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Abstract
An increment in carbon dioxide (CO2) results in global warming posed a threat to the
mankind. Mitigation of anthropogenic CO2 emission is important for climate change alle-
viation. In this regard, some significant steps are taken by the government of every country,
which requires budget. In this paper, to observe the effect of budget allocation on the abate-
ment of atmospheric concentration of CO2, a non-linear mathematical model is formulated
and analyzed. In the modeling process, it is considered that a part of the available bud-
get is used for the control of anthropogenic emission and the remaining part of budget is
used for afforestation and reforestation. For the proposed model, feasibility and stability
of all the equilibria have been discussed. From the model analysis, we have derived that
how much budget one should spend on controlling the anthropogenic emission of CO2 and
afforestation/reforestation. Furthermore, numerical simulation has been performed to sup-
port analytical findings. It has been shown that the atmospheric level of CO2 can be reduced
to an innocuous level if the efficacy of allocated budget to control the anthropogenic emission
of CO2 and afforestation/reforestation increases. Moreover, it is found that the growth rate
of budget allocation due to an increase in atmospheric level of carbon dioxide may cause
stability switch through Hopf-bifurcation.

Keywords Mathematical model · CO2 gas · Forest biomass · Budget · Stability ·
Hopf-bifurcation

Mathematics Subject Classification 34D05 · 34D20 · 34D23

1 Introduction

Climate change is causing irreplaceable environmental damage. Sea-level rise, temperature
rise, extreme weather conditions, and ocean acidification are some changes which have been
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pointed up in a recent report by UNCCS (UNCCS 2019). The increasing global temperature
affects the freshwater availability, food security, and these in combination with extreme
climatic events bring forth negative impacts on human health. IPCC 2018 has mentioned that
the anthropogenic emission of greenhouse gases has warmed the atmosphere 1.0◦C above the
pre-industrial temperature level, and if the current emission rate of greenhouse gases persist,
global temperature may increase to 1.5◦C between the year 2030 and 2052 (IPCC 2018). As
carbon dioxide(CO2) is a primary greenhouse gas due to its high presence in the atmosphere
compared to other greenhouse gases, the enhanced concentration of this prime heat-trapping
gas is predominantly accountable for global warming. The atmospheric level of CO2 has
elevated from 280 ppm (pre-industrial level) to 415 ppm in January 2021 (NOAA 2021).
Recent emission gap report published by UNEP has reported that total carbon dioxide gas
emission in 2018 amounted to 55.3 GtCO2 of which 37.5 GtCO2 is emitted due to fossil fuel
burning and 3.5 GtCO2 is emitted due to the land-use changes (UNEP 2019). This indicates
that the anthropogenic emission of carbon dioxide is a root cause for such a high level of
its atmospheric concentration. According to Shi (Shi 2003), 1.0% increment in the human
population brings about 1.42% increment in carbon dioxide emission on average. Forest
biomass also plays a prime role in the dynamics of atmospheric concentration of CO2 as it
acts as a carbon dioxide sink. Using mathematical models, it has been shown in articles that
due to increasing humanpopulation, forest biomass is depleting rapidly (Cropper andGriffiths
1994; Misra et al. 2014; Shukla et al. 2011). In the FAO report (FAO 2020), it is stated
that between 2010 and 2020, about 4.74 million hectares of forest had been cleared per year.
This destruction in the natural sink of carbon dioxide is also a reason for such a high level of
atmospheric concentration of CO2 (Caetano et al. 2011). To stabilize the atmospheric level of
CO2 below 450 ppm, it is required to take some actions as soon as possible and continuously
for few decades, and this could prevent some future severe adverse impacts (IPCC 2014).

To reduce the atmospheric concentration of carbon dioxide, it is required to make efforts.
Some mitigation efforts use decarbonization technologies which control the anthropogenic
emission of CO2, such as fuel switching, renewable energy, and carbon capture and storage
(CCS). These techniques are discussed in the literature (Fawzy et al. 2020; Ricke et al.
2017; Wee 2013), and most of these techniques are well established and have low risk.
Some mitigation techniques are termed as negative emission techniques, which include the
techniques that capture CO2 directly from the atmosphere, e.g., direct air capture and storage
(DACS), ocean fertilization, afforestation/reforestation, etc., and these techniques are dis-
cussed in (Fawzy et al. 2020; IPCC 2018; Pires 2019; Smith et al. 2016). As combustion of
fossil fuels occurs mainly in power sectors and industries, control of anthropogenic emission
of CO2 can be done here using the renewable energy, CCS technology as well as switching
fuels to low carbon fuels. Vinca et al. have discussed about the decarbonization techniques,
and they have mentioned that the leakage risk and high cost associated with the deployment
of CCS technology are some points of concern of decarbonization techniques (Vinca et al.
2018). Maintaining the atmospheric level of CO2 by controlling the anthropogenic emission
using technological options has been studied in (Verma and Misra 2018). In this study, they
have shown that using technological options, the atmospheric level of carbon dioxide can be
controlled but high implementation cost of such options restrict their use at large scale. Other
than that, the dismissive point of the negative emission technique such as afforestation and
reforestation is that it requires a larger land which can increase the competition for the land
between other land uses. According to Smith et al. (Smith et al. 2016), the removal of 1.1
GtCO2 is possible by the year 2100 and this would require approximately 370 Mha new for-
est. Study of reduction in the atmospheric concentration of CO2 using optimized afforestation
has been done by Caetano et al. (Caetano et al. 2011). In some studies, it has been argued that
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the negative emission techniques should be used together with decarbonization technologies
to achieve a great mitigation effort (Gasser et al. 2015; Pires 2019). Moreover, utilizing
finance on these technologies together with redirecting it to support land-use practices which
are more sustainable, further to use it for the payments of sequestration of carbon can aid
in the worth of forests to locals (FAO 2020) which can prevent deforestation. Moreover, a
study done by Lata and Misra (Lata and Misra 2017) suggests that by providing the incen-
tives to people, deforestation can be reduced. Some programs such as Unnat Jyoti, SLNP,
National Electric Mobility Mission Plan, Pradhan Mantri Krishi Sinchayee Yojna, National
Afforestation Program, National Green Highways Mission, etc. have been launched by the
Indian government to maintain the atmospheric level of CO2. Till date, 30 projects of total
expense INR 8,470 Million have been approved (MoEFCC 2021).

In recent years, effect of various factors like human population and related population
pressure, forest biomass, environmental education, etc. on atmospheric concentration of CO2

using mathematical models have been analyzed (Devi and Gupta 2020; Misra and Jha
2021; Misra and Verma 2013, 2015; Shukla et al. 2015; Tennakone 1990; Verma and
Misra 2018). Tennekone has formulated a non-linear mathematical model by considering
forestry biomass and atmospheric concentration of carbon dioxide as dynamic variables
(Tennakone 1990). This study has shown that the excessive deforestation and rapid increase
in atmospheric concentration of CO2 destabilizes the system. Furthermore, Misra and Verma
(Misra and Verma 2013) have presented a model to study the interplay between atmospheric
concentration of CO2, human population, and forestry biomass. This study suggests that
uncontrolled deforestation by the human population may lead the system to an unstable
situation. Extending this study, Misra & Jha (Misra and Jha 2021) have shown that due to the
increasing demand of human population for forestry biomass (i.e., population pressure), the
atmospheric concentration of carbon dioxide increases. From these studies, it may be noted
that controlling the anthropogenic emission of carbon dioxide or deforestation by the human
population is important for stabilizing the atmospheric concentration of CO2. Devi andGupta
(Devi and Gupta 2020) have studied the effect of different types of biomass in controlling the
atmospheric level of CO2. In the study done by Misra and Verma (Misra and Verma 2015),
it has been shown that environmental education about the ill effects of increasing CO2 to the
population might be helpful in maintaining the atmospheric level of CO2.

From the above discussion, it may be noted that the atmospheric level of CO2 can be
maintained at an innocuous level using various decarbonization techniques or negative emis-
sion techniques, and for the implementation of these techniques government provide funds,
(MoEFCC 2021). Therefore, it is reasonable to study the impact of allocated budget on the
atmospheric level of carbon dioxide. In the present work, we formulate a non-linear mathe-
matical model which explores the effect of budget allocation on the abatement of atmospheric
concentration of carbon dioxide. For model formulation, we consider that the budget follows
logistic growth and the allocated budget is used for two purposes; some proportion of the
allocated budget is used for the application of various technologies or programs to reduce
the anthropogenic emissions and remaining part of the budget is used to increase the forest
by which sequestration of carbon dioxide increases.

