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Abstract
This paper proposes the alternating direction implicit (ADI) numerical approaches for
computing the solution of multi-dimensional distributed-order fractional integrodifferential
problems. The proposed method discretizes the unknown solution in two stages. First, the
Riemann–Liouville fractional integral term and the distributed-order time-fractional deriva-
tive are discretizedwith the help of the second-order convolution quadrature and theweighted
and shifted Grünwald formula, respectively. Second, the spatial discretization is obtained by
the general centered finite difference (FD) technique. At the same time, the ADI algorithms
are devised for reducing the computational burden. Additionally, the convergence analysis
of proposed ADI FD schemes is analyzed in detail through the energy method. Finally, two
numerical examples highlight the accuracy of the proposed method and verify the theoretical
formulations.
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1 Introduction

This paper considers the distributed-order fractional integrodifferential equation in two/three
dimensions

D
ω
t u(x, t) − μΔu(x, t) − I (β)Δu(x, t) = f (x, t), 0 < β < 1, (x, t) ∈ Ω × (0, T ].

(1)
The initial condition and the boundary condition (IC and BC, respectively) are prescribed as

u(x, 0) = κ(x), x ∈ Ω, (2)

u(x, t) = 0, (x, t) ∈ ∂Ω × [0, T ], (3)

and the distributed-order integral is defined as

D
ω
t u(x, t) =

1∫

0
ω(α)Dα

t u(x, t)dα. (4)

Following Podlubny (1999), the Caputo fractional derivative (CFD) and the Riemann–
Liouville fractional integral (RLFI) are respectively defined in

Dα
t u(x, t) =

⎧
⎪⎨

⎪⎩

1
Γ (1−α)

t∫

0
(t − s)−α ∂u

∂s (x, s)ds, 0 < α < 1,

∂u
∂t (x, t), α = 1,

(5)

and

I (ϑ)φ(t) =
t∫

0
β(t − s)φ(s)ds := 1

Γ (ϑ)

t∫

0
(t − s)ϑ−1φ(s)ds,

ϑ ∈ (0, 1), t ∈ (0,∞),

(6)

in which ω(α) ≥ 0 with
∫ 1
0 ω(α)dα = c0 > 0, Ω = R

2 or R3, Γ (ϑ) =
∫ +∞
0 ξϑ−1

exp (−ξ)dξ and f (x, t) represent the weight function, spatial domain, the Euler’s Gamma
function, and forcing term, respectively. Without loss of generality, we can take a zero initial
value u(x, 0). If u(x, 0) = 
(x), then we can consider a transformw(x, t) = u(x, t)−
(x).
Theory of fractional calculus (FC) generalizes the integer order derivative to arbitrary order,
which can be achieved in space and time with a power law memory kernel of the nonlocal
problems (Tarasov 2021a, b; Kumar and Saha Ray 2021; Behera and Ray 2022; Moghad-
dam et al. 2019; Abdelkawy et al. 2022; Lopes and Machado 2021). With the increasing
popularity of FC, fractional differential equations (FDEs) have become an important key
for describing and modeling various phenomena phenomena in scopes of engineering and
sciences (Podlubny 1999; Hilfer 2000; Akram et al. 2021; Alia et al. 2021). Nakhushev
(1998, 2003) discussed the importance of studies on the positivity of continuous and discrete
differentiation and integration operators in the theory of mixed type equations and FC and
proposed that fractional integrals (FIs) of uniformly distributed order can be expressed in
terms of the so-called continual FIs. Then, Pskhu (2004, 2005) suggested the fractional oper-
ators which are the opposite of the continual FIs and presented the theory about the continual
integro-differentiation operator. Their research has had a significant impact on the study
of FC. Furthermore, many scholars have proposed different numerical methods for solving
FDEs, including finite difference (FD) (Qiu et al. 2019; Yn et al. 2011), finite element (FE)
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(Liu et al. 2015), two-grid methods (Liu et al. 2015; Qiu et al. 2020, mehless method (Nikan
et al. 2021b, a; Nikan and Avazzadeh 2021) and etc. In recent decades, distributed-order
partial differential equations (DOPDEs) have a wide range of applications in mathemati-
cal physics and engineering (Bagley and Torvik 2000; Caputo 2001), and can be used to
describe the dynamics of anomalous diffusion and relaxation phenomena. Distributed order
derivatives are fractional derivatives that have integrated the order of the derivative over a
certain range. On the one hand, the distributed order fractional problem can be extended to
a general integer order problem. On the other hand, the distributed order problem can be
discretized into a multi-term time fractional order problem. In the past few years, more and
more researchers have studied distributed-order differential equations. Naber (2004) obtained
the solution for the fractional subdiffusion equations with the distributed-order by means of
Laplace transform and variable separation. Kochubei (2008) studied the distributed order
derivative and integral. Atanackovic et al. (2009) investigated the Cauchy problem of the
time distributed-order diffusion wave problem. Meerschaert et al. (2011) analyzed explicit
strong and random analogs solutions. Katsikadelis (2014) adopted a new numerical approach
to approximate distributed order FDEs of a general formulation in an integration domain.
Morgado and Rebelo (2015) explored an implicit approach for solution of the distributed-
order time-fractional nonlinear reaction-diffusion problem. Chen et al. (2016) studied the
spectral scheme and pseudo-spectral scheme in a domain of semi-infinite space. Du et al.
(2016) analyzed and proposed the higher-order FD techniques having smooth solutions in
1D and 2D spaces. Jin et al. (2016) developed two fully discrete approaches including error
analysis to discretize the distributed-order time fractional diffusion problem including nons-
mooth initial of data. Abbaszadeh and Dehghan (2017) subsequently presented an improved
meshfree technique with error estimation. Gao et al. (2017) developed an interpolation-based
approximation for the temporal second order difference scheme to approximate multi-term
distributed order time FDEs. Yang et al. (2018) formulated an orthogonal spline colloca-
tion (OSC) technique. Qiu et al. (2020) advanced the Galerkin FE technique for the time
fractional mobile-immobile model with the distributed-order. Gao et al. (2020) investigated
the nonhomogeneous 2D distributed-order time-fractional cable equations by unstructured
grids of Galerkin FE. Zhang et al. (2022) presented an ADI Legendre–Laguerre spectral
scheme for the 2D time distributed-order diffusion-wave problem on a semi-infinite domain.
Jian et al. (2021) established fast numerical algorithms to solve the Riesz space fractional
diffusion-wave problem with time distributed-order.

It is well known that the ADI methods have the advantage of reducing the compu-
tational burden using decomposing a multidimensional problem into several independent
one-dimensional problems Huang et al. (2021). Some fractional order problems have been
studied so far by the ADImethods. Chen et al. (2016) andQiao et al. (2021) proposed the ADI
FD technique for fractional order Volterra equation and the 3D nonlocal evolution equation.
Pani et al. (2010) implemented ADI OSC method for the single-order time FDEs. Gao and
Zz (2016b, a) adopted the ADI FD approach to the distributed-order time-diffusion equa-
tions, while Li et al. (2013) used the ADI FE scheme for the investigation of single-order
temporal/spatial FDEs. However, the problem (1)–(3) in two/three dimensions has not been
studied. In the following, we will discuss and analyze this issue.

For large problems, the ADI method can reduce the storage requirements and computa-
tional complexities. In addition, although the implicit method has good stability, it requires a
large amount of CPU run time if the number of unknowns is large. Therefore, we construct an
ADI FD scheme, which deals with two- and three-dimensional problems by solving a series
of smaller, independent one-dimensional problems. The main objective of current work is
to develop the efficient ADI numerical approaches for distributed-order integrodifferential
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equations for the case of two/three dimensions. The time discretization is obtained based on
the second-order CQ rule and the weighted and shifted Grünwald formula for the RLFI and
the distributed-order time-fractional derivative, respectively. Then, we adopt the central FD
technique to establish the fully discrete scheme. Meanwhile, the fully-discrete ADI differ-
ence approaches in two/three dimensions are obtained with corresponding ADI algorithms.
The numerical results show that our schemes in two/three dimensional cases are conver-
gent, with time convergence of order 2, spatial convergence of order 2, and distributed-order
convergence of order 2, respectively.

This paper includes five sections as follows. Section 2 gives the necessary notations, some
useful lemmas and derivation of ADI difference approaches and performs the convergence
analysis of the two-dimensional distributed order problem. Section 3 constructs the ADI
approach of the three-dimensional problemby adding a tiny term, and studies the convergence
analysis of the ADI approach by means of the energy method. Section 4 presents two test
problems to confirm the theoretical prediction and show effectiveness of the method. Finally,
Section 5 summarizes the main concluding remarks.

2 Numerical description and theoretical analysis for the
two-dimensional case

2.1 Preliminary

In the following numerical method analysis, we assume that two-dimensional problems (1)–
(3) have a sufficiently smooth and unique solution on the domain Ω = (0, L1) × (0, L2) and
its boundary ∂Ω . We will give some useful symbols and significant lemmas, which can help
us in the subsequent discussions. First of all, let us define the necessary notations of time
and distributed order. For convenience, we consider a temporal step size which is selected
as the nodes τ = T

N and tn = nτ , 0 ≤ n ≤ N , where N and T are the total number of time
steps and a finite time, respectively. For positive integers N and J , we separate [0, 1] into
2J -subintervals αl = l�α, 0 ≤ l ≤ 2J , so that distributed-order step size �α = 1

2J · For
n = 1, 2, . . . , N , let us introduce δtv

n− 1
2 = 1

τ
(vn − vn−1)· In what follows, we mention the

composite trapezoid formulation for discretizing the distributed-order integral.

Lemma 1 (Gao and Zz 2016b) For σ(α) ∈ C2[0, 1], we have
1∫

0
σ(α)dα = �α

2J∑

l=0
clσ(αl) − σ ′′(ξ)

12 (�α)2, ξ ∈ (0, 1),

in which

cl =
{

1
2 , l = 0, 2J ,

1, l = 1, 2, . . . , 2J − 1.

