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Abstract
In this paper, to develop less conservative delay-dependent stability criterion and the method
for H∞ performance analysis, the problem of stability and H∞ performance for discrete-time
neural networks with time-varying delay is investigated. Inequality is an important tool for
stability and H∞ performance analysis. To reduce the conservatism of some existing inequal-
ities, an improved reciprocally convex inequality is proved. This inequality is related to the
quadratic of delay and encompasses some existing inequalities as its special cases. Based on
the proposed reciprocally convex approach, a novel free-matrix-based summation inequality
is derived. A delay-product-type Lyapunov–Krasovskii functional (LKF) term is introduced.
By utilizing the constructed LKF, information of time delay, and the proposed reciprocally
convex approach, two improved sufficient conditions for stability and H∞ performance of
discrete-time neural networks with time-varying delay are derived in terms of linear matrix
inequalities (LMIs), respectively. Finally, several numerical examples are provided to illus-
trate the effectiveness and benefits of our proposed approach.

Keywords Discrete-time neural networks · H∞ performance · Summation inequality ·
Time-varying delay

Mathematics Subject Classification 34K20 · 37K45 · 39B82

1 Introduction

Neural networks have aroused considerable interest of many researchers owing to their
extensive and successful applications such as signal and image processing, control, system
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identification, and telecommunications (Haykin 1998;Gabrijel andDobnikar 2003; Liu 2002;
Zeng et al. 2015; Shi et al. 2021). Since signal transduction and response between neurons
in most practical systems cannot be instantaneously carried out, time-delay is unavoidably
encountered in neural networks (Zhang et al. 2008), which is a non-negligible factor that will
result in degradation of performance and instability of the systems (Gu et al. 2003). In view
of the fact that discrete-time systems have a strong background in engineering applications
(Zhang et al. 2016), the stability of discrete-time systemswith time-varying delay has become
the subject extensively studied in the last several decades (Mathiyalagan et al. 2012; Meng
et al. 2010; Qiu et al. 2019). To derive sufficient conditions for stability of delayed systems,
the Lyapunov–Krasovskii functional (LKF) approach is an efficient way, but it leads to con-
servatism to some extent. With the purpose of finding the maximal admissible delay upper
bound, there are a great deal of efforts made on these two aspects: constructing appropriate
LKFs and seeking some sharper summation inequalities to obtain a tighter upper bound of
the forward difference of the constructed LKFs.

From the previous studies (Banu and Balasubramaniam 2016; Banu et al. 2015; Chen
et al. 2020), we know that more available system information benefits to reduce the conser-
vatism of stability criteria. A class of discrete recurrent neural networks with time-varying
delays was investigated inWu et al. (2010); an improved global exponential stability criterion
was obtained through constructing augmented LKF terms containing the activation functions
gi (xi (k)). By adding triple summation terms into the LKF and fully utilizing the information
of time-delay, some novel sufficient conditions with less conservatism were established to
guarantee a class of discrete-time delayed dynamical networks to be asymptotically stable
(Wang et al. 2013). By employing a newly augmented LKF and a newly augmented vec-
tor including summation terms of states, a new delay-dependent stability criterion for the
discrete-time neural networks with time-varying delays was proposed in Kwon et al. (2013).
How to construct an appropriate LKF to reduce conservatism effectively is a difficulty in
dynamic analysis for delayed discrete-time systems. By taking the advantage of the chang-
ing information of delay, the delay-variation-dependent stability of discrete-time systems
with a time-varying delay is concerned in Zhang et al. (2016). By constructing the delay-
product-dependent term in LKF, some significantly improved stability criteria have been
derived (Zhang et al. 2016, 2017a; Nam and Luu 2020). Inspired by these works, we will
introduce the delay-product-type term in the construction of the LKF to enlarge the delay
bounds.

In the dynamic analysis of delayed discrete-time systems, summation terms such as∑−1
s=−h ΔxT(s)RΔx(s) often arise in the forward difference of the constructed LKFs. To

derive less conservative criteria, it is another difficulty how to bound these summation terms.
Many summation inequalities have been proposed to fill the bounding gap. The discrete
Jensen inequality (Gu et al. 2003) and the Wirtinger-based summation inequality (Seuret
et al. 2015) were widely used to estimate the single summation term in the forward dif-
ference of the LKF. Nam et al. (2015) presented an auxiliary function-based summation
inequality, which extended theWirtinger-based summation inequality. The free-matrix-based
summation inequality was developed in Chen et al. (2016), which contained the discrete
Wirtinger-based inequality as a special case. The general summation inequalities including
the Jensen inequality, the Wirtinger-based inequality, and the auxiliary function-based sum-
mation inequalities as special cases were obtained in Chen et al. (2016). Based on orthogonal
group of sequences and the idea of approximation of a vector, a refined auxiliary function-
based summation inequality was obtained in Liu et al. (2017). Although we can obtain more
general summation inequality via orthogonal polynomials of high order, the computation
burden may result from the orthogonal polynomials with high degree. Later, a general free-
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matrix-based summation inequality was proposed in Chen et al. (2019), which generalized
the free-matrix-based ones proposed in Zhang et al. (2017b). Inspired by the aforementioned
literatures, this paper will further investigate the summation inequality. Noting that the for-
ward difference of an LKFmay be dominated by a quadratic function of time-delay, we hope
to derive a delay-quadratic-dependent inequality. To avoid the complexity of polynomials
of high order, by following the main idea (Liu et al. 2017; Zhang et al. 2017a), a novel
free-matrix-based summation inequality will be established.

It is well known that there often exist various external disturbances. The H∞ control aims
to minimize the effects of the external disturbances. The objective of H∞ performance anal-
ysis is to find the saddle point of objective functional calculus depending on the disturbance
(Kwon et al. 2013). As an important dynamic performance for neural networks, H∞ perfor-
mance of the systems with time-varying delay has also drawn many researchers’ attention
(Lee et al. 2014; Huang et al. 2015; He et al. 2020; Tian and Wang 2021). The guaranteed
H∞ performance state estimation problem of static neural networks with time-varying delay
was considered in Huang et al. (2013), in which some better performance was achieved
by the proposed double-integral inequality and the reciprocally convex combination tech-
nique. Using the augmented LKF and the Writinger-based integral inequality, Kwon et al.
(2016) investigated H∞ performance for systems of linear model with interval time-varying
delays and obtained smaller disturbance attenuation γ . For delayed Markovian jump neural
networks, H∞ performance analysis was conducted by proposing the third-order Bessel–
Legendre integral inequality and the LKF with delay-product-type terms (Tan and Wang
2021). The non-integral quadratic terms and the integral terms were connected by employing
the third-order Bessel–Legendre integral inequality rather than the Wirtinger-based integral
inequality. Several less conservative sufficient conditions that guaranteed the H∞ perfor-
mance for delayed Markovian jump neural networks were obtained. Zhang et al. (2021)
investigated the H∞ performance of discrete-time networked systems subject to network-
induceddelays andmalicious packet dropouts.Anovel approach related to quartic polynomial
inequalities was presented to deal with the H∞ performance of discrete-time networked sys-
tems. Although various methods have been proposed to tackle the H∞ performance analysis
problem, H∞ performance analysis for delayed discrete-time neural networks has not yet
been fully studied and there remains some space for improvement.

