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Abstract
The study deals with an initial-value problem for a singularly perturbed nonlinear Fredholm
integro-differential equation. Parameter explicit theoretical bounds on the continuous solu-
tion and its derivative are derived. To solve the approximate solution to this problem, a new
difference scheme is constructed with the finite difference method by using the interpolated
quadrature rules with the remaining terms in integral form. Parameter uniform error estimates
for the approximate solution are established. It is proved that the method converges in the
discrete maximum norm, uniformly with respect to the perturbation parameter. Numerical
results are given to illustrate the parameter-uniform convergence of the numerical approxi-
mations.
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1 Introduction

Fredholm integro-differential equations (FIDEs) serve asmathematicalmodels inmany fields
of science and engineering. FIDEs arise in fluid dynamics, physics, electro dynamics of com-
plex medium, economics, biological models, epidemic models, many models of population
growth, neural network modeling, oscillation theory, astronomy, chemistry, heat and mass
transfer, theory of elasticity (Amiraliyev et al. 2020; Emamzadeh and Kajani 2010; Jerri
1999). In general, it is usually quite difficult to obtain exact solution of FIDEs. Because of
this reason we need suitable discretization methods with high accuracy for solving FIDEs.

In this work, we deal with a singularly perturbed nonlinear Fredholm integro-differential
equation (SPNFIDE) as follows:

εu′(t) + f (t, u(t)) + λ

T∫

0

K (t, s, u(s))ds = 0, t ∈ I = (0, T ], (1)

u(0) = A, (2)

where 0 < ε << 1 is the perturbation parameter, A is given constant, λ is a real parameter,
f (t, u)((t, u) ∈ I × R) and K (t, s, u(s))((t, s, u) ∈ I × I × R) are sufficiently smooth
functions, I = [0, T ]. Furthermore,

∂ f

∂u
≥ α > 0.

Under these assumptions, there exist a unique solution u to problem (1)–(2). Besides, the
existence and uniqueness studies of the solutions of nonlinear FIDEs can be found in Jerri
(1999), O’Regan and Meehan (1998) and reference therein.

Singularly perturbed problems involve a small perturbation parameter, ε multiplied with
the highest-order derivative terms. Such problems arise in applications of mathematics to
problems in numerous fields of sciences and engineering. Theory of plates, semi-conductor
device models, fluid mechanics, in fluid flow at high Reynolds number, quantum mechanics,
reaction–diffusion processes, elasticity, etc. are among these. Due to the presence of boundary
layers, the solution of these types of problems vary suddenly in boundary layers when ε

approaches zero. In regions outside the layers, the solution behaviors regularly and varies
slowly (Cakir and Arslan 2021; Cimen and Cakir 2017; Doolan et al. 1980; Farell et al. 2000;
Miller et al. 2012; Nayfeh 1993; O’Malley 1991; Roos et al. 2008).

In the last decades, there has received much attention in the numerical solution of integral
equations. In literature, there are many different numerical models to solve such equations.
Ebrahimi and Rashidina (Ebrahimi and Rashidinia 2015) presented a collocation method for
solving linear and nonlinear Fredholm and Volterra integral equations, using the globally
defined B-spline and auxiliary basis functions. Wang et al. Wang et al. (2019) studied on
numerical solution of integro-differential equations of high-order Fredholm by the simplified
reproducing kernel method. Maleknejad and Attary Maleknejad and Attary (2011) given
Cattani’s method based on the collocation approach for solving linear FIDEs. Emamzadeh
and Kajani Emamzadeh and Kajani (2010) proposed a numerical approach to solve the
nonlinear Fredholm integral equations of the second kind. Najafi Najafi (2020) introduced
Nyström-quasilinearization method for solving nonlinear weakly singular Fredholm integral
equations. Asgari et al. Asgari et al. (2019) studied on an iterative method to solve one- and
two-dimensional linear Fredholm integral equations.
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The above-mentioned articles, related to Fredholm integral equationswere only concerned
with the regular cases (i.e., when the boundary layers are absent). Studies on singularly per-
turbed Fredholm integro-differential equations (SPFIDEs) have attracted attention in recent
years (Amiraliyev et al. 2018, 2020; Cimen and Cakir 2021; Durmaz and Amiraliyev 2021).
However, although there are many studies on linear SPFIDEs in the literature, we could not
find any studies on nonlinear SPFIDEs. These gaps in the literature are the motivation for
our study. In addition, methods such as Reproducing kernel method, Fourier spectral method
and Barycentric interpolation collocation method presented for the solution of the nonlinear
singularly perturbed problems have recently attracted attention (Han and Wang 2022; Han
et al. 2022; Liu et al. 2018).