Next, we describe the process of discretization for the distributed-order CFD. Now, let us
introduce

�α+s(R) =
{
ϕ
∣
∣ϕ ∈ L1(R);

+∞∫
−∞

(1 + |ξ |)α+s |ϕ̂(ξ)|dξ < ∞
}
, s ≥ 1,

where ϕ̂(ξ) = F[ϕ](ξ) = ∫ +∞
−∞ eiξ tϕ(t)dt illustrates the Fourier transformation for the

function ϕ(t).
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Lemma 2 (Pskhu 2004;Meerschaert and Tadjeran 2004)For ϕ ∈ �α+1(R), the RL fractional
derivative can be stated as

−∞Dα
t ϕ(t) = 1

Γ (1−α)
d
dt

t∫

−∞
(t − θ)−αϕ(θ)dθ (7)

and

Bα
τ,mϕ(t) = τ−α

∞∑
k=0

g(α)
k ϕ

(
t − (k − m)τ

)
, (8)

in which g(α)
k = (−1)k

(
α
k

)
are the coefficients for α ∈ (0, 1] and m is an integer. Then, we

have
Bα

τ,mϕ(t) =−∞ Dα
t ϕ(t) + O(τ ),

uniformly satisfies in t ∈ R when τ → 0.

Furthermore, in the case of 0 < α ≤ 1, the coefficients g(α)
k introduced in (8) satisfy the

following properties
g(α)
0 = 1, g(α)

1 = −α < 0,
g(α)
2 ≤ g(α)

3 ≤ g(α)
4 ≤ · · · ≤ 0,

∞∑
k=0

g(α)
k = 0,

n∑

k=0
g(α)
k ≥ 0, n ≥ 1.

(9)

For carrying out a theoretical analysis, we require the following lemma.

Lemma 3 (Tian et al. 2015) Assume that ϕ ∈ �α+2(R). Then, we have

(1 + α
2 )Bα

τ,0ϕ(t) − α
2 B

α
τ,−1ϕ(t) = τ−α

∞∑
k=0

λ
(α)
k ϕ(t − kτ)

=−∞ Dα
t ϕ(t) + O(τ 2),

uniformly holds for t ∈ R when τ → 0, and the coefficients λ
(α)
k can be evaluated as follows

λ
(α)
0 = (1 + α

2 )g(α)
0 , λ

(α)
k = (1 + α

2 )g(α)
k − α

2 g
(α)
k−1, k ≥ 1. (10)

Actually, it can be checked for 0 ≤ α ≤ 1 that

λ
(α)
0 = 1 + α

2 > 0, λ
(α)
1 = −α(3+α)

2 ≤ 0,

λ
(α)
2 = 1

4
α(α2 + 3α − 2) =

{
≤ 0, α ∈ [0,

√
17−3
2 ],

> 0, α ∈ (
√
17−3
2 , 1],

λ
(α)
k = [

(1 + α
2 )( k−α−1

k ) − α
2

]
g(α)
k−1 ≤ 0, k ≥ 3.

From Wang and Vong (2014a), we can obtain the following non-negative properties.

Lemma 4 (Wang and Vong 2014a) Let the coefficients
{
λ

(α)
k

}∞
k=0 are introduced in (10). For

any mesh series
(W1, . . . ,Wm

)T ∈ R
m, we have

m∑

n=1

( n−1∑

k=0

λ
(α)
k Wn−k

)
Wn ≥ 0.

According to the aforesaid lemma, we can conclude the lemma as follows.
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Lemma 5 (Gao and Zz 2016a, b) Assume that the coefficients
{
λ

(α)
k

}∞
k=0 are introduced in Eq.

(10). Then, for any mesh series
(W0, . . . ,Wm

)T ∈ R
m+1, it follows that

m∑

n=0

(
n∑

k=0

λ
(α)
k Wn−k

)

Wn ≥ 0.

Afterwards, we define the following notation

μ1 :=
[
�α

2J∑

l=0
clω(αl)τ

−αlλ
(αl )
0

]
. (11)

Then, we get the estimate as follows.

Lemma 6 (Gao and Zz 2016b) Let μ1 be defined in the relation (11). Then, we get μ1 =
O

(
(τ | ln τ |)−1

)
.

Secondly, we take two positive integers M1 and M2. Let h1 = L1/M1, h2 = L2/M2,
h = max{h1, h2}. Define the nodal points xi = ih1, 0 ≤ i ≤ M1, y j = jh2, 0 ≤ j ≤ M2,
χ = {1 ≤ i ≤ M1 − 1, 1 ≤ j ≤ M2 − 1}, γ = {(i, j)|(xi , y j ) ∈ ∂Ω}. Also, we introduce
Ωh = {(xi ,y j )| 0 ≤ i ≤ M1, 0 ≤ j ≤ M2}, Ω̊h = {w|w ∈ Ωh;wi j = 0, when (i, j) ∈ γ },
Ωh = Ωh ∩ Ω and ∂Ωh = Ωh ∩ ∂Ω .

In order to facilitate the analysis, suppose that the symbols uni j and f ni j represent the values
of functions u(x, y, t) and f (x, y, t) at nodal point (xi , y j , tn), respectively. We define some
necessary notations for any grid function w = {wi j |0 ≤ i ≤ M1, 0 ≤ j ≤ M2} over Ωh ,

δxw
n
i j := 1

h1
(wn

i j − wn
i−1, j ), δyw

n
i j := 1

h2
(wn

i j − wn
i, j−1),

δ2xw
n
i j := 1

h1
(δxw

n
i j − δxw

n
i−1, j ), δ2yw

n
i j := 1

h2
(δyw

n
i j − δyw

n
i, j−1),

Δhw
n
i j := δ2xw

n
i j + δ2yw

n
i j , 1 ≤ i ≤ M1 − 1, 1 ≤ j ≤ M2 − 1, 1 ≤ n ≤ N .

Let us define the discrete inner product and the associated norms for w, v ∈ Ω̊h by

(w, v) := h1h2
M1−1∑

i=1

M2−1∑

j=1
wi jvi j , ‖v‖ = √

(v, v), ‖v‖∞ = max
1 ≤ i ≤ M1 − 1
1 ≤ j ≤ M2 − 1

|vi j |.

Here, we present the associated discrete method and some lemmas to construct the ADI
difference approach. First, we introduce the second-order CQ strategy (cf. Lubich 1986,
1988) for discretizing the RLFI I (β)φ(tn) as

Q(β)
n (φ) = τβ

n∑

p=1
ω

(β)
n−pφ

p + τβω̃
(β)
n φ0, 0 ≤ β ≤ 1, (12)

where the CQ weights ω
(β)
s can be derived by

(δ(ν))−β =
∞∑
s=0

ω
(β)
s νs,

in which δ(ν) denotes the generating function Lubich (1988). For the CQ with second-order
accuracy, we get

δ(ν) =
2∑

s=1

1
s (1 − ν)s .
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Therefore, we can get the quadrature weights ω
(β)
s via

c(β)
s = (−1)s

(−β

s

)

= (−1)n Γ (1−β)
Γ (1+n)Γ (1−β−n)

> 0,

ω
(β)
s = ( 23 )

α
s∑

i=0

c(β)
s−i c

(β)
i

3i
, s ≥ 0.

We can present the correction weights ω̃
(β)
n introduced in (12) for discretizing the integral

term with second-order accuracy in the time dimension. When φ = 1, we have

Q(β)
n (1) = 1

Γ (β)

tn∫

0
(tn − s)β−1ds = (tn)β

Γ (1+β)
. (13)

Thus, we arrive at

ω̃
(β)
n = nβ

Γ (1+β)
−

n∑

p=1
ω

(β)
n−p.

Now, we analyze the quadrature error.

Lemma 7 (Chen et al. 2016; Xu 1997) Suppose that the function ψ(t) is continuously dif-
ferentiable over (0, T ] and real, ψt t (t) is integrable and continuous on (0, T ]. Then, the
quadrature error can be obtained using

|I (β)ψ(tn) − Q(β)
n (ψ)| ≤ C

[
τ 2tβ−1

n |ψt (0)| + τ 2
tn−1∫

0
(tn − ξ)β−1|ψt t (ξ)|dξ

+τ 1+β
tn∫

tn−1

|ψt t (ξ)|dξ
]
, 0 < β < 1,

in which Q(β)
n (ψ) is presented by (12), and 0 < tn < T < ∞.

Remark 1 Throughout the article, C represents a generic positive constant which is inde-
pendent of the space and time step sizes. In addition, it is not necessarily same in different
occurrences.

Remark 2 Through the above-mentioned Lemma, the quadrature error of the CQ isO(τ 1+β).
However, the quadrature error of second-order CQ is O(τ 2) when |ψt t (t)| ≤ C , t ∈ [0, T ].

In the following, we list some useful lemmas based on the Taylor formula with integral
remainder.

Lemma 8 (Yn et al. 2011) Supposing that u(x, y, ·) ∈ C4,4
x,y

([0, L1]×[0, L2]
)
. Then, we get

∂2u

∂x2
(xi , y j , tn) = δ2xU

n
i j

−h21
6

1∫

0

[∂4u

∂x4
(xi + ξh1, y j , tn) + ∂4u

∂x4
(xi − ξh1, y j , tn)

]
(1 − ξ)3dξ,

(14)

∂2u

∂ y2
(xi , y j , tn) = δ2yU

n
i j

−h22
6

1∫

0

[∂4u

∂ y4
(xi , y j + ξh2, tn) + ∂4u

∂ y4
(xi , y j − ξh2, tn)

]
(1 − ξ)3dξ.

