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Abstract
To eliminate uncertainty, all data expressed by decision-makers must be processed correctly.
Themost usefulmathematicalmodels developed for this purpose are hybrid set types.Because
they collect all the features of the set types they contain under a single model. In this paper,
the bipolar soft rough sets, which are a combination of bipolar soft sets and rough sets, which
have been actively preferred in studies aimed at eliminating uncertainty in recent years, have
been taken into account. To use the bipolar soft rough sets discussed more actively in the
decision-making process, the focus is on handling the data expressed by different decision-
makers together. The aim of this paper is to develop the concept of "bipolar soft rough classes"
to aim to highlight this contribution to bipolar soft rough set theory. Thus, the concept of
bipolar soft rough classes is introduced and a more efficient decision-making algorithm for
uncertainty problems is built. Moreover, many novel concepts such as bipolar soft class,
bipolar soft partition and bipolar soft cover were proposed and some properties are examined
in detail.

Keywords Bipolar soft classes · Bipolar soft rough classes · Algorithm · Decision making

Mathematics Subject Classification 03E72 · 03E75 · 91B06

1 Introduction

Many mathematical approaches have been proposed to express many uncertainty problems
encountered in daily life in the most accurate way and thus to manage the decision-making
process in an ideal way. The first proposed mathematical approach was the fuzzy set theory
introduced into the literature by Zadeh (1965). This theory, which expresses the belonging
of an element to a set by the degree of membership, is a very successful approach. A great
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deal of articles has been done on these sets and some of their extensions (Asmus et al.
2017; Rodrigues et al. 2013; Tang et al. 2020; Kamacı et al. 2021; Xian et al. 2020). In
the following years, the rough set theory (Pawlak 1982), which was introduced as another
important set type, was proposed. In this theory given by Pawlak, equivalence relations are
used to overcome uncertainty. Although rough set theory is one of the oldest mathematical
approaches to overcome uncertainty, many studies are being conducted on it even today
(Sharma et al. 2020; Cekik and Uysal 2020; Zhang et al. 2020a, b; Luo et al. 2020; Hamed
et al. 2021; Demirtaş et al. 2020).

Until 1999, fuzzy set and rough set theories, which were the most important theories
to overcome uncertainty, were not practical in expressing decision-making approaches.
Molodtsov (1999), who thinks that the most important reason for this is due to the lack of
a parameterization tool, proposed soft (s-)sets as a new mathematical approach. To express
uncertainty problems in a practical way has enabled the development of more successful
approaches in decision-making processes and thus the results were obtained in a more ideal
way. Hence, s-sets have been successfully applied by many researchers to many areas such
as Riemann integration, smoothness of functions, theory of measurement, game theory, and
so on. Moreover, to overcome uncertainty, many different types of hybrid sets have been
constructed using s-set theory (Dalkılıç and Demirtas 2020a; Dalkılıç 2020; Khalil et al.
2020; Mukherjee and Das 2020; Wang et al. 2020; Riaz et al. 2021b; Kong et al. 2011).

To solve uncertainty problems in the most accurate way, fuzzy set, rough set and s-
set theories are the most important mathematical approaches and the relationships between
these theories have been discussed by Aktaş and Çağman (2007). Dubois and Prade (1990)
extended the notion of rough set to rough fuzzy set and fuzzy rough set. After Herawan and
Deris (2009) explained the connection between the soft set and the rough set, Feng and Liu
(2009) proposed soft rough sets as a new approach to overcoming uncertainty. Soft rough set
theory is a highly adopted mathematical approach in the literature, and studies (Riaz et al.
2019a, b; Feng et al. 2011) can be examined to learnmore about this theory. To further develop
this successful hybrid set type, Meng et al. (2011) proposed a soft rough fuzzy set. We can
say that the construction of more complex hybrid cluster types such as soft multi-rough set
(Riaz et al. 2021a), intuitionistic fuzzy soft rough set (Zhang 2012), soft fuzzy rough set
(Sun and Ma 2014), interval-valued neutrosophic soft rough set (Broumi and Smarandache
2015), Z-soft fuzzy rough set (Zhan et al. 2017), soft rough q-rung orthopair m-polar fuzzy
set (Ping et al. 2021), q-rung orthopair m-polar fuzzy soft rough set (Ping et al. 2021), linear
Diophantine fuzzy soft rough set (Riaz et al. 2020) and spherical linear diophantine fuzzy soft
rough set (Hashmi et al. 2021) in the following years has been important steps to overcome
the uncertainty.

Another successful mathematical model is the bipolar soft (bs-)set theory, which is a
generalization of s-sets proposed by Shabir and Naz (Shabir and Naz 2013). This theory is
built as a combination of two different s-sets, taking into account the NOT parameter set
of the existing parameter set. Moreover, a new definition has been proposed by Karaaslan
and Karataş (2015), allowing topological structures to be studied on bs-sets. Especially in
recent years, the studies on this set theory have increased with the realization that more
successful results are obtained by considering both aspects of the parameters (Kamacı and
Petchimuthu 2020; Demirtaş and Dalkılıç 2019; Mukherjee and Das 2020; Dalkılıç and
Demirtaş 2020b). Many different types of hybrid sets have been proposed by considering
soft sets together with other mathematical approaches mentioned above (Deli and Karaaslan
2020; Ali et al. 2017; Khan et al. 2019; Jana and Pal 2018). Besides these, uncertainty
problems can be quite different from each other, as well as the decision-making processes
encountered. Karaaslan (2016), who developed a decision-making algorithm for uncertainty
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problems focused on the selection of decision-makers, proposed the concept of s-rough
classes. It is important to be able to process all the data expressed by the decision-makers to
remove the uncertainty correctly. Therefore, it is more advantageous to use hybrid set types.
In this paper, bs-rough sets, which is a hybrid set type that has been widely used in data
processing recently, are examined. Thus, s-rough classes are generalized to bs-rough classes
and some of their associated properties are analyzed. The most important advantages of these
classes for decision-making problems encountered in uncertain environments can be given
as follows:

• It allows data expressed by different decision-makers to be processed together.
• Taking into account the NOT parameters of each parameter, it determines the selection

between objects better than s-rough classes.
• It is used as a tool to determine how effectively the current uncertainty can be expressed

by decision-makers.

The paper is structured as follows: In Sect. 2, we recall some basic notions in s-set, bs-set and
bs-S-rough set. Next, Sect. 3 is built to analyze the bs-classes and some required properties
needed to define bs-rough classes. In Sect. 4, bipolar soft rough classes are defined and
some of their associated properties are analyzed. Also, basic set operations such as subset,
complement, intersection, union are examined. In Sect. 5, we use bs-rough classes to manage
the decision-making process for uncertainty problems. For this, we build a decision-making
algorithm based on bs-rough classes, then we illustrate how this algorithm can be applied to
an uncertainty problem. Finally, we conclude the study in Sect. 6.

2 Preliminaries

In this section, we recall some basic notions in s-set, bs-set and bs-S-rough set.
Throughout this paper, let U = {u1, u2, ..., un} be an initial universe, 2U denotes the

power set of U , P = {p1, p2, ..., pm} be the universe of all possible parameters related to
the objects in U and K , L , M be non-empty subsets of P . Also, let D = {d1, d2, ..., dr } be
a set of decision-makers.

Definition 2.1 (Molodtsov 1999) A pair˜�K is called a s-set overU , where�K is a mapping
given by �K : K → 2U . It can be written as a set of ordered pairs:

˜�K = {(p,�K (p)) : p ∈ K } . (2.1)

Definition 2.2 (Maji et al. 2003) The NOT set of P denoted by ¬P is defined by ¬P =
{¬p1,¬p2, ...,¬pn} where, ¬pi = not pi ; ∀i . Moreover, ¬(¬K ) = K and ¬(K ◦ L) =
¬K ◦ ¬L for ◦ ∈ {∩,∪}.
Definition 2.3 (Shabir and Naz 2013) Â�K is called a bs-set overU , where �K and φK are
mappings, given by �K : K → 2U and φK : ¬K → 2U such that �K (p) ∩ φK (¬p) = ∅;
∀p ∈ K . A bs-set is expressed as a set of ordered triples:

̂�K =
{

(p,�K (p), φK (¬p)) : p ∈ K ,¬p ∈ ¬K ;�K (p), φK (¬p) ∈ 2U
}

. (2.2)

State that the set of all bs-sets over U will be denoted by �(U ).