Motivated by the above consideration, this paper aims to improve the reciprocally convex
inequality and establish a novel free-matrix-based summation inequality. By employing an
LKF with delay-product-term and the new free-matrix-based summation inequality, less
conservative sufficient conditions of stability and H∞ performance for delayed discrete-time
neural networks are obtained. The major contributions and improvement of this paper are
summarized as follows:

1. An improved reciprocally convex inequality with six free matrices is proved. To make
the most of the newly proved reciprocally convex inequality, a novel free-matrix-based
summation inequality is derived.

2. Two new zero equalities are introduced. These zero equalities are merged into the esti-
mation of the forward difference of the constructed LKF to increase the freedom of
criteria.

3. By combining the LKF containing delay-product-term with the improved reciprocally
convex combination inequality and the newlyproposed summation inequalities, a newsta-
bility condition for delayed discrete-time neural networks is developed and corresponding
H∞ performance condition for the disturbance-affected delayed neural networks is
established. Compared with the existing literatures, the stability criterion and the H∞
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performance criterion for the considered system in this paper are with less conservatism.
Their effectiveness are demonstrated by some numerical examples.

Notations Throughout this paper, Rn is the n-dimensional Euclidean vector space, and
Rm×n denotes the set of all m × n real matrices. The superscript T stands for the transpose
of a matrix. P > 0(≥ 0) implies that P is a positive definite (semi-positive-definite) matrix,
In and 0m×n represent the n × n identity matrix and m × n zero matrix, respectively. The
symmetric term in a symmetric matrix is denoted by the symbol ‘∗’ and sym{A} = A+ AT.

2 Preliminaries

Consider the following discrete-time neural network with time-varying delay:
{
x(k + 1) = Bx(k) + W0 f (x(k)) + W1 f (x(k − d(k))),

x(k) = ϕ(k), k ∈ [−dM , 0], (1)

where x(k) = [x1(k), x2(k), . . . , xn(k)]T ∈ Rn denotes the neuron state vector, n is the num-
ber of neurons, f (x(k)) = [ f1(x1(k)), f2(x2(k)), . . . , fn(xn(k))]T ∈ Rn is the activation
function, B,W0,W1 are the state feedback matrix, the interconnection weight matrix, and
the delayed interconnection weight matrix, respectively, d(k) denotes the state time-varying
delay, dm ≤ d(k) ≤ dM , μm ≤ Δd(k) = d(k + 1) − d(k) ≤ μM , dm , dM , μm and μM are
known integers.

The activation function f (·) in system (1) is assumed to be continuous and bounded with
f j (0) = 0, and there exist constants l−j , l+j , such that

l−j ≤ f j (s) − f j (t)

s − t
≤ l+j , ∀s, t ∈ R, s �= t, j = 1, 2, . . . , n. (2)

Corresponding to neural network (1), the discrete-time system subject to external distur-
bance u(k) can be described as follows:

⎧
⎪⎨

⎪⎩

x(k + 1) = Bx(k) + W0 f (x(k)) + W1 f (x(k − d(k))) + Du(k),

v(k) = Cx(k),

x(k) = ϕ(k), k ∈ [−dM , 0],
(3)

where u(k) ∈ Rn represents the exogenous disturbance, v(k) ∈ Rm is the output vector, and
C, D are real matrices with compatible dimensions.

The problem of H∞ performance analysis for delayed discrete-time neural networks is
stated as follows. For a given scalar γ > 0, the neural network (3) is said to have H∞
performance level γ if the following conditions are satisfied:

1. System (3) with u(t) = 0 is asymptotically stable;
2. For any positive integer h, under the zero-initial condition

〈v, v〉h ≤ γ 2〈u, u〉h
holds for ∀u(k) ∈ l2 and u(k) �= 0, where 〈u, u〉h = ∑h

k=0 u
T(k)u(k).

To facilitate the subsequent research, we introduce the following lemmas.
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Lemma 1 For positive definite matrices R1, R2 ∈ Rn×n, if there exist symmetric matrices
Xi ∈ Rn×n, i = 1, 2, 3, 4 and any matrices Y1, Y2 ∈ Rn×n, such that

[
R1 − X1 −Y1

∗ R2

]

≥ 0,

[
R1 −Y2
∗ R2 − X2

]

≥ 0,

[
R1 − X1 − X4 −Y1

∗ R2 − X3

]

≥ 0, (4)

then the following inequality holds for any α ∈ (0, 1):
[ 1

α
R1 0
∗ 1

1−α
R2

]

≥
[
R1 + (1 − α)X1 + (1 − α)2X4 αY1 + (1 − α)Y2

∗ R2 + αX2 + α2X3

]

. (5)

Proof It is easy for us to get the following identical equation after simple calculation:
[
R1 0
∗ R2

]

− α

[
X1 Y1
∗ 0

]

− (1 − α)

[
0 Y2
∗ X2

]

− α(1 − α)

[
X4 0
∗ X3

]

= α2
[
X4 0
∗ X3

]

+ α2
[−X1 − X4 −Y1 + Y2

∗ X2 − X3

]

+α2
[
R1 −Y2
∗ R2 − X2

]

− α2
[−X1 − X4 −Y1 + Y2

∗ X2 − X3

]

−α2
[
R1 −Y2
∗ R2 − X2

]

+ α

[−X1 − X4 −Y1 + Y2
∗ X2 − X3

]

+α

[
R1 −Y2
∗ R2 − X2

]

− α

[
R1 −Y2
∗ R2 − X2

]

+
[
R1 −Y2
∗ R2 − X2

]

= α2
[
R1 − X1 −Y1

∗ R2

]

+ (1 − α)

[
R1 −Y2
∗ R2 − X2

]

+α(1 − α)

[
R1 − X1 − X4 −Y1

∗ R2 − X3

]

.

For any α ∈ (0, 1), if

[
R1 − X1 −Y1

∗ R2

]

≥ 0,

[
R1 −Y2
∗ R2 − X2

]

≥ 0, and
[
R1 − X1 − X4 −Y1

∗ R2 − X3

]

≥ 0, then

[
R1 0
∗ R2

]

− α

[
X1 Y1
∗ 0

]

− (1 − α)

[
0 Y2
∗ X2

]

− α(1 − α)

[
X4 0
∗ X3

]

≥ 0. (6)

For any α ∈ (0, 1), pre- and post-multiplying (6) by

⎡

⎣

√
1−α
α

I 0

∗
√

α
1−α

I

⎤

⎦ yields

[ 1
α
R1 0
∗ 1

1−α
R2

]

≥
[
R1 0
∗ R2

]

+
[
(1 − α)X1 αY1

∗ 0

]

+
[
0 (1 − α)Y2
∗ αX2

]

+
[
(1 − α)2X4 0

∗ α2X3

]

.

