), d(x) = 0,
where 0 < b1 < b2 < c1 < c2 < L.

(C3)

While in the second part, we consider the following multi-dimensional coupled system:

utt − div(∇u + b∇ut ) + cyt = 0 in � × (0,∞), (1.5)

ytt − 	y − cyt = 0 in � × (0,∞), (1.6)

with full Dirichlet boundary condition

u = y = 0 on 
 × (0,∞), (1.7)

and the following initial condition

u(·, 0) = u0(·), ut (·, 0) = u1(·), y(·, 0) = y0(·) and yt (·, 0) = y1(·) in �, (1.8)
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Fig. 1 Geometric description of the functions b, c and d in Case 1

Fig. 2 Geometric description of the functions b, c and d in Case 2

Fig. 3 Geometric description of the functions b and c in Case 3

where � ⊂ R
N , N ≥ 2 is an open and bounded set with boundary 
 of class C2. Here,

b, c ∈ L∞(�) are such that b : � → R+ is the viscoelastic damping coefficient, c : � → R

is the coupling function and

b(x) ≥ b0 > 0 in ωb ⊂ �, c(x) ≥ c0 �= 0 in ωc ⊂ � and c(x) = 0 on �\ωc(1.9)

and

meas (ωc ∩ 
) > 0 and ωb ∩ ωc = ∅. (1.10)
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In the first part of this paper, we study the direct and indirect stability of system (1.1)-(1.4) by
considering the three cases (C1), (C2), and (C3). In Sect. 2.1, we prove the well-posedness
of our system by using a semigroup approach. In Sect. 2.2, by using the general criteria of
Arendt-Batty, we prove the strong stability of our system in the absence of the compactness
of the resolvent. Finally, in Sect. 2.3, by using a frequency domain approach combined with
a specific multiplier method, we prove that our system decay polynomially of type t−4 or
t−1.

In the second part of this paper, we study the indirect stability of System (1.5)-(1.8). In
Sect. 3.1, we prove the well-posedness of our system by using a semigroup approach. Finally,
in Sect. 3.2, under some geometric control condition, we prove the strong stability of this
system.

2 Direct and indirect stability in the one dimensional case

In this section, we study the well-posedness, strong stability, and polynomial stability of
system (1.1)-(1.4).

2.1 Well-posedness

In this section, we will establish the well-posedness of System (1.1)-(1.4) using semigroup
approach. The energy of system (1.1)-(1.4) is given by

E(t) = 1

2

∫ L

0

(|ut |2 + a|ux |2 + |yt |2 + |yx |2
)
dx .

Let (u, ut , y, yt ) be a regular solution of (1.1)-(1.4). Multiplying (1.1) and (1.2) by ut and
yt , respectively, then using the boundary conditions in (1.3), we get

E ′(t) = −
∫ L

0

(
b|utx |2 + d|ytx |2

)
dx .

Thus, if (C1) or (C2) or (C3) holds, we get E ′(t) ≤ 0. Therefore, system (1.1)-(1.4) is
dissipative in the sense that its energy is non-increasing with respect to time t . Let us define
the energy space H by

H = (H1
0 (0, L) × L2(0, L))2.

The energy space H is equipped with the following inner product:

(U ,U1)H =
∫ L

0
vv1dx + a

∫ L

0
ux (u1)xdx +

∫ L

0
zz1dx +

∫ L

0
yx (y1)xdx,

for all U = (u, v, y, z)� and U1 = (u1, v1, y1, z1)� in H. We define the unbounded linear
operator A : D (A) ⊂ H −→ H by

D(A) =
{
U = (u, v, y, z)� ∈ H; v, z ∈ H1

0 (0, L),

(aux + bvx )x ∈ L2(0, L), (yx + dzx )x ∈ L2(0, L)
}

and

A (u, v, y, z)� = (v, (aux + bvx )x − cz, z, (yx + dzx )x + cv)� ,
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∀U = (u, v, y, z)� ∈ D (A) .

Now, if U = (u, ut , y, yt )� is the state of system (1.1)-(1.4), then it is transformed into the
following first-order evolution equation:

Ut = AU , U (0) = U0, (2.1)

where U0 = (u0, u1, y0, y1)� ∈ H.

Proposition 2.1 If (C1) or (C2) or (C3) holds. Then, the unbounded linear operator A is
m-dissipative in the Hilbert space H.

Proof For all U = (u, v, y, z)� ∈ D(A), we have

� 〈AU ,U 〉H = −
∫ L

0
b|vx |2dx −

∫ L

0
d|zx |2dx ≤ 0,

which implies that A is dissipative. Now, similar to Proposition 2.1 in Wehbe et al. (2021),
we can prove that there exists a unique solution U = (u, v, y, z)� ∈ D(A) of

−AU = F, ∀F = ( f 1, f 2, f 3, f 4)� ∈ H.

Then 0 ∈ ρ(A) and A is an isomorphism and since ρ(A) is open in C (see Theorem 6.7
(Chapter III) in Kato 1995), we easily get R(λI − A) = H for a sufficiently small λ > 0.
This, together with the dissipativeness of A, imply that D (A) is dense in H and that A is
m-dissipative in H (see Theorems 4.5, 4.6 in Pazy 1983). ��
According to Lumer–Phillips theorem (see Pazy 1983), then operator A generates a C0-
semigroup of contractions etA inH which gives the well-posedness of (2.1). Then, we have
the following result:

Theorem 2.2 For all U0 ∈ H, system (2.1) admits a unique weak solution

U (t) = etAU0 ∈ C0(R+,H).

Moreover, if U0 ∈ D(A), then the system (2.1) admits a unique strong solution

U (t) = etAU0 ∈ C0(R+, D(A)) ∩ C1(R+,H).

2.2 Strong stability

In this section,wewill prove the strong stability of system (1.1)-(1.4).We define the following
conditions:

(C1) holds and |c0| < min

( √
a

c2 − c1
,

1

c2 − c1

)

, (SSC1)

or

(C3) holds, a = 1 and |c0| <
1

c2 − c1
. (SSC3)

The main result of this part is the following theorem:

Theorem 2.3 Assume that (SSC1) or (C2) or (SSC3) holds. Then, the C0-semigroup of
contractions

(
etA
)

t≥0 is strongly stable in H; i.e. for all U0 ∈ H, the solution of (2.1)
satisfies

lim
t→+∞ ‖etAU0‖H = 0.
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According to Theorem A.2, to prove Theorem 2.3, we need to prove that the operator A has
no pure imaginary eigenvalues and σ(A) ∩ iR is countable. Its proof has been divided into
the following Lemmas:

Lemma 2.4 Assume that (SSC1) or (C2) or (SSC3) holds. Then, for all λ ∈ R, iλI − A is
injective, i.e.

ker (iλI − A) = {0} .

Proof From Proposition 2.1, we have 0 ∈ ρ(A). We still need to show the result for λ ∈ R
∗.

For this aim, suppose that there exists a real number λ �= 0 and U = (u, v, y, z)� ∈ D(A)

such that

AU = iλU .

Equivalently, we have

v = iλu, (2.2)

(aux + bvx )x − cz = iλv, (2.3)

z = iλy, (2.4)

(yx + dzx )x + cv = iλz. (2.5)

Next, a straightforward computation gives

0 = � 〈iλU ,U 〉H = � 〈AU ,U 〉H = −
∫ L

0
b|vx |2dx −

∫ L

0
d|zx |2dx . (2.6)

Inserting (2.2) and (2.4) in (2.3) and (2.5), we get

λ2u + (aux + iλbux )x − iλcy = 0 in (0, L), (2.7)

λ2y + (yx + iλdyx )x + iλcu = 0 in (0, L), (2.8)

with the boundary conditions

u(0) = u(L) = y(0) = y(L) = 0. (2.9)

• Case 1: Assume that (SSC1) holds. From (2.2), (2.4), and (2.6), we deduce that

ux = vx = 0 in (b1, b2) and yx = zx = 0 in (d1, d2). (2.10)

Using (2.7), (2.8), and (2.10), we obtain

λ2u + auxx = 0 in (0, c1) and λ2y + yxx = 0 in (c2, L). (2.11)

Deriving the above equations with respect to x and using (2.10), we get
{

λ2ux + auxxx = 0 in (0, c1),
ux = 0 in (b1, b2) ⊂ (0, c1),

and

{
λ2yx + yxxx = 0 in (c2, L),

yx = 0 in (d1, d2) ⊂ (c2, L).