2 Mathematical model

Let C(t), N (t), and F(t) be the atmospheric level of CO2, human population, and forest
biomass, respectively. The increasing level of atmospheric carbon dioxide is mainly respon-
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sible for increasing global average temperature. Let C0 denotes the pre-industrial level of
atmospheric CO2. As the atmospheric level of carbon dioxide was almost constant during the
pre-industrial period, we have taken C0 as a constant. The main cause behind the increased
level of CO2 is its anthropogenic emission due to fossil fuel burning and land-use changes. In
some studies, it has been discussed that the atmospheric level of CO2 can be maintained at an
innocuous level using decarbonization techniques and negative emission techniques (Gasser
et al. 2015; Pires 2019), and for the implementation of these techniques, the government
provides funds. We have considered the allocated budget as a dynamical variable B(t). Fur-
thermore, we have considered that the budget allocated to maintain the atmospheric level of
carbon dioxide follows the logistic growth. Moreover, the government provides additional
funds if the atmospheric level of CO2 increases in excess amount; hence, the budget allo-
cated by the government also depends upon the increased level of CO2 from its pre-industrial
level C0, so we have considered the term η(C − C0)B. Here, η is per capita growth rate of
budget in proportion to the increased level of carbon dioxide from its pre-industrial level.
If there is already a high budget allocation for maintaining the atmospheric level of carbon
dioxide, the budget will increase slowly. However, if the budget allocation is less, then on
increase of atmospheric level of CO2, the government will increase the budget rapidly. Thus,
the dynamics of allocated budget B(t) is governed by the equation

dB

dt
= r B

(
1 − B

K

)
+ η(C − C0)B.

The anthropogenic emission of carbon dioxide depends upon the human population (Onozaki
2009), so we have considered that the anthropogenic emission rate of CO2 is proportional
to the human population. The atmospheric concentration of CO2 depletes naturally and it
is taken in proportion to the atmospheric concentration of CO2 (Nikol’skii 2010). α is the
natural depletion rate coefficient of atmospheric CO2. The application of any mitigation
strategies has some negative impacts too, such as CCS technique has cost disadvantage,
leakage risk, etc. (Gibbins and Chalmers 2008). As, the technological options can be applied
mainly in large industries, so it is not possible to achieve a net zero emission. Therefore,
we have considered that the budget used for control of anthropogenic emission of CO2

has a limited impact on the control of anthropogenic emission of CO2. Therefore, we have
considered a saturated type of functional response to show the effect of budget on the control
of anthropogenic emission of CO2. We have considered that kth (0 < k < 1) part of the
allocated budget is used for controlling the anthropogenic emission of CO2. As the kB
budget is used to control the anthropogenic emission of CO2, therefore we have considered
that the anthropogenic emission rate coefficient of CO2, i.e., λ decreases by a factor νkB

q1+kB .

Therefore, the net anthropogenic emission rate coefficient of CO2 becomes
(
λ − νkB

q1+kB

)
,

which is a decreasing function of the budget used to control the anthropogenic emission of
CO2. Here, ν is the efficacy of budget allocated to control the anthropogenic emission of CO2

and q1 is a constant which is used to limit the effect of allocated budget in controlling the
atmospheric level ofCO2.Also, the concentration ofCO2 decreases due to its sequestration by
forestry biomass during the photosynthesis process at a rate λ1CF . Therefore, the following
differential equation governs the dynamics of atmospheric CO2 :

dC

dt
= −α(C − C0) +

(
λ − νkB

q1 + kB

)
N − λ1CF .

Furthermore, the human population follows logistic growth with s and L as intrinsic growth
rate and carrying capacity, respectively. Since the enhanced concentration of atmospheric
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CO2 has adverse effects on human health (Casper 2010), the population declines because of
an increase in the atmospheric concentration of CO2. As human population clears forestry
biomass for their livelihood (Cropper and Griffiths 1994; Shukla et al. 2011), we have
considered that the growth rate of forest biomass decreases due to human population and
this depletion of forestry biomass feedbacks to the growth of human population (Misra and
Verma 2013; Shukla et al. 2011) with a proportionality constant π . Therefore, the dynamics
of human population is governed by

dN

dt
= sN

(
1 − N

L

)
− θ(C − C0)N + πφNF .

Also, the forestry biomass follows logistic growth with u and M as intrinsic growth rate and
carrying capacity of forestry biomass, respectively. The humanpopulation uses forest biomass
for their livelihood, so the density of forest biomass decreases at a rate φNF . As mentioned
above, forest biomass soaks carbon dioxide during the photosynthesis process. Hence, forest
biomass acts as a natural sink of atmospheric carbon dioxide. Therefore, for maintaining
the atmospheric level of carbon dioxide, increasing the forest biomass and controlling the
anthropogenic emission of CO2 might be beneficial. Therefore, we have considered that the
remaining part of budget (i.e., (1 − k)th part) is used for the plantation of trees. Therefore,
due to the allocated budget, the density of forest biomass increases at a rate μ(1−k)BF

q2+(1−k)B ;
here, μ is efficacy of allocated budget for afforestation and reforestation programs and q2
is half-saturation constant which limits the effect of allocated budget. Here, again, we have
considered the saturated typeof functional response, because the available budget can increase
the trees in the considered region up to a certain level. Therefore, the dynamics of forest
biomass is governed by the following differential equation:

dF

dt
= uF

(
1 − F

M

)
− φNF +

(
μ(1 − k)B

q2 + (1 − k)B

)
F .

Thus, the set of non-linear differential equations governing the dynamics of atmospheric
carbon dioxide according to our consideration is as follows:

dC

dt
= −α(C − C0) +

(
λ − νkB

q1 + kB

)
N − λ1CF,

dN

dt
= sN

(
1 − N

L

)
− θ(C − C0)N + πφNF,

dF

dt
= uF

(
1 − F

M

)
− φNF +

(
μ(1 − k)B

q2 + (1 − k)B

)
F,

dB

dt
= r B

(
1 − B

K

)
+ η(C − C0)B, (1)

where C(0) > C0, N (0) ≥ 0, F(0) ≥ 0 and B(0) ≥ 0.
In general, the parameter q1 is the half-saturation constant, which represents the budget

at which reduction in atmospheric level of CO2 is half of its maximum possible reduction
which can be achieved using budget. Similarly, we can define q2 for the forest biomass. The
description of used parameters in model system (1) and their units are mentioned in Table 1.

Lemma 1 Region of attraction for the above model system is contained in 	:

	 =
{
(C, N , F, B) ∈ �4+ : C0 ≤ C ≤ Cm , 0 ≤ N ≤ Nm , 0 ≤ F ≤ Fm , 0 ≤ B ≤ Bm

}
, (2)
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Table 1 Parameters and their description with unit

Parameter Description Unit

α Natural depletion rate of CO2 (year)−1

λ Aanthropogenic emission rate of carbon dioxide ppm (person year)−1

λ1 Absorption rate of CO2 by forest biomass (ton year)−1

ν Efficacy of budget to control the anthropogenic emission of CO2 ppm (person year)−1

k Proportion of budget to control the anthropogenic emission of CO2 -

q1 Half-saturation constant dollar

s Intrinsic growth of human population (year)−1

L Carrying capacity of human population Person

θ Death rate of human population due to increased level of CO2 (ppm year)−1

π Growth rate of human population due to forest biomass Person (ton)−1

φ Deforestation rate (person year)−1

u Intrinsic growth of forest biomass (year)−1

M Carrying capacity of forest biomass Ton

μ Efficacy of budget used for afforestation/reforestation (year)−1

q2 Half-saturation constant Dollar

C0 Pre-industrial level of CO2 ppm

r Intrinsic growth rate of budget (year)−1

η Growth rate of budget (ppm year)−1

K Carrying capacity of budget Dollar

where

Cm = C0 + λNm

α
, Nm = L

s
(s + πφFm ), Fm = M

u
(u + μ), Bm = K

r

(
r + ηλNm

α

)
.

It attracts all the solutions initiating in the interior of positive orthant.

Proof of this lemma is given in Appendix A.

Persistence

The permanence or persistence of the model system ensures that if the considered dynamical
variables are initially present in the system, they will be present in the system for all future
time. A system is said to be uniformly persistent if lower bound and upper bound of each
positive solution exist, i.e., there exists positive constant M1 and M2, such that each positive
solution of the system with positive initial condition satisfies

M1 ≤ lim inf
t→∞ W (t) ≤ lim sup

t→∞
W (t) ≤ M2,

where W (t) = (C(t), N (t), F(t), B(t)).
Proof of persistence of system (1) is given in Appendix B.
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Table 2 Obtained equilibria and condition for their existence

Equilibrium Condition for existence

E0(C0, 0, 0, 0) Without any condition

E1
(
C0 + λLs

(αs+θλL)
, αsL

(αs+θλL)
, 0, 0

)
Without any condition

E2
(

αC0
α+λ1M

, 0, M, 0
)

Without any condition

E3(C0, 0, 0, K ) Without any condition

E4(C4, N4, 0, B4) s − θ(C4 − C0) > 0

E5(C5, N5, F5, 0) u(sα + θλL) > φLαs

E6(C6, 0, F6, B6)
αr
η > Mλ1

(
C0 − r

η

)
E∗(C∗, N∗, F∗, B∗) Stated in the existence part of E∗

3 Model analysis

As the formulated model (1) is non-linear, we perform its qualitative analysis using the
stability theory of ordinary differential equations. To analyze the long-term behavior of the
formulated model (1), first, we obtain the feasible equilibria and then perform their stability
analysis.