In this article, we try to develop an efficient fitted difference scheme on Shishkin mesh for
the numerical solution of the problem (1)–(2). The difference scheme is constructed by the
method of integral identities with the use of appropriate interpolating quadrature rules with
remainder terms in integral form.

The outline of the paper is organized as follows. In Sect. 2, we indicate the asymptotic
behavior of the exact solution and its derivative. In Sect. 3, we construct the finite difference
method and describe a special piecewise uniform mesh. Convergence and error analysis of
the difference discretization are presented in Sect. 4. Some numerical examples are given in
Sect. 5, which demonstrate the efficiency and the proposed method.

Throughout the paper,C denotes a generic positive constant. Some specific, fixed constants
of this kind are indicated by subscripting C . For any continuous function g(t), we use ‖g‖∞
for the continuous maximum norm on the corresponding interval.

2 Bound of the exact solution and its derivative

In this section, we give bound of the exact solution and its derivative, which are needed in
later sections for the analysis of appropriate numerical solution.

Lemma 1 Suppose that the following assumptions are fulfilled

∂m f

∂tm
,
∂n f

∂un
∈ C1(I × R),

∂mK

∂tm
,
∂nK

∂sn
,
∂k K

∂uk ∈ C1(I × I × R);m, n, k = 0, 1 (3)

and

|λ| <
α

max
0≤t≤T

T∫

0

|G(t, s)| ds
.

Then, the solution u(t) of the problem (1)–(2) satisfies the estimates

‖u‖∞ ≤ C0, (4)

and

∣∣u′(t)
∣∣ ≤ C

{
1 + 1

ε
e− αt

ε

}
, 0 ≤ t ≤ T , (5)
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where

C0 = |A| + α−1 ‖q‖∞

1 − α−1 |λ| max
0≤t≤T

T∫

0

|G(t, s)| ds
,

G(t, s) = ∂

∂u
K (t, s, γ u), 0 < γ < 1,

q(t) = − f (t, 0) − λ

T∫

0

K (t, s, 0)ds.

Proof We first prove (4). Applying the mean value theorem to the functions in (1), we have

εu′(t) + p(t)u(t) + λ

T∫

0

G(t, s)u(s)ds = q(t), t ∈ I , (6)

where

p(t) = ∂

∂u
f (t, θu), 0 < θ < 1.

From the Eq. (6), we can write the following form:

|u(t)| ≤ |u(0)| e
− 1

ε

t∫

0

p(η)dη

+ 1

ε

t∫

0

|q(τ )| e
− 1

ε

t∫

τ

p(η)dη

dτ

+|λ|
ε

t∫

0

⎡
⎣

T∫

0

|G(t, s)| |u(s)| ds
⎤
⎦ e

− 1
ε

t∫

τ

p(η)dη

dτ

≤ |A| e− αt
ε + ‖q‖∞

ε

T∫

0

e− α(t−τ)
ε dτ

+|λ|
ε

t∫

0

⎡
⎣

T∫

0

|G(t, s)| |u(s)| ds
⎤
⎦ e− α(t−τ)

ε dτ.

From here, we take

‖u‖∞ ≤ |A| + α−1 ‖q‖∞
(
1 − e− αt

ε

)

+α−1 |λ|
(
1 − e− αt

ε

)
‖u‖∞ max

0≤t≤T

T∫

0

|G(t, s)| ds,

which proves (6).
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To prove (5), differentiating Eq. (1) we have

εu′′(t) + b(t)u′(t) = F(t), (7)

where

b(t) = ∂

∂u
f (t, u),

and

F(t) = − ∂

∂t
f (t, u) − λ

T∫

0

∂

∂t
K (t, s, u(s))ds.