(15)

123



236 Page 8 of 27 T. Guo et al.

Now, we can obtain the bound of I (β)uxx (xi , y j , tn) − Q(β)
n (δ2xUi j ).

Lemma 9 Assume that u(x, y, t) ∈ C4,4,2
x,y,t

([0, L1]×[0, L2]×[0, T ]). Then, for n = 1, . . . , N
and (i, j) ∈ χ , we get

∣
∣(R1)

n
i j

∣
∣ = ∣

∣I (β)Δu(xi , y j , tn) − Q(β)
n (ΔhUi j )

∣
∣ ≤ C(τ 2 + h21 + h22). (16)

Proof Using the triangle inequality, we have
∣
∣I (β)uxx (xi , y j , tn) − Q(β)

n (δ2xUi j )
∣
∣

≤ ∣
∣I (β)uxx (xi , y j , tn) − Q(β)

n
(
uxx (xi , y j , ·)

)∣∣ + ∣
∣Q(β)

n
(
uxx (xi , y j , ·)

) − Q(β)
n (δ2xUi j )

∣
∣.

In other hand, for the estimate of
∣
∣Q(β)

n
(
uxx (xi , y j , ·)

)−Q(β)
n (δ2xUi j )

∣
∣, we use Lemma 8 and

(formula (2.4), Qiao et al. 2022) to get
∣
∣Q(β)

n
(
uxx (xi , y j , ·)

) − Q(β)
n (δ2xUi j )

∣
∣

≤ C
(
τβ

n∑

p=1
|ω(β)

n−p|
)
h21 + Cτβ |ω(β)

n |h21

≤ C
( tn∫

0
sβ−1ds

)
h21 + Cτβ τ tβ−1

n
τβ h21

≤ Ctβn h21 + tβn n−1h21≤ C(T )h21.

Regarding Lemma 7 and Remark 2, we get
∣
∣I (β)uxx (xi , y j , tn) − Q(β)

n (δ2xUi j )
∣
∣ ≤ ∣

∣I (β)uxx (xi , y j , tn) − Q(β)
n

(
uxx (xi , y j , ·)

)∣∣ + Ch21≤ C
(
τ 2 + h21

)
.

In the same way, we can prove
∣
∣I (β)uyy(xi , y j , tn) − Q(β)

n (δ2yUi j )
∣
∣ ≤ C(τ 2 + h22). To sum

up, the proof is completed. 
�

2.2 The derivation of the ADI difference approach in two dimensions

Firstly, we can establish the ADI difference approach for Eqs. (1)–(3). Considering Eq. (1)
at the nodal point (xi , y j , tn) for (i, j) ∈ χ , n = 1, . . . , N , we have

D
ω
t u(xi , y j , tn) − μΔu(xi , y j , tn) − I (β)Δu(xi , y j , tn) = f (xi , y j , tn),

(x, y) ∈ Ω, n = 1, . . . , N .
(17)

From Lemma 1, we can get

D
ω
t u

n
i j =

1∫

0
ω(α)Dα

t u
n
i jdα = �α

2J∑

l=0
clω(αl)D

αl
t uni j + O(�α2).

Observing the equivalence of the CFD Dα
t ϕ(t) and the RLFD −∞Dα

t ϕ(t) with ϕ(t) = 0 at
t ≤ 0 and employing Lemma 3 as well as the above formula, we can obtain

D
ω
t u

n
i j = �α

2J∑

l=0
clω(αl)τ

−αl
n∑

k=0
λ

(αl )
k un−k

i j + O(τ 2 + �α2). (18)

From Lemmas 8 and 9 leads to

I (β)Δu(xi , y j , tn) = Q(β)
n (Δhui j ) + (R1)

n
i j , (i, j) ∈ χ, n = 1, . . . , N . (19)
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Inserting relations (14), (15), (18) and (19) in (17) yields that

�α
2J∑

l=0
clω(αl)τ

−αl
n∑

k=0
λ

(αl )
k un−k

i j − μΔhuni j − (τβ
n∑

p=1
ω

(β)
n−pΔhu

p
i j + τβω̃

(β)
n Δhu0i j )

= f ni j + (R1)
n
i j , (i, j) ∈ χ, n = 1, . . . , N ,

(20)
in which ∣

∣(R1)
n
i j

∣
∣ ≤ C

(
τ 2 + h21 + h22 + �α2

)
. (21)

Then adding the small term τμ1μ
2
2δ

2
xδ

2
yδt u

n− 1
2

i j = (R2)
n
i j to both sides of Eq. (20), we can

get

�α
2J∑

l=0
clω(αl)τ

−αl
n∑

k=0
λ

(αp)

k un−k
i j − μΔhuni j − (τβ

n∑

p=1
ω

(β)
n−pΔhu

p
i j + τβω̃

(β)
n Δhu0i j )

+τμ1μ
2
2δ

2
xδ

2
yδt u

n− 1
2

i j = f ni j + Rn
i j , (i, j) ∈ χ, n = 1, . . . , N ,

(22)
in which ∣

∣Rn
i j

∣
∣ = ∣

∣(R1)
n
i j + (R2)

n
i j

∣
∣ ≤ C

(
τ 2 + h21 + h22 + �α2

)
,

from which, if u ∈ C4,4,2
x,y,t

([0, L1] × [0, L2] × [0, T ]) with τμ1μ
2
2 = O(τ 2| ln τ |), then

|(R2)
n
i j | ≤ Cτ 2. Noting the IC and BC in (2)–(3), we obtain

u0i j = κ(xi , y j ), (i, j) ∈ χ, uni j = 0, (i, j) ∈ γ, n = 1, . . . , N . (23)

Ignoring the truncation error Rn
i j and using the substitution ofU

n
i j instead of u

n
i j in Eqs. (22)–

(23), we can provide the ADI difference approach for Eqs. (1)–(3) as

�α
2J∑

l=0
clω(αl)τ

−αl
n∑

k=0
λ

(αp)

k Un−k
i j − μΔhUn

i j − (τβ
n∑

p=1
ω

(β)
n−pΔhU

p
i j + τβω̃

(β)
n

ΔhU 0
i j ) + τμ1μ

2
2δ

2
xδ

2
yδtU

n− 1
2

i j = f ni j , (i, j) ∈ χ, n = 0, 1, . . . , N ,

(24)

U 0
i j = κ(xi , y j ), (i, j) ∈ χ,

Un
i j = 0, (i, j) ∈ γ, n = 0, 1, . . . , N .

(25)

Let us introduce μ2 = μ−1
1 (μ + τβω

(β)
0 ), where μ1 is defined in (11). It is not hard to get

that μ2 = O(τ | ln τ |). At the same time, we notice that (24) can be restated as

μ1Un
i j − (μ + τω

(β)
0 )ΔhUn

i j + τμ1μ
2
2δ

2
xδ

2
yδtU

n− 1
2

i j = Fn
i j ,

(26)

where

Fn
i j = −�α

2J∑

l=0
clω(αl)τ

−αl
n∑

k=1
λ

(αp)

k Un−k
i j + τβ

n−1∑

p=1
ω

(β)
n−pΔhU

p
i j + τβω̃

(β)
n ΔhU 0

i j + f ni j .

Denoting the notation En = Un − Un−1, after simplification, we can obtain the following
ADI scheme

(I − μ2δ
2
x )(I − μ2δ

2
y)E

n
i j = F̃n

i j , (27)
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where I is an identity operator, F̃n
i j is given as follows

F̃n
i j = −Un−1

i j + μ2ΔhU
n−1
i j − μ−1

1 �α

2J∑

l=0

clω(αl)τ
−αl

n∑

k=1

λ
(αl )
k Un−k

i j

+ μ−1
1 τβ

n−1∑

p=1

ω
(β)
n−pΔhU

p
i j + μ−1

1 τβω̃(β)
n ΔhU

0
i j + μ−1

1 f ni j .

Solving two sets of independent 1D problem, we can determine Un
i j . Let us define

E
n− 1

2
i j = (I − μ2δ

2
y

)
En
i j , (xi , y j ) ∈ Ωh, n = 1, . . . , N .

Therefore, we give the following computational steps:
Step 1 Firstly, for fixed j ∈ {1, 2, . . . , M2−1}we solve the following system to calculate

{En− 1
2

i j }:
⎧
⎨

⎩

(I − μ2δ
2
x

)
E
n− 1

2
i j = F̃n

i j , 1 ≤ i ≤ M1 − 1, n = 1, . . . , N ,

E
n− 1

2
0, j = E

n− 1
2

M1, j
= 0.

(28)

Step 2 Once {En− 1
2

i j } is available, fixed i ∈ {1, 2, . . . , M1 − 1}, we can solve the system as
follows: {(I − μ2δ

2
y

)
En
i j = E

n− 1
2

i j , 1 ≤ j ≤ M2 − 1, n = 1, . . . , N ,

En
i,0 = En

i,M2
= 0

(29)

to compute {En
i j }, and we can get the desired solution {Un

i j } further.

2.3 Analysis of the ADI difference approach

This subsection only examines the convergence analysis of the proposed algorithm (24)–(25).
In what follows, we introduce some useful lemmas.

Lemma 10 (Xu 1997) For t ∈ {t ∈ C,Re(t) > 0}, β(t) ∈ L1,loc(0,∞) denote a positive
value if and only if Re

(
β̂(t)

) ≥ 0, in which β̂(ξ) = ∫ +∞
−∞ eiξ tβ(t)dt indicates the Laplace

transform of β(t) introduced in (6), and Re(·) represents the real part.
Lemma 11 (Lopez-Marcos 1990;Xu1997)Suppose that a real-valued sequence {a0, a1, . . . ,
as, . . .} satisfies: for any vector (L1, L2, . . . , LN ) ∈ R

N , positive integer N , and â(z) =∑∞
s=0 asz

s is analytic in S = {z ∈ C : |z| ≤ 1}, for z ∈ S, it follows that
N∑

n=1

( n∑

p=1
an−pL p

)
Ln ≥ 0,

if and only if Re
(
â(z)

) ≥ 0.

