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Abstract
Recently, the concept of interval-valued intuitionistic fuzzy parameterized interval-valued
intuitionistic fuzzy soft sets (d-sets) has successfully modelled decision-making problems,
where the parameters and alternatives have interval-valued intuitionistic fuzzy values. In the
present study, to be able to transfer a large number of data in such problems to a computer envi-
ronment and to process them therein, we define the concept of interval-valued intuitionistic
fuzzy parameterized interval-valued intuitionistic fuzzy softmatrices (d-matrices).Moreover,
we introduce operations, such as union, intersection, and AND/OR/ANDNOT/ORNOT-
products, on this concept and study some of their basic properties. We then configure the
state-of-the-art soft decision-making (SDM) method constructed by d-sets to render it oper-
able in d-matrices space. Furthermore, we apply it to a performance-based value assignment
(PVA) to the seven noise removal filters to compare their ranking orders. Thereafter, we
conduct a comparative analysis of the configured method with five state-of-the-art SDM
methods. Finally, we discuss d-matrices for future research.
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1 Introduction

Manymathematical tools have been proposed to overcome problems containing uncertainties
in the real world. Fuzzy sets (Zadeh 1965) and soft sets (Molodtsov 1999) are among the
known mathematical tools. In addition to these, intuitionistic fuzzy sets (Atanassov 1986)
and interval-valued intuitionistic fuzzy sets (ivif -sets) (Atanassov 2020; Atanassov and Gar-
gov 1989), being the generalisations of the concept of fuzzy sets, have been propounded.
Afterwards, various hybrid versions of these concepts, such as fuzzy soft sets (Maji et al.
2001), fuzzy parameterized soft sets (Çağman et al. 2011a), fuzzy parameterized fuzzy soft
sets (Çağman et al. 2010), intuitionistic fuzzy parameterized soft sets (Deli and Çağman
2015), interval-valued intuitionistic fuzzy parameterized soft sets (Deli and Karataş 2016),
intuitionistic fuzzy parameterized intuitionistic fuzzy soft sets (Karaaslan 2016), and fuzzy
parameterized intuitionistic fuzzy soft sets (Sulukan et al. 2019) have been introduced. So far,
the researchers have conducted numerous theoretical and applied studies on these concepts
in various fields, such as algebra (Çıtak and Çağman 2015; Senapati and Shum 2019; Sezgin
2016; Sezgin et al. 2019; Ullah et al. 2018), topology (Atmaca 2017; Aydın and Enginoğlu
2021b; Enginoğlu et al. 2015; Riaz and Hashmi 2017; Şenel 2016; Thomas and John 2016),
analysis (Molodtsov 2004; Riaz et al. 2018; Şenel 2018), and decision making (Çağman
and Enginoğlu 2010b; Çağman et al. 2011b; Garg and Arora 2020; Kumar and Garg 2018;
Liu and Jiang 2020; Maji et al. 2002; Memiş and Enginoğlu 2019; Mishra and Rani 2018;
Petchimuthu et al. 2020; Xue et al. 2021).

However, when a problem containing uncertainties incorporates a large number of data,
the aforesaid set concepts display some time- and complexity-related disadvantages. To cope
with these difficulties, Çağman and Enginoğlu (2010a) have defined the concept of soft
matrices allowing data in such problems to be transferred to and processed in a computer
environment and suggested the soft max-min method. Then, Çağman and Enginoğlu (2012)
have presented the concept of fuzzy soft matrices and constructed a soft decision-making
(SDM)method. Enginoğlu andÇağman (2020) have propounded the concept of fuzzy param-
eterized fuzzy soft matrices (fpfs-matrices). Moreover, they have proposed an SDM method
called Prevalence Effect Method (PEM) and applied it to a performance-based value assign-
ment (PVA) problem, so that they can order image-denoising filters in terms of noise-removal
performance. Afterwards, Enginoğlu et al. (2019a) have offered a novel SDM method con-
structed with fpfs-matrices and PEM, and applied it to the problem of monolithic columns
classification.