(2.12)

Using the unique continuation theorem, we get

ux = 0 in (0, c1) and yx = 0 in (c2, L). (2.13)

Using (2.13) and the fact that u(0) = y(L) = 0, we get

u = 0 in (0, c1) and y = 0 in (c2, L). (2.14)
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Now, our aim is to prove that u = y = 0 in (c1, c2). For this aim, using (2.14) and the fact
that u, y ∈ C1([0, L]), we obtain the following boundary conditions:

u(c1) = ux (c1) = y(c2) = yx (c2) = 0. (2.15)

Multiplying (2.7) by −2(x − c2)ux , integrating over (c1, c2) and taking the real part, we get

−
∫ c2

c1
λ2(x − c2)(|u|2)xdx − a

∫ c2

c1
(x − c2)

(|ux |2
)

x dx

+2�
(

iλc0

∫ c2

c1
(x − c2)yuxdx

)

= 0, (2.16)

using integration by parts and (2.15), we get
∫ c2

c1
|λu|2dx + a

∫ c2

c1
|ux |2dx + 2�

(

iλc0

∫ c2

c1
(x − c2)yuxdx

)

= 0. (2.17)

Multiplying (2.8) by −2(x − c1)yx , integrating over (c1, c2), taking the real part, and using
the same argument as above, we get

∫ c2

c1
|λy|2dx +

∫ c2

c1
|yx |2dx − 2�

(

iλc0

∫ c2

c1
(x − c1)uyxdx

)

= 0. (2.18)

Adding (2.17) and (2.18), we get
∫ c2

c1
|λu|2dx + a

∫ c2

c1
|ux |2dx +

∫ c2

c1
|λy|2dx +

∫ c2

c1
|yx |2dx

≤ 2|λ||c0|(c2 − c1)
∫ c2

c1
(|y||ux | + |u||yx |) dx . (2.19)

Using Young’s inequality in (2.19), we get
∫ c2

c1
|λu|2dx + a

∫ c2

c1
|ux |2dx +

∫ c2

c1
|λy|2dx

+
∫ c2

c1
|yx |2dx ≤ c20(c2 − c1)2

a

∫ c2

c1
|λy|2dx

+ a
∫ c2

c1
|ux |2dx + c20(c2 − c1)

2
∫ c2

c1
|λu|2dx +

∫ c2

c1
|yx |2dx; (2.20)

consequently, we get
(

1 − c20(c2 − c1)2

a

)∫ c2

c1
|λy|2dx + (1 − c20(c2 − c1)

2)
∫ c2

c1
|λu|2dx ≤ 0. (2.21)

Thus, from the above inequality and (SSC1), we get

u = y = 0 in (c1, c2). (2.22)

Next, we need to prove that u = 0 in (c2, L) and y = 0 in (0, c1). For this aim, from (2.22)
and the fact that u, y ∈ C1([0, L]), we obtain

u(c2) = ux (c2) = 0 and y(c1) = yx (c1) = 0. (2.23)

It follows from (2.7), (2.8) and (2.23) that
{

λ2u + auxx = 0 in (c2, L),

u(c2) = ux (c2) = u(L) = 0,
and

{
λ2y + yxx = 0 in (0, c1),

y(0) = y(c1) = yx (c1) = 0.
(2.24)
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Holmgren uniqueness theorem yields

u = 0 in (c2, L) and y = 0 in (0, c1). (2.25)

Therefore, from (2.2), (2.4), (2.14), (2.22) and (2.25), we deduce that

U = 0.

• Case 2: Assume that (C2) holds. From (2.2), (2.4) and (2.6), we deduce that

ux = vx = 0 in (b1, b2) and yx = zx = 0 in (d1, d2). (2.26)

Using (2.7), (2.8) and (2.26), we obtain

λ2u + auxx = 0 in (0, c1) and λ2y + yxx = 0 in (0, c1). (2.27)

Deriving the above equations with respect to x and using (2.26), we get
{

λ2ux + auxxx = 0 in (0, c1),
ux = 0 in (b1, b2) ⊂ (0, c1),

and

{
λ2yx + yxxx = 0 in (0, c1),
yx = 0 in (d1, d2) ⊂ (0, c1).

(2.28)

Using the unique continuation theorem, we get

ux = 0 in (0, c1) and yx = 0 in (0, c1). (2.29)

From (2.29) and the fact that u(0) = y(0) = 0, we get

u = 0 in (0, c1) and y = 0 in (0, c1). (2.30)

Using the fact that u, y ∈ C1([0, L]) and (2.30), we get
⎧
⎨

⎩

λ2u + auxx − iλc0y = 0 in (c1, c2),
λ2y + yxx + iλc0u = 0 in (c1, c2),
u(c1) = ux (c1) = y(c1) = yx (c1) = 0.

(2.31)

Now, using the definition of c(x) in (2.7)-(2.8), (2.26) and (2.31), we get

u = y = 0 in (c1, c2).

Again, using the fact that u, y ∈ C1([0, L]), we get
u(c2) = ux (c2) = y(c2) = yx (c2) = 0. (2.32)

Now, using the same argument as in Case 1, we obtain

u = y = 0 in (c2, L);
consequently, we deduce that

U = 0.

• Case 3: Assume that (SSC3) holds. Using the same argument as in Cases 1 and 2, we
obtain

u = 0 in (0, c1) and u(c1) = ux (c1) = 0. (2.33)

Step 1. The aim of this step is to prove that
∫ c2

c1
|u|2dx =

∫ c2

c1
|y|2dx . (2.34)

123
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For this aim, multiplying (2.7) by y and (2.8) by u, then using integrating by parts over (0, L),
and (2.6), we get

∫ L

0
λ2uydx −

∫ L

0
ux yxdx − iλc0

∫ c2

c1
|y|2dx = 0, (2.35)

∫ L

0
λ2yudx −

∫ L

0
yxuxdx + iλc0

∫ c2

c1
|u|2dx = 0. (2.36)

Adding (2.35) and (2.36), taking the imaginary part, we get (2.34).
Step 2.Multiplying (2.7) by −2(x − c2)ux , integrating over (c1, c2) and taking the real part,
we get

−�
(∫ c2

c1
λ2(x − c2)(|u|2)xdx

)

− �
(∫ c2

c1
(x − c2)

(|ux |2
)

x dx

)

+2�
(

iλc0

∫ c2

c1
(x − c2)yuxdx

)

= 0, (2.37)

using integration by parts in (2.37) and (2.33), we get
∫ c2

c1
|λu|2dx +

∫ c2

c1
|ux |2dx + 2�

(

iλc0

∫ c2

c1
(x − c2)yuxdx

)

= 0. (2.38)

Using Young’s inequality in (2.38), we obtain
∫ c2

c1
|λu|2dx +

∫ c2

c1
|ux |2dx ≤ |c0|(c2 − c1)

∫ c2

c1
|λy|2dx + |c0|(c2 − c1)

∫ c2

c1
|ux |2dx .

(2.39)

Inserting (2.34) in (2.39), we get

(1 − |c0|(c2 − c1))
∫ c2

c1

(|λu|2 + |ux |2
)
dx ≤ 0. (2.40)

According to (SSC3) and (2.34), we get

u = y = 0 in (c1, c2). (2.41)

Step 3. Using the fact that u ∈ H2(c1, c2) ⊂ C1([c1, c2]), we get
u(c1) = ux (c1) = y(c1) = yx (c1) = y(c2) = yx (c2) = 0. (2.42)

Now, from (2.7), (2.8) and the definition of c, we get
{

λ2u + uxx = 0 in (c2, L),

u(c2) = ux (c2) = 0,
and

{
λ2y + yxx = 0 in (0, c1) ∪ (c2, L),

y(c1) = yx (c1) = y(c2) = yx (c2) = 0.