Example 2.4 Let U = {u1, u2, u3, u4, u5} be the set of hybrid cars available in a gallery and
P = {p1 : com f ortable, p2 : cheap, p3 : economic} be the set of parameters specifying
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the characteristics of the cars in this gallery. Then, ¬P = {¬p1 : com f ortless,¬p2 :
expensive,¬p3 : not economic}. Thus, the following bs-set is described how Mr. Q wants
to buy a hybrid car:

̂�K = {(p1, {u1, u4, u5}, {u3}), (p3, {u2, u3}, {u1, u4})} .

Definition 2.5 (Shabir and Naz 2013) A bs-set over U is said to be

(i) a relative null bs-set, denoted by ̂�K ∅ if �K (p) = ∅; ∀p ∈ K and φK (¬p) = U ;
∀¬p ∈ ¬K .

(ii) a relative absolute bs-set, denoted bŷ�KU if �K (p) = U ; ∀p ∈ K and φK (¬p) = ∅;
∀¬p ∈ ¬K .

Definition 2.6 (Shabir and Naz 2013) A bs-set̂�K is said to be a bs-subset of a bs-set ̂�L ,
denoted bŷ�K˜⊆̂�L , provided that

(i) K ⊆ L and
(ii) �K (p) ⊆ �L(p) and φK (¬p) ⊆ ψK (¬p); ∀p ∈ K ,¬p ∈ ¬P .

The bs-setŝ�K and ̂�L are said to be bs-equal if̂�K˜⊆̂�L and ̂�L˜⊆̂�K .

Definition 2.7 (Shabir and Naz 2013) The relative complement of a bs-set ̂�K is a bs-set
̂�K

c
, where �c

K : K → 2U and φc
K : ¬K → 2U are defined as �c

K (p) = φK (¬p) and
φc
K (¬p) = �K (p); ∀p ∈ P, ∀¬p ∈ ¬P .

Definition 2.8 (Shabir and Naz 2013) Let̂�K ,̂�L ,̂ϒM ∈ �(U ). Then,

(i) the union of̂�K and ̂�L iŝϒM = ̂�K˜∪̂�L where M = K ∪ L and the two mappings
ϒM : M → 2U and υM : ¬M → 2U are given by

ϒM (p) =
⎧

⎨

⎩

�K (p) : p ∈ K − L,

�L(p) : p ∈ L − K ,

�K (p) ∪ �L(p) : p ∈ K ∩ L,

υM (¬p) =
⎧

⎨

⎩

φK (¬p) : ¬p ∈ K − L,

ψL(¬p) : ¬p ∈ L − K ,

φK (¬p) ∩ ψL(¬p) : ¬p ∈ K ∩ L.

(ii) the intersection of̂�K and̂�L iŝϒM = ̂�K˜∩̂�L such thatM = K ∩L 
= ∅ and the two
mappingsϒM : M → 2U andυM : ¬M → 2U are given byϒM (p) = �K (p)∩�L(p)
and υM (¬p) = φK (¬p) ∪ ψL(¬p).

Proposition 2.9 (Karaaslan and Çağman 2018) Each bs-set is an information system.

Definition 2.10 (Karaaslan andÇağman 2018) Let̂�K ∈ �(U ). Then, the pair S = (U ,̂�K )

is called bs-approximation (bsa-)space. For X ⊆ U ;

�S+(X) = {u ∈ U : ∃p ∈ K , [u ∈ �K (p) ⊆ X ]} , (2.3)

�S−(X) = {u ∈ U : ∃¬p ∈ ¬K , [u ∈ φK (¬p), φK (¬p) ∩ (U − X) 
= ∅]} , (2.4)

�S+(X) = {u ∈ U : ∃p ∈ K , [u ∈ �K (p),�K (p) ∩ X 
= ∅]} , (2.5)

�S−(X) = {u ∈ U : ∃¬p ∈ ¬K , [u ∈ φK (¬p) ⊆ U − X ]} (2.6)

are called S-lower positive bsa, S-lower negative bsa, S-upper positive bsa and S-upper
negative bsa of X , respectively. In addition, 	S(X) = (�S+(X),�S−(X)

)

and 	S(X) =
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Table 1 The tabular
representation of the bs-set �̂K

�̂K (p2, ¬p2) (p3, ¬p3) (p5,¬p5) (p7,¬p7)

u1 (1, 0) (1, 0) (0, 1) (1, 0)

u2 (0, 1) (1, 0) (0, 0) (1, 0)

u3 (0, 0) (0, 0) (0, 0) (0, 0)

u4 (1, 0) (0, 1) (1, 0) (1, 0)

u5 (0, 1) (0, 1) (0, 1) (0, 1)

(

�S+(X),�S−(X)
)

are called bs-rough approximations of X . Moreover,

BPS(X) = (�S+(X),�S−(X)
)

, (2.7)

BN S(X) = (U − �S+(X),U − �S−(X)
)

, (2.8)

BBS(X) = (�S+(X) − �S+(X),�S−(X) − �S−(X)
)

(2.9)

are called bs-S-positive region, bs-S-negative region and bs-S-boundary region of X , respec-
tively. If 	S(X) = 	S(X), X is said to be bs-S-definable set; otherwise X is called a
bs-S-rough set.

Example 2.11 Let U = {u1, u2, u3, u4, u5}, P = {p1, p2, p3, p4, p5, p6, p7} and K =
{p2, p3, p5, p7} ⊆ P . Also, let̂�K be a bs-set over U given by Table 1 and S = (U ,̂�K )

be the bsa-space.
For X = {u1, u3, u4} ⊆ U , we have S-lower positive bsa �S+ = {u1, u4} and S-lower

negative bsa �S− = {u1, u2, u4, u5}, i.e., 	S(X) = ({u1, u4}, {u1, u2, u4, u5}). Moreover
we have S-upper positive bsa�S+ = {u1, u2, u4} and S-upper negative bsa�S− = {u2, u5},
i.e., 	S(X) = ({u1, u2, u4}, {u2, u5}). Since 	S(X) 
= 	S(X), then X is a bs-S-rough set.
Thus, it is easy to see that BPS(X) = ({u1, u4}, {u2, u5}), BN S(X) = ({u3, u5}, {u3}),
BBS(X) = ({u2}, {u1, u4}). If Y = {u3} ⊆ U , then

	S(Y ) = (∅, {u1, u2, u4, u5}) = 	S(Y ),

i.e., Y is a bs-S-definable set.

3 Preparation for bipolar soft rough classes

This section was built to analyze the bs-classes and some required properties needed to define
bs-rough classes.

Definition 3.1 Indexed class of bs-sets
{

̂�K di : �K di : K → 2U , φK di : ¬K → 2U ; 1 ≤ i ≤ r
}

(3.1)

is called a bs-class and is denoted bŷ�K D . Here, the bs-set̂�K di does not appear in bs-class
̂�K D for any di ∈ D,̂�K di = ̂�K ∅.

State that the all bs-classes over U , P , D will be denoted by BSC
P
D(U ).
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Table 2 The tabular representation of �̂K D

�̂K D (p1,¬p1) (p3, ¬p3) (p4,¬p4)

�̂K d1 ({u2, u4, u6}, {u1, u5}) ({u1, u3, u5}, {u2}) ({u1, u4, u5, u6}, {u3})
�̂K d2 ({u1, u5}, {u2, u4, u6}) ({u3, u4}, {u1, u5}) ({u2, u6}, {u1, u3})
�̂K d3 (U , {}) ({u2, u3, u5, u6}, {u1, u4}) ({u1, u3, u5}, {u4, u6})
�̂K d4 ({}, {u2, u4, u5}) ({u3, u5}, {u1, u6}) ({u3, u6}, {u2, u4})

Example 3.2 Let U = {u1, u2, u3, u4, u5, u6}, P = {p1, p2, p3, p4}, D = {d1, d2, d3, d4}.
For K = {p1, p3, p4} ⊆ P , if we consider bs-setŝ�K d1 ,̂�K d2 ,̂�K d3 ,̂�K d4 given as

̂�K d1 = {(p1, {u2, u4, u6}, {u1, u5}) , (p3, {u1, u3, u5}, {u2}) , (p4, {u1, u4, u5, u6}, {u3})} ,

̂�K d2 = {(p1, {u1, u5}, {u2, u4, u6}) , (p3, {u3, u4}, {u1, u5}) , (p4, {u2, u6}, {u1, u3})} ,

̂�K d3 = {(p1,U , {}), (p3, {u2, u3, u5, u6}, {u1, u4}) , (p4, {u1, u3, u5}, {u4, u6})} ,

̂�K d4 = {(p1, {}, {u2, u4, u5}) , (p3, {u3, u5}, {u1, u6}) , (p4, {u3, u6}, {u2, u4})} ,

then̂�K D = {̂�K d1 ,
̂�K d2 ,

̂�K d3 ,
̂�K d4

}

is a bs-class. Moreover, we can represent a bs-
class in tabular form as shown in Table 2.