Lately, the concept of fpfs-matrices has stood out amongothers due to itsmodelling success
in decision-making problems, where the alternatives and parameters have fuzzy member-
ship degrees. Therefore, many SDM methods, constructed by its substructures, have been
configured in (Aydın and Enginoğlu 2019, 2020; Enginoğlu and Memiş 2018b; Enginoğlu
and Öngel 2020; Enginoğlu et al. 2021a, b) to operate them in fpfs-matrices space, faith-
fully to the original. Some of the configured methods have been applied to PVA problems,
and successful results have been obtained (Aydın and Enginoğlu 2019, 2020; Enginoğlu
and Öngel 2020). Besides, Enginoğlu and Memiş (2018a, c) and Enginoğlu et al. (2018a, b)
have focussed on mathematical simplifications and improvements of some of the configured
methods. Memiş et al. (2019) have developed a classification algorithm based on normalised
Hamming pseudo-similarity of fpfs-matrices. Further, Memiş et al. (2021b) have proposed a
classification algorithm based on the Euclidean pseudo-similarity of fpfs-matrices.

Afterwards, the concept of intuitionistic fuzzy parameterized intuitionistic fuzzy soft
matrices (ifpifs-matrices) (Enginoğlu and Arslan 2020) has been introduced to model uncer-
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tainties inwhich the alternatives and parameters have intuitionistic fuzzy values. Furthermore,
using this concept, a new SDM method has been proposed and applied to a hypothetical
problem concerning the determination of eligible candidates in a recruitment scenario and a
real-life problem of image processing. Arslan et al. (2021) have then generalised 24 SDM
methods operating in fpfs-matrices space via this concept. Besides, they have suggested five
test scenarios to compare the performances of the generalised SDMmethods and applied the
SDMmethods successful in these test scenarios to a PVA problem. In addition, Memiş et al.
(2021a) have offered a classifier based on the similarity of ifpifs-matrices and applied this
classifier to machine learning.

Recently, to be able to model some problems mathematically in which parameters and
alternatives contain serious uncertainties, Aydın and Enginoğlu (2021a) have defined the
concept of interval-valued intuitionistic fuzzy parameterized interval-valued intuitionistic
fuzzy soft sets (d-sets), which can be regarded as the general form of the concepts of interval-
valued intuitionistic fuzzy parameterized soft sets (Deli andKarataş 2016) and interval-valued
intuitionistic fuzzy soft sets (Jiang et al. 2010; Min 2008). They then have proposed an SDM
method using d-sets and applied it to two decision-making problems concerning the eligibility
of candidates for two vacant positions in an online job advertisement and PVA to the known
filters used in image denoising. The applications have shown that d-sets can be successfully
applied to problems containing further uncertainties. Thus, in decision-making problems
where the parameters and alternatives contain multiple measurement results, the ambiguity
as to which value to assign to a parameter or an alternative has been clarified. The primary
motivation of the present study is to develop effective SDM methods by improving d-sets’
skills in modelling such problems. The second one is to propound a novel mathematical
tool to enable data in similar problems, containing both a large number of data and multiple
intuitionistic fuzzy measurement results, to be transferred to a computer environment. Thus,
it will be possible to use the concept of d-sets effectively.

In the current study, we focus on the concept of ivif -sets, more meaningful and convenient
than the others, to minimise data loss whenmodelling the problem of which value to assign to
a parameter or an alternative with multiple fuzzy or intuitionistic fuzzy measurement results.
For example, in Section 5, the results of Based on Pixel Density Filter (BPDF) (Erkan and
Gökrem 2018) for 20 traditional test images at noise density 10% are as follows:

μ1 = 0.9848, μ2 = 0.9911, μ3 = 0.9743, μ4 = 0.9795, μ5 = 0.9735,
μ6 = 0.9747, μ7 = 0.9795, μ8 = 0.9885, μ9 = 0.9761, μ10 = 0.9801,
μ11 = 0.9753, μ12 = 0.9938, μ13 = 0.9705, μ14 = 0.9707, μ15 = 0.9726,
μ16 = 0.9808, μ17 = 0.9791, μ18 = 0.9909, μ19 = 0.9657, μ20 = 0.9830

We can regard these results as the multiple membership degrees of BPDF herein. Thus, we
can obtain the multiple non-membership degrees of BPDF corresponding to these multiple
membership degrees using νi = 1 − μi , for i ∈ {1, 2, . . . , 20}. Namely,

ν1 = 0.0152, ν2 = 0.0089, ν3 = 0.0257, ν4 = 0.0205, ν5 = 0.0265,
ν6 = 0.0253, ν7 = 0.0205, ν8 = 0.0115, ν9 = 0.0239, ν10 = 0.0199,
ν11 = 0.0247, ν12 = 0.0062, ν13 = 0.0295, ν14 = 0.0293, ν15 = 0.0274,
ν16 = 0.0192, ν17 = 0.0209, ν18 = 0.0091, ν19 = 0.0343, ν20 = 0.0170

We can calculate the membership and non-membership degrees of BPDF in three different
ways by availing of the aforesaid values as follows:

1. Using μ(BPDF)= 1
20

∑20
i=1 μi , we obtain the degree of BPDF’s membership to a fuzzy

set as μ(BPDF)= 0.9792.
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2. By utilising μ(BPDF)= min
i∈I20

μi and ν(BPDF)= 1 − max
i∈I20

νi , we obtain the degrees of

BPDF’s membership and non-membership to an intuitionistic fuzzy set as μ(BPDF)=
0.9657 and ν(BPDF)= 0.0062, respectively.