From the above systems and Holmgren uniqueness Theorem, we get

u = 0 in (c2, L) and y = 0 in (0, c1) ∪ (c2, L). (2.43)

Consequently, using (2.33), (2.41) and (2.43), we getU = 0. The proof is thus completed. ��
Lemma 2.5 Assume that (SSC1) or (C2) or (SSC3) holds. Then, for all λ ∈ R, we have

R (iλI − A) = H.

Proof See Lemma 2.5 in Wehbe et al. (2021) (see also Akil et al. 2021). ��
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Proof of Theorems 2.3 FromLemma 2.4, we obtain that the operatorA has no pure imaginary
eigenvalues (i.e. σp(A)∩iR = ∅).Moreover, fromLemma 2.5 andwith the help of the closed
graph theorem of Banach, we deduce that σ(A) ∩ iR = ∅. Therefore, according to Theorem
A.2, we get that the C0-semigroup (etA)t≥0 is strongly stable. The proof is thus complete. ��

2.3 Polynomial stability

In this section, we study the polynomial stability of system (1.1)-(1.4). Our main results in
this part are the following theorems:

Theorem 2.6 Assume that (SSC1) holds. Then, for all U0 ∈ D(A), there exists a constant
C > 0 independent of U0 such that

E(t) ≤ C

t4
‖U0‖2D(A), t > 0. (2.44)

Theorem 2.7 Assume that (SSC3) holds . Then, for all U0 ∈ D(A) there exists a constant
C > 0 independent of U0 such that

E(t) ≤ C

t
‖U0‖2D(A), t > 0. (2.45)

According to Theorem A.3, the polynomial energy decays (2.44) and (2.45) hold if the
following conditions

iR ⊂ ρ(A) (H1)

and

lim sup
λ∈R, |λ|→∞

1

|λ|�
∥
∥(iλI − A)−1

∥
∥L(H)

< ∞ with � =
{ 1

2 for Theorem 2.6,
2 for Theorem 2.7,

(H2)

are satisfied. Since condition (H1) is already proved in Sect. 2.2. We still need to prove (H2),
let us prove it by a contradiction argument. To this aim, suppose that (H2) is false, then there
exists

{(
λn,Un := (un, vn, yn, zn)

�)}

n≥1
⊂ R

∗+ × D(A)

with

λn → ∞ as n → ∞ and ‖Un‖H = 1, ∀n ≥ 1, (2.46)

such that

(λn)
� (iλn I − A)Un = Fn := ( f1,n, f2,n, f3,n, f4,n)

� → 0 in H, as n → ∞. (2.47)

For simplicity, we drop the index n. Equivalently, from (2.47), we have

iλu − v = f1
λ�

, f1 → 0 in H1
0 (0, L), (2.48)

iλv − (aux + bvx )x + cz = f2
λ�

, f2 → 0 in L2(0, L), (2.49)

iλy − z = f3
λ�

, f3 → 0 in H1
0 (0, L), (2.50)

iλz − (yx + dzx )x − cv = f4
λ�

, f4 → 0 in L2(0, L). (2.51)
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2.3.1 Proof of Theorem 2.6

In this section, we will prove Theorem 2.6 by checking the condition (H2). For this aim, we
will find a contradiction with (2.46) by showing ‖U‖H = o(1). For clarity, we divide the
proof into several Lemmas. By taking the inner product of (2.47) with U in H, we remark
that
∫ L

0
b |vx |2 dx +

∫ L

0
d|zx |2dx = � (〈(iλI − A)U ,U 〉H) = λ− 1

2 � (〈F,U 〉H) = o
(
λ− 1

2

)
.

Thus, from the definitions of b and d , we get
∫ b2

b1
|vx |2 dx = o

(
λ− 1

2

)
and

∫ d2

d1
|zx |2 dx = o

(
λ− 1

2

)
. (2.52)

Using (2.48), (2.50), (2.52), and the fact that f1, f3 → 0 in H1
0 (0, L), we get

∫ b2

b1
|ux |2dx = o(1)

λ
5
2

and
∫ d2

d1
|yx |2dx = o(1)

λ
5
2

. (2.53)

Lemma 2.8 The solution U ∈ D(A) of system (2.48)−(2.51) satisfies the following estima-
tions

∫ b2

b1
|v|2dx = o(1)

λ
3
2

and
∫ d2

d1
|z|2dx = o(1)

λ
3
2

. (2.54)

Proof We give the proof of the first estimation in (2.54), the second one can be done in a
similar way. For this aim, we fix g ∈ C1 ([b1, b2]) such that

g(b2) = −g(b1) = 1, max
x∈[b1,b2]

|g(x)| = mg and max
x∈[b1,b2]

|g′(x)| = mg′ .

The proof is divided into several steps as folllows:
Step 1. The goal of this step is to prove that

|v(b1)|2 + |v(b2)|2 ≤
(

λ
1
2

2
+ 2mg′

)∫ b2

b1
|v|2dx + o(1)

λ
. (2.55)

From (2.48), we deduce that

vx = iλux − λ− 1
2 ( f1)x . (2.56)

Multiplying (2.56) by 2gv and integrating over (b1, b2), then taking the real part, we get
∫ b2

b1
g
(|v|2)x dx = �

(

2iλ
∫ b2

b1
guxvdx

)

− �
(

2λ− 1
2

∫ b2

b1
g( f1)xvdx

)

.

Using integration by parts in the left-hand side of the above equation, we get

|v(b1)|2 + |v(b2)|2 =
∫ b2

b1
g′|v|2dx + �

(

2iλ
∫ b2

b1
guxvdx

)

−�
(

2λ− 1
2

∫ b2

b1
g( f1)xvdx

)

.
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Consequently, we get

|v(b1)|2 + |v(b2)|2 ≤ mg′
∫ b2

b1
|v|2dx + 2|λ|mg

∫ b2

b1
|ux ||v|dx

+2|λ|− 1
2mg

∫ b2

b1
|( f1)x ||v|dx . (2.57)

Using Young’s inequality, we obtain

2λmg|ux ||v| ≤ λ
1
2 |v|2
2

+ 2λ
3
2m2

g|ux |2 and 2λ− 1
2mg|( f1)x ||v|

≤ mg′ |v|2 + m2
gm

−1
g′ λ−1|( f1)x |2.

From the above inequalities, (2.57) becomes

|v(b1)|2 + |v(b2)|2 ≤
(

λ
1
2

2
+ 2mg′

)∫ b2

b1
|v|2dx + 2λ

3
2m2

g

∫ b2

b1
|ux |2dx

+ m2
g

mg′
λ−1

∫ b2

b1
|( f1)x |2dx . (2.58)

Inserting (2.53) in (2.58) and the fact that f1 → 0 in H1
0 (0, L), we get (2.55).

Step 2. The aim of this step is to prove that

|(aux + bvx )(b1)|2 + |(aux + bvx )(b2)|2 ≤ λ
3
2

2

∫ b2

b1
|v|2dx + o(1). (2.59)

Multiplying (2.49) by −2g
(
aux + bvx

)
, integrating by parts over (b1, b2) and taking the

real part, we get

|(aux + bvx ) (b1)|2 + |(aux + bvx ) (b2)|2 =
∫ b2

b1
g′|aux + bvx |2dx+

�
(

2iλ
∫ b2

b1
gv(aux + bvx )dx

)

− �
(

2λ− 1
2

∫ b2

b1
g f2(aux + bvx )dx

)

;

consequently, we get

|(aux + bvx ) (b1)|2 + |(aux + bvx ) (b2)|2 ≤ mg′
∫ b2

b1
|aux + bvx |2dx

+2λmg

∫ b2

b1
|v||aux + bvx |dx + 2mgλ

− 1
2

∫ b2

b1
| f2||aux + bvx |dx .