This completes the proof. ��
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Remark 1 The classical reciprocally convex inequality

[ 1
α
R 0
∗ 1

(1−α)
R

]

≥
[
R S
∗ R

]

was

proved (Park et al. 2011). It played an important role in dealing with non-convex
terms occurring in the forward difference of an LKF. Seuret and Gouaisbaut (2016)

extended the classical reciprocally convex inequality into the form

[ 1
α
R 0
∗ 1

(1−α)
R

]

≥
[
R + (1 − α)X1 αY1 + (1 − α)Y2

∗ R + αX2

]

. By weakening the constraints (Park et al. 2011),

an improved reciprocally convex inequality comprising three slack matrices was presented
(Zhang and Han 2018). In stability and H∞ performance analysis, a main difficulty is how
to estimate the forward difference of the LKF V (k) and prove 
V (k) < 0. The forward
difference of an LKF may be dominated by a quadratic function of time-delay. However, the
right-hand sides of both reciprocally convex inequalities (Seuret andGouaisbaut 2016; Zhang
and Han 2018) are the linear functions of α. These reciprocally convex inequalities (Seuret
and Gouaisbaut 2016; Zhang and Han 2018) cannot be directly used to estimate 
V (k)
with the square of the time-delay. A generalized reciprocally convex inequality is proved in
Lemma 1. This novel reciprocally convex inequality involves the square of α and more slack
matrices. Kim (2016) proved the quadratic function negative determination lemma, which
could be used to handle the quadratic function of time-delay. Using the generalized recip-
rocally convex inequality derived in this paper, non-convex terms in the forward difference
of the LKF can be merged into one expression of α2, whose sign can be determined via the
quadratic function negative determination lemma.

Remark 2 Let X3 = X4 = 0, the generalized reciprocally convex inequality in Lemma 1
degenerates into the reciprocally convex inequality (Seuret and Gouaisbaut 2016). Let
X3 = X4 = 0, Y1 = Y2 = Y , the generalized reciprocally convex inequality in Lemma 1
degenerates into the improved reciprocally convex inequality in Zhang and Han (2018).
Set Xi = 0, i = 1, 2, 3, 4, Y1 = Y2 = Y , the generalized reciprocally convex inequality
in Lemma 1 becomes to the classical reciprocally convex inequality (Park et al. 2011). If
X3 > 0, X4 > 0, the generalized reciprocally convex inequality in Lemma 1 is less conser-
vative than the reciprocally convex inequality (Seuret and Gouaisbaut 2016).

Lemma 2 For a vector function y(s) : [−h, 0] → Rn, a positive definite matrix R ∈ Rn×n,

positive integer h ≥ 1, any real matrix M and any vector χ0 with appropriate dimensions,
the following inequality holds:

−1∑

s=−h

yT(s)Ry(s) ≥ 1

h
χT
1 Rχ1 − h

3
χT
0 MR−1MTχ0 − 2χT

0 Mχ2, (7)

where χ1 := ∑−1
s=−h y(s), χ2 := 2

h+1

∑−1
s=−h

∑−1
j=s y( j) − ∑−1

s=−h y(s).

Proof Let f (s) = 2s+h+1
h+1 . Carrying out simple algebraic calculation yields:

∑−1
s=−h f (s) =

0,
∑−1

s=−h f 2(s) = h(h−1)
3(h+1) ,

∑−1
s=−h f (s)y(s) = χ2.

For any vector χ0 with appropriate dimension, let δ(s) = col[χ0, f (s)χ0, y(s)] Φ =⎡

⎣
LR−1LT LR−1MT L

∗ MR−1MT M
∗ ∗ R

⎤

⎦. Using Schur complement, it is obvious that Φ ≥ 0. Using
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the Jensen inequality gives

−1∑

s=−h

δT(s)Φδ(s)

≥ 1

h
(

−1∑

s=−h

δ(s))TΦ

( −1∑

s=−h

δ(s)

)

= hχT
0 LR

−1LTχ0 + 2χT
0 Lχ1 + 1

h
χT
1 Rχ1. (8)

Direct computation yields

−1∑

s=−h

δ(s)TΦδ(s)

= hχT
0 LR

−1LTχ0 + 2χT
0 Lχ1 + h(h − 1)

3(h + 1)
χT
0 MR−1MTχ0

+2χT
0 Mχ2 +

−1∑

s=−h

yT(s)Ry(s). (9)

Combining (8) with (9), we can get

−1∑

s=−h

yT(s)Ry(s) ≥ 1

h
χT
1 Rχ1 − h(h − 1)

3(h + 1)
χT
0 MR−1MTχ0 − 2χT

0 Mχ2. (10)

Since h(h−1)
3(h+1) ≤ h

3 , inequality (7) can be derived from inequality (10). This completes the
proof. ��
Corollary 1 Let vector function x(s) : [−h, 0] → Rn and Δx(s) = x(s + 1) − x(s). For
any positive definite matrix R, integer h ≥ 1, the following inequality holds:

−1∑

s=−h

Δx(s)TRΔx(s) ≥ 1

h
χ̄T
1 Rχ̄1 + 3

h
χ̄T
2 Rχ̄2, (11)

where χ̄1 = x(0) − x(−h), χ̄2 = x(0) + x(−h) − 2
h+1

∑0
s=−h x(s).

Remark 3 If M = 0 in Lemma 2, then inequality (7) will degrade into the Jensen summation
inequality (Gu et al. 2003). By setting y(s) = Δx(s) = x(s + 1) − x(s), M = − 3

h R,
χ0 = χ2 in (7), inequality (7) becomes the Wirtinger-based summation inequality (Seuret
et al. 2015), which is presented in Corollary 1. Using inequality

∑−1
s=−h δT(s)Φδ(s) > 0,

the free-matrix-based summation inequality (Chen et al. 2016) was derived. Different from
the method in Chen et al. (2016), based on the Jensen summation inequality, inequality
(7) is proved by utilizing

∑−1
s=−h δT(s)Φδ(s) ≥ 1

h (
∑−1

s=−h δ(s))TΦ(
∑−1

s=−h δ(s)). Since
1
h (

∑−1
s=−h δ(s))TΦ(

∑−1
s=−h δ(s)) ≥ 0, inequality (7) may be with less conservatism than the

free-matrix-based summation inequality.
Based on Lemmas 1 and 2, it is easy for us to obtain the following lemma.

Lemma 3 For a positive definite matrix R ∈ Rn×n, τ1 ≤ τk ≤ τ2, any real matrices
F1, F2 with appropriate dimensions, and any vectors η1, η2, if there exist symmetric matrices
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Xi ∈ Rn×n, i = 1, 2, 3, 4 and any matrices Y1, Y2 ∈ Rn×n, such that[
R − X1 −Y1

∗ R

]

≥ 0,

[
R −Y2
∗ R − X2

]

≥ 0,

[
R − X1 − X4 −Y1

∗ R − X3

]

≥ 0,

then the following inequality holds:
k−τ1−1∑

s=k−τ2

ΔxT(s)RΔx(s)

≥ 1

τ2 − τ1
{αT

1 (k)(R + (1 − α)X1 + (1 − α)2X4)α1(k)

+2αT
1 (k)(αY1 + (1 − α)Y2)α2(k)

+αT
2 (k)(R + αX2 + α2X3)α2(k)}

−2ηT1 F1α3(k) − 2ηT2 F2α4(k)

− (τk − τ1)

3
ηT1 F1R

−1FT
1 η1 − (τ2 − τk)

3
ηT2 F2R

−1FT
2 η2,

where α1(k) = x(k − τ1)− x(k − τk), α2(k) = x(k − τk)− x(k − τ2), α3(k) = x(k − τ1)+
x(k − τk) − 2ω1(k), α4(k) = x(k − τk) + x(k − τ2) − 2ω2(k), ω1(k) = ∑k−τ1

s=k−τk

x(s)
τk−τ1+1 ,

ω2(k) = ∑k−τk
s=k−τ2

x(s)
τ2−τk+1 , α = τk−τ1

τ2−τ1
.