3.1 Equilibrium analysis

The equilibria are constant solutions of the model system (1). We can obtain them by setting
the growth rate of dynamical variables to zero. All feasible equilibria for the model system
(1) are listed in Table 2:

The existence of equilibria E0, E1, E2 and E3 are obvious, and hence omitted. Existence
of E4, E5, E6 and E∗ are shown below. In equilibrium E4(C4, N4, 0, B4), the values of C4,
N4 and B4 are positive solutions of the following equations:

−α(C − C0) +
(

λ − νkB

q1 + kB

)
N = 0, (3)

s

(
1 − N

L

)
− θ(C − C0) = 0, (4)

r

(
1 − B

K

)
+ η(C − C0) = 0. (5)

From Eqs. (4) and (5), we have

N = L{s − θ(C − C0)}
s

and B = K {r + η(C − C0)}
r

.

Putting these values of N and B in Eq. (3), we have

−α(C − C0) +
[
λ −

Kνk{r+η(C−C0)}
r

q1 + Kk{r+η(C−C0)}
r

][
L{s − θ(C − C0)}

s

]
= 0.

On simplifying this, we get

a(C − C0)
2 − b(C − C0) + c = 0,
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where a =
[

αηkK
r + λkK Lθη

rs − νkK Lηθ
rs

]
,

b = −αq1 − αkK − λq1Lθ
s + λkKηL

r − λkK Lθ
s − νkK Lη

r + νkK Lθ
s ,

c = −[λq1L + λkK L − νkK L].
As λ > ν, implies a > 0 and c < 0 and the discriminant > 0. Thus, we have a positive

real root (say C̃4) ⇒ C = C0 + C̃4 = C4.
Using this value of C4, we get positive values of B4 and N4, if [s − θ(C4 − C0)] > 0, or

we can say that the death rate of human population due to harmful effects of increased CO2

should be lesser than its intrinsic growth rate.
In equilibrium E5(C5, N5, F5, 0), the values of C5, N5 and F5 are given as the solutions

of the following equations:

−α(C − C0) + λN − λ1CF = 0, (6)

s

(
1 − N

L

)
− θ(C − C0) + πφF = 0, (7)

u

(
1 − F

M

)
− φN = 0. (8)

From Eq. (6), we have

C = αC0 + λN

α + λ1F
. (9)

Putting this value of C in Eq. (7), we get

N = L{(s + πφF)(α + λ1F) + θλ1C0F}
s(α + λ1F) + θλL

. (10)

Using this value of N in equation (8), we get

âF2 + b̂F + ĉ = 0.

â =
(
suλ1
M + πφ2Lλ1

)
,

b̂ = −suλ1 + u
M (sα + λθL) + φL(sλ1 + πφα + θλ1C0),

ĉ = −(suα + uθλL − φLαs). As â > 0 and ĉ < 0 provided suα + uθλL > φLαs,
also the discriminant > 0. Therefore, this quadratic equation gives a unique positive
value of F provided that suα + uθλL > φLαs. Using this value of F (say F5) in (10)
and (9), we get the positive values of N and C (say N5 and C5), respectively.

In equilibrium E6(C6, 0, F6, B6), the values of C6, F6 and B6 are given by the solution of
following equations:

− α(C − C0) − λ1CF = 0, (11)

u

(
1 − F

M

)
+ μ(1 − k)B

q2 + (1 − k)B
= 0, (12)

r

(
1 − B

K

)
+ η(C − C0) = 0. (13)

From Eqs. (12) and (13), we get

F = M

u

[
u + μ(1 − k)B

q2 + (1 − k)B

]
and (C − C0) = −r

η

(
1 − B

K

)
, respectively.
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Putting these values in equation (11), we get a quadratic equation in B as

ăB2 + b̆B + c̆ = 0,

where ă =
[

αr(1−k)
ηK + Mλ1r(u+μ)(1−k)

uηK

]
,

b̆ = −αr(1−k)
ηK + αrq2

ηK + Mλ1(u+μ)(1−k)
u

(
C0 − r

η

)
+ Mλ1rq2

ηK ,

c̆ = −
[

αrq2
η

− Mλ1q2
(
C0 − r

η

)]
.

As, ă > 0 and c̆ < 0 provided that αr
η

> Mλ1

(
C0 − r

η

)
also the discriminant > 0.

Therefore, we get a unique positive value of B (say B6). Using this value of B, positive value
of C (from Eq. (11)) and F (from Eq. (12)) can be obtained.

The equilibrium E∗ is given as the positive solution of the following equations:

− α(C − C0) +
(

λ − νkB

q1 + kB

)
N − λ1CF = 0, (14)

s

(
1 − N

L

)
− θ(C − C0) + πφF = 0, (15)

u

(
1 − F

M

)
− φN + μ(1 − k)B

q2 + (1 − k)B
= 0, (16)

r

(
1 − B

K

)
+ η(C − C0) = 0. (17)

From Eqs. (17) and (15), we have

(C − C0) = −r

η

(
1 − B

K

)
and N =

[
L

s

{
s + rθ

η

(
1 − B

K

)
+ πφF

}]
.

Using these values of C and N in Eqs. (14) and (16), we have

αr

η

(
1 − B

K

)
+
(

λ − νkB

q1 + kB

)[
L

s

{
s + rθ

η

(
1 − B

K

)
+ πφF

}]

+ λ1

[
r

η

(
1 − B

K

)
− C0

]
F = 0, (18)

u − uF

M
− φL

s

[
s + rθ

η

(
1 − B

K

)
+ πφF

]
+ μ(1 − k)B

q2 + (1 − k)B
= 0. (19)

From Eq. (18) when B = 0, we have F =
rα
η

+ λL
s

(
s+ rθ

η

)

λ1

[
C0− r

η

]
− λLπφ

s

> 0 (say Fa), provided that

λ1C0 > λ1
r
η

+ λLπφ
s .

When F = 0, we get a quadratic equation in B as

[
− Lrθk(λ − ν)

sηK
− αrk

ηK

]
B2 +

[
αrk

η
− αrq1

ηK
− λq1Lrθ

sηK
+ (λ − ν)

kL

s

(
s + rθ

η

)]
B

+ αrq1
η

+ λq1L

s

(
s + rθ

η

)
= 0,

which gives a positive root of B(say Ba).

123



202 Page 10 of 30 A.K. Misra , A. Jha

Differentiating equation (18) with respect to B, we have

dF

dB
=

αr
ηK + L

s

{
s + rθ

η

(
1 − B

K

)+ πφF
}

νkq1
(q1+kB)2

+
(
λ − νkB

q1+kB

)
Lrθ
ηKs + rλ1

ηK F(
λ − νkB

q1+kB

)
πφL
s + λ1r

η

(
1 − B

K

)− λ1C0

.

Therefore, dF
dB < 0.

From Eq. (19) when B = 0, we have

F =
u − φL

s

(
s + rθ

η

)
u
M + πφ2L

s

> 0 (say Fb),

provided u − φL
s

(
s + rθ

η

)
> 0.

Putting F = 0 in Eq. (19) and simplifying, we get

(1 − k)
rθ

ηK
B2 +

[
(u + μ)(1 − k) + q2rθ

ηK
− φL

s
(1 − k)

(
s + rθ

η

)]
B

+
[
uq2 − q2φL

s

(
s + rθ

η

)]
= 0.

This gives negative root for B. Differentiating (19) with respect to B, we have

dF

dB
=

φLrθ
sηK + μ(1−k)q2

(q2+(1−k)B)2(
u
M + πφ2L

s

) > 0.

Now, the isoclines (18) and (19) intersect at unique point (B∗, F∗) within the positive quad-
rant, provided that Fa > Fb, [see Fig. 1]. Therefore, there exists positive values for B and F
provided that the following conditions hold:

(i) πφλL
s + λ1r

η
< λ1C0,

(ii) u − φL
s

(
s + rθ

η

)
> 0,

(iii)
u− φL

s

(
s+ rθ

η

)
u
M + πφ2L

s

<

αr
η

+ λL
s

(
s+ rθ

η

)

λ1C0− πφλL
s − λ1r

η

.

Using this positive value of B∗ and F∗, we get the positive value of C∗ and N∗.

Remark 1 Using the above equations, we can obtain that

dC∗

dk
=

r
K

[
λ1sq2μC∗B∗

L(q2+(1−k)B∗)2
− πφq2μB∗T

(q2+(1−k)B∗)2
− q1νB∗PQ

(q1+kB∗)2

]
r
K

[
αP + θuT

M + λ1PR + λ1θφC∗]− η
[

πφq2μ(1−k)T
(q2+(1−k)B∗)2

− q1νkPQ
(q1+kB∗)2

− λ1sπφq2μ(1−k)C∗B∗
L(q2+(1−k)B∗)2

] ,
(20)

where P = ( su
LM + πφ2

)
, Q =

{
su
M + πφu − θu

M (C − C0) + πφμ(1−k)B∗
(q2+(1−k)B∗)

}
,

R =
{( su

L − φs
)+ φθ(C − C0) + μs(1−k)B∗

L(q2+(1−k)B∗)

}
and T =

(
λ − νkB∗

q1+kB∗
)
.