(2.60)

By Young’s inequality, (2.52), and (2.53), we have

2λmg

∫ b2

b1
|v||aux + bvx |dx ≤ λ

3
2

2

∫ b2

b1
|v|2dx + 2m2

gλ
1
2

∫ b2

b1
|aux + bvx |2dx

≤ λ
3
2

2

∫ b2

b1
|v|2dx + o(1). (2.61)

Inserting (2.61) in (2.60), then using (2.52), (2.53) and the fact that f2 → 0 in L2(0, L), we
get (2.59). Step 3. The aim of this step is to prove the first estimation in (2.54). For this aim,
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multiplying (2.49) by −iλ−1v, integrating over (b1, b2) and taking the real part, we get

∫ b2

b1
|v|2dx = �

(

iλ−1
∫ b2

b1
(aux + bvx )vxdx

− [iλ−1 (aux + bvx ) v
]b2
b1

+ iλ− 3
2

∫ b2

b1
f2vdx

)

. (2.62)

Using (2.52), (2.53), the fact that v is uniformly bounded in L2(0, L) and f2 → 0 in L2(0, L),
and Young’s inequalities, we get

∫ b2

b1
|v|2dx ≤ λ− 1

2

2
[|v(b1)|2 + |v(b2)|2] + λ− 3

2

2
[|(aux + bvx )(b1)|2 + |(aux + bvx )(b2)|2]

+o(1)

λ
3
2

. (2.63)

Inserting (2.55) and (2.59) in (2.63), we get

∫ b2

b1
|v|2dx ≤

(
1

2
+ mg′λ− 1

2

)∫ b2

b1
|v|2dx + o(1)

λ
3
2

,

which implies that
(
1

2
− mg′λ− 1

2

)∫ b2

b1
|v|2dx ≤ o(1)

λ
3
2

. (2.64)

Using the fact that λ → ∞, we can take λ > 4m2
g′ . Then, we obtain the first estimation

in (2.54). Similarly, we can obtain the second estimation in (2.54). The proof has been
completed. ��

Lemma 2.9 The solution U ∈ D(A) of system (2.48)-(2.51) satisfies the following estima-
tions

∫ c1

0

(|v|2 + a|ux |2
)
dx = o(1) and

∫ L

c2

(|z|2 + |yx |2
)
dx = o(1). (2.65)

Proof First, let h ∈ C1([0, c1]) such that h(0) = h(c1) = 0. Multiplying (2.49) by
2a−1h(aux + bvx ), integrating over (0, c1), using integration by parts and taking the real
part, then using (2.52), the fact that ux is uniformly bounded in L2(0, L) and f2 → 0 in
L2(0, L), we get

�
(

2iλa−1
∫ c1

0
vh(aux + bvx )dx

)

+ a−1
∫ c1

0
h′|aux + bvx |2dx

= 1

λ
1
2

�
(∫ L

0
h f2(aux + bvx )dx

)

︸ ︷︷ ︸
o(1)

λ
1
2

. (2.66)

From (2.48), we have

iλux = −vx − λ− 1
2 ( f1)x . (2.67)
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Inserting (2.67) in (2.66), using integration by parts, then using (2.52), (2.54), and the fact
that f1 → 0 in H1

0 (0, L) and v is uniformly bounded in L2(0, L), we get
∫ c1

0
h′|v|2dx + a−1

∫ c1

0
h′|aux + bvx |2dx = 2�

(

λ− 1
2

∫ c1

0
vh( f1)xdx

)

︸ ︷︷ ︸

=o(λ− 1
2 )

−�
(

2iλa−1b0

∫ b2

b1
hvvxdx

)

︸ ︷︷ ︸
=o(1)

+o(1)

λ
1
2

.

(2.68)

Now, we consider the following cut-off functions p1, p2 ∈ C1([0, b2]), such that

p1(x) :=
⎧
⎨

⎩

1 in (0, b1),
0 in (b2, c1),

0 ≤ p1 ≤ 1 in (b1, b2),
and p2(x) :=

⎧
⎨

⎩

1 in (b2, c1),
0 in (0, b1),

0 ≤ p2 ≤ 1 in (b1, b2).

Finally, take h(x) = xp1(x) + (x − c1)p2(x) in (2.68) and using (2.52), (2.53), (2.54), we
get the first estimation in (2.65). By using the same argument, we can obtain the second
estimation in (2.65). The proof is thus completed. ��
Lemma 2.10 The solution U ∈ D(A) of system (2.48)−(2.51) satisfies the following estima-
tions

|λu(c1)| = o(1), |ux (c1)| = o(1), |λy(c2)| = o(1) and |yx (c2)| = o(1). (2.69)

Proof First, from (2.48) and (2.49), we deduce that

λ2u + auxx = − f2

λ
1
2

− iλ
1
2 f1 in (b2, c1). (2.70)

Multiplying (2.70) by 2(x − b2)ūx , integrating over (b2, c1) and taking the real part, then
using the fact that ux is uniformly bounded in L2(0, L) and f2 → 0 in L2(0, L), we get

∫ c1

b2
λ2(x − b2)

(|u|2)x dx + a
∫ c1

b2
(x − b2)

(|ux |2
)

x dx

= −�
(

2iλ
1
2

∫ c1

b2
(x − b2) f1uxdx

)

+ o(1)

λ
1
2

. (2.71)

Remark that from (2.65) and (2.48), we get
∫ c1

b2
|λu|2dx = o(1) and

∫ c1

b2
|ux |2dx = o(1).

Using integration by parts in (2.71), then using the above estimations, and the fact that f1 → 0
in H1

0 (0, L) and λu is uniformly bounded in L2(0, L), we get

0 ≤ (c1 − b2)
(|λu(c1)|2 + a|ux (c1)|2

) = �
(
2iλ

1
2 (c1 − b2) f1(c1)u(c1)

)
+ o(1),(2.72)

consequently, by using Young’s inequality, we get

|λu(c1)|2 + a|ux (c1)|2 ≤ 2λ
1
2 | f1(c1)||u(c1)| + o(1)

≤ 1

2
|λu(c1)|2 + 2

λ
| f1(c1)|2 + o(1).
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Then, we get

1

2
|λu(c1)|2 + a|ux (c1)|2 ≤ 2

λ
| f1(c1)|2 + o(1). (2.73)

Finally, from the above estimation and the fact that f1 → 0 in H1
0 (0, L), we get the first two

estimations in (2.69). By using the same argument, we can obtain the last two estimations in
(2.69). The proof has been completed. ��
Lemma 2.11 The solution U ∈ D(A) of system (2.48)−(2.51) satisfies the following estima-
tion

∫ c2

c1
(|λu|2 + a|ux |2 + |λy|2 + |yx |2)dx = o(1). (2.74)

Proof Inserting (2.48) and (2.50) in (2.49) and (2.51), we get

− λ2u − auxx + iλc0y = f2

λ
1
2

+ iλ
1
2 f1 + c0 f3

λ
1
2

in (c1, c2), (2.75)

−λ2y − yxx − iλc0u = f4

λ
1
2

+ iλ
1
2 f3 − c0 f1

λ
1
2

in (c1, c2). (2.76)

Multiplying (2.75) by 2(x − c2)ux and (2.76) by 2(x − c1)yx , integrating over (c1, c2) and
taking the real part, then using the fact that ‖F‖H = o(1) and ‖U‖H = 1, we obtain

−λ2
∫ c2

c1
(x − c2)

(|u|2)x dx − a
∫ c2

c1
(x − c2)

(|ux |2
)

x dx

+�
(

2iλc0

∫ c2

c1
(x − c2)yuxdx

)

= �
(

2iλ
1
2

∫ c2

c1
(x − c2) f1uxdx

)

+ o(1)

λ
1
2

(2.77)

and

−λ2
∫ c2

c1
(x − c1)

(|y|2)x dx −
∫ c2

c1
(x − c1)

(|yx |2
)

x dx

−�
(

2iλc0

∫ c2

c1
(x − c1)uyxdx

)

= �
(

2iλ
1
2

∫ c2

c1
(x − c1) f3yxdx

)

+ o(1)

λ
1
2

. (2.78)

Using integration by parts, (2.69), and the fact that f1, f3 → 0 in H1
0 (0, L), ‖u‖L2(0,L) =

O(λ−1), and ‖y‖L2(0,L) = O(λ−1), we deduce that

�
(

iλ
1
2

∫ c2

c1
(x − c2) f1uxdx

)

= o(1)

λ
1
2

and �
(

iλ
1
2

∫ c2

c1
(x − c1) f3yxdx

)

= o(1)

λ
1
2

.