Remark 4 Different from the existing summation inequality, the free-matrix-based summa-
tion inequality given in Lemma 3 is related to the square of the delay. Vectors η1 and η2 can
be freely and independently chosen. Since more free matrices are introduced in Lemma 3,
the free-matrix-based summation inequality in Lemma 3 can provide more freedom.

Lemma 4 (Kim 2016) For a quadratic function f (x) = a2x2 +a1x +a0, where a0, a1, a2 ∈
R, if (i) f (h1) < 0, (ii) f (h2) < 0, (iii) − (h2 − h1)2a2 + f (h1) < 0, then f (x) <

0,∀x ∈ [h1, h2].

3 Main results

In this section, by resorting to the above new summation inequalities and improved recip-
rocally convex inequality, improved sufficient conditions for stability and H∞ performance
of delayed discrete-time neural networks are proposed. For simplifying the representation of
subsequent parts, the related notations are given as follows:

dk = d(k), d1 = dM − dm,

α = (dk − dm)/d1, Δx(s) = x(s + 1) − x(s),

ei = [0n×(i−1)n, In, 0n×(13−i)n]T, i = 1, 2, . . . , 13,

eTs = (B − In)e
T
1 + W0e

T
8 + W1e

T
9 ,

η1(k) = col[x(k),
k−1∑

s=k−dm

x(s),
k−dm−1∑

s=k−dM

x(s)],

η2(k) = col[x(k),
k−1∑

s=k−dm

x(s)], η3(k) = col[x(k),Δx(k)],

ζ(k) = col[
1,
2,
3,
4,
5],
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1 = col[x(k), x(k − dm), x(k − dk), x(k − dM )],


2 = col[
k∑

s=k−dm

x(s),
k−dm∑

s=k−dk

x(s),
k−dk∑

s=k−dM

x(s)],


3 = col[ f (x(k)), f (x(k − dk))],


4 = col

⎡

⎣
k−dm∑

s=k−dk

x(s)

dk − dm + 1
,

k−dk∑

s=k−dM

x(s)

dM − dk + 1

⎤

⎦ ,


5 = col

⎡

⎣
k−dm−1∑

s=k−dk

k−dm−1∑

j=s

x( j)

dk − dm + 1
,

k−dk−1∑

s=k−dM

k−dk−1∑

j=s

x( j)

dM − dk + 1

⎤

⎦ ,

Π1 = Ξ11P1Ξ
T
11 − Ξ12P1Ξ

T
12 + d(k)(Ξ13P2Ξ

T
13 − Ξ14P2Ξ

T
14)

+Δd(k)Ξ13P2Ξ
T
13,

Ξ11 = [es + e1, e5 − e2, e6 + e7 − e3 − e4],
Ξ12 = [e1, e5 − e1, e6 + e7 − e2 − e3],
Ξ13 = [es + e1, e5 − e2], Ξ14 = [e1, e5 − e1],
Π2 = e1Q1e

T
1 + e2(Q2 − Q1)e

T
2 − e4Q2e

T
4 ,

Π3 = Γ1 + Γ2 + Γ3 + Γ4, Γ1 = es(d
2
m R1 + d21 R2)e

T
s ,

Γ2 = −Ξ36R1Ξ
T
36 − 3Ξ37R1Ξ

T
37,

Γ3 = d1sym{Ξ35M1Ξ
T
32 + Ξ̃35N1Ξ

T
34},

Γ4 = −Ξ31(R2 + (1 − α)X1 + (1 − α)2X4)Ξ
T
31

−2Ξ31(αY1 + (1 − α)Y2)Ξ
T
33

−Ξ33(R2 + αX2 + α2X3)Ξ
T
33,

Π̃3 = d1(dk − dm)

3
Ξ35M1R

−1
2 MT

1 ΞT
35

+d1(dM − dk)

3
Ξ̃35N1R

−1
2 NT

1 Ξ̃T
35,

Ξ31 = e2 − e3, Ξ32 = e2 + e3 − 2e10,

Ξ33 = e3 − e4, Ξ34 = e3 + e4 − 2e11,

Ξ35 = [e2, e3, e10], Ξ̃35 = [e3, e4, e11],

Ξ36 = e1 − e2, Ξ37 = e1 + e2 − 2

dm + 1
e5,

Ω1 = [e6 − e2, e2 − e3], Ω2 = [e7 − e3, e3 − e4],
Ω3 = [e2 − e6 + 2e12, e2 + e3 − 2e10],
Ω4 = [e3 − e7 + 2e13, e3 + e4 − 2e11],
Ω5 = [e2, e3, e6, e10, e12], Ω6 = [e3, e4, e7, e11, e13],
Π4 = d1[e2U1e

T
2 + e3(U2 −U1)e

T
3 − e4U2e

T
4 ] + d21 [e1, es]S[e1, es]T

+d1sym{Ω5M2Ω
T
3 + Ω6N2Ω

T
4 }

−[Ω1S1Ω
T
1 + (1 − α)Ω1 X̄1Ω

T
1

+(1 − α)2Ω1 X̄4Ω
T
1 + 2αΩ1Ȳ1Ω

T
2

+2(1 − α)Ω1Ȳ2Ω
T
2 + Ω2S2Ω

T
2
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+αΩ2 X̄2Ω
T
2 + α2Ω2 X̄3Ω

T
2 ],

Π̃4 = d1(dk − dm)

3
Ω5M2S

−1
1 MT

2 ΩT
5

+d1(dM − dk)

3
Ω6N2S

−1
2 NT

2 ΩT
6 ,

Π5 = sym{[e1L2 − e8]J1[e8 − e1L1]T + [e3L2 − e9]J2
×[e9 − e3L1]T + [(e1 − e3)L2 − (e8 − e9)]J3
×[(e8 − e9) − (e1 − e3)L1]T},

Π6 = sym{H1((dk − dm + 1)e10 − e6)
T

+H2(dM − dk + 1)e11 − e7)
T},

Δ = − 1

d21
[Ξ31X4Ξ

T
31 + Ξ33X3Ξ

T
33 + Ω1 X̄4Ω

T
1 + Ω2 X̄3Ω

T
2 ],

S1 = S +
[
0 U1

∗ U1

]

, S2 = S +
[
0 U2

∗ U2

]

,

Υ1 = [d1Ξ̃35N1, d1Ω6N2], Υ2 = [d1Ξ35M1, d1Ω5M2],
Γ1 = −3diag{R2, S2}, Γ2 = −3diag{R2, S1}.