Definition 3.3 Let̂�K D ∈ BSC
P
D(U ). Then,

(i) if ̂�K di = ̂�K ∅; ∀di ∈ D, then ̂�K D is called an empty bs-class and is denoted by
̂∅BS .

(ii) if̂�K di = ̂�KU ; ∀di ∈ D, then̂�K D is called an universal bs-class and is denoted by
̂UBS .

Definition 3.4 Let̂�K D,̂�L D ∈ BSC
P
D(U ). Then,̂�K D is a bs-subclass of ̂�L D , denoted

bŷ�K D̂⊆̂�L D , if̂�K di
˜⊆̂�Ldi ; ∀di ∈ D.

The bs-classeŝ�K D and ̂�L D are said to be equal bs-classes if and only if̂�K D̂⊆̂�L D
and ̂�L D̂⊆̂�K D . This relation is denoted bŷ�K D = ̂�L D .

Proposition 3.5 Let �̂K D,̂�L D, ϒ̂MD ∈ BSC
P
D(U ). Then;

(i) ̂∅BŜ⊆̂�K D̂⊆̂UBS,

(ii) �̂K D̂⊆̂�K D,

(iii) �̂K D̂⊆̂�L D and ̂�L D̂⊆̂ϒMD ⇒ �̂K D̂⊆̂ϒMD .

Proof For all di ∈ D;

(i) ̂�K ∅˜⊆̂�K di ⇒̂∅BŜ⊆̂�K D and̂�K di
˜⊆̂�KU ⇒ ̂�K D̂⊆̂UBS ,

(ii) ̂�K di
˜⊆̂�K di ⇒ ̂�K D̂⊆̂�K D ,

(iii) if̂�K di
˜⊆̂�Ldi and̂�Ldi

˜⊆̂ϒMdi ⇒ ̂�K di
˜⊆̂ϒMdi , then̂�K D̂⊆̂�L D and̂�L D̂⊆̂ϒMD ⇒

̂�K D̂⊆̂ϒMD .

��
Definition 3.6 Let̂�K D,̂�L D ∈ BSC

P
D(U ),̂�K D 
= ∅ and D1, D2 ⊆ D such that D1 ∪

D2 = D and D1 ∩ D2 = ∅. If̂�K di
˜⊆̂�Ldi , ∀di ∈ D1 and̂�K di

˜�̂�Ldi , ∀di ∈ D2; then
̂�K D is called almost-subclass of ̂�L D and is denoted bŷ�K D̂⊆Â�L D .
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Definition 3.7 Let ̂�K D,̂�L D ∈ BSC
P
D(U ) and ̂�K D̂⊆Â�L D . Then, according to ̂�L D ,

subclasshood degree of̂�K D , denoted by 
(̂�K D,̂�L D), is defined as follows:



(

̂�K D,̂�L D
) =

∣

∣D1
∣

∣

|D||K ∪ L|
∑

di∈D1

∑

p∈K∪L

χ[
̂�K di

,̂�L di

](p) (3.2)

such that

χ[
̂�K di

,̂�L di

](p) =
⎧

⎨

⎩

∣

∣�K di (p)
∣

∣− ∣∣φK di (¬p)
∣

∣ : p ∈ K − L,

1/
[∣

∣�Ldi (p)
∣

∣− ∣∣ψLdi (¬p)
∣

∣

] : p ∈ L − K ,
[∣

∣�K di (p)
∣

∣− ∣∣φK di (¬p)
∣

∣

]

/
[∣

∣�Ldi (p)
∣

∣− ∣∣ψLdi (¬p)
∣

∣

] : p ∈ K ∩ L,

(3.3)

Here,̂�K di
˜⊆̂�Ldi and |�Ldi (p)| 
= |ψLdi (¬p)|, ∀di ∈ D1.

Example 3.8 Consider Example 3.2 and bs-class ̂�L D given as follows:

̂�Ld1 =
{

(p1, {u2, u3, u4, u6}, {u1, u5}) , (p2, {u1, u3, u5}, {u6}) ,

(p3, {u1, u3, u4, u5}, {u2, u6}) , (p4, {u1, u4, u5, u6}, {u2, u3})
}

,

̂�Ld2 =
{

(p1, {u1, u3, u5}, {u2, u4, u6}) , (p2, {u1, u4, u6}, {u2, u3, u5}) ,

(p3, {u3, u5}, {u1, u2, u6}) , (p4, {u1, u5, u6}, {u2, u4})
}

,

̂�Ld3 =
{

(p1,U , {}) , (p2, {u1, u3, u4, u6}, {u2, u5}) ,

(p3, {u2, u3, u5, u6}, {u1, u4}) , (p4, {u1, u2, u3, u5}, {u4, u6})
}

,

̂�Ld4 =
{

(p1, {u1}, {u3, u4, u5}) , (p2, {u1, u4}, {u2, u3, u6}) ,

(p3, {u2, u4, u5}, {u3, u6}) , (p4, {u1, u5}, {u3, u4, u6})
}

,

Sincê�K d1
˜⊆̂�Ld1 ,̂�K d2

˜�̂�Ld1 ,̂�K d3
˜⊆̂�Ld3 ,̂�K d4

˜�̂�Ld4 ; then |D1| = |{d1, d3}| = 2
and thus,



(

̂�K D,̂�L D
) = 2

4 · 4
∑

di∈D1

∑

p∈P

χ[
̂�K di

,̂�L di

](p)

= 2

4 · 4
[(

1

2
+ 1

2
+ 2

2
+ 3

2

)

+
(

6

6
+ 1

2
+ 2

2
+ 1

2

)]

= 0.8125

and̂�K D̂⊆Â�L D .

Remark 3.9 Let̂�K D,̂�L D ∈ BSC
P
D(U ).If̂�K di = ̂�Ldi ,∀di ∈ D; then
(̂�K D,̂�L D) =

1.Moreover, if̂�K D̂⊆̂�L D , then̂�K D may be almost-subclass of̂�L D and if̂�K D̂⊆Â�L D ,
then̂�K D may not be a subclass of ̂�L D .