(2.79)

Inserting (2.79) in (2.77) and (2.78), then using integration by parts and (2.69), we get
∫ c2

c1

(|λu|2 + a|ux |2
)
dx + �

(

iλc0

∫ c2

c1
(x − c2)yuxdx

)

= o(1), (2.80)
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∫ c2

c1

(|λy|2 + |yx |2
)
dx − �

(

iλc0

∫ c2

c1
(x − c1)uyxdx

)

= o(1). (2.81)

Adding (2.80) and (2.81), we get
∫ c2

c1

(|λu|2 + a|ux |2 + |λy|2 + |yx |2
)
dx

= �
(

2iλc0

∫ c2

c1
(x − c1)uyxdx

)

− �
(

2iλc0

∫ c2

c1
(x − c2)yuxdx

)

+ o(1)

≤ 2|c0|(c2 − c1)
∫ c2

c1
|λu||yx |dx + 2

|c0|
a

1
4

(c2 − c1)a
1
4

∫ c2

c1
|λy||ux |dx + o(1).

Applying Young’s inequalities, we get

(1 − |c0|(c2 − c1))
∫ c2

c1
(|λu|2 + |yx |2)dx +

(

1 − 1√
a

|c0|(c2 − c1)

)

∫ c2

c1
(a|ux |2 + |λy|2)dx ≤ o(1). (2.82)

Finally, using (SSC1), we get the desired result. The proof has been completed. ��
Lemma 2.12 The solution U ∈ D(A) of system (2.48)−(2.51) satisfies the following estima-
tions

∫ c1

0

(|z|2 + |yx |2
)
dx = o(1) and

∫ L

c2

(|v|2 + a|ux |2
)
dx = o(1). (2.83)

Proof Using the same argument of Lemma 2.9, we obtain (2.83). ��
Proof of Theorem 2.6. Using (2.53), Lemmas 2.8, 2.9, 2.11, 2.12, we get ‖U‖H = o(1),
which contradicts (2.46). Consequently, condition (H2) holds. This implies the energy decay
estimation (2.44).

2.3.2 Proof of Theorem 2.7

In this section, we will prove Theorem 2.7 by checking the condition (H2), that is by finding
a contradiction with (2.46) by showing ‖U‖H = o(1). For clarity, we divide the proof into
several Lemmas. By taking the inner product of (2.47) with U in H, we remark that

∫ L

0
b|vx |2dx = −� (〈AU ,U 〉H) = λ−2� (〈F,U 〉H) = o(λ−2).

Then,
∫ b2

b1
|vx |2dx = o(λ−2). (2.84)

Using (2.48) and (2.84), and the fact that f1 → 0 in H1
0 (0, L), we get

∫ b2

b1
|ux |2dx = o(λ−4). (2.85)
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Lemma 2.13 Let 0 < ε < b2−b1
2 ; the solution U ∈ D(A) of the system (2.48)−(2.51)

satisfies the following estimation
∫ b2−ε

b1+ε

|v|2dx = o(λ−2). (2.86)

Proof First, we fix a cut-off function θ1 ∈ C1([0, c1]) such that

θ1(x) =
⎧
⎨

⎩

1 if x ∈ (b1 + ε, b2 − ε),

0 if x ∈ (0, b1) ∪ (b2, L),

0 ≤ θ1 ≤ 1 elsewhere.
(2.87)

Multiplying (2.49) by λ−1θ1v, integrating over (0, c1), using integration by parts, and the
fact that f2 → 0 in L2(0, L) and v is uniformly bounded in L2(0, L), we get

i
∫ c1

0
θ1|v|2dx + 1

λ

∫ c1

0
(ux + bvx )(θ

′
1v + θvx )dx = o(λ−3). (2.88)

Using (2.84), (2.85), the fact that ‖U‖H = 1, and the definition of θ1, we get

1

λ

∫ c1

0
(ux + bvx )(θ

′
1v + θvx )dx = o(λ−2).

Inserting the above estimation in (2.88), we get the desired result (2.86). The proof has been
completed. ��
Lemma 2.14 The solution U ∈ D(A) of the system (2.48)−(2.51) satisfies the following
estimation:

∫ c1

0
(|v|2 + |ux |2)dx = o(1). (2.89)

Proof Let h ∈ C1([0, c1]) such that h(0) = h(c1) = 0. Multiplying (2.49) by 2h(ux + bvx ),
integrating over (0, c1) and taking the real part, then using integration by parts, (2.84), the
fact that ux is uniformly bounded in L2(0, L), and the fact that f2 → 0 in L2(0, L), we get

�
(

2
∫ c1

0
iλvh(ux + bvx )dx

)

+
∫ c1

0
h′|ux + bvx |2dx = o(λ−2). (2.90)

Using (2.84) and the fact that v is uniformly bounded in L2(0, L), we get

�
(

2
∫ c1

0
iλvh(ux + bvx )dx

)

= 2�
(∫ c1

0
iλvhuxdx

)

+ o(1). (2.91)

From (2.48), we have

iλux = −vx −
(
f1
)

x

λ2
. (2.92)

Inserting (2.92) in (2.91), using integration by parts, the facts that v is uniformly bounded in
L2(0, L), and f1 → 0 in H1

0 (0, L), we get

�
(

2
∫ c1

0
iλvh(ux + bvx )dx

)

=
∫ c1

0
h′|v|2dx + o(1). (2.93)

Inserting (2.93) in (2.90), we obtain
∫ c1

0
h′ (|v|2 + |ux + bvx |2

)
dx = o(1). (2.94)
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Now, we fix the following cut-off functions:

θ2(x) :=
⎧
⎨

⎩

1 in (0, b1 + ε),

0 in (b2 − ε, c1),
0 ≤ θ2 ≤ 1 in (b1 + ε, b2 − ε),

and θ3(x) :=
⎧
⎨

⎩

1 in (b2 − ε, c1),
0 in (0, b1 + ε),

0 ≤ θ3 ≤ 1 in (b1 + ε, b2 − ε).

Taking h(x) = xθ2(x) + (x − c1)θ3(x) in (2.94), then using (2.84) and (2.85), we get
∫

(0,b1+ε)∪(b2−ε,c1)
|v|2dx +

∫

(0,b1)∪(b2,c1)
|ux |2dx = o(1). (2.95)

Finally, from (2.85), (2.86) and (2.95), we get the desired result (2.89). The proof has been
completed. ��
Lemma 2.15 The solution U ∈ D(A) of system (2.48)−(2.51) satisfies the following estima-
tions

|λu(c1)| = o(1) and |ux (c1)| = o(1), (2.96)
∫ c2

c1
|λu|2dx =

∫ c2

c1
|λy|2dx + o(1). (2.97)

Proof First, using the same argument of Lemma 2.10, we claim (2.96). Inserting (2.48),
(2.50) in (2.49) and (2.51), we get

λ2u + (ux + bvx )x − iλcy = − f2
λ2

− i
f1
λ

− c
f3
λ2

, (2.98)

λ2y + yxx + iλcu = − f4
λ2

− i f3
λ

+ c
f1
λ2

. (2.99)

Multiplying (2.98) and (2.99) by λy and λu, respectively, integrating over (0, L), then using
integration by parts, (2.84), the fact that ‖U‖H = 1 and ‖F‖H = o(1), we get