Lemma 12 (Chen et al. 2016; Lopez-Marcos 1990) The functions w, v ∈ Ω̊h have the fol-
lowing properties:

(i)|(δ2xw, v)| ≤ 4
h21

‖w‖‖v‖,

(i i)(δ2xw, v) = −h1
M1−1∑

j=0
(δxw j+1)(δxv j+1).
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In the same way, we can denote the notation (δ2yw, v) and so on.

Define

eni j := u(xi , y j , tn) −Un
i j = uni j −Un

i j , (i, j) ∈ χ, n = 0, 1, . . . , N .

Subtracting (24)–(25) from (22)–(23), respectively, and denoting the notation �α
∑2J

l=0 cl
ω(αl)τ

−αl = Φl,J , we can compute the error system of equations as follows

Φl,J

n∑

k=0
λ

(αl )
k en−k

i j − μΔheni j − (τβ
n∑

p=1
ω

(β)
n−pΔhe

p
i j + τβω̃

(β)
n Δhe0i j )

+τμ1μ
2
2δ

2
xδ

2
yδt e

n− 1
2

i j = Rn
i j , (i, j) ∈ χ, n = 1, . . . , N ,

(30)

e0i j = 0, (i, j) ∈ χ,

eni j = 0, (i, j) ∈ γ, n = 0, 1, . . . , N .
(31)

Theorem 1 (Convergence). Suppose that {un}Nn=0 and {Un}Nn=0 are the solutions of (1)–(3)

and (24)–(25), respectively. Let u(x, y, t) ∈ C4,4,2
x,y,t

([0, L1] × [0, L2] × [0, T ]). Then, we
obtain √√

√
√τ

N∑

n=1

‖en‖2 ≤ C(T )
(
τ 2 + h2 + �α2

)
.

Proof We establish the following weak formulation by taking the inner product of (30) by
τen , summing from n = 1 to N , adding small term τμ1(e0, e0) to the both sides of (30) and
denoting ε̃ = τμ1 as

τΦl,J

N∑

n=0

n∑

k=0
λ

(αl )
k (en−k, en) − μτ

N∑

n=1
(Δhen, en) − τ 1+β

N∑

n=1

n∑

p=1
ω

(β)
n−p(Δhep, en)

−τ 1+β
N∑

n=1
ω̃

(β)
n (Δhe0, en) + τ

N∑

n=1
τμ1μ

2
2(δ

2
xδ

2
yδt e

n− 1
2 , en) = τ

N∑

n=1
(Rn, en) + ε̃‖e0‖2.

(32)
Each term in (32) will be analyzed below. Firstly, based on the Lemma 5, we have

τΦl,J

N∑

n=0

n∑

k=0
λ

(αl )
k (en−k, en) ≥ 0. (33)

Secondly, we can get

−(Δhe
n, en) = −(δ2x e

n + δ2ye
n, en)

= (δx e
n, δx e

n) + (δye
n, δye

n)

= ‖δx en‖2 + ‖δyen‖2
: = ‖∇he

n‖2.

(34)

Thirdly, from Lemmas 10–12, we get

−
N∑

n=1

n∑

p=1

ω
(β)
n−p(Δhe

p, en) =
N∑

n=1

n∑

p=1

ω
(β)
n−p

[
(δx e

p, δx e
n) + (δye

p, δye
n)

]

≥ 0.

(35)
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Fourthly, applying Lemma 12 (i), we arrive at

τ 1+β
N∑

n=1

ω̃(β)
n (Δhe

0, en) ≤ τ 1+β
N∑

n=1

|ω̃(β)
n |(Δhe

0, en)

≤ τ 1+β
[4

∥
∥e0

∥
∥‖en‖
h21

+ 4
∥
∥e0

∥
∥‖en‖
h22

] N∑

n=1

|ω̃(β)
n |

= 4τ 1+β
( 1

h21
+ 1

h22

) N∑

n=1

|ω̃(β)
n |∥∥e0∥∥‖en‖.

(36)

Moreover, we have

τ 2μ1μ
2
2

N∑

n=1

(δ2xδ
2
yδt e

n− 1
2 , en) = τ 2μ1μ

2
2

N∑

n=1

(
δ2xδ

2
y
en − en−1

τ
, en

)

= τ 2μ1μ
2
2

N∑

n=1

(
δxδy

en − en−1

τ
, δxδye

n
)

= τ 2μ1μ
2
2

N∑

n=1

(
δxδy

en − en−1

τ
, δxδy

en − en−1 + en−1 + en

2

)

≥ τ 2μ1μ
2
2

N∑

n=1

(
δxδy

en − en−1

τ
, δxδy

en − en−1 + en−1 + en

2

)

≥ τμ1μ
2
2

2

(‖δxδyeN‖2 − ‖δxδye0‖2
)
.

(37)
Finally, employing the Cauchy–Schwarz inequality arrives at

τ

N∑

n=1

(Rn, en) ≤ τ

N∑

n=1

∥
∥Rn

∥
∥‖en‖. (38)

Inserting (33)–(38) in (32), we have

τμ

N∑

n=1

‖∇he
n‖2 + τμ1μ

2
2

2
‖δxδyeN‖2 ≤ τμ1μ

2
2

2
‖δxδye0‖2 + ε̃‖e0‖2

+4τ 1+β
( 1

h21
+ 1

h22

) N∑

n=1

|ω̃(β)
n |∥∥e0∥∥‖en‖ + τ

N∑

n=1

∥
∥Rn

∥
∥‖en‖.

(39)

Next, using the Young inequality ab ≤ εa2+ 1
4εb

2(a, b ∈ R, ε > 0) and Poincaré inequality
‖en‖ ≤ C0‖∇en‖ to get

μτ

C2

N∑

n=1

‖en‖2 + τμ1μ
2
2

2
‖δx δyeN ‖2 ≤ τμ1μ

2
2

2
‖δx δye0‖2 + ε̃‖e0‖2

+ 4τ1+β
( 1

h21
+ 1

h22

) N∑

n=1

|ω̃(β)
n |∥∥e0∥∥‖en‖ + τC2

μ

N∑

n=1

‖Rn‖2 + μτ

4C2

N∑

n=1

‖en‖2.
(40)
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Then, because of e0 = 0, we have

3μτ

4C2

N∑

n=1

‖en‖2 ≤ τC2

μ

N∑

n=1

‖Rn‖2. (41)

Finally, we obtain the convergence results as

τ

N∑

n=1

‖en‖2 ≤ Cτ

N∑

n=1

‖Rn‖2

≤ C(T )
(
τ 2 + h21 + h22 + �α2

)2
.

(42)

This completes the proof 
�

3 Numerical method and error analysis for the three-dimensional case

This section presents the numerical scheme and analysis of the three-dimensional problem
(1)–(3) with Ω = (0, L1) × (0, L2) × (0, L3). Except for special definitions, other signs are
the same as the two-dimensional case.

3.1 The derivation of the ADI difference scheme in three dimensions

Let h1 = L1
M1

, h2 = L2
M2

, h3 = L3
M3

, h = max{h1, h2, h3}, where M1, M2, M3 are the number
of divisions in the x , y and z dimensions, respectively. The nodal points xi = ih1, y j =
jh2, zm = mh3, � = {1 ≤ i ≤ M1 − 1, 1 ≤ j ≤ M2 − 1, 1 ≤ m ≤ M3 − 1}, ι =
{(i, j,m)|(xi , y j , zm) ∈ ∂Ω},Ωh = {(xi , y j , zm)|0 ≤ i ≤ M1, 0 ≤ j ≤ M2, 0 ≤ m ≤
M3}, Ω̊ = {w|w ∈ Ωh, wi jm = 0, when(i, j,m) ∈ ι},Ωh = Ωh∩Ω and ∂Ωh = Ωh∩∂Ω .
Let us introduce the following grid functions

uni jm := u(xi , y j , zm , tn), f ni jm := f (xi , y j , zm , tn), (xi , y j , zm) ∈ Ωh, n = 0, 1, . . . , N .

For any grid function w = {wi jm |0 ≤ i ≤ M1, 0 ≤ j ≤ M2, 0 ≤ m ≤ M3} over Ωh , we
define

δxw
n
i jm := 1

h1
(wn

i jm − wn
i−1, j,m),

δ2xw
n
i jm := 1

h1
(δxw

n
i jm − δxw

n
i−1, j,m),

Δhw
n
i jm := δ2xw

n
i jm + δ2yw

n
i jm + δ2zw

n
i jm .

In like manner, we define other symbols, e.g., δywn
i jm, δzw

n
i jm, δ2yw

n
i jm, δ2zw

n
i jm, etc.

In addition, for grid functions w = {wi jm |0 ≤ i ≤ M1, 0 ≤ j ≤ M2, 0 ≤ m ≤ M3} and
v = {vi jm |0 ≤ i ≤ M1, 0 ≤ j ≤ M2, 0 ≤ m ≤ M3}, let us introduce the inner product and
norms as

(w, v) := h1h2h3
M1−1∑

i=1

M2−1∑

j=1

M3−1∑

m=1
wi jmvi jm, ‖v‖ = √

(v, v),

‖v‖∞ = max
1 ≤ i ≤ M1 − 1
1 ≤ j ≤ M2 − 1
1 ≤ m ≤ M3 − 1

|vi jm |.
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We obtain the following expression by considering (1) at the nodal point (xi , y j , zm, tn) for
(i, j,m) ∈ �, n = 1, . . . , N , as

D
ω
t u(xi , y j , zm, tn) − μΔu(xi , y j , zm, tn) − I (β)Δu(xi , y j , zm, tn) = f (xi , y j , zm, tn),

(x, y, z) ∈ Ω, n = 1, . . . , N .