From Eq. (20), we can say that when dC∗
dk < 0, the equilibrium level of concentration of

atmospheric carbon dioxide decreases if the budget allocated to control the anthropogenic
emission of carbon dioxide increases. Moreover, when dC∗

dk > 0, i.e., dC∗
d(1−k) < 0, the

equilibrium level of atmospheric concentration of carbon dioxide decreases with increase in
proportion of allocated budget for afforestation/reforestation.
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Fig. 1 Isoclines (18) and (19) are plotted to validate the intersection at unique point (B∗, F∗) within interior
of first quadrant

3.2 Local stability analysis of equilibria

Local stability of the equilibrium of the system is a property that a small change in the initial
point of the formulated system has only a small effect in the behavior of solution as t → ∞.
In this part, we examine the stability of equilibria in a small neighborhood by analyzing the
sign of eigenvalues of the Jacobian matrix corresponding to each equilibrium. The Jacobian
matrix for the model system (1) is given by

J =

⎡
⎢⎢⎢⎣

−(α + λ1F)
(
λ − νkB

q1+kB

)
−λ1C

−q1kνN
(q1+kB)2

−θN a22 πφN 0
0 −φF a33

q2μ(1−k)F
(q2+(1−k)B)2

ηB 0 0 r
(
1 − 2B

K

)+ η(C − C0)

⎤
⎥⎥⎥⎦ ,

where, a22 = s
(
1 − 2N

L

)− θ(C − C0) + πφF , a33 = u
(
1 − 2F

M

)− φN + μ(1−k)B
q2+(1−k)B .

Let the Jacobian matrix (J ) evaluated at equilibrium Ei (i = 0, 1, · · · , 6) is represented by
Ji .
Eigenvalues of J at E0 are −α, s, u and r . Thus, E0 is locally unstable in N − F − B space
and stable in C-direction.
Eigenvalues of J1 are u − φαsL

αs+λθL and r + ηλLs
αs+λθL and remaining eigenvalues are either

negative or have negative real part. As, the eigenvalue u − φαsL
αs+λθL is positive whenever E5

exists. Therefore, the equilibrium E1 is stable in C − N plane, unstable in B-direction, and
unstable in F-direction whenever E5 exists.

The eigenvalues of the Jacobian matrix J2 are −(α + λ1M), s + θλ1C0M
α+λ1M

+ πφM , −u

and r − ηλ1C0M
α+λ1M

. From this, we can see that the eigenvalue r − ηλ1C0M
α+λ1M

is positive whenever
E6 exists. Thus, the equilibrium E2 is stable in C − F plane, unstable in N -direction, and
unstable in B-direction whenever E6 exists.
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Eigenvalues of J3 are −α, s, u, and −r . Therefore, E3 is stable in C − B plane and unstable
in N − F plane.

At equilibrium E4, the Jacobian matrix has one eigenvalue u − φN4 + μ(1−k)B4
q2+(1−k)B4

, which
is positive whenever E∗ exists. Therefore, E4 is unstable in F-direction if E∗ exists.

Furthermore, from the Jacobianmatrix at E5,we note that one eigenvalue is r+η(C5−C0),
which is positive whenever E∗ exists. Therefore, E5 is unstable in B-direction if E∗ exists.

From the Jacobian matrix at E6, we note that one eigenvalue is s − θ(C6 −C0) + πφF6,
which is positive whenever E∗ exists. Therefore, E6 is unstable in N -direction whenever E∗
exists.

Moreover, to discuss the local stability of interior equilibrium E∗, we apply the Routh–
Hurwitz criteria. The Jacobian matrix at E∗ is given as follows:

JE∗ =

⎡
⎢⎢⎢⎢⎣

−(α + λ1F∗)
(
λ − νkB∗

q1+kB∗
)

−λ1C∗ −q1kνN∗
(q1+kB∗)2

−θN∗ − sN∗
L πφN∗ 0

0 −φF∗ − uF∗
M

q2μ(1−k)F∗
(q2+(1−k)B∗)2

ηB∗ 0 0 − r B∗
K

⎤
⎥⎥⎥⎥⎦ .

The characteristic polynomial of matrix JE∗ is given as

ρ4 + A1ρ
3 + A2ρ

2 + A3ρ + A4 = 0, (21)

where

A1 = uF∗

M
+ sN∗

L
+ r B∗

K
+ ǎ,

A2 = ηB∗č + φ2πF∗N∗ + r B∗

K

uF∗

M
+
(
sN∗

L
+ ǎ

)(
r B∗

K
+ uF∗

M

)
+ sN∗

L
ǎ + b̌θN∗,

A3 = λ1ďηC∗B∗ +
(
sN∗

L
+ uF∗

M

)
ηB∗č + φ2πN∗F∗

(
r B∗

K
+ ǎ

)
+ λ1θφN∗C∗F∗

+
(
sN∗

L
+ ǎ

)
r B∗

K

uF∗

M
+
(
r B∗

K
+ uF∗

M

)
sN∗

L
ǎ +

(
r B∗

K
+ uF∗

M

)
b̌θN∗,

A4 = ηλ1ď
sN∗

L
C∗B∗ + ηčB∗ sN∗

L

uF∗

M
− ηπφb̌ď B∗N∗ + πφ2ηčB∗N∗F∗

+φ2π ǎ
r B∗

K
F∗N∗ + λ1θφ

r B∗

K
N∗C∗F∗ + r B∗

K

uF∗

M

sN∗

L
ǎ + r B∗

K

uF∗

M
b̌θN∗.

Here, ǎ = (α + λ1F∗), b̌ =
(
λ − νkB∗

q1+kB∗
)

, č = q1kνN∗
(q1+kB∗)2 , ď = q2μ(1−k)F∗

(q2+(1−k)B∗)2 .

From above, we can note that Ai > 0 for i = 1, 2, 3, 4. Applying Routh–Hurwitz criteria,
it can be deduced that all the roots of Eq. (21) are either negative or have negative real part
iff

A3(A1A2 − A3) − A2
1A4 > 0. (22)

The local stability of E∗ depicts that if any initial start is taken inside some small
neighborhood of E∗(C∗, N∗, F∗, B∗), the solution trajectories will always approach to
E∗(C∗, N∗, F∗, B∗) as t → ∞, i.e., the system will eventually get stabilized.
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3.3 Non-linear stability analysis

In this section, the region for stability analysis of the interior equilibrium E∗ is extended
from a small neighborhood to the whole region of attraction. To investigate the non-linear
stability of the interior equilibrium, we use Liapunov’s method.

Consider a positive definite function ‘V ’ as

V = 1

2
(C − C∗)2 + m1

(
N − N∗ − N∗ ln N

N∗

)
+ m2

(
F − F∗ − F∗ ln F

F∗

)

+ m3

(
B − B∗ − B∗ ln B

B∗

)
.

On differentiating ‘V ’ with respect to ‘t’ along the solution of system (1), we have

dV

dt
= − (α + λ1F

∗)(C − C∗)2 − m1s

L
(N − N∗)2 − m2u

M
(F − F∗)2 − m3r

K
(B − B∗)2

+
(

λ − m1θ − νkB∗

q1 + kB∗

)
(N − N∗)(C − C∗)

+ (m1πφ − m2φ)(F − F∗)(N − N∗)

− λ1C(C − C∗)(F − F∗) − νkq1N

(q1 + kB)(q1 + kB∗)
(C − C∗)(B − B∗)

+ m3η(C − C∗)(B − B∗) + m2μ(1 − k)q2
(q2 + (1 − k)B)(q2 + (1 − k)B∗)

(F − F∗)(B − B∗).

Choosing m1 = 1
θ

(
λ − νkB∗

q1+kB∗
)
and m2 = m1π = π

θ

(
λ − νkB∗

q1+kB∗
)
, we have

dV

dt
= − (α + λ1F

∗)(C − C∗)2 − s

θL

(
λ − νkB∗

q1 + kB∗

)
(N − N∗)2 − m3r

K
(B − B∗)2

− uπ

θM

(
λ − νkB∗

q1 + kB∗

)
(F − F∗)2 − λ1C(C − C∗)(F − F∗)

− νkq1N

(q1 + kB)(q1 + kB∗)
(B − B∗)(C − C∗) + m3η(C − C∗)(B − B∗)

+ π

θ

(
λ − νkB∗

q1 + kB∗

)
μ(1 − k)q2

(q2 + (1 − k)B)(q2 + (1 − k)B∗)
(F − F∗)(B − B∗).