Definition 3.10 Let̂�K D,̂�L D ∈ BSC
P
D(U ). Then,

(i) the union of̂�K D and ̂�L D , denoted bŷ�K D̂∪̂�L D , is defined as

̂�K D̂∪̂�L D = {̂�K di
˜∪̂�Ldi : di ∈ D

}

(3.4)

(ii) the intersection of̂�K D and ̂�L D , denoted bŷ�K D̂∩̂�L D , is defined as

̂�K D̂∩̂�L D = {̂�K di
˜∩̂�Ldi : di ∈ D

}

(3.5)
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Table 3 The tabular
representation of �̂K D

�̂K D (p1, ¬p1) (p3, ¬p3)

�̂K d1 ({u1, u3, u5}, {u2, u7}) ({u4, u6}, {u2, u7})
�̂K d2 ({u2, u4}, {u1, u3, u7}) ({u4, u6}, {u1, u7})
�̂K d3 ({u1}, {u4, u7}) ({u3, u5, u6}, {u2, u4})
�̂K d4 ({u7}, {u4, u6}) ({u2, u6}, {u3, u7})

Table 4 The tabular
representation of̂�L D

̂�L D (p2, ¬p2) (p3,¬p3)

̂�Ld1 ({u2, u4, u5}, {u1, u6}) ({u2, u5, u6}, {u1, u6, u7})
̂�Ld2 ({u1, u4}, {u3, u6}) ({u2, u6, u7}, {u5})
̂�Ld3 ({u1, u4, u7}, {u5}) ({u5, u6}, {u3, u4})
̂�Ld4 ({u4, u7}, {u1, u6}) ({u6}, {u3, u5})

Table 5 The tabular
representation of �̂K D̂∩̂�L D

�̂K D̂∩̂�L D (p3, ¬p3)

�̂K d1
˜∩̂�Ld1 ({u6}, {u1, u2, u6, u7})

�̂K d2
˜∩̂�Ld2 ({u6}, {u1, u5,7 })

�̂K d3
˜∩̂�Ld3 ({u5, u6}, {u2, u3, u4})

�̂K d4
˜∩̂�Ld4 ({u6}, {u3, u5,7 })

Table 6 The tabular representation of �̂K D̂∪̂�L D

�̂K D̂∪̂�L D (p1, ¬p1) (p2, ¬p2) (p3, ¬p3)

�̂K d1
˜∪̂�Ld1 ({u1, u3, u4}, {u2, u7}) ({u2, u4, u5}, {u1, u6}) ({u2, u4, u5, u6}, {u7})

�̂K d2
˜∪̂�Ld2 ({u2, u4}, {u1, u3,7 }) ({u1, u4}, {u3, u6}) ({u2, u4, u6, u7}, {})

�̂K d3
˜∪̂�Ld3 ({u1}, {u4, u7}) ({u1, u4, u7}, {u5}) ({u3, u5, u6}, {u4})

�̂K d4
˜∪̂�Ld4 ({u7}, {u4, u6}) ({u4, u7}, {u1, u6}) ({u2, u6}, {u3})

Example 3.11 Let U = {u1, u2, u3, u4, u5, u6, u7}, P = {p1, p2, p3, p4}, D = {d1, d2, d3,
d4}. For K = {p1, p3} ⊆ P and L = {p2, p3} ⊆ P , if

and
then̂�K D and ̂�L D are bs-classes. Thus,
and

Definition 3.12 Let̂�K D ∈ BSC
P
D(U ). Then, the bs-complement of̂�K D , denoted bŷ�K

c
D ,

is defined as

̂�K
c
D = {̂�K

c
di : di ∈ D

}

. (3.6)

Obviously,
(

̂�K
c
D

)c = ̂�K D and̂∅cBS = ̂UBS .
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Proposition 3.13 Let �̂K D,̂�L D, ϒ̂MD ∈ BSC
P
D(U ). Then, for � ∈ {̂∩,̂∪},

(i) �̂K D �̂�K D = �̂K D.
(ii) �̂K D̂∪̂∅BS = �̂K D and �̂K D̂∩̂∅BS =̂∅BS.
(iii) �̂K D̂∪̂UBS = ̂UBS and �̂K D̂∩̂UBS = �̂K D.
(iv) �̂K D̂∪̂�K

c
D = ̂UBS and �̂K D̂∩̂�K

c
D =̂∅BS.

(v) �̂K D�̂�L D = ̂�L D �̂�K D.

(vi)
(

�̂K D�̂�L D

)

�̂ϒMD = �̂K D�
(

̂�L D �̂ϒMD

)

.

Proof For all di ∈ D,

(i) Sincê�K di
˜∪̂�K di = ̂�K di and̂�K di

˜∩̂�K di = ̂�K di , then̂�K D̂∪̂�K D = ̂�K D and
̂�K D̂∩̂�K D = ̂�K D , respectively.

(ii) Since ̂�K di
˜∪̂�K ∅ = ̂�K di and ̂�K di

˜∩̂�K ∅ = ̂�K ∅, then ̂�K D̂∪̂∅BS = ̂�K D and
̂�K D̂∩̂∅BS =̂∅BS , respectively.

(iii) Sincê�K di
˜∪̂�KU = ̂�KU and̂�K di

˜∩̂�KU = ̂�K di , then̂�K D̂∪̂UBS = ̂UBS and
̂�K D̂∩̂UBS = ̂�K D , respectively.

(iv) Sincê�K di
˜∪̂�K

c
di = ̂�KU and̂�K di

˜∩̂�K
c
di = ̂�K ∅, then̂�K D̂∪̂�K

c
D = ̂UBS and

̂�K D̂∩̂�K
c
D =̂∅BS , respectively.

(v) Sincê�K di
˜∪̂�Ldi = ̂�Ldi

˜∪̂�K di and̂�K di
˜∩̂�Ldi = ̂�Ldi

˜∩̂�K di , then̂�K D̂∪̂�L D =
̂�L D̂∪̂�K D and̂�K D̂∩̂�L D = ̂�L D̂∩̂�K D , respectively.

(vi) Since
(

̂�K di
˜∪̂�Ldi

)

˜∪̂ϒMdi = ̂�K di
˜∪ (̂�Ldi

˜∪̂ϒMdi

)

,
(

̂�K di
˜∩̂�Ldi

)

˜∩̂ϒMdi = ̂�K di
˜∩ (̂�Ldi

˜∩̂ϒMdi

)

then
(

̂�K D̂∪̂�L D
)

̂∪̂ϒMD = ̂�K D̂∪
(

̂�L D̂∪̂ϒMD
)

,
(

̂�K D̂∩̂�L D
)

̂∩̂ϒMD = ̂�K D̂∩
(

̂�L D̂∩̂ϒMD
)

respectively.

��
Proposition 3.14 Let �̂K D,̂�L D, ϒ̂MD ∈ BSC

P
D(U ). Then, for �, ∗ ∈ {̂∩,̂∪} and � 
= ∗,

(i) �̂K D�
(

̂�L D ∗ ϒ̂K D

)

=
(

�̂K D�̂�L D

)

∗
(

�̂K D �̂ϒMD

)

.

(ii)
(

�̂K D�̂�L D

)c = �̂K
c
D ∗ ̂�L

c
D.

Proof Straightforward. ��

Proposition 3.15 Let

[

̂
�

j
K j

]

D
∈ BSC

P
D(U ) for j = 1, 2, ...m. Then, for �, ∗ ∈ {˜∩,˜∪},

◦, • ∈ {̂∩,̂∪} and � 
= ∗, ◦ 
= •

(i)

(

�mj=1

[

̂
�

j
K j

]

di

)c

= ∗mj=1

(

[

̂
�

j
K j

]

di

)c

; ∀di ∈ D.

(ii)

(

◦mj=1

[

̂
�

j
K j

]

D

)c

= •mj=1

([

̂
�

j
K j

]

D

)c

.
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Proof The proof is obvious. ��

Definition 3.16 Let̂�K D ∈ BSC
P
D(U ), ̂�L ∈ �(U ). Then,̂�K D is called bs-partition of

̂�L D if and only if all of the following conditions hold:

(i) ̂�K ∅ /∈ ̂�K D .
(ii)
⋃

di∈D �K di (p) = �L(p); ∀p ∈ P and
⋃

di∈D φK di (¬p) = ψL(¬p); ∀¬p ∈ ¬P .
(iii) If̂�K di ,

̂�K d j ∈ ̂�K D for i 
= j ; then̂�K di
̂∩̂�K d j = ̂�K ∅.

Moreover, if�L(p) ⊆⋃di∈D �K di (p), ∀p ∈ P andψL(¬p) ⊆⋃di∈D φK di (p), ∀¬p ∈
¬P; then̂�K D is called bs-cover of ̂�L . Then, if

⋃

di∈D
(

�K di (p), φK di (¬p)
) = ̂�KU ,

∀p ∈ P,¬p ∈ ¬P, di ∈ D; then ̂�K D is called full bs-class and is denoted by ̂�K
′
D .

Therefore,̂�K
′
D is a bs-cover of ̂�L ; ∀̂�L ∈ �(U ).

Example 3.17 Consider Example 3.8. Then, ̂�L D is bs-cover of̂ϒM given as follows:

̂ϒM =
{

(p1, {u1, u3, u6}, {u2, u4}) , (p2, {u1, u4, u5}, {u3, u6}) ,

(p3, {u2, u3, u5}, {u1, u6}) , (p4, {u4, u6}, {u2, u3, u4})
}

.