From the relations (3) and (4), we have

|F(t)| ≤ C . (8)

Using (1), we can obtain

∣∣u′(0)
∣∣ ≤ | f (0, A)|

ε
+ |λ|

ε

T∫

0

|K (0, s, u(s))| ds ≤ C

ε
. (9)

It follows from (7) that

∣∣u′(t)
∣∣ ≤ C

ε
e− αt

ε + ‖F‖∞
ε

T∫

0

e− α(t−τ)
ε dτ

≤ C

ε
e− αt

ε + α−1 ‖F‖∞
(
1 − e− αt

ε

)
.

Thus we arrive at (5). �	

3 Discretization andMesh

To give an approximation of the (1)–(2), we integrate (1) over (ti−1, ti ):

εut,i + h−1
i

ti∫

ti−1

f (t, u)dt + h−1
i λ

ti∫

ti−1

⎡
⎣

T∫

0

K (t, s, u)ds

⎤
⎦ dt = 0, (10)

where ut,i = (ui − ui−1)/hi , ui = u(ti ) and hi = ti − ti−1 for 1 ≤ i ≤ N .
If integration by parts is applied to identity (10), we then obtain the relation

εut,i + f (ti , ui ) + λ

T∫

0

K (ti , s, u(s))ds + R(1)
i + R(2)

i = 0, (11)
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where the remainder terms are

R(1)
i = −h−1

i

ti∫

ti−1

(ξ − ti−1)
d

dξ
f (ξ, u(ξ)) dξ, (12)

and

R(2)
i = −λh−1

i

ti∫

ti−1

(ξ − ti−1)
d

dξ

⎛
⎝

T∫

0

K (ξ, s, u(s)) ds

⎞
⎠ dξ. (13)

For integral term involving kernel function, using the composite right-side rectangle rule, we
obtain the relation as follows:

λ

T∫

0

K (ti , s, u(s))ds = λ

N∑
j=1

hi K (ti , s j , u j ) + R(3)
i , (14)

with

R(3)
i = λ

N∑
j=1

ti∫

ti−1

(
t j−1 − ξ

) d

dξ
K (ti , ξ, u(ξ))dξ. (15)

By the relations (10), (11) and (14) for u(ti ), we get the following exact relation:

εut,i + f (ti , ui ) + λ

N∑
j=1

hi K (ti , s j , u j ) + Ri = 0, i = 1, 2, . . . , N , (16)

u0 = A, (17)

where the remainder term Ri is defined by

Ri = R(1)
i + R(2)

i + R(3)
i . (18)

Neglecting Ri in (16), we may suggest the following difference scheme for approximating
(1)–(2):

εyt,i + f (ti , yi ) + λ

N∑
j=1

hi K (ti , s j , y j ) = 0, i = 1, 2, . . . , N , (19)

y0 = A. (20)

The difference scheme (19)–(20) to be ε-uniformly convergent in what follows we will use
the fitted piecewise uniform mesh (Shishkin type mesh). For the even number N , Shishkin-
type mesh divides each of the interval [0, σ ] and [σ, T ] into N/2 equidistant subintervals.
The transition point σ which separates of fine and coarse portions of the mesh is defined by

σ = min

{
T

2
, α−1ε ln N

}
.

We denote the stepsizes in there subintervals as follows:

h = 2σ

N
, H = 2(l − σ)

N
,

h ≤ lN−1, lN−1 ≤ H ≤ 2lN−1, h + H = 2lN−1.
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The mesh points of ωN are being defined by

ωN =
{
ti = ih, i = 1, 2, . . . , N/2,
ti = σ + (

i − N
2

)
H , i = N/2 + 1, . . . , N .

and ωN = ωN ∪ {t0 = 0} .