(43)
Similarly to what was considered in Sect. 2, from Lemmas 1 and 3, we can obtain

D
ω
t u

n
i jm = Φl,J

n∑

k=0
λ

(αl )
k un−k

i jm + O(τ 2 + �α2). (44)

Meanwhile, in virtue of Lemmas 8 and 9, we have

I (β)Δu(xi , y j , zm, tn) = Q(β)
n (Δhui jm) + (R3)

n
i jm, (i, j,m) ∈ �, n = 1, . . . , N .

(45)
Bring (44)–(45) into (43) and according to Lemma 8, we can get

Φl,J

n∑

k=0
λ

(αl )
k un−k

i jm − μΔhuni jm − (τβ
n∑

p=1
ω

(β)
n−pΔhu

p
i jm + τβω̃

(β)
n Δhu0i jm)

= f ni jm + (R3)
n
i jm, (i, j,m) ∈ �, n = 1, . . . , N ,

(46)

where ∣
∣(R3)

n
i jm

∣
∣ ≤ C

(
τ 2 + h21 + h22 + h23 + �α2

)
.

Adding the small termLUn− 1
2

i jm = τμ1μ
2
2(δ

2
xδ

2
y+δ2xδ

2
z+δ2yδ

2
z )δtU

n− 1
2

i jm −τμ1μ
3
3δ

2
xδ

2
yδ

2
z δtU

n− 1
2

i jm= (R4)
n
i jm to both sides of (46), we can get

Φl,J

n∑

k=0
λ

(αl )
k un−k

i jm − μΔhuni jm − τβ
n∑

p=1
ω

(β)
n−pΔhu

p
i jm + Lun− 1

2
i jm

= τβω̃
(β)
n Δhu0i jm + f ni jm + (R̂)ni jm, (i, j,m) ∈ �, n = 1, . . . , N ,

(47)

where
|(R̂)ni jm | = |(R3)

n
i jm + (R4)

n
i jm | ≤ C

(
τ 2 + h21 + h22 + h23 + �α2

)
,

with the IC and BC as follow

u0i jm = κ(xi , y j , zm), (i, j,m) ∈ �,

uni jm = 0, (i, j,m) ∈ ι, n = 1, . . . , N .
(48)

Dropping the truncation errors (R̂)ni jm , withU
n
i jm instead of uni jm in (47)–(48), we obtain the

difference scheme as follow

Φl,J

n∑

k=0
λ

(αl )
k Un−k

i jm − μΔhUn
i jm − τβ

n∑

p=1
ω

(β)
n−pΔhU

p
i jm + LUn− 1

2
i jm

= τβω̃
(β)
n ΔhU 0

i jm + f ni jm, (i, j,m) ∈ �, n = 1, . . . , N .

(49)

U 0
i jm = κ(xi , y j , zm), (i, j,m) ∈ �,

Un
i jm = 0, (i, j,m) ∈ ι, n = 1, . . . , N .

(50)

This moment, by observing that (49) can rewritten as

μ1Un
i jm − (μ + τω

(β)
0 )ΔhUn

i jm + LUn− 1
2

i jm = F̄n
i jm, (51)
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in which

F̄n
i jm = −�α

2J∑

l=0
clω(αl)τ

−αl
n∑

k=1
λ

(αp)

k Un−k
i jm + τβ

n−1∑

p=1
ω

(β)
n−pΔhU

p
i jm + τβω̃

(β)
n ΔhU0

i jm + f ni jm .

Let the notation En is defined in front. After simplification, we get the following ADI dif-
ference scheme

(I − μ2δ
2
x )(I − μ2δ

2
y)(I − μ2δ

2
z )E

n
i jm = F̂n

i jm, (52)

where I is an identity operator, and F̂n
i jm is presented as follows

F̂n
i jm = −Un−1

i jm + μ2ΔhU
n−1
i jm − μ−1

1 �α

2J∑

l=0

clω(αl)τ
−αl

n∑

k=1

λ
(αl )
k Un−k

i jm

+ μ−1
1 τβ

n−1∑

p=1

ω
(β)
n−pΔhU

p
i jm + μ−1

1 τβω̃(β)
n ΔhU

0
i jm + μ−1

1 f ni jm .

Next, we present several intermediate variables to determine at Un
i jm :

E
n− 1

3
i jm = (I − μ2δ

2
z

)
En
i jm , 0 ≤ i ≤ M1, 0 ≤ j ≤ M2, 0 ≤ m ≤ M3 − 1, n = 1, . . . , N

and

E
n− 2

3
i jm = (I − μ2δ

2
y

)
E
n− 1

3
i jm , 0 ≤ i ≤ M1, 1 ≤ j ≤ M2 − 1, 0 ≤ m ≤ M3, n = 1, . . . , N .

From the above formulae, we can calculate the En
i jm through the following three steps.

Step 1 Firstly, solve the following system to compute {En− 2
3

i jm } in the x-dimension by fixing
m ∈ {1, 2, . . . , M3 − 1} and j ∈ {1, 2, . . . , M2 − 1} as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(I − μ2δ
2
x

)
E
n− 2

3
i jm = F̂n

i jm, 1 ≤ i ≤ M1 − 1, n = 1, . . . , N ,

E
n− 2

3
0 jm = (I − μ2δ

2
y)E

n− 1
3

0 jm = (I − μ2δ
2
y)(I − μ2δ

2
z )E

n
0 jm,

E
n− 2

3
M1 jm

= (I − μ2δ
2
y)E

n− 1
3

M1 jm
= (I − μ2δ

2
y)(I − μ2δ

2
z )E

n
M1 jm

.

(53)

Step 2 Solve the following system in the y-dimension by fixing m ∈ {1, 2, . . . , M3 − 1} and
i ∈ {1, 2, . . . , M1 − 1} , we can

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(I − μ2δ
2
y

)
E
n− 1

3
i jm = E

n− 2
3

i jm , 1 ≤ j ≤ M2 − 1, n = 1, . . . , N ,

E
n− 1

3
i0m = (I − μ2δ

2
z )E

n
i0m,

E
n− 1

3
iM2m

= (I − μ2δ
2
z )E

n
iM2m

.

(54)

Step 3 Solve the following system in the z-dimension when once {En− 2
3

i jm } and {En− 1
3

i jm } are
determined by fixing j ∈ {1, 2, . . . , M2 − 1} and i ∈ {1, 2, . . . , M1 − 1} as

{(I − μ2δ
2
z

)
En
i jm = E

n− 1
3

i jm , 1 ≤ m ≤ M3 − 1, n = 1, . . . , N ,

En
i j0 = 0, En

i jM3
= 0.

(55)
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3.2 Analysis of the ADI difference approach in three case

Following a similar process used in the 2D case, we only consider the convergence analysis of
the proposed scheme (49)–(50). To begin with, we present the following significant lemmas.

Lemma 13 (Sun 2009; Wang and Vong 2014b) Assume that w, v ∈ Ω̊ and w, v are grid
functions. Then it holds that

(δ2xδ
2
yw, v) = (δxδyw, δxδyv),

(δ2xδ
2
zw, v) = (δxδzw, δxδzv),

(δ2yδ
2
zw, v) = (δyδzw, δyδzv).

Lemma 14 (Sun 2009) Let us define grid functions w, v ∈ Ω̊ . We obtain

(δ2xδ
2
yδ

2
zw, v) = −(δxδyδzw, δxδyδzv).

At first, define

eni jm := u(xi , y j , zm, tn) −Un
i jm = uni jm −Un

i jm, (i, j,m) ∈ �, n = 0, 1, . . . , N .

Now, we obtain the error system of equations by subtracting (49)–(50) from (47) and (48),
respectively, as

Φl,J

n∑

k=0
λ

(αl )
k en−k

i jm − μΔheni jm − τβ
n∑

p=1
ω

(β)
n−pΔhe

p
i jm + Len− 1

2
i jm

= τβω̃
(β)
n Δhe0i jm + f ni jm + (R̂)ni jm, (i, j,m) ∈ �, n = 1, . . . , N ,

(56)

e0i jm = 0, (i, j,m) ∈ �,

eni jm = 0, (i, j,m) ∈ ι, n = 0, 1, . . . , N .
(57)

Theorem 2 (Convergence). Assume that {un}Nn=0 and {Un}Nn=0 represent the solutions of (1)–

(3) and (49)–(50), respectively. If u(x, y, z, t) ∈ C4,4,4,2
x,y,z,t

([0, L1]×[0, L2]×[0, L3]×[0, T ]),
then we can arrive at

√√
√
√τ

N∑

n=1

‖en‖2 ≤ C(T )
(
τ 2 + h2 + �α2

)
.

Proof We can obtain the following weak formulation employing the inner product of (56)
by τen and the summing from n = 1 to k = M as well as adding small term τμ1(e0, e0) to
the both sides of (56) as

τΦl,J

N∑

n=0

n∑

k=0
λ

(αl )
k (en−k, en) − μτ

N∑

n=1
(Δhen, en) − τ 1+β

N∑

n=1

n∑

p=1
ω

(β)
n−p(Δhep, en)

−τ 1+β
N∑

n=1
ω̃

(β)
n (Δhe0, en) + τ(Len− 1

2
i jm , en) :=

5∑

s=1
�s = τ

N∑

n=1
(R̂n, en) + ε̃‖e0‖2.

(58)

Below we shall estimate the terms in (58). For the first term �1, according to Lemma 5, we
have

τΦl,J

N∑

n=0

n∑

k=0
λ

(αl )
k (en−k, en) ≥ 0. (59)
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Then for �2, utilizing Poincaré inequality λ̃‖en‖ ≤ ‖∇en‖, we yield
−(Δhe

n, en) = −
(
(δ2x + δ22 + δ2z )e

n, en
)

= (δx e
n, δx e

n) + (δye
n, δye

n) + (δze
n, δze

n)

= ‖δx en‖2 + ‖δyen‖2 + ‖δzen‖2
: = ‖∇he

n‖2 ≥ λ̃2‖en‖2.