Therefore, dV
dt is negative definite if the following conditions hold:

λ21C
2
m <

2πu

3θM
(α + λ1F

∗)
(

λ − νkB∗

q1 + kB∗

)
, (23)

μ2(1 − k)2π

(q2 + (1 − k)B∗)2θ

(
λ − νkB∗

q1 + kB∗

)
<

2ru

3KM
m3, (24)

ν2k2N 2
m

(q1 + kB∗)2
<

4m3r

9K
(α + λ1F

∗), (25)

m3η
2 <

4r

9K
(α + λ1F

∗). (26)
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Using inequalities (24), (25), and (26), value of constant m3 > 0 can be chosen, provided
that the following given condition holds:

max{S1, S2} <
4r2

9η2K 2 (α + λ1F
∗),

where S1 = 3Mπ
2uθ

(
λ − νkB∗

q1+kB∗
)

μ2(1−k)2

(q2+(1−k)B∗)2 , S2 = 9ν2k2N2
m

4(q1+kB∗)2(α+λ1F∗) .

Therefore, we can state the following theorem for the non-linear stability of interior
equilibrium E∗.

Theorem 1 The interior equilibrium E∗, if exists, is non-linearly stable inside 	 if the fol-
lowing inequalities hold:

λ21C
2
m <

2πu

3θM
(α + λ1F

∗)
(

λ − νkB∗

q1 + kB∗

)

max{S1, S2} <
4r2

9η2K 2 (α + λ1F
∗),

where S1 and S2 are given above.

Remark 2 The ecological interpretation of above conditions stated in Theorem 1 is that if
these conditions are fulfilled, the interior equilibrium E∗ will be globally stable, i.e., for
any initial condition inside the region of attraction, the solution trajectories will always
approach to the interior equilibrium. From the obtained condition, we can interpret that for
large values of λ1 and η, the conditions may be violated and the formulated model system
(1) may become unstable. Therefore, we can say that λ1 and η have destabilizing effect on
the system’s dynamics. However, for large values of r , the obtained conditions are easily
satisfied, so the parameter r has a stabilizing effect on the system’s dynamics.

4 Existence of Hopf-bifurcation

Wehave noticed that the obtained condition for the local stability of interior equilibrium given
in Eq. (22) is satisfied for small values of parameter η. However, on increasing the value of
η, the local stability condition may be violated. Hence, there is a possibility of existence of
Hopf-bifurcation around the interior equilibrium E∗ with respect to parameter η. In this part,
conditions for existence of Hopf-bifurcation around the interior equilibrium E∗ by taking
η as a bifurcation parameter have been derived. The characteristic equation of the Jacobian
matrix around E∗ is given by (21) and every term of the characteristic polynomial can be
expressed in terms of η, so we can write it as

ρ4 + A1(η)ρ3 + A2(η)ρ2 + A3(η)ρ + A4(η) = 0. (27)

At the critical value of η = ηc

A3(ηc)(A1(ηc)A2(ηc) − A3(ηc)) − A2
1(ηc)A4(ηc) = 0. (28)

Therefore, at ηc, we get the reduced characteristic equation as
(

ρ2 + A3

A1

)(
ρ2 + A1ρ + A1A4

A3

)
= 0. (29)
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The above equation has four roots say ρ j ( j = 1, 2, 3, 4) with a pair of purely imaginary

roots ρ1,2 = ±iω0, where ω0 =
(
A3
A1

) 1
2
. The nature of other two roots ρ3 and ρ4 can be

identified as

ρ3 + ρ4 = −A1, (30)

ω2
0 + ρ3ρ4 = A2, (31)

ω2
0(ρ3 + ρ4) = −A3, (32)

ω2
0ρ3ρ4 = A4. (33)

From (30) and (33), if ρ3 and ρ4 are real, then they are negative. If the roots are complex,
from (30), we have 2Re(ρ3) =−A1, i.e., ρ3 and ρ4 are complex eigenvalues with negative
real parts. By this, we can conclude that other two roots (ρ3 and ρ4) have negative real part.
This ensures the occurrence of Hopf-bifurcation.

Moreover, let η ∈ (ηc − ε, ηc + ε), then the two eigenvalues will be ρ1,2 = σ ± iε. Using
this value in Eq. (27) and separating the real and imaginary parts, respectively, we have

σ 4 + A1σ
3 + A2σ

2 + A3σ + A4 + ε4 − 6σ 2ε2 − 3A1σε2 − A2ε
2 = 0, (34)

4σε(σ 2 − ε2) − A1ε
3 + 3A1σ

2ε + 2A2σε + A3ε = 0. (35)

As ε(η) �= 0, from Eq. (35) we have

−(4σ + A1)ε
2 + 4σ 3 + 3A1σ

2 + 2A2σ + A3 = 0.

Putting this value of ε2 in Eq. (34) and then differentiating this with respect to η and substi-
tuting ε(ηc) = 0 in it, we have

[
dσ

dη

]
[η=ηc]

=
[ d

dη
(A1A2A3 − A2

3 − A2
1A4)

−2A1(A1A3 + (2 A3
A1

− A2)2)

]

[η=ηc]
. (36)

Thus,
[
dσ
dη

]
[η=ηc]

�= 0

if

[ d
dη

(A1A2A3 − A2
3 − A2

1A4)

−2A1(A1A3 + (2 A3
A1

− A2)2)

]

[η=ηc]
�= 0. (37)

Therefore, the transversality condition is
[ d

dη
(A1A2A3 − A2

3 − A2
1A4)

−2A1(A1A3 + (2 A3
A1

− A2)2)

]

[η=ηc]
�= 0.

Hence, we have the following theorem;

Theorem 2 At η = ηc, the system (1) undergoes Hopf-bifurcation around the interior equi-
librium E∗, if the following conditions are satisfied:

(e1) A3(ηc)(A1(ηc)A2(ηc) − A3(ηc)) − A2
1(ηc)A4(ηc) = 0,

(e2)
[
Re

dρ j
dη

]
[η=ηc]

�= 0 for j = 1, 2.
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Table 3 Parameter values used
for numerical simulation

Parameter Value Parameter Value

α0 0.01 k 0.4

λ 0.05 ν 0.01

C0 280 q1 500

θ 0.00001 r 0.02

s 0.02 L 800

φ 0.0002 π 0.001

u 0.5 μ 0.1

M 2000 q2 500

λ1 0.00005 η 0.0002

K 1000

Remark 3 The physical interpretation of the above theorem is that as the value of η crosses its
critical value ηc, the real part of at least one pair of complex eigenvalues of the Jacobianmatrix
at E∗ changes its sign, i.e., the sign of real part of pair of complex eigenvalues changes from
negative to positive or from positive to negative; therefore, the stability of the equilibrium
E∗ around η = ηc changes from stability to instability or instability to stability, respectively.
Therefore, the Hopf-bifurcation phenomenon takes place around the interior equilibrium E∗
as η crosses its threshold value.

4.1 Direction and stability of Hopf-bifurcation

In this subsection, we present the result regarding the direction and stability of bifurcating
periodic solutions. The following theorem provides the information about the direction and
stability of periodic solutions.

Theorem 3 The Hopf-bifurcation is forward (backward) if μ2 > 0 (μ2 < 0) and the bifur-
cating periodic solution exist for η > ηc (η < ηc). The periodic solutions are stable or
unstable according as β2 < 0 or β2 > 0 and period increases or decreases according as
τ2 > 0 or τ2 < 0.

Proof of this theorem is given in Appendix C.

5 Numerical simulation

In this part, we present the numerical simulation to verify our analytical findings. For a hypo-
thetical set of parameter values given in Table 3, numerical simulation has been performed
using MATLAB R2013.

For the parameter values given in Table 3, conditions for existence of the interior equilib-
rium are satisfied. The obtained interior equilibrium E∗ is given as

C∗ = 389.7255, N∗ = 769.4751, F∗ = 1670.6770, B∗ = 2097.2559.

Eigenvalues of the Jacobian matrix corresponding to E∗ are given as

−0.0649 + 0.0188i,−0.0649 − 0.0188i,−0.0235,−0.4189.
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Fig. 2 Global stability of (C∗, N∗, F∗) in C − N − F space for parameter values given in Table 3, and the
initial conditions are chosen as (250, 1600, 1600, 1000), (269, 1600, 500, 1000), (300, 1200, 2000, 1000) and
(620, 490, 2000, 1000)

As all the eigenvalues of JE∗ are either negative or have negative real part which confirms
that E∗ is locally asymptotically stable for the chosen set of parameter values. In Fig. 2,
the solution trajectories for different initial starts have been plotted for the parameter values
given in Table 3. From this figure, we can see that all the solution trajectories have proceeded
toward (C∗, N∗, F∗) in C − N − F space, which depicts the global stability of the interior
equilibrium in C − N − F space.