4 Uniform error estimates

To investigate the convergence of the method, note that zi = yi − ui (0 ≤ i ≤ N ) is the
solution of the following discrete problem:

εzt,i + [ f (ti , yi ) − f (ti , ui )]

+λ

N∑
j=1

hi
[
K (ti , s j , y j ) − K (ti , s j , u j )

] = Ri , 1 ≤ i ≤ N , (21)

z0 = 0. (22)

Lemma 2 Under the conditions of Lemma 1, for the remainder term Ri of the scheme (19)–
(20), the estimate

‖R‖∞,ωN
≤ CN−1 ln N (23)

holds.

Proof We first consider the relation (12). Taking into account (4) and (5) in (12), then we
have the inequality

∣∣∣R(1)
i

∣∣∣ ≤ h−1
i

ti∫

ti−1

(ξ − ti−1)

[∣∣∣∣ ∂

∂ξ
f (ξ, u(ξ))

∣∣∣∣ +
∣∣∣∣ ∂

∂u
f (ξ, u(ξ))

∣∣∣∣
∣∣u′(ξ)

∣∣
]
dξ

≤ h−1
i

ti∫

ti−1

(ξ − ti−1)
∣∣1 + u′(ξ)

∣∣ dξ

≤ C

⎧⎨
⎩hi +

ti∫

ti−1

∣∣u′(ξ)
∣∣ dξ

⎫⎬
⎭ , i = 1, 2, . . . , N . (24)

Next we analyze the relation (13). Taking into account (4) in (13), we get the inequality

∣∣∣R(2)
i

∣∣∣ ≤ |λ| h−1
i

ti∫

ti−1

(ξ − ti−1)

∣∣∣∣∣∣
d

dξ

T∫

0

K (ξ, s, u(s)) ds

∣∣∣∣∣∣ dξ

≤ |λ| h−1
i

ti∫

ti−1

(ξ − ti−1)

T∫

0

∣∣∣∣ ∂

∂ξ
K (ξ, s, u(s))

∣∣∣∣ dsdξ

≤ Chi , i = 1, 2, . . . , N . (25)
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Finally, we denote the relation (15). By (4) and (5) in (15), we can write the following
inequality:

∣∣∣R(3)
i

∣∣∣ ≤ |λ|
N∑
j=1

ti∫

ti−1

(
t j−1 − ξ

) ∣∣∣∣ ∂

∂ξ
K (ti , ξ, u(ξ)) + ∂

∂u
K (ti , ξ, u(ξ))u′(ξ)

∣∣∣∣ dξ

≤ C
N∑
j=1

ti∫

ti−1

(
t j−1 − ξ

) ∣∣1 + u′(ξ)
∣∣ dξ

≤ C max
1≤ j≤N

h j

ti∫

ti−1

∣∣1 + u′(ξ)
∣∣ dξ, i = 1, 2, . . . , N . (26)

Thus, substituting the inequalities (24), (25) and (26) in (18), we obtain

|Ri | ≤ C

⎧⎨
⎩hi +

ti∫

ti−1

∣∣u′(ξ)
∣∣ dξ

⎫⎬
⎭ , i = 1, 2, . . . , N . (27)

In the first case, we consider that σ = T
2 , T

2 < α−1ε ln N and h = H = T N−1. From (27)
we take

|Ri | ≤ C

ti∫

ti−1

(
1 + ε−1) dt = Ch

(
1 + ε−1)

≤ C
T

N

(
1 + 2

T
α−1 ln N

)
. (28)

It follows from (28) that

|Ri | ≤ CN−1 ln N , i = 1, . . . , N . (29)

In the second case, we consider σ = α−1ε ln N , and so α−1ε ln N < T
2 . We estimate Ri on

[0, σ ] and [σ, T ], separately. In the boundary layers [0, σ ], inequality (27) reduces to

|Ri | ≤ C
(
1 + ε−1) h ≤ C(2α−1εN−1 ln N + 2α−1N−1 ln N ).

Hence,

|Ri | ≤ CN−1 ln N , for i = 1, . . . ,
N

2
. (30)

We now estimate the remainder term Ri in the region [σ, T ]. From (27), we take

|Ri | ≤ C

⎧⎨
⎩H +

ti∫

ti−1

∣∣u′(t)
∣∣ dt

⎫⎬
⎭ .