(60)

For �3, from Lemmas 10–12, we have

−
N∑

n=1

n∑

p=1

ω
(β)
n−p(Δhe

p, en) =
N∑

n=1

n∑

p=1

ω
(β)
n−p

[
(δx e

p, δx e
n) + (δye

p, δye
n) + (δze

p, δze
n)

]

≥ 0.
(61)

Next for �4, applying Lemma 12 (i), we arrive at

τ 1+β
N∑

n=1

ω̃(β)
n (Δhe

0, en) ≤ τ 1+β
N∑

n=1

|ω̃(β)
n |(Δhe

0, en)

≤ τ 1+β
[4

∥
∥e0

∥
∥‖en‖
h21

+ 4
∥
∥e0

∥
∥‖en‖
h22

+ 4
∥
∥e0

∥
∥‖en‖
h23

] N∑

n=1

|ω̃(β)
n |

= 4τ 1+β
( 1

h21
+ 1

h22
+ 1

h23

) N∑

n=1

|ω̃(β)
n |∥∥e0∥∥‖en‖.

(62)
Moreover, for �5, in view of Lemmas 13–14, we have

2τ(δ2xδ
2
yδt e

n, en) ≥ ‖δxδyen‖2 − ‖δxδyen−1‖2,
2τ(δ2xδ

2
z δt e

n, en) ≥ ‖δxδzen‖2 − ‖δxδzen−1‖2,
2τ(δ2yδ

2
z δt e

n, en) ≥ ‖δyδzen‖2 − ‖δyδzen−1‖2,
−2τ(δ2xδ

2
yδ

2
z δt e

n, en) ≥ ‖δxδyδzen‖2 − ‖δxδyδzen−1‖2.

(63)

Let us denote τμ1μ
2
2 := μ3 = O(τ 2| ln τ |), τμ1μ

3
2 := μ4 = O(τ 3| ln τ |2), then we obtain

τ

N∑

n=1

(Len− 1
2

i jm , en) = τμ3

N∑

n=1

(
(δ2xδ

2
y + δ2xδ

2
z + δ2yδ

2
z )δt e

n− 1
2 , en

)

− τμ4

N∑

n=1

(δ2xδ
2
yδ

2
z δt e

n− 1
2 , en)

= μ3

N∑

n=1

(
(δ2xδ

2
y + δ2xδ

2
z + δ2yδ

2
z )(e

n − en−1), en
)

− μ4

N∑

n=1

(
δ2xδ

2
yδ

2
z (e

n − en−1), en
)

= μ3

N∑

n=1

(
(δ2xδ

2
y + δ2xδ

2
z + δ2yδ

2
z )(e

n − en−1),
en − en−1 + en−1 + en

2

)
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Table 1 Maximum absolute
errors E(τ, h, Δα), associated
time convergence orders Order1τ
and CPU run times (in s) by c
h = 1

64 , �α = 1
128 and q = 2

β N E(τ, h, Δα) Order1τ CPU(s)

8 2.1994e−2 – 0.37

0.25 16 6.0727e−3 1.86 0.75

32 1.5688e−3 1.95 1.64

64 3.7238e−4 2.07 4.27

8 1.5099e−2 – 0.39

0.50 16 3.9846e−3 1.92 0.76

32 1.0176e−3 1.97 1.98

64 2.3685e−4 2.10 4.60

8 1.3064e−2 – 0.35

0.75 16 3.5761e−3 1.87 0.73

32 9.5618e−4 1.90 1.64

64 2.3383e−4 2.03 4.41

− μ4

N∑

n=1

(
δ2xδ

2
yδ

2
z (e

n − en−1),
en − en−1 + en−1 + en

2

)

≥ μ3

2

[
‖δxδyeN‖2 − ‖δxδye0‖2 + ‖δxδzeN‖2 − ‖δxδze0‖2 + ‖δyδzeN‖2

− ‖δyδze0‖2
]

+ μ4

2

[
‖δxδyδzeN‖2 − ‖δxδyδze0‖2

]
. (64)

Finally, employing Cauchy–Schwarz inequality and Young inequality ab ≤ εa2 +
1
4εb

2(a, b ∈ R, ε > 0), we arrive at

τ

N∑

n=1

(Rn, en) ≤ τ

N∑

n=1

∥
∥Rn

∥
∥‖en‖ ≤ μλ̃2

3

N∑

n=1

‖en‖2 + 3

4μλ̃2

N∑

n=1

‖Rn‖2. (65)

Substituting (59)–(65) into (58) and noticing e0 = 0, we can obtain

λ̃2τμ

N∑

n=1

‖en‖2 ≤ τμλ̃2

3

N∑

n=1

‖en‖2 + 3τ

4μλ̃2

N∑

n=1

‖Rn‖2. (66)

After simplification, we can get

2μλ̃2

3
τ

N∑

n=1

‖en‖2 ≤ 3

4μλ̃2
τ

N∑

n=1

‖Rn‖2. (67)

Thus, we obtain

τ

N∑

n=1

‖en‖2 ≤ Cτ

N∑

n=1

‖Rn‖2

≤ C(T )
(
τ 2 + h21 + h22 + h23 + �α2

)2
,

(68)

which finishes the proof. 
�
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Table 2 Maximum absolute
errors E(τ, h, Δα), associated
time convergence orders Order1τ
and CPU run times (in s) by
taking h = 1

64 , �α = 1
128 and

q = 3

β N E(τ, h, Δα) Order1τ CPU(s)

8 6.6218e−3 – 0.96

0.20 16 1.9702e−3 1.75 1.29

32 5.3269e−4 1.89 2.80

64 1.2885e−4 2.05 7.51

8 4.2271e−3 – 0.36

0.50 16 1.1896e−3 1.83 0.73

32 3.1289e−4 1.93 1.65

64 7.2402e−5 2.11 4.13

8 3.4720e−3 – 0.35

0.80 16 1.0309e−3 1.75 0.71

32 2.8730e−4 1.84 1.63

64 7.0872e−5 2.02 4.19

4 Numerical results and discussion

This section presents two test problems to show the accuracy and computational efficiency
of the proposed algorithm. Here, the ADI schemes (24)–(25) and (49)–(50) are adopted to
approximate the problem (1)–(3). Let M1 = M2 = M3 = M = L

h with L = 1 , T = 0.5 and
μ = 0.5. For this aim, we calculate the maximum error and associated convergence orders
as

E(τ, h,Δα) := max
1≤n≤N

‖un −Un‖∞, Order1τ := log2
(

E(τ,h,Δα)
E(τ/2,h,Δα)

)
,

Order2h := log2
(

E(τ,h,Δα)
E(τ,h/2,Δα)

)
, Order3Δα := log2

(
E(τ,h,Δα)
E(τ,h,Δα/2)

)
.

Numerical computations have been done in Matlab environment with a desktop computer
with Windows 10 and RAM 16 GB.

Example 1 Let us consider the two-dimensional problem (1)–(3) including an analytic solu-
tion

u(x, y, t) = tq sin(πx) sin(π y),

such that the weight function and the source term are

ω(α) = Γ (1 + q − α),

f (x, y, t) = tq−1
(
Γ (q + 1)(1 − t)(ln( 1t ))

−1 + 2μtπ2 + 2t1+βΓ (q+1)π2

Γ (1+β+q)

)
sin(πx) sin(π y),

respectively.

We solve this example with various values of parameters at total time T based on the
proposed method in the temporal and spatial dimensions. Tables 1 and 2 report the maximum
absolute errors, associated time convergence orders and CPU run times (in s) when the
space and distribution step sizes are fixed. It is seen that the proposed algorithm (49)–(50)
is second-order convergent in the time direction. Tables 3 and 4 list the maximum absolute
errors, associated time convergence orders and CPU run times (in s) when the time and
distributed-order step sizes are fixed. We observe that the proposed method (49)–(50) is
second-order convergent in the spatial direction. Table 5 displays the maximum absolute
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Table 3 Maximum absolute
errors E(τ, h, Δα), associated
space convergence orders Order2h
and CPU run times (in s) by
choosing τ = 1

256 , �α = 1
256

and q = 2

β M E(τ, h, Δα) Order2h CPU(s)

2 5.0548e−2 – 0.30

0.25 4 1.1622e−2 2.12 0.61

8 2.7704e−3 2.07 1.38

16 6.0912e−4 2.19 3.46

2 4.9076e−2 – 0.24

0.50 4 1.1354e−2 2.11 0.61

8 2.7332e−3 2.06 1.38

16 6.2403e−4 2.13 3.12

2 4.7521e−2 – 0.24

0.75 4 1.1041e−2 2.11 0.60

8 2.6564e−3 2.06 1.36

16 6.0393e−4 2.14 3.10

Table 4 Maximum absolute
errors E(τ, h, Δα), associated
space convergence orders Order2h
and CPU run times (in s) by
considering τ = 1

256 , �α = 1
256

and q = 3

β M E(τ, h, Δα) Order2h CPU(s)

2 1.9100e−2 – 0.27

0.30 4 4.5511e−3 2.07 0.61

8 1.1031e−3 2.04 1.40

16 2.5300e−4 2.12 3.17

2 1.7760e−2 – 0.25

0.50 4 4.2680e−3 2.06 0.62

8 1.0391e−3 2.04 1.39

16 2.4122e−4 2.11 3.20

2 1.6601e−2 – 0.24

0.70 4 4.0151e−3 2.05 0.59

8 9.7821e−4 2.04 1.41

16 2.2622e−4 2.11 3.19

errors, distributed orders and CPU run times (s) and reflects the second order in distributed-
order. Looking at Tables 1, 2, 3, 4 and 5 as a whole, we see that the proposed method has less
time-consuming in the case of the two-dimensional problem. Figure 2 depicts the temporal
convergence order when h = 1

64 , �α = 1
128 and q = 2, while Fig. 3 represents the spatial

convergence order when fixed τ = 1
256 and �α = 1

256 . Finally, Fig. 4 demonstrates the
distributed convergence order for fixed τ = 1

380 , h = 1
55 and q = 3.