Theorem 1 For given integers dm, dM , μm, μM , system (1) is asymptotically stable if there
exist positive definite matrices Qi ∈ Rn×n, Ri ∈ Rn×n, i = 1, 2, S ∈ R2n×2n, positive
definite diagonal matrices J j ∈ Rn×n, j = 1, 2, 3, symmetric matrices P1 ∈ R3n×3n,

P2 ∈ R2n×2n,U1,U2 ∈ Rn×n, Xk ∈ Rn×n, X̄k ∈ R2n×2n, k = 1, 2, 3, 4, matrices Ml , Nl ,

Hl , Yl , Ȳl , l = 1, 2 with appropriate dimensions, such that the following LMIs hold:

P(dm) > 0, P(dM ) > 0, (12)
[
R2 − X1 −Y1

∗ R2

]

≥ 0,

[
R2 −Y2
∗ R2 − X2

]

≥ 0,

[
R2 − X1 − X4 −Y1

∗ R2 − X3

]

≥ 0, (13)

[
S1 − X̄1 −Ȳ1

∗ S2

]

≥ 0,

[
S1 −Ȳ2
∗ S2 − X̄2

]

≥ 0,

[
S1 − X̄1 − X̄4 −Ȳ1

∗ S2 − X̄3

]

≥ 0, (14)

⎡

⎣

6∑

i=1
Πi |(dm ,μm ) Υ1

∗ Γ1

⎤

⎦ < 0,

⎡

⎣

6∑

i=1
Πi |(dm ,μM ) Υ1

∗ Γ1

⎤

⎦ < 0,

⎡

⎣

6∑

i=1
Πi |(dM ,μm ) Υ2

∗ Γ2

⎤

⎦ < 0,

⎡

⎣

6∑

i=1
Πi |(dM ,μM ) Υ2

∗ Γ2

⎤

⎦ < 0,

⎡

⎣

6∑

i=1
Πi |(dm ,μm ) − d21Δ Υ1

∗ Γ1

⎤

⎦ < 0,

⎡

⎣

6∑

i=1
Πi |(dm ,μM ) − d21Δ Υ1

∗ Γ1

⎤

⎦ < 0. (15)
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Proof Consider the following LKF:

V (k) =
4∑

i=1

Vi (k) (16)

with

V1(k) = ηT1 (k)P1η1(k) + d(k)ηT2 (k)P2η2(k),

V2(k) =
k−1∑

s=k−dm

xT(s)Q1x(s) +
k−dm−1∑

s=k−dM

xT(s)Q2x(s),

V3(k) = dm

−1∑

s=−dm

k−1∑

i=k+s

ΔxT(i)R1Δx(i)

+d1

−dm−1∑

s=−dM

k−1∑

i=k+s

ΔxT(i)R2Δx(i),

V4(k) = d1

−dm−1∑

s=−dM

k−1∑

i=k+s

ηT3 (i)Sη3(i).

First, we verify the positive definiteness of the LKF candidate in (16). V1(k) can be
equivalently written in the following form:

V1(k) = ηT1 (k)P(d(k))η1(k),

where P(d(k)) = P1 + d(k)

[
P2 0
∗ 0

]

.

Since S > 0, Qi > 0, and Ri > 0, i = 1, 2, the positive definiteness of V (k) can be
guaranteed by condition (12).

Now, we calculate the forward differences ΔV (k) along the trajectory of system (1) and
estimate the upper bound of ΔV (k).

ΔV1(k) = ηT1 (k + 1)P1η1(k + 1) − ηT1 (k)P1η1(k)

+d(k + 1)ηT2 (k + 1)P2η2(k + 1) − d(k)ηT2 (k)P2η2(k)

= ζT(k)Π1ζ(k), (17)

ΔV2(k) = xT(k)Q1x(k) + xT(k − dm)(Q2 − Q1)x(k − dm)

−xT(k − dM )Q2x(k − dM )

= ζT(k)Π2ζ(k), (18)

ΔV3(k) = d2mΔxT(k)R1Δx(k) + d21ΔxT(k)R2Δx(k)

−dm

k−1∑

s=k−dm

ΔxT(s)R1Δx(s)

−d1

k−dm−1∑

s=k−dM

ΔxT(s)R2Δx(s). (19)
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Using Corollary 1, we obtain

−dm

k−1∑

s=k−dm

ΔxT(s)R1Δx(s)

≤ −ζT(k)(Ξ36R1Ξ
T
36 + 3Ξ37R1Ξ

T
37)ζ(k). (20)

For any matrices M1, N1 with appropriate dimensions, applying Lemma 3 yields

−d1

k−dm−1∑

s=k−dM

ΔxT(s)R2Δx(s)

≤ −{χ̃T
1 (R2 + (1 − α)X1 + (1 − α)2X4)χ̃1 + 2χ̃T

1 (αY1 + (1 − α)Y2)χ̄1

+χ̄T
1 (R2 + αX2 + α2X3)χ̄1} + 2d1χ̃

T
0 M1χ̃2 + 2d1χ̄

T
0 N1χ̄2

+d1(dk − dm)

3
χ̃T
0 M1R

−1
2 MT

1 χ̃0 + d1(dM − dk)

3
χ̄T
0 N1R

−1
2 NT

1 χ̄0, (21)

where χ̃1 = ΞT
31ζ(k), χ̃2 = ΞT

32ζ(k), χ̄1 = ΞT
33ζ(k), χ̄2 = ΞT

34ζ(k), χ̃0 = ΞT
35ζ(k),

χ̄0 = Ξ̃T
35ζ(k), α = (dk − dm)/d1.

It follows from (19)–(21) that:

ΔV3(k) ≤ ζT(k)(Π3 + Π̃3)ζ(k). (22)

The calculation of ΔV4(k) leads to

ΔV4(k) = d21η
T
3 (k)Sη3(k) − d1

k−dm−1∑

s=k−dk

ηT3 (s)Sη3(s)

−d1

k−dk−1∑

s=k−dM

ηT3 (s)Sη3(s). (23)

Similar to the method in Park et al. (2015), we introduce the following zero equations:

d1[xT(k − dm)U1x(k − dm) − xT(k − dk)U1x(k − dk)]

−d1

k−dm−1∑

s=k−dk

ηT3 (s)

[
0 U1

∗ U1

]

η3(s) = 0,

d1[xT(k − dk)U2x(k − dk) − xT(k − dM )U2x(k − dM )]

−d1

k−dk−1∑

s=k−dM

ηT3 (s)

[
0 U2

∗ U2

]

η3(s) = 0, (24)

where U1 and U2 are any symmetric matrices with appropriate dimensions.