Taking into account (5) here, we have

|Ri | ≤ C
{
H + α−1

(
e− αti−1

ε − e− αti
ε

)}
. (31)

123



A numerical approach for solving NFIDE... Page 9 of 14 259

Since

ti = α−1ε ln N +
(
i − N

2

)
H ,

we obtain

e− αti
ε = e

− α
ε

[
α−1ε ln N+

(
i− N

2

)
H
]

= N−1e
− α

ε

(
i− N

2

)
H ≤ N−1 (32)

and

e− αti−1
ε = e

− α
ε

[
α−1ε ln N+

(
i−1− N

2

)
H
]

= N−1e
− α

ε

(
i−1− N

2

)
H ≤ N−1. (33)

Substituting (32) and (33) into (31), we have

|Ri | ≤ C
{
2T N−1 + α−1N−1} .

Hence, it follows that

|Ri | ≤ CN−1, for i = N

2
+ 1, . . . , N . (34)

Combining the estimates (29), (30) and (34), we arrive at (23). �	
Lemma 3 If we assume the condition

|λ| <
α

max
1≤i≤N

∑N

j=1
hi
∣∣Gi j

∣∣ ,

then for the solution of the difference problem (21)–(22) the following estimate holds:

‖z‖∞ ≤ α−1

⎛
⎝1 − α−1 |λ| max

1≤i≤N

N∑
j=1

hi
∣∣Gi j

∣∣
⎞
⎠

−1

‖R‖∞ . (35)

Proof Applying the mean value theorem to function in (21), we get

εzt,i + ai zi + λ

N∑
j=1

hiGi j = Ri , 1 ≤ i ≤ N ,

where

ai = ∂

∂u
f (ti , ui + θ zi )

and

Gi j = ∂

∂u
K (ti , s j , u j + θ z j ), 0 < θ < 1.

According to maximum principle for the operator εzt,i + ai zi , we can write

‖z‖∞ ≤ α−1 ‖R‖∞ + α−1 |λ| ‖z‖∞ max
1≤i≤N

N∑
j=1

hi
∣∣Gi j

∣∣ ,

which immediately lead to (35). �	
Finally, we obtain the main results for this work.
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Table 1 The resulting errors eε,N and eN , convergence rates pN for test problem

ε N = 64 N = 128 N = 256 N = 512 N = 1024

2−2 0.0095961 0.0050309 0.0025761 0.0013037 0.0006559

0.93 0.97 0.98 0.99

2−4 0.0096366 0.0058458 0.0034276 0.0019566 0.0010963

0.72 0.77 0.81 0.84

2−6 0.0095653 0.0058027 0.0034023 0.0019421 0.0010882

0.72 0.77 0.81 0.84

2−8 0.0095479 0.0057921 0.0033961 0.0019386 0.0010862

0.72 0.77 0.81 0.84

2−10 0.0095436 0.0057895 0.0033946 0.0019377 0.0010857

0.72 0.77 0.81 0.84

2−12 0.0095425 0.0057889 0.0033942 0.0019375 0.0010856

0.72 0.77 0.81 0.84

2−14 0.0095422 0.0057887 0.0033941 0.0019375 0.0010856

0.72 0.77 0.81 0.84

2−16 0.0095422 0.0057887 0.0033941 0.0019375 0.0010856

0.72 0.77 0.81 0.84

eN 0.0096366 0.0058458 0.0034276 0.0019566 0.0010963

pN 0.72 0.77 0.81 0.84

Theorem 1 Under the conditions of Lemma 1, the solution of (1 )–(2) and the solution (13)–
(14) satisfy the estimate

‖y − u‖∞,ωN
≤ CN−1 ln N . (36)

Proof Combining the previous lemmas, we immediately arrive at (36). �	

5 Algorithm and numerical results

5.1 Algorithm

In this section, we present the following iterative technique for solving nonlinear problem
(19)–(20).