To show the efficiency of the ADI algorithm, we show the maximum errors, spatial con-
vergence orders and CPU run times for the ADI FD scheme and the standard finite difference
(SFD) scheme in Table 6. FromTable 6we can see that the errors do not havemuch difference
between the two methods, at the same time, our ADI method has a better spatial convergence
order and a shorter running time. Then we present Fig. 1, which intuitively illustrate the
efficiency of the proposed method. In summary, these demonstrate the competitiveness of
the ADI algorithm (Figs. 2, 3, 4).
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Table 5 Maximum absolute
errors E(τ, h, Δα), distributed
orders Order3�α

and CPU run

times (in s) with τ = 1
380 ,

h = 1
55 and q = 3

β 2J E(τ, h, Δα) Order3�α
CPU(s)

2 3.8236e−4 – 1.96

0.25 4 9.2675e−5 2.04 2.28

8 2.2105e−5 2.07 2.96

16 5.6439e−6 1.97 4.19

2 4.5539e−4 – 2.07

0.50 4 1.0998e−4 2.05 2.55

8 2.5598e−5 2.10 2.98

16 5.8311e−6 2.13 4.24

2 5.3440e−4 – 1.96

0.75 4 1.2979e−4 2.04 2.24

8 3.0661e−5 2.08 2.89

16 7.0517e−6 2.12 4.12
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ADI FD scheme
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Fig. 1 The CPU run times with τ = 1
400 , �α = 1

32 , μ = 0.1 and q = 2 for the ADI FD scheme and the SFD
scheme

Table 6 Maximum absolute errors E(τ, h, Δα), the corresponding spatial orders Order2h and CPU run times

(in s) with τ = 1
400 , �α = 1

32 , q = 2 and μ = 0.1 for the ADI FD scheme and the SFD scheme

β M E(τ, h, Δα) ADI FDOrder2h CPU(s) E(τ, h, Δα) SFDOrder2h CPU(s)

4 1.0415e−2 – 0.24 1.0418e−2 – 0.41

8 2.5580e−3 2.03 0.45 2.5611e−3 2.02 0.54

0.50 16 6.2889e−4 2.02 1.04 6.3199e−4 2.02 1.18

32 1.4880e−4 2.08 3.21 1.5190e−4 2.06 3.72

64 2.9271e−5 2.35 11.04 3.2333e−5 2.23 23.98

128 5.8827e−6 2.31 35.46 5.0315e−6 2.68 141.76

123



236 Page 22 of 27 T. Guo et al.

100 101 102

N

10-4

10-3

10-2

10-1

M
ax

 E
rr

or

Order = 2.00
 = 0.25
 = 0.75

Fig. 2 The time convergence order with h = 1
64 , �α = 1

128 and q = 2
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Fig. 3 The space convergence order with τ = 1
256 , �α = 1

256 and q = 2

Example 2 Consider the three-dimensional problem (1)–(3) including an analytic solution
u(x, y, z, t) = tq sin(πx) sin(π y) sin(π z) such that the weight function and the source term
are

ω(α) = Γ (1 + q − α)
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100 101 102

2J

10-6

10-5

10-4

10-3

10-2

10-1

100

M
ax

 E
rr

or

Order = 2.00
 = 0.25
 = 0.75

Fig. 4 The distributed convergence order when τ = 1
380 , h = 1

55 and q = 3

and

f (x, y, z, t) = tq−1
(
Γ (q + 1)(1 − t)(ln( 1t ))

−1 + 3μtπ2 + 3t1+βΓ (q+1)π2

Γ (1+β+q)

)

sin(πx) sin(π y) sin(π z),

respectively.

We simulate this example with different values of parameters at total time T based on
the proposed method in the temporal and spatial dimensions. Tables 7 and 8 extract the
maximum absolute errors, associated time convergence orders and CPU run times (in s) when
the space and distribution step sizes are fixed. It is observed that the proposed method (49)–
(50) is second-order convergent in the time direction. Tables 9 and 10 report the maximum
absolute errors, associated time convergence orders and CPU run times (in s) when the time
and distributed-order step sizes are fixed. It is seen that the proposed method (49)–(50) is
second-order convergent in the space direction. Table 11 shows themaximum absolute errors,
distributed orders and CPU run times (s) and reflects the second order in distributed-order.
Looking at Tables 7, 8, 9, 10 and 11 as a whole, we observe that the proposed method has
less time-consuming in the case of the three-dimensional problem.

5 Concluding remarks

This paper analyzed and constructed the ADI difference approaches in two/three dimen-
sions for distributed-order integrodifferential equations. The proposed method computed the
unknown solution in two parts. First, the distributed-order time-fractional derivative and the
RLFI termwere approximated by using the weighted and shifted Grünwald–Letnikov expan-
sion and second-order CQ, respectively. Second, the spatial discretization was obtained by
the general centered FD method. The convergence of the ADI difference approaches was
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Table 7 Maximum absolute
errors E(τ, h, Δα), associated
time convergence orders Order1τ
and CPU run times (in s) when
h = 1

50 , �α = 1
64 and q = 2

β N E(τ, h, Δα) Order1τ CPU(s)

8 5.5624e−2 – 18.84

0.25 16 1.4655e−2 1.92 44.01

32 3.5595e−3 2.04 92.88

64 8.2279e−4 2.11 218.58

8 3.6510e−2 – 21.23

0.50 16 9.0771e−3 2.01 43.84

32 2.2130e−3 2.04 95.91

64 5.1091e−4 2.11 223.00

8 3.0199e−2 – 20.20

0.75 16 7.8655e−3 1.94 43.42

32 2.0293e−3 1.95 94.35

64 4.9437e−4 2.04 221.56

Table 8 Maximum absolute
errors E(τ, h, Δα), associated
time convergence orders Order1τ
and CPU run times (in s) by
considering h = 1

50 , �α = 1
64

and q = 3

β N E(τ, h, Δα) Order1τ CPU(s)

8 1.4204e−2 – 20.65

0.25 16 4.0466e−3 1.81 43.66

32 1.0497e−3 1.95 93.92

64 2.4798e−4 2.08 220.18

8 9.6892e−3 – 19.39

0.50 16 2.6718e−3 1.86 44.42

32 6.9237e−4 1.95 94.78

64 1.6210e−4 2.09 217.15

8 8.0609e−3 – 19.39

0.75 16 2.3303e−3 1.79 47.54

32 6.3695e−4 1.87 106.71

64 1.5756e−4 2.02 235.36

Table 9 Maximum absolute
errors E(τ, h, Δα), associated
space convergence orders Order2h
and CPU run times (in s) by
taking τ = 1

420 , �α = 1
64 and

q = 2

β M E(τ, h, Δα) Order2h CPU(s)

4 1.2116e−2 – 2.44

0.25 8 2.9004e−3 2.06 13.17

12 1.2343e−3 2.11 33.55

16 6.5411e−4 2.21 68.66

4 1.1929e−2 – 2.20

0.50 8 2.8740e−3 2.05 12.71

12 1.2357e−3 2.08 33.12

16 6.6513e−4 2.15 68.62

4 1.1704e−2 – 2.41

0.75 8 2.8185e−3 2.05 12.73

12 1.2096e−3 2.09 37.92

16 6.4909e−4 2.16 72.50
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Table 10 Maximum absolute
errors E(τ, h, Δα), associated
space convergence orders Order2h
and CPU run times (in s) with
τ = 1

420 , �α = 1
64 and q = 3

β M E(τ, h, Δα) Order2h CPU(s)

4 5.1548e−3 – 2.30

0.25 8 1.2485e−3 2.05 12.79

12 5.3770e−4 2.08 35.23

16 2.8984e−4 2.15 69.22

4 4.8648e−3 – 2.24

0.50 8 1.1846e−3 2.04 13.54

12 5.1347e−4 2.06 34.65

16 2.7933e−4 2.12 73.87

4 4.5991e−3 – 2.19

0.75 8 1.1204e−3 2.04 14.52

12 4.8469e−4 2.07 35.63

16 2.6283e−4 2.13 76.62

Table 11 Maximum absolute
errors E(τ, h, Δα), distributed
orders Order3�α

and CPU run

times (in s) by choosing τ = 1
502 ,

h = 1
52 and q = 3

β 2J E(τ, h, Δα) Order3�α
CPU(s)

2 2.6350e−4 – 478.10

0.25 4 6.3720e−5 2.05 533.91

8 1.5686e−5 2.02 624.31

16 4.6653e−6 1.75 830.67

2 3.1671e−4 – 424.66

0.50 4 7.6038e−5 2.06 469.31

8 1.7817e−5 2.09 566.37

16 4.4774e−6 1.99 815.06

2 3.7715e−4 – 436.54

0.75 4 9.1408e−5 2.04 461.00

8 2.1820e−5 2.07 567.59

16 5.5278e−6 1.98 740.13

thoroughly proven and verified numerically. Numerical experiments highlighted the validity
of the method and supported the theoretical predictions.