Let S1 = S +
[
0 U1

∗ U1

]

, S2 = S +
[
0 U2

∗ U2

]

. Combining (23) with (24) yields

ΔV4(k) = d21ηT3 (k)Sη3(k) − d1

k−dm−1∑

s=k−dk

ηT3 (s)S1η3(s)

−d1

k−dk−1∑

s=k−dM

ηT3 (s)S2η3(s) + d1[xT(k − dm)U1x(k − dm)
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+xT(k − dk)(U2 −U1)x(k − dk) − xT(k − dM )U2x(k − dM )]. (25)

For any matrix M2 with appropriate dimension, applying Lemma 2 yields

−d1

k−dm−1∑

s=k−dk

ηT3 (s)S1η3(s)

≤ − 1

α
κ̃T
1 S1κ̃1 + 2d1κ̃

T
0 M2κ̃2 + d1(dk − dm)

3
κ̃T
0 M2S

−1
1 MT

2 κ̃0, (26)

where κ̃1 = ΩT
1 ζ(k), κ̃2 = ΩT

3 ζ(k), κ̃0 = ΩT
5 ζ(k), α = (dk − dm)/d1.

Similarly, for any matrix N2 with appropriate dimension, we have

−d1

k−dk−1∑

s=k−dM

ηT3 (s)S2η3(s)

≤ − 1

1 − α
κ̄T
1 S2κ̄1 + 2d1κ̄

T
0 N2κ̄2 + d1(dM − dk)

3
κ̄T
0 N2S

−1
2 NT

2 κ̄0, (27)

where κ̄1 = ΩT
2 ζ(k), κ̄2 = ΩT

4 ζ(k), κ̄0 = ΩT
6 ζ(k).

Using Lemma 1 to deal with α-dependent terms gives

− 1

α
κ̃T
1 S1κ̃1 − 1

1 − α
κ̄T
1 S2κ̄1

= −ζT(k)[ 1
α

Ω1S1Ω
T
1 + 1

(1 − α)
Ω2S2Ω

T
2 ]ζ(k)

≤ −ζT(k){Ω1(S1 + (1 − α)X̄1 + (1 − α)2 X̄4)Ω
T
1

+2Ω1(αȲ1 + (1 − α)Ȳ2)Ω
T
2 + Ω2(S2 + α X̄2 + α2 X̄3)Ω

T
2 }ζ(k). (28)

From (23)–(28), we obtain

ΔV4(k) ≤ ζT(k)(Π4 + Π̃4)ζ(k). (29)

Since the activation function f (·) satisfies (2), then
2[ f (x(k)) − L1x(k)]T J1[L2x(k) − f (x(k))] ≥ 0,

2[ f (x(k − dk)) − L1x(k − dk)]T J2[L2x(k − dk) − f (x(k − dk))] ≥ 0,

2[ f (x(k)) − f (x(k − dk)) − L1(x(k) − x(k − dk))]T
×J3[L2(x(k) − x(k − dk)) − ( f (x(k)) − f (x(k − dk))] ≥ 0, (30)

where L1 = diag{l−1 , l−2 , . . . , l−n }, L2 = diag{l+1 , l+2 , . . . , l+n }, l−i , l+i (i = 1, 2, . . . , n) are
constants given in (2), and Ji (i = 1, 2, 3) are any positive definite diagonal matrices with
appropriate dimensions.

In addition, we have the following two zero equalities with any matrices H1, H2:

0 = 2ζT(k)H1

⎡

⎣
k−dm∑

s=k−dk

x(s) − (dk − dm + 1)
k−dm∑

s=k−dk

x(s)

dk − dm + 1

⎤

⎦ ,

0 = 2ζT(k)H2

⎡

⎣
k−dk∑

s=k−dM

x(s) − (dM − dk + 1)
k−dk∑

s=k−dM

x(s)

dM − dk + 1

⎤

⎦ . (31)
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From (17) to (31), the upper bound of ΔV (k) can be described by

ΔV (k) ≤ ζT(k)Φ(dk,Δdk)ζ(k), (32)

where Φ(dk,Δdk) = ∑6
i=1 Πi + Π̃3 + Π̃4.

Since Φ(dk,Δdk) is quadratic with respect to dk and linear with respect to Δdk , by
applying Lemma 4, Φ(dk,Δdk) < 0 is guaranteed by conditions (13)–(15), which means
that system (1) is asymptotically stable. This complete the proof. ��
Remark 5 To reduce the conservatism of stability criteria, one of the possible approaches is
to introduce some new zero equations. The introduction of two zero equations in (31) will
enhance the feasible region of stability criteria. However, two slack matrices H1 and H2 are
introduced with these two zero equations. The number of decision variables in Theorem 1
increases by 26n2, which is relatively time-consuming to find the feasible solutions of the
LMIs. Computational complexity will also increase moderately. When the sizes of LMIs are
not too large, the computational burden problem does not occur.
In what follows, the H∞ performance for the neural network (3) will be discussed.

Theorem 2 For given integers dm, dM , μm, μM and γ > 0, the H∞ performance analysis
problem for system (3) is solvable, if there exist positive definite matrices Qi ∈ Rn×n, Ri ∈
Rn×n, i = 1, 2, S ∈ R2n×2n, positive definite diagonal matrices J j ∈ Rn×n, j = 1, 2, 3,
symmetric matrices P1 ∈ R3n×3n, P2 ∈ R2n×2n, U1,U2 ∈ Rn×n, Xk ∈ Rn×n, X̄k ∈
R2n×2n, k = 1, 2, 3, 4, matrices Ml , Nl , Hl , Yl , Ȳl , l = 1, 2 with appropriate dimensions,
such that the following LMIs hold:

P(dm) > 0, P(dM ) > 0, (33)
[
R2 − X1 −Y1

∗ R2

]

≥ 0,

[
R2 −Y2
∗ R2 − X2

]

≥ 0,

[
R2 − X1 − X4 −Y1

∗ R2 − X3

]

≥ 0, (34)

[
S1 − X̄1 −Ȳ1

∗ S2

]

≥ 0,

[
S1 −Ȳ2
∗ S2 − X̄2

]

≥ 0,

[
S1 − X̄1 − X̄4 −Ȳ1

∗ S2 − X̄3

]

≥ 0, (35)

⎡

⎣

6∑

i=1
Πi |(dm ,μm ) − � Υ1

∗ Γ1

⎤

⎦ < 0,

⎡

⎣

6∑

i=1
Πi |(dm ,μM ) − � Υ1

∗ Γ1

⎤

⎦ < 0,

⎡

⎣

6∑

i=1
Πi |(dM ,μm ) − � Υ2

∗ Γ2

⎤

⎦ < 0,

⎡

⎣

6∑

i=1
Πi |(dM ,μM ) − � Υ2

∗ Γ2

⎤

⎦ < 0,

⎡

⎣

6∑

i=1
Πi |(dm ,μm ) − d21Δ − � Υ1

∗ Γ1

⎤

⎦ < 0,

⎡

⎣

6∑

i=1
Πi |(dm ,μM ) − d21Δ − � Υ1

∗ Γ1

⎤

⎦ < 0,

(36)

where

ei = [0n×(i−1)n, In, 0n×(14−i)n]T, i = 1, 2, . . . , 14,
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eTs = (B − In)e
T
1 + W0e

T
8 + W1e

T
9 + DeT14,

ζ(k) = col[
1,
2,
3,
4,
5, u(k)],
� = −e1C

TCeT1 + γ 2e14e
T
14.