Proposition 3.18 Let �̂K D,̂�L D ∈ BSC
P
D(U ) be two bs-covers of ϒ̂M ∈ �(U ). Then,

�̂K D�̂�L D is a bs-cover of ϒ̂M for � ∈ {̂∩,̂∪}.

Proof Since ̂�K D , ̂�L D be two bs-covers of ̂ϒM ; then ϒM (p) ⊆ ⋃

di∈D �K di (p),
υM (¬p) ⊆ ⋃di∈D φK di (¬p), ϒM (p) ⊆ ⋃di∈D �Ldi (p), υM (¬p) ⊆ ⋃di∈D ψLdi (¬p)
∀p ∈ P,¬p ∈ ¬P . Thus,

ϒM (p) ⊆
⎛

⎝

⋃

di∈D
�K di (p)

⎞

⎠ ∗
⎛

⎝

⋃

di∈D
�Ldi (p)

⎞

⎠ =
⋃

di∈D

(

�K di (p) ∗ �Ldi (p)
)

,

υM (¬p) ⊆
⎛

⎝

⋃

di∈D
φK di (¬p)

⎞

⎠ ∗
⎛

⎝

⋃

di∈D
ψLdi (¬p)

⎞

⎠ =
⋃

di∈D

(

φK di (¬p) ∗ ψLdi (¬p)
)

,

∀p ∈ P,¬p ∈ ¬P and ∗ ∈ {∩,∪}. Hence,̂�K D�̂�L D is a bs-cover of ̂ϒM for � ∈ {̂∩,
̂∪}. ��

4 Bipolar soft rough classes

In this section, bipolar soft rough classes are defined and some of their associated properties
are analyzed.

Definition 4.1 Let̂�K D ∈ BSC
P
D(U ). Then, the parametrized classes of̂�K D for p ∈ P

and ¬p ∈ ¬P , denoted by E
̂�K D

(p) and E
̂�K D

(¬p), are defined as E
̂�K D

(p) =
{

�K di (p) : di ∈ D
}

and E
̂�K D

(¬p) = {φK di (¬p) : di ∈ D
}

, respectively.
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Now, for ̂�L ∈ �(U ) and p ∈ P,¬p ∈ ¬P ,

̂�L [
̂�K D

](p) =
{

u ∈ U : ∃�K di (p) ∈ E
̂�K D

(p),
[

u ∈ �K di (p) ⊆ �L(p)
]

}

, (4.1)

̂�L [
̂�K D

](¬p) =
{

u ∈ U : ∃φK di (¬p) ∈ E
̂�K D

(¬p),
[

u ∈ φK di (¬p), φK di (¬p) ∩ ψL(¬p) 
= ∅]
}

, (4.2)

̂�L
[

̂�K D
](p) =

{

u ∈ U : ∃�K di (p) ∈ E
̂�K D

(p),
[

u ∈ �K di (p),�K di (p) ∩ �L(p) 
= ∅]
}

, (4.3)

̂�L
[

̂�K D
](¬p) =

{

u ∈ U : ∃φK di (¬p) ∈ E
̂�K D

(¬p),
[

u ∈ φK di (¬p) ⊆ ψL(p)
]

}

.

(4.4)

are called p-lower bsa, p-lower NOT bsa, p-upper bsa and p-upper NOT bsa of ̂�L , respec-
tively. Then,

BP
̂�K D
̂�L(p) =

(

̂�L [
̂�K D

](p),̂�L
[

̂�K D
](¬p)

)

, (4.5)

BN
̂�K D
̂�L(p) =

(

U − ̂�L
[

̂�K D
](p),U − ̂�L [

̂�K D
](¬p)

)

, (4.6)

BB
̂�K D
̂�L(p) =

(

̂�L
[

̂�K D
](p) − ̂�L [

̂�K D
](p),̂�L [

̂�K D
](¬p) − ̂�L

[

̂�K D
](¬p)

)

(4.7)

are called bs-p-positive region, bs-p-negative region and bs-p-boundary region of ̂�L ,
respectively. If

̂�L
[

̂�K D
](p) − ̂�L [

̂�K D
](p) = ̂�L [

̂�K D
](¬p) − ̂�L

[

̂�K D
](¬p),

̂�L is said to be bs-p-definable set; otherwise ̂�L is called a bs-p-rough set.

Proposition 4.2 Let �̂K D ∈ BSC
P
D(U ), ̂�L ∈ �(U ). Then,

̂�L
[

̂�K D

](p) =
⋃

di∈D

{

�K di (p) : �K di (p) ⊆ �L(p)
}

, (4.8)

̂�L
[

̂�K D

](¬p) =
⋃

di∈D

{

φK di (¬p) : φK di (¬p) ∩ ψL(¬p) 
= ∅} , (4.9)

̂�L
[

̂�K D

](p) =
⋃

di∈D

{

�K di (p) : �K di (p) ∩ �L(p) 
= ∅} , (4.10)

̂�L
[

̂�K D

](¬p) =
⋃

di∈D

{

φK di (¬p) : φK di (¬p) ⊆ ψL(¬p)
}

(4.11)

Definition 4.3 Let̂�K D ∈ BSC
P
D(U ), ̂�L ∈ �(U ). Then,


[
̂�K D

]
̂�L =

{(

p,̂�L [
̂�K D

](p),̂�L
[

̂�K D
](¬p)

)

: p ∈ P,¬p ∈ ¬P
}

(4.12)

and


[
̂�K D

]
̂�L =

{(

p,̂�L
[

̂�K D
](p),̂�L [

̂�K D
](¬p)

)

: p ∈ P,¬p ∈ ¬P
}

(4.13)
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are called bs-̂�K D-lower approximation and bs-̂�K D-upper approximation of ̂�L , respec-
tively. Moreover,

BP
̂�K D
̂�L = 
[

̂�K D
]
̂�L

=
{

(

p,̂�L [
̂�K D

](p),̂�L
[

̂�K D
](¬p)

)

: p ∈ P,

¬p ∈ ¬P

}

,

BN
̂�K D
̂�L = U − 
[

̂�K D
]
̂�L

=
{

(

p,U − ̂�L
[

̂�K D
](p),U − ̂�L [

̂�K D
](¬p)

)

: p ∈ P,

¬p ∈ ¬P

}

,

BB
̂�K D
̂�L = 
[

̂�K D
]
̂�L − 
[

̂�K D
]
̂�L

=
⎧

⎨

⎩

⎛

⎝p,
̂�L
[

̂�K D
](p) − ̂�L [

̂�K D
](p),

̂�L [
̂�K D

](¬p) − ̂�L
[

̂�K D
](¬p)

⎞

⎠ : p ∈ P,

¬p ∈ ¬P

⎫

⎬

⎭

.

are called bs-̂�K D-positive region, bs-̂�K D-negative region and bs-S-boundary region of
̂�L , respectively. If 
[

̂�K D
]
̂�L = 
[

̂�K D
]
̂�L , ̂�L is said to be bs-̂�K D-definable set;

otherwise ̂�L is called a bs-̂�K D-rough set.

Example 4.4 Reconsider Example 3.2. Then, all of parametrized classes of̂�K D for p ∈ P
and ¬p ∈ ¬P are as follows:

E
̂�K D

(p1) = {{u2, u4, u6}, {u1, u5},U , {}} ,

E
̂�K D

(¬p1) = {{u1, u5}, {u2, u4, u6}, {}, {u2, u4, u6}} ,

E
̂�K D

(p3) = {{u1, u3, u5}, {u3, u4}, {u2, u3, u5, u6}, {u3, u5}} ,

E
̂�K D

(¬p3) = {{u2}, {u1, u5}, {u1, u4}, {u1, u6}} ,

E
̂�K D

(p4) = {{u1, u4, u5, u6}, {u2, u6}, {u1, u3, u5}, {u3, u6}} ,

E
̂�K D

(¬p4) = {{u3}, {u1, u3}, {u4, u6}, {u2, u4}} .