Acknowledgements The authors are grateful to three anonymous referees and editors for their valuable
comments and helpful suggestions to improve the quality of this paper.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

Abbaszadeh M, Dehghan M (2017) An improved meshless method for solving two-dimensional distributed
order time-fractional diffusion-wave equation with error estimate. Numer Algorithms 75(1):173–211

123



236 Page 26 of 27 T. Guo et al.

Abdelkawy M, Amin A, Lopes AM (2022) Fractional-order shifted legendre collocation method for solving
non-linear variable-order fractional Fredholm integro-differential equations. ComputApplMath 41(1):1–
21

Akram T, Abbas M, Ali A (2021) A numerical study on time fractional Fisher equation using an extended
cubic B-spline approximation. J Math Comput Sci 22(1):85–96

Alia A, AbbasbM, Akramc T (2021) New group iterative schemes for solving the two-dimensional anomalous
fractional sub-diffusion equation. J Math Comput Sci 22(2):119–127

Atanackovic TM, Pilipovic S, Zorica D (2009) Time distributed-order diffusion-wave equation. i. volterra-type
equation. Proc R Soc A: Math Phys Eng Sci 465(2009):1869–1891

Bagley RL, Torvik PJ (2000) On the existence of the order domain and the solution of distributed order
equations—Part i. Int J Appl Math 2(2000):865–882

Behera S, Ray SS (2022) A wavelet-based novel technique for linear and nonlinear fractional Volterra–
Fredholm integro-differential equations. Comput Appl Math 41(2):1–28

Caputo M (2001) Distributed order differential equations modelling dielectric induction and diffusion. Fract
Calc Appl Anal 4:421–442

ChenH, LüS,ChenW(2016) Finite difference/spectral approximations for the distributed order time fractional
reaction–diffusion equation on an unbounded domain. J Comput Phys 315:84–97

Chen H, Gan S, Xu D, Liu Q (2016) A second-order BDF compact difference scheme for fractional-order
Volterra equation. Int J Comput Math 93(7):1140–1154

Du R, Hao ZP, Sun Z (2016) Lubich second-order methods for distributed-order time-fractional differential
equations with smooth solutions. East Asian J Appl Math 6(2):131–151

Gao Gh, Sun Z (2016) Two alternating direction implicit difference schemes for solving the two-dimensional
time distributed-order wave equations. J Sci Comput 69(2):506–531

Gao G, Zz S (2016) Two alternating direction implicit difference schemes for two-dimensional distributed-
order fractional diffusion equations. J Sci Comput 66(3):1281–1312

Gao G, Alikhanov AA, Zz S (2017) The temporal second order difference schemes based on the interpolation
approximation for solving the time multi-term and distributed-order fractional sub-diffusion equations.
J Sci Comput 73(1):93–121

Gao X, Liu F, Li H, Liu Y, Turner I, Yin B (2020) A novel finite element method for the distributed-order time
fractional Cable equation in two dimensions. Comput Math Appl 80(5):923–939

Hilfer R (2000) Applications of fractional calculus in physics. World Scientific
Huang Q, Qi Rj, Qiu W (2021) The efficient alternating direction implicit Galerkin method for the nonlocal

diffusion-wave equation in three dimensions. J Appl Math Comput pp 1–21
Jian HY,Huang TZ, GuXM, ZhaoXL, ZhaoYL (2021) Fast second-order implicit difference schemes for time

distributed-order and Riesz space fractional diffusion-wave equations. Comput Math Appl 94:136–154
Jin B, Lazarov R, Sheen D, Zhou Z (2016) Error estimates for approximations of distributed order time

fractional diffusion with nonsmooth data. Fract Calc Appl Anal 19(1):69–93
Katsikadelis JT (2014) Numerical solution of distributed order fractional differential equations. J Comput

Phys 259:11–22
Kochubei AN (2008) Distributed order calculus and equations of ultraslow diffusion. J Math Anal Appl

340(1):252–281
Kumar S, SahaRay S (2021)Numerical treatment for burgers-fisher and generalizedBurgers–Fisher equations.

Math Sci 15(1):21–28
LiL,XuD,LuoM(2013)Alternatingdirection implicitGalerkinfinite elementmethod for the two-dimensional

fractional diffusion-wave equation. J Comput Phys 255:471–485
Liu Y, Du Y, Li H, He S, GaoW (2015) Finite difference/finite element method for a nonlinear time-fractional

fourth-order reaction–diffusion problem. Comput Math Appl 70(4):573–591
Liu Y, Du Y, Li H, Li J, He S (2015) A two-grid mixed finite element method for a nonlinear fourth-order

reaction–diffusion problem with time-fractional derivative. Comput Math Appl 70(10):2474–2492
LopesAM,Machado JT (2021)Multidimensional scaling analysis of generalizedmean discrete-time fractional

order controllers. Commun Nonlinear Sci Numer Simul 95:105657
Lopez-Marcos J (1990)Adifference scheme for a nonlinear partial integrodifferential equation. SIAMJNumer

Anal 27(1):20–31
Lubich C (1988) Convolution quadrature and discretized operational calculus. I. Numer Math 52(2):129–145
Lubich C (1986) Discretized fractional calculus. SIAM J Math Anal 17(3):704–719
Meerschaert MM, Tadjeran C (2004) Finite difference approximations for fractional advection–dispersion

flow equations. J Comput Appl Math 172(1):65–77
Meerschaert MM, Nane E, Vellaisamy P (2011) Distributed-order fractional diffusions on bounded domains.

J Math Anal Appl 379(1):216–228

123



Efficient alternating direction implicit numerical approaches… Page 27 of 27 236

MoghaddamB,DabiriA, LopesAM,Machado J (2019)Numerical solution ofmixed-type fractional functional
differential equations using modified Lucas polynomials. Comput Appl Math 38(2):1–12

Morgado ML, Rebelo M (2015) Numerical approximation of distributed order reaction–diffusion equations.
J Comput Appl Math 275:216–227

Naber M (2004) Distributed order fractional sub-diffusion. Fractals 12(01):23–32
Nakhushev AM (2003) Fractional calculus and its application, p 272
Nakhushev AM (1998) On the positivity of continuous and discrete differentiation and integration operators

that are very important in fractional calculusand in the theory of equations of mixed type. Differ Uravn
34(1):101–109

Nikan O, Avazzadeh Z (2021) Numerical simulation of fractional evolution model arising in viscoelastic
mechanics. Appl Numer Math 169:303–320

Nikan O, Avazzadeh Z, Machado JT (2021) Numerical approach for modeling fractional heat conduction in
porous medium with the generalized Cattaneo model. App Math Model 100:107–124

NikanO, Avazzadeh Z,Machado JT (2021) Numerical study of the nonlinear anomalous reaction-subdiffusion
process arising in the electroanalytical chemistry. J Comput Sci 53:101394

Pani AK, Fairweather G, Fernandes RI (2010) Adi orthogonal spline collocation methods for parabolic partial
integro-differential equations. IMA J Numer Anal 30(1):248–276

Podlubny I (1999) Fractional differential equations. Academic Press, Elsevier, San Diego
Pskhu AV (2004) On the theory of the continual integro-differentiation operator. Differ Equ 40:1
Pskhu AV (2005) Partial differential equations of fractional order. Nauka, Moscow
Qiao L, Qiu W, Xu D (2021) A second-order ADI difference scheme based on non-uniform meshes for the

three-dimensional nonlocal evolution problem. Comput Math Appl 102:137–145
Qiao L, Xu D, Qiu W (2022) The formally second-order BDF ADI difference/compact difference scheme for

the nonlocal evolution problem in three-dimensional space. Appl Numer Math 172:359–381
Qiu W, Chen H, Zheng X (2019) An implicit difference scheme and algorithm implementation for the one-

dimensional time-fractional burgers equations. Math Comput Simul 166:298–314
Qiu W, Xu D, Chen H, Guo J (2020) An alternating direction implicit Galerkin finite element method for

the distributed-order time-fractional mobile-immobile equation in two dimensions. Comput Math Appl
80(12):3156–3172

Qiu W, Xu D, Guo J, Zhou J (2020) A time two-grid algorithm based on finite difference method for the two-
dimensional nonlinear time-fractionalmobile/immobile transportmodel.NumerAlgorithms 85(1):39–58

Sun Z (2009) Themethod of order reduction and its application to the numerical solutions of partial differential
equations. Science Press, Beijing

TarasovV (2021) From fractional differential equationswithHilfer derivatives. ComputApplMath 40(8):1–17
Tarasov VE (2021) Integral equations of non-integer orders and discrete maps with memory. Mathematics

9(11):1177
TianW, ZhouH,DengW (2015)A class of second order difference approximations for solving space fractional

diffusion equations. Math Comput 84(294):1703–1727
Wang Z, Vong S (2014) Compact difference schemes for the modified anomalous fractional sub-diffusion

equation and the fractional diffusion-wave equation. J Comput Phys 277:1–15
Wang Z, Vong S (2014) A high-order exponential ADI scheme for two dimensional time fractional convection–

diffusion equations. Comput Math Appl 68(3):185–196
Xu D (1997) The global behavior of time discretization for an abstract Volterra equation in Hilbert space.

Calcolo 34(1):71–104
YangX, ZhangH,XuD (2018)WSGD-OSC scheme for two-dimensional distributed order fractional reaction–

diffusion equation. J Sci Comput 76(3):1502–1520
Zhang Y, Sun Z-Z, Wu H (2011) Error estimates of Crank–Nicolson-type difference schemes for the subdif-

fusion equation. SIAM J Numer Anal 49(6):2302–2322
Zhang H, Liu F, Jiang X, Turner I (2022) Spectral method for the two-dimensional time distributed-order

diffusion-wave equation on a semi-infinite domain. J Comput Appl Math 399:113712

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Efficient alternating direction implicit numerical approaches for multi-dimensional distributed-order fractional integro differential problems
	Abstract
	1 Introduction
	2 Numerical description and theoretical analysis for the two-dimensional case
	2.1 Preliminary
	2.2 The derivation of the ADI difference approach in two dimensions
	2.3 Analysis of the ADI difference approach

	3 Numerical method and error analysis for the three-dimensional case
	3.1 The derivation of the ADI difference scheme in three dimensions
	3.2 Analysis of the ADI difference approach in three case

	4 Numerical results and discussion
	5 Concluding remarks
	Acknowledgements
	References