The other notations are the same as those in Theorem 1.

Proof Consider the same LKF V (k) as in Theorem 1. Denote

J (k) = −vT(k)v(k) + γ 2uT(k)u(k) = ζT(k)�ζ(k).

It is easy to deduce that

ΔV (k) − J (k) ≤ ζT(k)

(
6∑

i=1

Πi + Π̃3 + Π̃4 − �

)

ζ(k).

ΔV (k) − J (k) < 0 is guaranteed by Conditions (34)–(36). Summing k from 0 to h gives∑h
k=0 ΔV (k) − ∑h

k=0 J (k) < 0. Under zero-initial conditions, it is straightforward that
∑h

k=0 vT(k)v(k) ≤ ∑h
k=0 γ 2uT(k)u(k). This complete the proof. ��

Remark 6 To reduce the conservatism of the stability criterion and H∞ performance analysis,
more information among the system states, time-delay, and the activation functions should
be considered. Therefore, many matrix variables are introduced to reflect the relationships
between these factors, which results in many complex notations. In practical engineering
application, the engineers only pay attention to the notations relating to the LMIs in these
criteria. Basing on symmetry, we can simplify programming ofMATLAB. The LMIs in these
criteria can be easily solved by employing LMI toolbox in MATLAB.

Remark 7 Given a scalar γ > 0, the neural network (3) is said to have H∞ performance
level γ if (i) when the exogenous disturbance input u(k) = 0, system (3) is asymptotically
stable; (ii) under the zero-initial condition, for all nonzero u(k) ∈ l2 and all integer h > 0,∑h

k=0 vT(k)v(k) ≤ γ 2 ∑h
k=0 u

T(k)u(k) holds. The neural network (3) is said to be passive
if there exists a constant γ > 0, such that, for all nonzero input u(k) ∈ l2 and all integer
h > 0, 2

∑h
k=0 vT(k)u(k) ≥ −γ

∑h
k=0 u

T(k)u(k) under the zero-initial condition. H∞
performance and the passivity both are relevant to input, output and index γ . They both
consider the relationships between input and output under the zero-initial condition. Different
from passivity, H∞ performance requires that system (3) with the exogenous disturbance
u(k) = 0 should be asymptotically stable. H∞ performance index γ is used to prescribe the
level of noise attenuation. As a special case of dissipativity, passivity relates the input and
output to the storage function.

Remark 8 How to construct an appropriate LKF is a main difficulty in reducing effectively
the conservatism of stability criteria. To overcome this difficulty, a delay-product-type LKF
term is introduced and three multiple summation LKF terms are constructed in this paper.

4 Numerical examples

Example 1 Consider the discrete-time system (1) with

B =
[
0.8 0
0 0.9

]

, W0 =
[
0.001 0
0 0.005

]

,
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Table 1 The MADUBs dM for different dm in Example 1

dm 4 8 12 15 DVs

Theorem 1 (Song and Wang 2007) 11 13 15 17 17.5n2 + 4.5n

Theorem 1 (Zhang et al. 2008) 12 14 17 19 15n2 + 5n

Theorem 1 (Wu et al. 2008) 16 18 19 22 13n2 + 7n

Theorem 1 (Song et al. 2009) 16 18 19 22 57n2 + 11n

Theorem 1 (Wu et al. 2010) 18 20 20 23 4.5n2 + 7.5n

Theorem 1 (Kwon et al. 2013) 20 21 21 23 61.5n2 + 17.5n

Corollary 1 (Feng and Zheng 2015) 20 21 22 23 44n2 + 13n

Theorem 1 (Zhang et al. 2017a) 20 21 22 24 13.5n2 + 11.5n

Theorem 1 (Case I) (Chen et al. 2019) 20 21 23 24 61n2 + 15n

Theorem 1 (Case II) (Chen et al. 2019) 20 21 23 24 211n2 + 15n

Theorem 1 (μ = 1) 21 22 23 25 83.5n2 + 15.5n

Table 2 The MADUBs dM for different dm in Example 1

dm 4 8 12 15 DVs

Theorem 2 (μ ≥ 2) (Zhang et al. 2017a) 20 21 22 24 13.5n2 + 11.5n

Theorem 1 (μ ≥ 2) (Jin et al. 2018) 20 21 23 24 19n2 + 9n

Theorem 1 (μ ≥ 2) 20 21 23 24 83.5n2 + 15.5n

Theorem 2 (μ = 1) (Zhang et al. 2017a) 20 21 23 25 13.5n2 + 11.5n

Theorem 1 (μ = 1) (Jin et al. 2018) 20 21 23 24 19n2 + 9n

Theorem 1 (μ = 1) 21 22 23 25 83.5n2 + 15.5n

W1 =
[−0.1 0.01
−0.2 −0.1

]

,

L1 = diag{0, 0}, L2 = diag{1, 1}.
The maximum admissible delay upper bounds (MADUBs) dM for different dm , such that the
neural network (1) is asymptotically stable, are listed in Tables 1 and 2, where μ = −μm =
μM . From Tables 1 and 2, the MADUBs dM obtained in this paper are greater than or equal
to those in the existing literatures, which shows that our approach is less conservative.

When d(k) = 17.5 + 5.5 cos kπ , the initial values x(k) = ϕ(k) = [0.3,−0.4]T, k ∈
[−23, 0], the trajectories of the neural network in Example 1 are depicted in Fig. 1, which
shows that the discrete-time system in this example is asymptotically stable. It verifies the
effectiveness of the proposed criterion.

Example 2 Consider the discrete-time system (1) with

B =
[
0.1 0
0 0.3

]

, W0 =
[
0.02 0
0 0.004

]

,

W1 =
[−0.01 0.01
−0.02 −0.01

]

,

L1 = diag{0, 0}, L2 = diag{1, 1}.
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Fig. 1 The trajectories of the system in Example 1 with d(k) = 17.5 + 5.5 cos kπ and x(0) = [0.3,−0.4]T

Table 3 The MADUBs dM for different dm in Example 2

dm 4 6 8 10 20 DVs

Theorem 1 (Zhang et al. 2008) 12 13 14 16 23 15n2 + 5n

Theorem 1 (Wu et al. 2010) 14 16 18 20 30 4.5n2 + 7.5n

Corollary 3.2, Mathiyalagan et al. 2012 15 17 19 21 31 68n2 + 10n

Theorem 1 (Wang et al. 2013) 17 18 20 23 32 29n2 + 12n

Corollary 3.3, Banu et al. 2015 32 34 36 38 48 22.5n2 + 4.5n

Corollary 3.3, Banu and Balasubramaniam
2016

34 36 38 40 52 20n2 + 14n

Theorem 2 (μ ≥ 1) (Zhang et al. 2017a) 101 103 105 107 117 13.5n2 + 11.5n

Theorem 1 (Case I) (Chen et al. 2019) 3121 3123 3125 3127 3137 61n2 + 15n

Theorem 1 (Case II) (Chen et al. 2019) 3122 3124 3126 3128 3138 211n2 + 15n

Theorem 1 (μ ≥ 1) 3127 3129 3131 3133 3143 83.5n2 + 15.5n

TheMADUBs dM for different dm , such that the system in this example is asymptotically
stable , are listed in Table 3, where μ = −μm = μM . It can be discerned from Table 3 that
the MADUBs dM calculated by our method are larger than those in the existing literatures,
which shows that our approach is with less conservatism.