Now, let

̂�L =
{

(p1, {u2, u4, u6}, {u5}) , (p2, {u2, u3, u4}, {u1, u5}) ,

(p3, {u3, u4, u5}, {u1, u2}) , (p4, {u1, u3, u5}, {u2, u4, u6})
}

∈ �(U ).

Then,


[
̂�K D

]
̂�L =

{

(p1, {u2, u4, u6}, {u1, u5}) , (p2, {}, {}),
(p3, {u3, u4, u5}, {u1, u2, u4, u5, u6}) , (p4, {u1, u3, u5}, {u2, u4, u6})

}

,


[
̂�K D

]
̂�L =

{

(p1,U , {}), (p2, {}, {}),
(p3,U , {u2}) , (p4, {u1, u3, u4, u5, u6}, {u2, u4, u6})

}

,

BP
̂�K D
̂�L =

{

(p1, {u2, u4, u6}, {u1, u5}) , (p2, {}, {}),
(p3, {u3, u4, u5}, {u1, u2, u4, u5, u6}) , (p4, {u1, u3, u5}, {u2, u4, u6})

}

,

BN
̂�K D
̂�L =

{

(p1, {},U ), (p2,U ,U ),

(p3, {}, {u1, u3, u4, u5, u6}) , (p4, {u2}, {u1, u3, u5})
}

,

BB
̂�K D
̂�L =

{

(p1, {u1, u3, u5}, {}) , (p2, {}, {}),
(p3, {u1, u2, u6}, {}) , (p4, {u4, u6}, {})

}

Theorem 4.5 Let �̂K D,̂�L D ∈ BSC
P
D(U ), ϒ̂M ∈ �(U ). Then, for all p ∈ P, ¬p ∈ ¬P

and di ∈ D,

123



Decision analysis review on ... Page 13 of 20 205

(i) ϒ̂M [
̂UBS
](p) = ∅, ϒ̂M [

̂UBS
](¬p) = U and ϒ̂M

[

̂UBS
](p) = U, ϒ̂M

[

̂UBS
](¬p) = ∅ for

ϒ̂M∅ 
= ϒ̂M 
= ϒ̂MU .

(ii) ϒ̂M [
̂UBS
](p) = ϒ̂M

[

̂UBS
](p) = U and ϒ̂M [

̂UBS
](¬p) = ϒ̂M

[

̂UBS
](¬p) = ∅ for ϒ̂M 
=

ϒ̂MU .

(iii) ϒ̂M [
̂∅BS
](p) = ϒ̂M

[

̂∅BS
](p) = ∅ and ϒ̂M [

̂∅BS
](¬p) = ϒ̂M

[

̂∅BS
](¬p) = U.

(iv) ϒ̂M
[

̂�K D̂∪̂�L D

](p) = ϒ̂M
[

̂�K D

](p)∪̂ϒM [
̂�L D

](p)and ϒ̂M
[

̂�K D

](¬p)∪̂ϒM [
̂�L D

](¬p)

⊆ ϒ̂M
[

̂�K D̂∪̂�L D

](¬p).

(v) ϒ̂M
[

̂�K D

](p) ∪ ϒ̂M
[

̂�L D
](p) ⊆ ϒ̂M

[

̂�K D̂∪̂�L D

](p) and ϒ̂M
[

̂�K D̂∪̂�L D

](¬p) =

ϒ̂M
[

̂�K D

](¬p) ∪ ϒ̂M
[

̂�L D
](¬p).

(vi) ϒ̂M
[

̂�K D

](p) ∩ ϒ̂M [
̂�L D

](p) ⊆ ϒ̂M
[

̂�K D̂∩̂�L D

](p) and ϒ̂M
[

̂�K D̂∩̂�L D

](¬p) =
ϒ̂M

[

̂�K D

](¬p) ∩ ϒ̂M [
̂�L D

](¬p).

(vii) ϒ̂M
[

̂�K D̂∩̂�L D

](p) = ϒ̂M
[

̂�K D

](p)∩̂ϒM
[

̂�L D
](p)and ϒ̂M

[

̂�K D

](¬p)∩̂ϒM
[

̂�L D
](¬p)

⊆ ϒ̂M
[

̂�K D̂∩̂�L D

](¬p).

Proof The proofs of (i), (ii) and (iii) are clear from Definition 4.1 and 4.3.
(iv) For the first inequality,
(⇒) : if u ∈ ̂ϒM [

̂�K D̂∪̂�L D
](p), then u ∈ ̂�K di ∪ ̂�Ldi ⊆ ̂ϒM (p); ∃di ∈ D, i.e.,

u ∈ ̂�K di ⊆ ̂ϒM (p) or u ∈ ̂�Ldi ⊆ ̂ϒM (p). Thus, u ∈ ̂ϒM [
̂�K D

](p) ∪̂ϒM [
̂�L D

](p). So,

̂ϒM [
̂�K D̂∪̂�L D

](p) ⊆ ̂ϒM [
̂�K D

](p) ∪̂ϒM [
̂�L D

](p)–(*).

(⇐) : if u ∈ ̂ϒM [
̂�K D

](p) ∪̂ϒM [
̂�L D

](p), then u ∈ ̂ϒM [
̂�K D

](p) or u ∈ ̂ϒM [
̂�L D

](p).

Thus, u ∈ ̂�K di (p) ⊆ ̂ϒM (p) or u ∈ ̂�Ldi (p) ⊆ ̂ϒM (p); ∃di ∈ D, and u ∈ ̂�K di (p) ∪
̂�Ldi (p) ⊆ ̂ϒM (p), i.e., u ∈ ̂ϒM [

̂�K D̂∪̂�L D
](p). So, ̂ϒM [

̂�K D
](p) ∪ ̂ϒM [

̂�L D
](p) ⊆

̂ϒM [
̂�K D̂∪̂�L D

](p)–(**).

Hence, from (*) and (**),̂ϒM [
̂�K D̂∪̂�L D

](p) = ̂ϒM [
̂�K D

](p) ∪̂ϒM [
̂�L D

](p).

For the second inequality, ifu ∈ ̂ϒM [
̂�K D

](¬p)∪̂ϒM [
̂�L D

](¬p), thenu ∈ ̂ϒM [
̂�K D

](¬p)

or u ∈ ̂ϒM [
̂�L D

](¬p). In that case, u ∈ ̂�K di (¬p) or u ∈ ̂�Ldi (¬p); ∃di ∈ D,

i.e., u ∈ ̂�K di (¬p) ∩ ̂ϒM (¬p) 
= ∅ or u ∈ ̂�Ldi (¬p) ∩ ̂ϒM (¬p) 
= ∅. So,
(

̂�K di (¬p) ∪ ̂�Ldi (¬p)
) ∩ ̂ϒM (¬p) 
= ∅. Thus, u ∈ ̂ϒM [

̂�K D̂∪̂�L D
](¬p) and hence

̂ϒM [
̂�K D

](¬p) ∪̂ϒM [
̂�L D

](¬p) ⊆ ̂ϒM [
̂�K D̂∪̂�L D

](¬p).

The proofs of (v), (vi) and (vii) can be proved similarly to (iv). ��

Theorem 4.6 Let �̂K D,̂�L D ∈ BSC
P
D(U ), ϒ̂M ∈ �(U ). Then,

(i) 
[
̂∅BS
]ϒ̂M = ϒ̂M∅ = 
[

̂∅BS
]ϒ̂M.

(ii) 
[
̂UBS
]ϒ̂M = ϒ̂M∅ and 
[

̂UBS
]ϒ̂M = ϒ̂MU for ϒ̂M 
= ϒ̂MU ; ∀di ∈ D.

(iii) 
[
̂UBS
]ϒ̂M = ϒ̂MU and 
[

̂UBS
]ϒ̂M = ϒ̂MU for ϒ̂M = ϒ̂MU ; ∀di ∈ D.
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(iv)

(


[
̂�K D

]ϒ̂M

)

˜∩
(


[
̂�L D

]ϒ̂M

)

⊆
(


[
̂�K D̂∩̂�L D

]ϒ̂M

)

and

(


[
̂�K D

]ϒ̂M

)

˜∩
(


[
̂�L D

]ϒ̂M

)

⊆
(


[
̂�K D̂∩̂�L D

]ϒ̂M

)

.