λ3
∫ L

0
u ȳdx − λ

∫ L

0
ux ȳxdx − ic0

∫ c2

c1
|λy|2dx = o(1), (2.100)

λ3
∫ L

0
yūdx − λ

∫ L

0
yx ūxdx + ic0

∫ c2

c1
|λu|2dx = o(1)

λ
. (2.101)

Adding (2.100), (2.101), then taking the imaginary parts, we get the desired result (2.97).
The proof is thus completed. ��
Lemma 2.16 The solution U ∈ D(A) of system (2.48)−(2.51) satisfies the following estima-
tions:

∫ c2

c1
|λu|2dx = o(1),

∫ c2

c1
|λy|2dx = o(1) and

∫ c2

c1
|ux |2dx = o(1). (2.102)

Proof First, Multiplying (2.98) by 2(x − c2)ūx , integrating over (c1, c2) and taking the real
part, using the fact that ‖U‖H = 1 and ‖F‖H = o(1), we get

λ2
∫ c2

c1
(x − c2)

(|u|2)x dx +
∫ c2

c1
(x − c2)

(|ux |2
)

x dx

= �
(

2iλc0

∫ c2

c1
(x − c2)yūxdx

)

+ o(1). (2.103)
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Using integration by parts in (2.103) with the help of (2.96), we get
∫ c2

c1
|λu|2dx +

∫ c2

c1
|ux |2dx ≤ 2λ|c0|(c2 − c1)

∫ c2

c1
|y||ux | + o(1). (2.104)

Applying Young’s inequality in (2.104), we get
∫ c2

c1
|λu|2dx +

∫ c2

c1
|ux |2dx ≤ |c0|(c2 − c1)

∫ c2

c1
|ux |2dx + |c0|(c2 − c1)

∫ c2

c1
|λy|2dx + o(1). (2.105)

Using (2.97) in (2.105), we get

(1 − |c0|(c2 − c1))
∫ c2

c1

(|λu|2 + |ux |2
)
dx ≤ o(1). (2.106)

Finally, from the above estimation, (SSC3) and (2.97), we get the desired result (2.102). The
proof has been completed. ��
Lemma 2.17 Let 0 < δ < c2−c1

2 . The solution U ∈ D(A) of system (2.48)−(2.51) satisfies
the following estimations:

∫ c2−δ

c1+δ

|yx |2dx = o(1). (2.107)

Proof First, we fix a cut-off function θ4 ∈ C1([0, L]) such that

θ4(x) :=
⎧
⎨

⎩

1 if x ∈ (c1 + δ, c2 − δ),

0 if x ∈ (0, c1) ∪ (c2, L),

0 ≤ θ4 ≤ 1 elsewhere.
(2.108)

Multiplying (2.99) by θ4 ȳ, integrating over (0, L), then using integration by parts, ‖F‖H =
o(1) and ‖U‖H = 1, we get

∫ c2

c1
θ4|λy|2dx −

∫ L

0
θ4|yx |2dx −

∫ L

0
θ ′
4yx ȳdx + iλc0

∫ c2

c1
θ4u ȳdx = o(1)

λ2
. (2.109)

Using (2.102), the definition of θ4, and the fact that λu is uniformly bounded in L2(0, L),
we get
∫ c2

c1
θ4|λy|2dx = o(1),

∫ L

0
θ ′
4yx ȳdx = o(λ−1), iλc0

∫ c2

c1
θ4u ȳdx = o(λ−1). (2.110)

Finally, Inserting (2.110) in (2.109), we get the desired result (2.111). The proof has been
completed. ��
Lemma 2.18 The solution U ∈ D(A) of system (2.48)−(2.51) satisfies the following estima-
tions:

∫ c1+δ

0
|λy|2dx,

∫ c1+δ

0
|yx |2dx,

∫ L

c2−δ

|λy|2dx,
∫ L

c2−δ

|yx |2dx,
∫ L

c2
|λu|2dx,

∫ L

c2
|ux |2dx = o(1). (2.111)
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Proof Letq ∈ C1([0, L]) such thatq(0) = q(L) = 0.Multiplying (2.99) by 2q ȳx integrating
over (0, L), using (2.102), and the fact that yx is uniformly bounded in L2(0, L) and ‖F‖H =
o(1), we get

∫ L

0
q ′ (|λy|2 + |yx |2

)
dx = o(1). (2.112)

Now, take q(x) = xθ5(x) + (x − L)θ6(x) in (2.112), such that

θ5(x) :=
⎧
⎨

⎩

1 in (0, c1 + δ),

0 in (c2 − δ, L),

0 ≤ θ1 ≤ 1 in (c1 + δ, c2 − δ),

and θ6(x)

⎧
⎨

⎩

1 in (c2 − δ, L),

0 in (0, c1 + δ),

0 ≤ θ6 ≤ 1 in (c1 + δ, c2 − δ).

Then, we obtain the first four estimations in (2.111). Now, multiplying (2.98) by
2q
(
ux + bvx

)
integrating over (0, L), then using the fact that ux is uniformly bounded

in L2(0, L), (2.84), and ‖F‖H = o(1), we get
∫ L

0
q ′ (|λu|2 + |ux |2

)
dx = o(1). (2.113)

By taking q(x) = (x − L)θ7(x), such that

θ7(x) =
⎧
⎨

⎩

1 in (c2, L),

0 in (0, c1),
0 ≤ θ7 ≤ 1 in (c1, c2),

we get the the last two estimations in (2.111). The proof has been completed. ��
Proof of Theorem 2.7. Using (2.85), Lemmas 2.14, 2.16, 2.17 and 2.18, we get ‖U‖H =
o(1), which contradicts (2.46). Consequently, condition (H2) holds. This implies the energy
decay estimation (2.45)

3 Indirect stability in themulti-dimensional case

In this section, we study the well-posedness and the strong stability of system (1.5)-(1.8).

3.1 Well-posedness

In this section, we will establish the well-posedness of (1.5)-(1.8) by using semigroup
approach. The energy of system (1.5)-(1.8) is given by

E(t) = 1

2

∫ L

0

(|ut |2 + |∇u|2 + |yt |2 + |∇ y|2) dx . (3.1)

Let (u, ut , y, yt ) be a regular solution of (1.5)-(1.8). Multiplying (1.5) and (1.6) by ut and
yt , respectively, then using the boundary conditions (1.7), we get

E ′(t) = −
∫

�

b|∇ut |2dx, (3.2)

using the definition of b, we get E ′(t) ≤ 0. Thus, system (1.5)-(1.8) is dissipative in the
sense that its energy is non-increasing with respect to time t . Let us define the energy space
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H by

H = (
H1
0 (�) × L2(�)

)2
.

The energy space H is equipped with the inner product defined by

〈U ,U1〉H =
∫

�

vv1dx +
∫

�

∇u∇u1dx +
∫

�

zz1dx +
∫

�

∇ y · ∇ y1dx,

for all U = (u, v, y, z)� and U1 = (u1, v1, y1, z1)� in H. We define the unbounded linear
operator Ad : D (Ad) ⊂ H −→ H by

D(Ad) =
{
U = (u, v, y, z)� ∈ H; v, z ∈ H1

0 (�),

div(ux + bvx ) ∈ L2(�), 	y ∈ L2(�)
}

and

AdU =

⎛

⎜
⎜
⎝

v

div(∇u + b∇v) − cz
z

	y + cv

⎞

⎟
⎟
⎠ , ∀U = (u, v, y, z)� ∈ D(Ad).

If U = (u, ut , y, yt ) is a regular solution of system (1.5)-(1.8), then we rewrite this system
as the following first-order evolution equation:

Ut = AdU , U (0) = U0, (3.3)

where U0 = (u0, u1, y0, y1)� ∈ H. For all U = (u, v, y, z)� ∈ D(Ad), we have

� 〈AdU ,U 〉H = −
∫

�

b|∇v|2dx ≤ 0,

which implies that Ad is dissipative. Now, similar to Proposition 2.1 in Akil et al. (2022),
we can prove that there exists a unique solution U = (u, v, y, z)� ∈ D(Ad) of

−AdU = F, ∀F = ( f 1, f 2, f 3, f 4)� ∈ H.