Example 3 Consider the discrete-time system (3) with

B =
[
0.2 0
0 0.3

]

, W0 =
[
0.001 0
0 0.005

]

,

W1 =
[−0.1 0.01
−0.2 −0.1

]

,
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Table 4 The minimum H∞ performance γ for dm = 3 and different dM

dM 9 11 13 15 17

Theorem 1 (Feng and Zheng 2015) 2.3658 2.6113 2.8690 3.1407 3.4268

Theorem 1 (μ = 1) (Jin et al. 2018) 2.3634 2.6093 2.8651 3.1342 3.4189

Theorem 2 (μ = 1) 2.3589 2.6062 2.8633 3.1331 3.4179

Table 5 The minimum H∞
performance γ for
(dm , dM ) = (3, 9) and different
μ

μ 1 2 ≥ 3

Theorem 1 (Jin et al. 2018) 2.3634 2.3635 2.3635

Theorem 2 2.3589 2.3627 2.3629

Table 6 The minimum H∞
performance γ for
(dm , dM ) = (3, 11)) and
different μ

μ 1 2 ≥ 3

Theorem 1 (Jin et al. 2018) 2.6093 2.6093 2.6093

Theorem 2 2.6062 2.6083 2.6086

C = diag{1, 1}, D = diag{1, 1},
L1 = diag{0, 0}, L2 = diag{1, 1}.

Let dm = 3 andμ = −μm = μM . The optimal H∞ performance levels γ for different dM
computed by Theorem 2 and the methods (Feng and Zheng 2015; Jin et al. 2018) are listed
in Table 4. When (dm, dM ) = (3, 9) and (dm, dM ) = (3, 11), Tables 5 and 6 list the optimal
H∞ performance levels γ for different μ, respectively. From Tables 4, 5 and 6, we can see
that H∞ performance level is improved. This means that our results are of less conservatism.

Set the initial state x(k) = [2,−2]T, k ∈ [−13, 0], d(k) = int[8 + 5 ∗ sin( kπ4 )] and
J (k) = −vT(k)v(k) + γ 2uT(k)u(k). Figure 2 displays the state response of the system in
Example 3 with the exogenous disturbance u(k) = col[2e−0.01k ,3e−0.02k]. The trajectory of∑h

k=0 J (k) is depicted in Fig. 3, which testifies the validity of the results of Theorem 2.

Example 4 The repressilator model for Escherichia coli with three repressor protein concen-
trations and their correspondingmRNAconcentrationswas considered in Elowitz andLeibler
(2000). The discrete repressilator model with the stochastic jumping was investigated in Xia
et al. (2020). Removing the stochastic jumping factor in Xia et al. (2020), we can obtain the
following deterministic discrete repressilator model:

{
m(k + 1) = B1m(k) + D0g(p(k)) + D1g(p(k − d(k))) + u1(k),

p(k + 1) = B2 p(k) + B3m(k) + u2(k),
(37)

where p(k) = [p1(k), p2(k), p3(k)]T andm(k) = [m1(k),m2(k),m3(k)]T, pi (k) andmi (k)
denote concentrations of protein and mRNA at time k, respectively; g(p(k)) is the feedback
regulation of the protein on the transcription; the diagonal matrices B1, B2, B3 represent
the decay rates of mRNA, the decay rates of protein, and the translation rates of mRNA,
respectively; D0, D1 are the couplingmatrices; u1(k) and u2(k) are the external disturbances.
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Fig. 2 The state trajectories of the system in Example 3 with d(k) = int[8+ 5 ∗ sin( kπ4 )], x(0) = col[2,−2]
and u(k) = col[2e−0.01k , 3e−0.02k ]
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Fig. 3 The trajectory of
∑h

k=0 J (k) in Example 3 with dm = 3, dM = 13, u(k) = [2e−0.01k , 3e−0.02k ]T
and γ = 2.8633

Let x(k) = col[m(k), p(k)], g(x(k)) = col[g(m(k)), g(p(k))], B =
[
B1 0
B3 B2

]

, W0 =
[
0 D0

0 0

]

, W1 =
[
0 D1

0 0

]

, u(k) =
[
u1(k)
u2(k)

]

, ui (k) =
⎡

⎣
ui1(k)
ui2(k)
ui3(k)

⎤

⎦, i = 1, 2.

Then, (37) can be rewritten as follows:

x(k + 1) = Bx(k) + W0g(x(k)) + W1g(x(k − d(k))) + u(k).
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Fig. 4 The state trajectories of the system in Example 4 with d(k) = int[49.5 + 0.5 ∗ cos( kπ4 )], x(0) =
[2, 1,−0.8, 0.7,−0.9,−1.5]T and ui j (k) = 0.015 sin(0.02k), i = 1, 2, j = 1, 2, 3

Set B1 =
⎡

⎣
0.2 0 0
0 0.2 0
0 0 0.2

⎤

⎦, B2 =
⎡

⎣
0.1 0 0
0 0.1 0
0 0 0.1

⎤

⎦, B3 =
⎡

⎣
0.09 0 0
0 0.09 0
0 0 0.09

⎤

⎦,

D0 = −0.5V , D1 = −0.1V , V =
⎡

⎣
0 0 1
1 0 0
0 1 0

⎤

⎦, the regulation function g(x) = x2

1+x2
. It is

obvious that the activation function g(·) satisfies (2) with l−i = 0, l+i = 0.65, i = 1, 2, . . . , 6.
If dm = 1, the MADUB dM calculated by Theorem 1 (Zhang et al. 2017a) is 316. This

discrete repressilator system is asymptotically stable for 1 ≤ d(k) ≤ 316. However, the range
of d(k) derived by Theorem 1 in this paper is 1 ≤ d(k) ≤ 1101. Compared with Theorem 1
(Zhang et al. 2017a), our stability criterion can provide less conservative result.

Set dm = 4, dM = 50. For μ ≥ 1, by applying Theorem 2 in this paper, the allowable
minimum H∞ performance level γ = 1.8100.

Let d(k) = int[49.5 + 0.5 ∗ cos( kπ4 )], the disturbance ui j (k) = 0.015 sin(0.02k), i =
1, 2, j = 1, 2, 3, and the initial value x(0) = [2, 1,−0.8, 0.7,−0.9,−1.5]T. The state
trajectories of the considered system are showed in Fig. 4, which indicates that the synthetic
genetic regulatory network is asymptotically stable.

5 Conclusions

In this paper, the stability and H∞ performance for the discrete-time neural networks with a
time-varying delay has been investigated. A new free-matrix-based summation inequality is
proposed and applied to estimate the single summation terms. By constructing a suitable LKF
with a delay-product-termandbounding its forward difference by the proposednew inequality
and the improved reciprocally convex inequality, we derive less conservative conditions for
stability and H∞ performance respectively. Four numerical examples are given to further
verify the validity of the proposed criteria.
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