Next, we have plotted the variation plots to observe the effect of some important param-
eters on the dynamics of considered dynamical variables. Figure 3a shows that increase
in anthropogenic emission rate of CO2 (λ) elevates the atmospheric level of CO2, and
because of the adverse effects of increasing CO2 on human population, population decreases;
forestry biomass increases, whereas allocated budget to maintain the atmospheric level of
CO2 increases. From Fig. 3b, we notice that increase in the parameter value of deforestation
rate (φ) leads to increase in the atmospheric level of carbon dioxide which leads to increase
in allocated budget for maintaining the atmospheric level of carbon dioxide. From these
variation plots, we can observe that the anthropogenic emission rate of carbon dioxide and
deforestation rate (i.e., λ, φ) play an important role in the dynamics of atmospheric carbon
dioxide.

Furthermore, in Fig. 4, we have plotted the atmospheric concentration of carbon dioxide
with respect to time for different values of ν and μ, keeping rest of the parameters same as
in Table 3. First, we choose ν = μ = 0, i.e., when the government does not take any action
to reduce the atmospheric level of carbon dioxide in the considered region; the atmospheric
concentration of CO2 is very high. Next, we have considered ν = 0.01 and μ = 0, i.e., in
this case, budget is used only for the decarbonization technologies and there is no afforesta-
tion/reforestation coverage in the region. In this case, the equilibrium level of concentration
of atmospheric carbon dioxide is less than the equilibrium level attained in the previous case.
Moreover, a substantial decrease in atmospheric concentration of carbon dioxide is noted if
there is continuous growth in afforestation/reforestation coverage using budget despite the
fact that efficacy of budget to control the anthropogenic emission of carbon dioxide is zero.
Furthermore, we have considered that the allocated budget is used for the decarbonization
techniques as well as for afforestation/reforestation. Due to the combined effect of these,
the equilibrium level of atmospheric carbon dioxide settles down to a much lower value.
Thus, the combined effect of decarbonization techniques and afforestation/reforestation in
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Fig. 3 Variation of C(t), N(t), F(t), and B(t) with respect to time t for different values of a anthropogenic
emission rate (λ) and b deforestation rate (φ). Rest of the parameters are same as in Table 3, and the initial
conditions are taken as (275, 500, 1200, 1500)
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Fig. 4 Effects of parameters ν and μ on atmospheric level of carbon dioxide. All the parameters are same as
in Table 3, and the initial conditions are chosen as (275, 500, 1200, 1500)

the presence of budget allocation have potential to reduce the equilibrium level of atmospheric
concentration of carbon dioxide.

In Fig. 5, a bar diagram has been plotted to quantify the effect of k on equilibrium
level of atmospheric concentration of carbon dioxide (C(t)) (when conditions dC∗

dk < 0

(k < kc = 0.5025) and dC∗
dk > 0 (k > kc) are satisfied), this figure determines the effect of

fraction of budget allocation used to maintain the atmospheric level of carbon dioxide via
controlling the anthropogenic emission of carbon dioxide and for afforestation/reforestation.
From this figure, it can be noticed that the percentage change in equilibrium level of atmo-
spheric carbon dioxide decreases with increase in fraction of budget used to control the
anthropogenic emission of carbon dioxide up to a threshold value k < kc. As the atmo-
spheric level of CO2 decreases with the increase in value of k (for k < kc), the difference
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Fig. 5 Percentage change of equilibrium level of CO2 compare to pre-industrial level (C0); showing effect of
increasing values of k. Rest of the parameters are same as given in Table 3

of atmospheric level of CO2 from its pre-industrial level (C0 = 280) decreases, so the
percentage change decreases. In this case, fraction of budget allocation used to control the
anthropogenic emission of carbon dioxide is responsible to reduce the equilibrium level of
atmospheric carbon dioxide. Moreover, further increase in value k above a threshold value
(k > kc), fraction of budget allocation used for afforestation/reforestation (i.e., 1 − k) is
responsible to reduce the equilibrium level of atmospheric concentration of carbon dioxide.
For the parameter values given in Table 3, it is observed that up to 50.25% of budget used for
the control of anthropogenic emission of carbon dioxide and remaining 49.75% of budget
used for afforestation/reforestation is beneficial to reduce the atmospheric level of carbon
dioxide.

5.1 Existence of Hopf-bifurcation

To examine the existence of Hopf-bifurcation with respect to parameter η, we have chosen
the following set of parameter values:

α = 0.01, λ = 0.05, ν = 0.05, k = 0.5, q1 = 500, λ1 = 0.00005, s = 0.02,

L = 800, θ = 0.001, π = 0.001, φ = 0.0005, u = 0.5, M = 2000,

μ = 0.01, q2 = 500, r = 0.002,C0 = 280, K = 1000. (38)

It is noticed that the system (1) changes its dynamics near the interior equilibrium E∗ as the
growth rate of budget allocation due to increase in atmospheric level of carbon dioxide (η)
increases. For small values of η, the equilibrium E∗ is stable, while the increase in value of
η destabilizes the interior equilibrium E∗. Further increase in value of η again stabilizes the
interior equilibrium which clearly indicates that Hopf-bifurcation occurs twice as the value
of η increases. Numerically, we have obtained the critical values of η at which change in
stability occurs and they are η1c = 0.0007889 and η2c = 0.004684. We have noted that for
η ∈ (0, η1c), all the eigenvalues of the Jacobian matrix at E∗ are either negative or have
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Fig. 6 Phase portraits for system (1) in C − N − F space for different values of η. System shows a stability
of equilibrium E∗ for η = 0.0004, b appearance of limit cycle for η = 0.001 which shows the instability of
equilibrium E∗, (c) stability of equilibrium E∗ for η = 0.008. Rest of the parameters are same as in (38). Initial
conditions are taken as (a) (270, 800, 1500, 1000), (b) (235 800 600 3000) and (700 800 600 3000), (c) (270,
800, 1500, 1000)

negative real part showing the system (1) is stable for small values of (η < η1c); while loss
of stability occurs for η = 0.0007889 and the system remains unstable for η ∈ (η1c, η2c).
Now, with further increase in the value of η > η2c, all the eigenvalues of the Jacobian matrix
corresponding to interior equilibrium E∗ are negative or have negative real part, i.e., the
system stabilizes for η > η2c. In Fig. 6a, we draw the phase portrait in C − N − F space
for η(= 0.0004) < η1c, which shows that the solution trajectories are starting from outside
approach toward E∗, which demonstrate that the interior equilibrium E∗ is stable. In Fig. 6b
for η = 0.001, it is shown that the solution trajectories inC−N−F space, one initiating from
outside and other initiating from inside approach toward the limit cycle, which shows that
the bifurcating periodic solutions are critically stable. Moreover, we have drawn the phase
portrait in C − N − F space for η = 0.008 > η2c in Fig. 6c, which shows that the solution
trajectories are initiating from outside approach toward E∗, i.e., E∗ is stable for η > η2c.
To get a clear picture of the stability switch around interior equilibrium E∗, in Fig. 7, the
Hopf-bifurcation diagram has been plotted considering η as bifurcation parameter. From
this figure, we can say that on increasing the value of η, a stability switch for the interior
equilibrium of the formulated model system occurs.

Furthermore, in Fig. 8, we have plotted the stability region with respect to parameter k
and η, to demonstrate the relationship between these two parameters. From this figure, one
can note that for small values of k (< 0.3693), the system is stable for all values of η and
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Fig. 7 Hopf-bifurcation diagram with respect to parameter η. Rest of the parameters are same as in (38) and
initial conditions are taken as (283, 580, 870, 2000)
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Fig. 8 Stability region of interior equilibrium E∗ for the model system (1), in η − k plane for the parameters
given in (38)

whenever k > 0.3693 an stability switch occurs for the interior equilibrium E∗ with respect
to bifurcating parameter η. Moreover, we can see that the region of instability of the interior
equilibrium E∗ of model system (1) with respect to bifurcating parameter η increases as the
value of k increases.
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6 Conclusion

Based on the present scenario of atmospheric level of carbon dioxide, it is desirable to take
some initiatives for its mitigation. The prime reason for such a high level of atmospheric
carbon dioxide is its anthropogenic emission, so it is required to reduce the anthropogenic
emission of CO2. For this, we have to make some mitigation strategies. As the application
of any mitigation effort requires budget, therefore we have proposed a non-linear mathemat-
ical model to analyze the effect of budget on the abatement of atmospheric concentration
of CO2. For model formulation, dynamical variables as atmospheric concentration of CO2,
human population, forest biomass, and budget are considered. We have considered that the
concentration of CO2 in the atmosphere increases due to its anthropogenic emissions and it
depletes either naturally or its intake by the forest biomass. Human population and forestry
biomass grow logistically. Human population declines due to the harmful impacts of CO2,
whereas the forest biomass declines due to deforestation by the population for their livelihood.
The allocated budget is used for the control of anthropogenic emission of CO2 and refor-
estation/afforestation. The equilibria for the proposed model are obtained and their stability
analysis has been performed. We have shown that the increment in anthropogenic emission
of CO2 escalates the atmospheric level of carbon dioxide, whereas the increased rate of
deforestation by the human population is also an important cause for the increased level of
carbon dioxide in the atmosphere. Moreover, the strategy of using the budget for the control
of anthropogenic emission of the carbon dioxide as well as for reforestation/afforestation
activities would be very helpful in reducing the atmospheric level of CO2 at the desired level.