(v)

(


[
̂�K D

]ϒ̂M

)

˜∪
(


[
̂�L D

]ϒ̂M

)

⊆
(


[
̂�K D̂∪̂�L D

]ϒ̂M

)

and

(


[
̂�K D

]ϒ̂M

)

˜∪
(


[
̂�L D

]ϒ̂M

)

⊆
(


[
̂�K D̂∪̂�L D

]ϒ̂M

)

Proof From Theorem 4.5, the proofs are clear. ��

Theorem 4.7 Let �̂K D ∈ BSC
P
D(U ), ̂�L , ϒ̂M ∈ �(U ). Then,

(i) 
[
̂�K D

]�̂K ∅ = 
[
̂�K D

]�̂K ∅ = �̂K ∅ and 
[
̂�K D

]�̂KU = 
[
̂�K D

]�̂KU = �̂KU .

(ii) ̂�L˜⊆̂ϒM ⇒
(


[
̂�K D

]
̂�L

)

˜⊆
(


[
̂�K D

]ϒ̂M

)

and

(


[
̂�K D

]
̂�L

)

˜⊆
(


[
̂�K D

]ϒ̂M

)

.

(iii)

(


[
̂�K D

]

(

̂�L˜∩̂ϒM

)

)

˜⊆
(


[
̂�K D

]

(

̂�L
)

)

˜∩
(


[
̂�K D

]

(

ϒ̂M

)

)

.

(iv)

(


[
̂�K D

]

(

̂�L˜∩̂ϒM

)

)

˜⊆
(


[
̂�K D

]

(

̂�L
)

)

˜∩
(


[
̂�K D

]

(

ϒ̂M

)

)

.

(v)

(


[
̂�K D

]

(

̂�L
)

)

˜∪
(


[
̂�K D

]

(

ϒ̂M

)

)

˜⊆
(


[
̂�K D

]

(

̂�L˜∪̂ϒM

)

)

.

(vi)

(


[
̂�K D

]

(

̂�L
)

)

˜∪
(


[
̂�K D

]

(

ϒ̂M

)

)

˜⊆
(


[
̂�K D

]

(

̂�L˜∪̂ϒM

)

)

.

Proof The proofs of (i) and (ii) is simple.
(iii) Since ̂�L˜∩̂ϒM ⊆ ̂�L and ̂�L˜∩̂ϒM ⊆ ̂ϒM ; then, from (i i),

(


[
̂�K D

]

(

̂�L˜∩̂ϒM
)

)

˜⊆
(


[
̂�K D

]

(

̂�L
)

)

and
(


[
̂�K D

]

(

̂�L˜∩̂ϒM
)

)

˜⊆
(


[
̂�K D

]

(

̂ϒM
)

)

,

respectively. Hence,
(


[
̂�K D

]

(

̂�L˜∩̂ϒM
)

)

˜⊆
(


[
̂�K D

]

(

̂�L
)

)

˜∩
(


[
̂�K D

]

(

̂ϒM
)

)

.

The proofs of (iv), (v) and (vi) can be proved similarly to (iii). ��
Definition 4.8 Let̂�K D ∈ BSC

P
D(U ), ̂�L ,̂ϒM ∈ �(U ). Then,

(

̂�L
)⊥
̂�K D

(

̂ϒM
) ⇔

(


[
̂�K D

]

(

̂�L
)

)

=
(


[
̂�K D

]

(

̂ϒM
)

)

(4.14)

(

̂�L
)�
̂�K D

(

̂ϒM
) ⇔

(


[
̂�K D

]

(

̂�L
)

)

=
(


[
̂�K D

]

(

̂ϒM
)

)

(4.15)

are called the bs-lower class rough equal relation and bs-upper class rough equal relation,
respectively. Moreover,

(

̂�L
)♦
̂�K D

(

̂ϒM
)⇔ (

̂�L
)⊥
̂�K D

(

̂ϒM
) = (̂�L

)�
̂�K D

(

̂ϒM
)

(4.16)
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Theorem 4.9 Let �̂K D ∈ BSC
P
D(U ), ̂�L , ϒ̂M. Then,

(i) ̂�L˜⊆̂ϒM ,
(

ϒ̂M

)

�̂
�K D

(

�̂K ∅
)

⇒ (

̂�L
) �̂

�K D

(

�̂K ∅
)

.

(ii) ̂�L˜⊆̂ϒM ,
(

̂�L
) �̂

�K D

(

�̂KU

)

⇒
(

ϒ̂M

)

�̂
�K D

(

�̂KU

)

.

Proof (i) From Theorem 4.7, we have
[
̂�K D

]

(

̂�L
)

˜⊆
[
̂�K D

]

(

̂ϒM
) = 
[

̂�K D
]

(

̂�K ∅
) =

̂�K ∅. Therefore,
[̂�K D
]

(

̂�L
) = ̂�K ∅ = 
[

̂�K D
]

(

̂ϒM
)

andhence
(

̂�L
)�
̂�K D

(

̂�K ∅
)

.

(ii) From Theorem 4.7, we have 
[
̂�K D

]

(

̂ϒM
)

˜⊇
[
̂�K D

]

(

̂�L
) = 
[

̂�K D
]

(

̂�KU
)

. More-

over, sincêϒM˜⊆̂�KU , then 
[
̂�K D

]

(

̂ϒM
)

˜⊆ 
[
̂�K D

]

(

̂�KU
)

. Thus, 
[
̂�K D

]

(

̂ϒM
) =


[
̂�K D

]

(

̂�KU
)

and hence
(

̂ϒM
)�
̂�K D

(

̂�KU
)

.
��

Definition 4.10 Let̂�K D,̂�L D ∈ BSC
P
D(U ),̂ϒM ∈ �(U ). Then,

(

̂�K D
)⊥
̂ϒM

(

̂�L D
) ⇔

(


[
̂�K D

]

(

̂ϒM
)

)

=
(


[
̂�L D

]

(

̂ϒM
)

)

(4.17)

(

̂�K D
)�
̂ϒM

(

̂�L D
) ⇔

(


[
̂�K D

]

(

̂ϒM
)

)

=
(


[
̂�L D

]

(

̂ϒM
)

)

(4.18)

are called the bs-lower class rough ̂ϒM -equal relation and bs-upper class rough ̂ϒM -equal
relation, respectively. Moreover,

(

̂�K D
)♦
̂ϒM

(

̂�L D
)⇔ (

̂�K D
)⊥
̂ϒM

(

̂�L D
) = (̂�K D

)�
̂ϒM

(

̂�L D
)

(4.19)

Theorem 4.11 Let �̂K D,̂�L D ∈ BSC
P
D(U ), ϒ̂M ∈ �(U ). Then,

(i) �̂K̂⊆̂�L ,
(

̂�L
) �̂

ϒM

(

̂∅BS
)⇒

(

�̂K

)

�̂
ϒM

(

̂∅BS
)

.

(ii) �̂K̂⊆̂�L ,
(

�̂K

)

�̂
ϒM

(

̂UBS
)⇒ (

̂�L
) �̂

ϒM

(

̂UBS
)

.

Proof (i) Since 
[
̂�L D

]

(

̂ϒM
) = 
[

̂∅BS
]

(

̂ϒM
)

and̂�K̂⊆̂�L , then 
[
̂�K D

]

(

̂ϒM
)

˜⊆ 
[
̂∅BS
]

(

̂ϒM
) =̂∅BS . Thus, 
[̂�K D

]

(

̂ϒM
)

˜⊆ 
[
̂∅BS
]

(

̂ϒM
)

and hence
(

̂�K
)�
̂ϒM

(

̂∅BS
)

.
The proof (ii) can be proved similarly to (i). ��

5 Decisionmaking under uncertainty using bipolar soft rough classes

In this section,weuse bs-rough classes tomanage the decision-making process for uncertainty
problems. First, we build a decision-making algorithm based on bs-rough classes, then we
illustrate how this algorithm can be applied to an uncertainty problem.