Then 0 ∈ ρ(Ad) and Ad is an isomorphism and since ρ(Ad) is open in C (see Theorem 6.7
(Chapter III) in Kato 1995), we easily get R(λI − Ad) = H for a sufficiently small λ > 0.
This, together with the dissipativeness ofAd , implies that D (Ad) is dense inH and thatAd

is m-dissipative in H (see Theorems 4.5, 4.6 in Pazy 1983). According to Lumer–Phillips
theorem (see Pazy 1983), then the operator Ad generates a C0-semigroup of contractions
etAd in H which gives the well-posedness of (3.3). Then, we have the following result:

Theorem 3.1 For all U0 ∈ H, system (3.3) admits a unique weak solution

U (t) = etAdU0 ∈ C0(R+,H).

Moreover, if U0 ∈ D(A), then the system (3.3) admits a unique strong solution

U (t) = etAdU0 ∈ C0(R+, D(Ad)) ∩ C1(R+,H).
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Fig. 4 Geometric description of the sets ωb and ωc

3.2 Strong stability

In this section, we will prove the strong stability of system (1.5)-(1.8). First, we fix the
following notations:

�̃ = � − ωc, 
1 = ∂ωc − ∂� and 
0 = ∂ωc − 
1.

Let x0 ∈ R
d and m(x) = x − x0 and suppose that (see Figure 4)

m · ν ≤ 0 on 
0 = (∂ωc) − 
1. (GC)

The main result of this section is the following theorem:

Theorem 3.2 Assume that (GC) holds and

‖c‖∞ ≤ min

{
1

‖m‖∞ + d−1
2

,
1

‖m‖∞ + (d−1)Cp,ωc
2

}

, (SSC)

where Cp,ωc is the Poincarré constant onωc. Then, the C0−semigroup of contractions
(
etAd

)

is strongly stable in H; i.e. for all U0 ∈ H, the solution of (3.3) satisfies

lim
t→+∞ ‖etAdU0‖H = 0.

Proof First, let us prove that

ker(iλI − Ad) = {0}, ∀λ ∈ R. (3.4)

Since 0 ∈ ρ(Ad), we still need to show the result for λ ∈ R
∗. Suppose that there exists a real

number λ �= 0 and U = (u, v, y, z)� ∈ D(Ad), such that

AdU = iλU .

Equivalently, we have

v = iλu, (3.5)
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div(∇u + b∇v) − cz = iλv, (3.6)

z = iλy, (3.7)

	y + cv = iλz. (3.8)

Next, a straightforward computation gives

0 = � 〈iλU ,U 〉H = � 〈AdU ,U 〉H = −
∫

�

b|∇v|2dx,

consequently, we deduce that
√
b∇v = 0 in � and ∇v = ∇u = 0 in ωb. (3.9)

Inserting (3.5) in (3.6), then using the definition of c, we get

	u = −λ2u in ωb. (3.10)

From (3.9) we get 	u = 0 in ωb and from (3.10) and the fact that λ �= 0, we get

u = 0 in ωb. (3.11)

Now, inserting (3.5) in (3.6), then using (3.9), (3.11) and the definition of c, we get

λ2u + 	u = 0 in �̃,

u = 0 in ωb ⊂ �̃.
(3.12)

Using Holmgren uniqueness theorem, we get

u = 0 in �̃. (3.13)

It follows that

u = ∂u

∂ν
= 0 on 
1. (3.14)

Now, our aim is to show that u = y = 0 in ωc. For this aim, inserting (3.5) and (3.7) in (3.6)
and (3.8), then using (3.9), we get the following system:

λ2u + 	u − iλcy = 0 in �, (3.15)

λ2y + 	y + iλcu = 0 in �, (3.16)

u = 0 on ∂ωc, (3.17)

y = 0 on 
0, (3.18)
∂u

∂ν
= 0 on 
1. (3.19)

Let us prove (3.4) by the following three steps:
Step 1. The aim of this step is to show that

∫

�

c|u|2dx =
∫

�

c|y|2dx . (3.20)

For this aim, multiplying (3.15) and (3.16) by ȳ and ū, respectively, integrating over � and
using Green’s formula, we get

λ2
∫

�

u ȳdx −
∫

�

∇u · ∇ ȳdx − iλ
∫

�

c|y|2dx = 0, (3.21)

λ2
∫

�

yūdx −
∫

�

∇ y · ∇ūdx + iλ
∫

�

c|u|2dx = 0. (3.22)
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Adding (3.21) and (3.22), then taking the imaginary part, we get (3.20).
Step 2. The aim of this step is to prove the following: identity

−d
∫

ωc

|λu|2dx + (d − 2)
∫

ωc

|∇u|2dx +
∫


0

(m · ν)

∣
∣
∣
∣
∂u

∂ν

∣
∣
∣
∣

2

d


−2�
(

iλ
∫

ωc

cy (m · ∇ū) dx

)

= 0. (3.23)

For this aim, multiplying (3.15) by 2(m · ∇ū), integrating over ωc and taking the real part,
we get

2�
(

λ2
∫

ωc

u(m · ∇ū)dx

)

+ 2�
(∫

ωc

	u(m · ∇ū)dx

)

−2�
(

iλ
∫

ωc

cy(m · ∇ū)dx

)

= 0. (3.24)

Now, using the fact that u = 0 in ∂ωc, we get

�
(

2λ2
∫

ωc

u(m · ∇ū)dx

)

= −d
∫

ωc

|λu|2dx . (3.25)

Using Green’s formula, we obtain

2�
(∫

ωc

	u(m · ∇ū)dx

)

= −2�
(∫

ωc

∇u · ∇ (m · ∇ū) dx

)

+ 2�
(∫


0

∂u

∂ν
(m · ∇ū) d


)

= (d − 2)
∫

ωc

|∇u|2dx −
∫

∂ωc

(m · ν)|∇u|2dx + 2�
(∫


0

∂u

∂ν
(m · ∇ū) d


)

.(3.26)

Using (3.17) and (3.19), we get
∫

∂ωc

(m · ν)|∇u|2dx =
∫


0

(m · ν)

∣
∣
∣
∣
∂u

∂ν

∣
∣
∣
∣

2

d
 and

�
(∫


0

∂u

∂ν
(m · ∇ū) d


)

=
∫


0

(m · ν)

∣
∣
∣
∣
∂u

∂ν

∣
∣
∣
∣

2

d
. (3.27)

Inserting (3.27) in (3.26), we get

2�
(∫

ωc

	u(m · ∇ū)dx

)

= (d − 2)
∫

ωc

|∇u|2dx +
∫


0

(m · ν)

∣
∣
∣
∣
∂u

∂ν

∣
∣
∣
∣

2

d
. (3.28)

Inserting (3.25) and (3.28) in (3.24), we get (3.23).
Step 3. In this step, we prove (3.4). Multiplying (3.15) by (d − 1)u, integrating over ωc and
using (3.17), we get

(d − 1)
∫

ωc

|λu|2dx + (1 − d)

∫

ωc

|∇u|2dx − �
(

iλ(d − 1)
∫

ωc

cyūdx

)

= 0. (3.29)

Adding (3.23) and (3.29), we get
∫

ωc

|λu|2dx +
∫

ωc

|∇u|2dx =
∫


0

(m · ν)

∣
∣
∣
∣
∂u

∂ν

∣
∣
∣
∣

2

d
 − 2�
(

iλ
∫

ωc

cy (m · ∇ū) dx

)
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−�
(

iλ(d − 1)
∫

ωc

cyūdx

)

= 0.