From model analysis, it has been shown that for the considered set of parameter values
up to 50.25% of budget for the control of anthropogenic emission of carbon dioxide and
remaining 49.75% of the budget for afforestation/reforestation is beneficial to reduce the
atmospheric level of carbon dioxide. Furthermore, simulation result has indicated that if the
decarbonization techniques of controlling the anthropogenic emission of carbon dioxide is
not effective, then afforestation/reforestation is effective in maintaining the level of CO2

in the atmosphere. Similarly, if the afforestation/reforestation is not much effective, then
one should focus on the decarbonization techniques. Furthermore, the combined effects of
decarbonization techniques and afforestation/reforestation aremore beneficial inmaintaining
the atmospheric level of carbon dioxide.

From the analysis, it is concluded that increment rate of budget for the control of increased
level of carbon dioxide gives rise to interesting dynamics about the interior equilibrium E∗.
It is noted that for small values of growth rate of budget allocation due to increased level of
atmospheric CO2 (i.e., η), the coexisting equilibrium is stable and the increase in value of η

destabilizes the system. However, further increase in value of η stabilizes the system. This
shows that the coexisting equilibrium changes its stability from stable to unstable to stable as
the allocated budget in proportion of increased level of atmospheric carbon dioxide increases.
In terms of ecology, this situation states that for small values of increment rate of budget in
proportion to increased level of carbon dioxide reduces the level of carbon dioxide in the
atmosphere which leads to decrease in the allocated budget; this results to increased level
of atmospheric concentration of carbon dioxide. This rise in the atmospheric level of carbon
dioxide leads to increase in the allocated budget. This interplay between the atmospheric
concentration of carbon dioxide and increment rate of allocated budget (η) gives rise to
oscillatory solution. Furthermore, increasing the value of η after a threshold value (η2c), the
concentration of carbon dioxide in the atmosphere attains its saturated level and thus system
gets stabilize. Furthermore, increase in value of η does not affect the stability of system
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and the system remains stable for all increase in η > η2c. Model analysis revels that the
anthropogenic emission of carbon dioxide and deforestation due to human population has
much impact on the atmospheric level of carbon dioxide, but the level of CO2 can be reduced
to a desired level by making proper strategy using budget allocation. Also, the funding for
research and development of new technologies is an important aspect for moving forward in
the field of maintaining the atmospheric level of carbon dioxide.
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Appendix A

Proof From the third equation of the model system (1), we have

dF

dt
≤ uF

(
1 − F

M

)
+ μF .

Using the theory of differential inequality, we have

lim sup
t→∞

F(t) ≤ M(u + μ)

u
= Fm (say).

From the second equation of model system, we have

dN

dt
≤ (s + πφFm)N − sN 2

L
.

Using the same argument as before

lim sup
t→∞

N (t) ≤ L

s
(s + πφFm) = Nm (say).

Now, from the first equation of the model system

dC

dt
≤ −α(C − C0) + λNm .

Then, we have

lim sup
t→∞

C(t) ≤ αC0 + λNm

α
.

Similarly, we can show that

lim sup
t→∞

B(t) ≤ K

r

(
r + ηλNm

α

)
.

�

Appendix B

Proof For any N ≥ 0, we have dN
dt

∣∣∣∣
N=0

= 0 which implies that N = 0 is invariant manifold.

Due to continuity of system, we can conclude that N would never go below zero if its initial
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condition is non-negative. Therefore

dC

dt
≥ αC0 − αC − νkBm

q1 + kBm
Nm − λ1CFm .

⇒ lim inf
t→∞ C(t) ≥

(
αC0 − νkBm

q1+kBm
Nm

)
α + λ1Fm

= Ca (say),

provided that
(
αC0 − νkBm

q1+kBm
Nm

)
> 0. Moreover

dB

dt
≥ r B − r B2

K
+ η(Ca − C0)B,

⇒ lim inf
t→∞ B(t) ≥ K

r
{r + η(Ca − C0)} = Ba (say) ,

provided r + η(Ca − C0). > 0. From third equation of the model system (1), we have

dF

dt
≥ uF − uF2

M
− φNmF + μ(1 − k)Ba

q2 + (1 − k)Ba
F,

⇒ lim inf
t→∞ F(t) ≥ M

u

(
u − φNm + μ(1 − k)Ba

q2 + (1 − k)Ba

)
= Fa (say),

provided that
(
u − φNm + μ(1−k)Ba

q2+(1−k)Ba

)
> 0. From the second equation of the model (1),

we have

dN

dt
≥ sN − sN 2

L
− θ(Cm − C0)N + πφFaN ,

⇒ lim inf
t→∞ N (t) ≥ L

s
(s − θ(Cm − C0) + πφFa) = Na (say),

provided that (s − θ(Cm −C0) + πφFa) > 0. Taking M1 = min(Ca, Na, Fa, Ba), we have

M1 ≤ lim inf
t→∞ (C(t), N (t), F(t), B(t)),

, and from Lemma 1, the system is uniformly bounded. Hence, the system is persistence. �

Appendix C

Proof In this part, we will proof the result for direction of bifurcating periodic solutions. For
this, we translate the origin to the interior equilibrium E∗, by substituting C = C∗ + x1,
N = N∗ + x2, F = F∗ + x3 and B = B∗ + x4, where x = (x1, x2, x3, x4)T are small
perturbation. Now, we have following system:

⎛
⎜⎜⎝

dx1
dt
dx2
dt
dx3
dt
dx4
dt

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
g1(x1, x2, x3, x4)
g2(x1, x2, x3, x4)
g3(x1, x2, x3, x4)
g4(x1, x2, x3, x4)

⎞
⎟⎟⎠+ O(|x |3),
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where

g1(x1, x2, x3, x4) = −(α + λ1F
∗)x1 +

(
λ − νkB∗

q1 + kB∗

)
x2 − λ1C

∗x3 − q1kνN∗

(q1 + kB∗)2
x4

− λ1x1x3 − νkq1x2x4
(q1 + kB∗)2

+ νq1k2N∗x24
(q1 + kB∗)3

,

g2(x1, x2, x3, x4) = −θN∗x1 − sN∗

L
x2 + πφN∗x3 − sx22

L
− θx1x2 + πφx2x3,

g3(x1, x2, x3, x4) = −φF∗x2 − uF∗

M
x3 + q2μ(1 − k)F∗

(q2 + (1 − k)B∗)2
x4 − ux23

M
− φx2x3

+ μq2(1 − k)x3x4
(q2 + (1 − k)B∗)2

− μ(1 − k)2q2F∗x24
(q2 + (1 − k)B∗)3

,

g4(x1, x2, x3, x4) = ηB∗x1 − r B∗

K
x4 − r x24

K
+ ηx1x4.

In the above expression, we are not interested in coefficient of third or higher degree. Now,
the system takes the form

ẋ = J ∗x + G(x), (.1)

where

x =

⎛
⎜⎜⎝
x1
x2
x3
x4

⎞
⎟⎟⎠ , J ∗ =

⎛
⎜⎜⎜⎜⎝

−(α + λ1F∗)
(
λ − νkB∗

q1+kB∗
)

−λ1C∗ −q1kνN∗
(q1+kB∗)2

−θN∗ − sN∗
L πφN∗ 0

0 −φF∗ − uF∗
M

q2μ(1−k)F∗
(q2+(1−k)B∗)2

ηB∗ 0 0 − r B∗
K

⎞
⎟⎟⎟⎟⎠

and

G(x) =

⎛
⎜⎜⎝
g1
g2
g3
g4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

−λ1x1x3 − νkq1x2x4
(q1+kB∗)2 − νq1k2N∗x24

(q1+kB∗)3

− sx22
L − θx1x2 + πφx2x3

− ux23
M − φx2x3 + μq2(1−k)x3x4

(q2+(1−k)B∗)2 + μ(1−k)2q2F∗x24
(q2+(1−k)B∗)3

− r x24
K + ηx1x4

⎞
⎟⎟⎟⎟⎟⎠

.