Definition 5.1 Let̂�K D ∈ BSC
P
D(U ), ̂�L ∈ �(U ) and di , d j ∈ D. Then,

�̂�L
̂�K D

(di ) = 1

|K ∪ L|

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∑

p∈K∪L

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∣

∣

∣

∣

̂�L[̂�K D](p)
∣

∣

∣

∣

−
∣

∣

∣

̂�L [̂�K D](¬p)
∣

∣

∣

∣

∣

∣

̂�L[̂�K D](p)
∣

∣

∣−
∣

∣

∣

∣

̂�L [̂�K D](¬p)

∣

∣

∣

∣

−
∣

∣

∣

∣

̂�L
[

̂�K D−
{

̂�K di

}](p)

∣

∣

∣

∣

−
∣

∣

∣

∣

̂�L
[

̂�K D−
{

̂�K di

}](¬p)

∣

∣

∣

∣

∣

∣

∣

∣

̂�L
[

̂�K D−
{

̂�K di

}](p)

∣

∣

∣

∣

−
∣

∣

∣

∣

̂�L
[

̂�K D−
{

̂�K di

}](¬p)

∣

∣

∣

∣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(5.1)
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is called effectiveness degree of the decision maker di compared to other decision makers.
Moreover, when we compare the relations between di and d j according to their effectiveness
degrees, the following expressions are defined:

(i) �̂�L
̂�K D

(di ) >
̂�L

�̂�L
̂�K D

(d j ) ⇒ di is more effectiveness degree than d j .

(ii) �̂�L
̂�K D

(di ) =
̂�L

�̂�L
̂�K D

(d j ) ⇒ di is same effectiveness degree than d j .

(iii) �̂�L
̂�K D

(di ) <
̂�L

�̂�L
̂�K D

(d j ) ⇒ d j is more effectiveness degree than di .

Now, the decision making algorithm aiming to identify the best decision maker based on
bs-rough classes has been created as follows:

Algorithm 1 Algorithm for bs-rough classes
Require: U is the initial universe, P is the universe of all possible parameters related to the objects in U and

D = {d1, d2, ..., dr } is the set of decision-makers for 1 ≤ i ≤ r
Input: Input �̂K D ∈ BSC

P
D(U ) and referencê�L ∈ �(U ).

Output: Decision Making.

1. Calculate the effectiveness degrees �̂�L
̂�K D

(di ) of decision makers di for di ∈ D.

2. The calculated efficiency effectiveness degree of each decision-maker are compared.

3. Find s, for which �̂�L
̂�K D

(ds ) = max

{

�̂�L
̂�K D

(di ) : di ∈ D

}

.

Let us now illustrate how the decision-making algorithm we proposed can be applied to
an uncertainty problem:

Example 5.2 Suppose a college wanted to predict how successful the current teachers could
be in a year. For this, the college administration requires six inspectors to inspect the
college. Also, the set of parameters that determine the success criteria of teachers is
expressed as K = {p2, p3, p4} ⊆ P = {p1 : hardworking, p2 : disciplined, p3 :
success f ul, p4 : honest} by the college administration. In this case, ¬P = {¬p1 :
lazy,¬p2 : undisciplined,¬p3 : unsuccess f ul,¬p4 : dishonest}. Moreover, let
U = {u1, u2, u3, u4, u5, u6, u7, u8, u9, u10} be the set of current teachers and D =
{d1, d2, d3, d4, d5, d6} be the set of inspectors who apply to inspect the college.

The opinions of each inspector about the teachers are expressed with the help of bs-sets
̂�K di for di ∈ D as follows:

̂�K d1 =
{

(p2, {u1, u2, u5, u7}, {u3, u4, u6, u8}) , (p3, {u2, u5, u7, u8}, {u1, u4, u10}) ,

(p4, {u3}, {u1, u4, u9, u10})
}

,

̂�K d2 =
{

(p2, {u3, u4, u6}, {u5, u7, u9, u10}) , (p3, {u5, u7}, {u3, u6}) ,

(p4, {u1, u3, u9, u10}, {u2, u6, u7})
}

,

̂�K d3 =
{

(p2, {u3, u5, u7}, {u2, u4}) , (p3, {u1, u4, u9}, {u6, u8}) ,

(p4, {u8, u9}, {u1, u5, u9})
}

,

̂�K d4 =
{

(p2, {u8, u10}, {u1, u2}) , (p3, {u2, u5}, {u8, u9, u10}) ,

(p4, {u2, u4, u5}, {u1, u3, u7})
}

,

̂�K d5 =
{

(p2, {u1, u5, u8}, {u3, u7, u9}) , (p3, {u1, u3, u6, u10}, {u1, u5, u7}) ,

(p4, {u1, u2, u6, u7, u9}, {u3, u8, u10})
}

,

̂�K d6 =
{

(p2, {u2, u6, u7}, {u4, u9}) , (p3, {u2, u4, u6}, {u1, u3, u8, u9}) ,

(p4, {u4, u6, u8}, {u1, u2, u9})
}

.
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Table 7 Effectiveness degree of
each decision maker

Decision maker Effectiveness degrees

�̂�L
̂�K D

(d1) 0.296

�̂�L
̂�K D

(d2) 0.333

�̂�L
̂�K D

(d3) 0.2644

�̂�L
̂�K D

(d4) 0.2298

�̂�L
̂�K D

(d5) 0.141

�̂�L
̂�K D

(d6) 0.1026

Hence,̂�K D = {̂�K d1 ,
̂�K d2 ,

̂�K d3 ,
̂�K d4

}

is a bs-class. Then, taking into account each
parameter, i.e., for L = P , the achievements of teachers at the end of one year are expressed
by the school administration with the help of the bs-set ̂�L as follows:

̂�L =
{

(p1, {u1, u2, u4, u6, u9}, {u3, u5, u7, u10}) , (p2, {u3, u4, u6}, {u1, u2, u4, u9}) ,

(p3, {u2, u5, u7}, {u3, u6, u8}) , (p4, {u3, u8, u10}, {u2, u6, u7})
}

.

According to these data, the following values are easily obtained by making use of (5.1)
to determine which inspector makes the most accurate decision:

According to the values obtained, �̂�L
̂�K D

(d2) = max
{

�̂�L
̂�K D

(di ) : di ∈ D
}

= 0.333 is

obtained, and therefore we recommend that the d2 inspector be more preferable than other
inspectors to inspect the college for later years.

As seen in Example 5.2, the values expressed by different decision-makers are considered
together in the decision-making process. This situation is quite different from the decision-
making processes that are customary in the literature. A similar approach can be observed
in Karaaslan (2016). In the current uncertainty problem, it is aimed to determine the best
decision-maker by trying to determine the difference between the values expressed by the
decision-makers and the real situation. Thus, we aimed to find out which decision maker we
should use in solving a similar uncertainty problem. The advantages of bipolar soft rough
classes used in Algorithm 1 are as follows:

• We cannot express the uncertainty problem in Example 5.2, which also includes NOT
parameters of parameters, using soft rough classes. In this respect, bipolar soft rough
classes should be preferred in uncertain environments.

• Modeling the values expressed by different decision-makers with a single set type allows
the data to be processed more easily.

• It enables us to make a ranking among decision-makers by enabling the construction of
a formulation that provides the effectiveness degrees among decision-makers.

6 Conclusion

The aim of this paper is to provide a more effective approach to uncertainty problems that
focus on decision-makers. For this, bipolar soft rough classes have been suggested. Thanks
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to these classes, it is possible to handle the data expressed by different decision-makers
together. Moreover, it is used as a tool to determine how effectively the current uncertainty
can be expressed by decision-makers. To construct bipolar soft rough classes, bipolar soft
classes have been defined and some of their operations subset, complement, intersection,
union are examined. Then, for uncertainty problems, a decision-making algorithm is proposed
using bipolar soft rough classes. Moreover, how this algorithm can be applied in solving an
uncertainty problem is exemplified. We think that the proposed mathematical approach can
be very useful in every field where the best decision-maker should be identified. In addition
to these, the proposed classes can be generalized to theories such as fuzzy bipolar soft set
Naz and Shabir (2014), rough fuzzy bipolar soft set Malik and Shabir (2019), m-polar fuzzy
bipolar soft set Akram et al. (2021), modified rough bipolar soft set Shabir and Gul (2020).
Moreover, it may be considered to develop better approaches by developing a reduction
method for the proposed classes.
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