y(n)
i = Ai y

(n)
i−1 + Bi y

(n−1)
i − Ci − Di

ε
hi

+ ∂
∂ y f (ti , y

(n−1)
i ) + λhi

∂
∂ y K (ti , si , y

(n−1)
i )

, i = 1, 2, . . . , N ,

y(n)
0 = A,

where

Ai = ε

hi
, Bi = ∂

∂ y
f (ti , y

(n−1)
i ) + λhi

∂

∂ y
K (ti , si , y

(n−1)
i ),

Ci = f (ti , y
(n−1)
i ) + λhi K (ti , si , y

(n−1)
i ),
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Fig. 1 Numerical results of test problem for N = 64 and ε = 2−4

Di = λ

N∑
j=1

hi

[
K (ti , s j , y

(n−1)
j ) + ∂

∂ y
K (ti , s j , y

(n−1)
j ) ×

(
y(n)
j − y(n−1)

j

)]
, i �= j,

Di = 0, for i = j,

n = 1, 2, . . . , and y(0)
i is given.

5.2 Numerical example

We consider SPNFIDE in the form:

εu′(t) + 2u(t) + tanh(u(t)) + 1

4

∫ 1

0
t2 sin(u(s))ds + et = 0, 0 < t ≤ 1,

u(0) = 1.

As the exact solution u(t) of this problem unknown. Therefore, we use the double-mesh
principle to approximate the maximum errors on our mesh ωN . That is, we compare the
computed solutions with the solution on a mesh that is twice as fine (Doolan et al. 1980;
Farell et al. 2000). The initial guess used here is taken as y(0)

i = 1− e−ti and the number of
iterations n is chosen such that

max
i

∣∣∣y(n)
i − y(n−1)

i

∣∣∣ ≤ 10−5.
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2 12

2 8

2 4

Fig. 2 Numerical results of test problem for N = 256 and various ε

The two mesh difference is denoted by

eε,N = max
ωN

∣∣∣yε,N − ỹε,2N
∣∣∣ ,

where ỹε,2N is the numerical which comprises points of the original mesh ti ∈ ωN and their
midpoints ti+1/2 = (ti + ti+1)/2, i = 0, 1, . . . , N − 1.

Thus, the maximum errors are taken as

eN = max
ε

eε,N .

In addition, the orders of convergence and the ε-uniform rates of convergence are defined as

pε,N = ln(eε,N /eε,2N )/ ln 2, pN = ln(eN /e2N )/ ln 2.

The resulting errors eε,N and the orders of convergence pε,N for particular values of ε and
N , are listed in the Table 1.

To validate the applicability of the method, one test problem is considered for numerical
experimentation for different values of the perturbation parameter and mesh points. The
numerical results are listed in terms of the approximate errors, the rates of convergence
(see Table 1). Further, behavior of the numerical solution (see Figs. 1, 2) and the ε-uniform
convergence of the method is shown by the log-log plot (see Fig. 3). From the results in the
table, we observe that the maximum pointwise errors (eN ) decreases monotonically and the
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Fig. 3 Maximum point-wise errors of log–log plot for test problem

rates of convergence (pN ) increases monotonically when the number of mesh points (N )
increases. From Figs. 1 and 2, we observe that the solution of the example exhibit a boundary
layer t = 0. And from Fig. 3, we notice that the maximum pointwise errors are bounded by
O(N−1lnN ), which is proved in Theorem 1.

6 Conclusion

The singularly perturbed initial-value problem for a nonlinear first-order Fredholm integro-
differential equation is considered. To solve this problem, a fitted difference scheme on a
piecewise uniform mesh was presented. First order convergence except for a logarithmic
factor, in the discrete maximum norm, independently of the perturbation parameter was
obtained. The computed errors and rates of convergencewere displayed in Table 1 and plotted
Figs. 1, 2, 3 for the considered test problem, which supported of the theoretical results. These
results showed that the presented method was effective and accuracy. We point out that the
presented method in this article can be extended to other type of initial or boundary value
problems such as nonlinear SPFIDEs, reaction diffusion SPFIDEs.
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