Using (GC), we get
∫

ωc

|λu|2dx +
∫

ωc

|∇u|2dx ≤ 2|λ|
∫

ωc

|c||y||m · ∇u|dx

+|λ|(d − 1)
∫

ωc

|c||y||u|dx . (3.30)

Using Young’s inequality and (3.20), we get

2|λ|
∫

ωc

|c||y||m · ∇u|dx ≤ ‖m‖∞‖c‖∞
∫

ωc

(|λu|2 + |∇u|2) dx (3.31)

and

|λ|(d − 1)
∫

ωc

|c(x)||y||u|dx ≤ (d − 1)‖c‖∞
2

∫

ωc

|λu|2dx

+ (d − 1)‖c‖∞Cp,ωc

2

∫

ωc

|∇u|2dx . (3.32)

Inserting (3.32) in (3.30), we get
(

1 − ‖c‖∞
(

‖m‖∞ + d − 1

2

))∫

ωc

|λu|2dx +
(

1 − ‖c‖∞
(

‖m‖∞ + (d − 1)Cp,ωc

2

))

∫

ωc

|∇u|2dx ≤ 0.

Using (SSC) and (3.20) in the above estimation, we get

u = 0 and y = 0 in ωc. (3.33)

In order to complete this proof, we need to show that y = 0 in �̃. For this aim, using the
definition of the function c in �̃ and using the fact that y = 0 in ωc, we get

λ2y + 	y = 0 in �̃,

y = 0 on ∂�̃,
∂ y

∂ν
= 0 on 
1.

(3.34)

Now, using Holmgren uniqueness theorem, we obtain y = 0 in �̃ and consequently (3.4)
holds true.Moreover, similar to Lemma 2.5 inAkil et al. (2022), we can prove R(iλI−Ad) =
H, ∀λ ∈ R. Finally, by using the closed graph theorem of Banach and Theorem A.2, we
conclude the proof of this Theorem. ��
Let us notice that, under the sole assumptions (GC) and (SSC), the polynomial stability of
System (1.5)-(1.8) is an open problem.

4 Conclusion and open problems

4.1 Conclusion

Concerning the first part of this paper: InGhader et al. (2020) and (Ghader et al. 2021), Ghader
et al. considered an elastic-viscoelastic wave equationwith one locally Kelvin-Voigt damping
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and with an internal or boundary time delay. They got an optimal polynomial energy decay
rate of type t−4. In 2021, Akil et al. in 2021 considered a singular locally coupled elastic-
viscoelastic wave equations with one singular locally Kelvin-Voigt damping such that the
region of damping and the region of coupling are intersecting, a polynomial energy decay
rate is established of type t−1. Indeed, the case when the regions of damping and coupling are
disjoint is still an open problem. In this paper, we are interested in considering this case. In
fact, in the first part of this paper, we consider the case of direct stability of one-dimensional
coupled-wave equations; i.e., the two wave equations are damped. We note that the position
of the coupling region plays a very important role. We proved the following two cases:

• If we divide the bar into 7 pieces; the first piece is the elastic part without coupling, the
second piece is a viscoelastic part without coupling, the third piece is the elastic part
without coupling, the fourth piece is a viscoelastic part without coupling, the fifth piece
is the elastic part without coupling, the sixth piece is the elastic part with coupling, and
the last piece is the elastic part without coupling (see (C2) and Figure 2). In this case,
our system is always asymptotically stable and a polynomial energy decay rate of type
t−4 has been obtained.

• If we divide the bar into 7 pieces; the first piece is the elastic part without coupling, the
second piece is a viscoelastic part without coupling, the third piece is the elastic part
without coupling, the fourth piece is the elastic part with coupling, the fifth piece is the
elastic part without coupling, the sixth piece is a viscoelastic part without coupling, and
the last piece is the elastic part without coupling (see (C1) and Figure 1). Our system is
strongly stable if the coupling coefficient satisfies

|c0| < min

( √
a

c2 − c1
,

1

c2 − c1

)

. (4.1)

In this case, a polynomial energy decay rate of type t−4 has been proved. Concerning the
second part of this paper,We consider a locally coupled wave equations with one locally
Kelvin–Voigt damping such that the damping region and the coupling region are disjoint (see
(C3) and Figure 3). When the two wave equations propagate at the same speed (a = 1) and
the coupling coefficient satisfies the following condition:

|c0| <
1

c2 − c1
. (4.2)

In this case, our system is always strongly stable and a polynomial energy decay rate of type
t−1 has been obtained.

Concerning the third part of this paper: In 2022, In Akil et al. (2022) Akil et al. considered
multidimensional locally coupled wave equations with locally Kelvin-Voigt damping. If the
regions of the coupling and the damping coefficients are intersecting, without any geometric
conditions and without any conditions on the coefficients, the authors proved that the system
is strongly stable. Also, under the Geometric control condition (GCC) the authors proved
a polynomial energy decay rate of type t−1. In the third part of this paper, we consider the
same system under the condition that the coupling and the damping region are disjoint. When
the two wave equations propagate at the same speed (a = 1), the part of the boundary of
the coupling region satisfies a Multiplier Geometric condition (see (GC)), and the coupling
coefficient satisfies the following condition:

‖c‖∞ ≤ min

{
1

‖m‖∞ + d−1
2

,
1

‖m‖∞ + (d−1)Cp,ωc
2

}

, (4.3)
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we prove that our system is strongly stable.

4.2 Open problems

In this part, we present some open problems:

(OP1) The optimality of the polynomial decay rate of the system (1.1)-(1.4) remains an
open problem.

(OP2) For the first part of this paper: Can we get stability results if the coupling coefficient
does not satisfy (4.1)?

(OP3) For the second part of this paper: Canwe get stability results if the coupling coefficient
does not satisfy (4.2) or if the two waves equations propagate at different speeds (i.e.
a �= 1)?

(OP4) For the third part of this paper: Can we get stability results if the coupling coefficient
does not satisfy any Geometric conditions or the coupling coefficient does not satisfy
(4.3) or if the two waves equations propagate at different speeds (i.e. a �= 1)?

Appendix A. Some notions and stability theorems

In order to make this paper more self-contained, we recall in this short appendix some notions
and stability results used in this work.

Definition A.1 Assume that A is the generator ofC0−semigroup of contractions
(
et A
)

t≥0 on

a Hilbert space H . The C0−semigroup
(
et A
)

t≥0 is said to be

(1) Strongly stable if

lim
t→+∞ ‖et Ax0‖H = 0, ∀ x0 ∈ H .

(2) Exponentially (or uniformly) stable if there exists two positive constants M and ε such
that

‖et Ax0‖H ≤ Me−εt‖x0‖H , ∀ t > 0, ∀ x0 ∈ H .

(3) Polynomially stable if there exists two positive constants C and α such that

‖et Ax0‖H ≤ Ct−α‖x0‖H , ∀ t > 0, ∀ x0 ∈ D(A).

��
To show the strong stability of the C0-semigroup

(
et A
)

t≥0 we rely on the following result
due to Arendt and Batty (1988):

Theorem A.2 Assume that A is the generator of a C0−semigroup of contractions
(
et A
)

t≥0
on a Hilbert space H. If A has no pure imaginary eigenvalues and σ (A) ∩ iR is countable,
where σ (A) denotes the spectrum of A, then the C0-semigroup

(
et A
)

t≥0 is strongly stable. ��
Concerning the characterization of polynomial stability stability of a C0−semigroup of con-
traction

(
et A
)

t≥0 we rely on the following result due to Borichev and Tomilov (2010) (see
also Batty and Duyckaerts 2008 and Liu and Rao 2005):
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Theorem A.3 Assume that A is the generator of a strongly continuous semigroup of con-
tractions

(
et A
)

t≥0 on H. If iR ⊂ ρ(A), then for a fixed � > 0 the following conditions are
equivalent:

lim sup
λ∈R, |λ|→∞

1

|λ|�
∥
∥(iλI − A)−1

∥
∥L(H)

< ∞, (A.1)

‖et AU0‖2H ≤ C

t
2
�

‖U0‖2D(A), ∀t > 0, U0 ∈ D(A), for some C > 0. (A.2)

��
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