The eigenvectors u1, u2, and u3 of the Jacobian matrix J ∗ corresponding to the eigenvalues
iω0, ρ3, and ρ4 are obtained as follows:

u1 =

⎛
⎜⎜⎝
u11 − iu12
u21 − iu22
u31 − iu32
u41 − iu42

⎞
⎟⎟⎠ , u2 =

⎛
⎜⎜⎝
u13
u23
u33
u43

⎞
⎟⎟⎠ ,

u3 =

⎛
⎜⎜⎝
u14
u24
u34
u44

⎞
⎟⎟⎠ .
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Here

u11 = −r B∗

K

(
sN∗

L

uF∗

M
− ω2 + πφ2N∗F∗

)
+ ω2

(
sN∗

L
+ uF∗

M

)
,

u12 = −
{
r B∗

K
ω

(
sN∗

L
+ uF∗

M

)
− ω

(
sN∗

L

uF∗

M
− ω2 + πφ2N∗F∗

)}
,

u21 = θN∗

ηB∗

(
r B∗

K

uF∗

M
− ω2

)
− πφN∗q2μ(1 − k)F∗

(q2 + (1 − k)F∗)2
,

u22 =
{

ωθN∗

ηB∗

(
r B∗

K
+ uF∗

M

)}
,

u31 = − sN∗

L

q2μ(1 − k)F∗

(q2 + (1 − k)B∗)2)
− φF∗ θN∗

ηB∗
r B∗

K
,

u32 = −
{

ωq2μ(1 − k)F∗

(q2 + (1 − k)B∗)2
+ ωφF∗θN∗

ηB∗

}
,

u41 = − sN∗

L

uF∗

M
+ ω2 − πφ2N∗F∗,

u42 = −ω

(
sN∗

L
+ uF∗

M

)
,

u13 = −
(
r B∗

K
+ λ3

)[(
sN∗

L
+ λ3

)(
uF∗

M
+ λ3

)
+ πφ2N∗F∗

]
,

u23 = θN∗

ηB∗

(
r B∗

K
+ λ3

)(
uF∗

M
+ λ3

)
− πφN∗q2μ(1 − k)F∗

(q2 + (1 − k)B∗)2
,

u33 = −
(
sN∗

L
+ λ3

)(
q2μ(1 − k)F∗

q2 + (1 − k)B∗)2

)
− φF∗θN∗

ηB∗

(
r B∗

K
+ λ3

)
,

u43 = −
(
sN∗

L
+ λ3

)(
uF∗

M
+ λ3

)
− πφ2N∗F∗,

u14 = −
(
r B∗

K
+ λ4

)[(
sN∗

L
+ λ4

)(
uF∗

M
+ λ4

)
+ πφ2N∗F∗

]
,

u24 = θN∗

ηB∗

(
r B∗

K
+ λ3

)(
uF∗

M
+ λ3

)
− πφN∗q2μ(1 − k)F∗

(q2 + (1 − k)B∗)2
,

u34 = −
(
sN∗

L
+ λ4

)(
q2μ(1 − k)F∗

q2 + (1 − k)B∗)2

)
− φF∗θN∗

ηB∗

(
r B∗

K
+ λ4

)
,

u44 = −
(
sN∗

L
+ λ4

)(
uF∗

M
+ λ4

)
− πφ2N∗F∗.

Define U = (Re(u1),−Im(u1), u2, u3), that is

U =

⎛
⎜⎜⎝
u11 u12 u13 u14
u21 u22 u23 u24
u31 u32 u33 u34
u41 u42 u43 u44

⎞
⎟⎟⎠ .
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The matrix U is non-singular, such that

U−1PU =

⎛
⎜⎜⎝

0 −ω0 0 0
ω0 0 0 0
0 0 ρ3 0
0 0 0 ρ4

⎞
⎟⎟⎠ .

Inverse of matrix U is given by

U−1 =

⎛
⎜⎜⎝

y11 y12 y13 y14
y21 y22 y23 y24
y31 y32 y33 y34
y41 y42 y43 y44

⎞
⎟⎟⎠ .

y11 = 1

�
[u22(u33u44 − u34u43) + u23(u42u34 − u44u32) + u24(u43u32 − u42u33)],

y12 = 1

�
[u12(u43u34 − u44u33) + u13(u32u44 − u34u42) + u14(u33u42 − u43u32)],

y13 = 1

�
[u12(u44u23 − u43u24) + u13(u42u24 − u44u22) + u14(u43u22 − u23u42)],

y14 = 1

�
[u12(u24u33 − u23u34) + u13(u22u34 − u32u24) + u14(u23u32 − u33u22)],

y21 = 1

�
[u21(u34u43 − u44u33) + u23(u44u31 − u34u41) + u24(u41u33 − u31u43)],

y22 = 1

�
[u11(u33u44 − u34u43) + u13(u34u41 − u44u31) + u14(u31u43 − u33u41)],

y23 = 1

�
[u11(u43u24 − u44u23) + u13(u21u44 − u24u41) + u14(u41u23 − u43u21)],

y24 = 1

�
[u11(u23u34 − u24u33) + u13(u31u24 − u34u21) + u14(u33u21 − u23u31)],

y31 = 1

�
[u21(u32u44 − u42u34) + u22(u34u41 − u31u44) + u24(u31u42 − u32u41)],

y32 = 1

�
[u11(u42u34 − u44u32) + u12(u44u31 − u34u41) + u14(u41u32 − u42u31)],

y33 = 1

�
[u11(u44u22 − u42u24) + u12(u41u24 − u21u44) + u14(u41u32 − u42u31)],

y34 = 1

�
[u11(u32u24 − u34u22) + u12(u21u34 − u24u31) + u14(u22u31 − u21u32)],

y41 = 1

�
[u21(u42u33 − u43u32) + u22(u43u31 − u33u41) + u23(u41u32 − u31u42)],

y42 = 1

�
[u11(u43u32 − u42u33) + u12(u33u41 − u31u43) + u13(u42u31 − u32u41)],

y43 = 1

�
[u11(u42u23 − u43u22) + u12(u43u21 − u23u41) + u13(u41u22 − u21u42)],

y44 = 1

�
[u11(u33u22 − u32u23) + y12(u31u23 − u21u33) + u13(u32u21 − u31u22)].

Consider the transformation x = Uw, i.e.,w = U−1x , wherew = (w1, w2, w3, w4). Under
the linear transformation, the system takes the form

ẇ = (U−1 J ∗U )w + g(w), (.2)
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where g(w) = U−1G(Uw). This can be written as

ẇ1 = −ω0w2 + g1(w1, w2, w3, w4)

ẇ2 = −ω0w1 + g2(w1, w2, w3, w4)

ẇ3 = ρ3w3 + g3(w1, w2, w3, w4)

ẇ3 = ρ4w4 + g4(w1, w2, w3, w4),

where g = (g1, g2, g3, g4)T

g1 = y11h1 + y12h2 + y13h3 + y14h4,

g2 = y21h1 + y22h2 + y23h3 + y24h4,

g3 = y31h1 + y32h2 + y33h3 + y34h4,

g4 = y41h1 + y42h2 + y43h3 + y44h4;

here,

h1 = − λ1(u11w1 + u12w2 + u13w3 + u14w4)(u31w1 + u32w2 + u33w3 + u34w4)

− νkq1(u21w1 + u22w2 + u23w3 + u24w4)(u41w1 + u42w2 + u43w3 + u44w4)

(q1 + kB∗)2

− νq21k
2N∗

(q1 + kB∗)2
(u41w1 + u42w2 + u43w3 + u44w4)

2,

h2 = − s

L
(u21w1 + u22w2 + u23w3 + u24w4)

2 − θ(u11w1 + u12w2 + u13w3 + u14w4)

(u21w1 + u22w2 + u23w3 + u24w4)

+ πφ(u21w1 + u22w2 + u23w3 + u24w4)(u31w1 + u32w2 + u33w3 + u34w4),

h3 = − u

M
(u31w1 + u32w2 + u33w3 + u34w4)

2 − φ(u21w1 + u22w2 + u23w3 + u24w4)

(u31w1 + u32w2 + u33w3 + u34w4)

+ μ(1 − k)2q22 F
∗

(q2 + (1 − k)B∗)3
(u41w1 + u42w2 + u43w3 + u44w4)

2

+ μq2(1 − k)

(q2 + (1 − k)B∗)2
(u31w1 + u32w2 + u33w3 + u34w4)

× (u41w1 + u42w2 + u43w3 + u44w4),

h4 = − r

K
(u41w1 + u42w2 + u43w3 + u44w4)

2 + η(u11w1 + u12w2 + u13w3 + u14w4)

(u41w1 + u42w2 + u43w3 + u44w4).

Furthermore, we can calculate h11, h02, h20, H21, H1
110, H

2
110, H

1
101, H

2
101, σ

1
11, σ

2
11, σ

1
20, σ

2
20

following the procedure given in Hassard et al (Hassard et al. 1981). Using the above, we
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can find the following quantities:

h21 = H21 + 2(H1
110σ

1
11 + H2

110σ
2
11) + H1

101σ
1
20 + H2

101σ
2
20,

c1(0) = i

2ω0

(
h11h20 − 2|h11|2 − |h02|2

3

)
+ h21

2
,

μ2 = − Re(c1(0))

φ′(0)
,

τ2 = − (Im(c1(0)) + μ2σ
′(0))

ω0
,

β2 = −2μ2φ
′(0),

where, φ′(0) = d
dη

(Re(ρ(η)))|η=ηc and σ ′(0) = d
dη

(Im(ρ(η)))|η=ηc . �
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