3. By employing μ(BPDF)=
[

min
i∈I20

μi

max
i∈I20

μi+max
i∈I20

νi
,

max
i∈I20

μi

max
i∈I20

μi+max
i∈I20

νi

]

and ν(BPDF)=
[

min
i∈I20

νi

max
i∈I20

μi+max
i∈I20

νi
,

max
i∈I20

νi

max
i∈I20

μi+max
i∈I20

νi

]

, we obtain the degrees of BPDF’s membership and non-

membership to an ivif -set as μ(BPDF)= [0.9392, 0.9666] and ν(BPDF)= [0.0060,
0.0334], respectively.

The first case shows that BPDF’s noise-removal performance at noise density 10% accounts
for approximately 98%. The second signifies that BPDF exhibits a success rate of around
97% and a failure rate of 1% in noise removal. The last one indicates that the noise-removal
success of BPDF ranges from 94% to 97% and its failure from 1 to 3%. These comments
manifest that membership and non-membership degrees assigned to an alternative in ivif -
sets offer more information than fuzzy sets and intuitionistic fuzzy sets do. Hence, we can
summarise the significant advantages and contributions of the present study as follows:

– The concept of interval-valued intuitionistic fuzzy parameterized interval-valued intu-
itionistic fuzzy soft matrices (d-matrices) has an important advantage to prevent errors
arising from manual calculations in SDM methods constructed by d-sets. This concept
makes it possible to obtain fast and reliable results.

– The concept of d-matrices allows to process a large number of data and multiple mea-
surement results by transferring them to a computer environment.

– The concept of d-matrices utilises ivif -values containing more information compared
to fuzzy or intuitionistic fuzzy values to determine membership and non-membership
degrees of parameters and alternatives.

– The pre-processing step of the configured method presents an approach related to the
conversion of multiple intuitionistic fuzzy measurement results to ivif -values.

On the other hand, the running time of the configured method can be slightly longer
than those of the others. This relatively minor drawback results from computations while
converting multiple intuitionistic fuzzy measurement results to ivif -values. For instance, for
d-matrix [bi j ] and ifpifs-matrix [ci j ] in Sects. 5 and 6 , the data concerning the average
running time of the methods (in second), using MATLAB R2021a and a laptop with 2.5 GHz
i5-2450M CPU and 8 GB RAM, in 1000 runs are as follows:

The configuredmethod: 0.0063, iMBR01: 0.0011, iMRB02(I9): 0.0009, iCCE10: 0.0002,
iCCE11: 0.0004, and iPEM: 0.0028

Section 2 of the present study provides some of the basic definitions to be employed in
the paper’s next sections. Section 3 defines the concept of d-matrices and investigates some
of its basic properties. Section 4 configures a state-of-the-art SDM method constructed with
d-sets to operate it in d-matrices space. Section 5 applies it to a real-life problem concerning
PVA to the known image-denoising filters using the Structural Similarity (SSIM) results
of these filters for the images provided in two different databases. Furthermore, the section
comments on the ranking orders of the filters. Section 6 provides a comparative analysis of the
ranking performances of the configured method and those of the five methods by applying
five state-of-the-art SDM methods constructed with ifpifs-matrices to the same problem.
Finally, d-matrices are discussed for further research. This study is a part of the first author’s
PhD dissertation (Aydın 2020).
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2 Preliminaries

This section first presents several the known definitions and propositions. Throughout this
paper, let I nt([0, 1]) be the set of all closed classical subintervals of [0, 1].
Definition 1 Let γ1, γ2 ∈ I nt([0, 1]). For γ1 := [γ −

1 , γ +
1 ] and γ2 := [γ −

2 , γ +
2 ],

i. if γ −
2 ≤ γ −

1 and γ +
1 ≤ γ +

2 , then γ1 is called a classical subinterval of γ2 and is denoted
by γ1 ⊆ γ2.

ii. if γ −
1 ≤ γ −

2 and γ +
1 ≤ γ +

2 , then γ1 is called a subinterval of γ2 and is denoted by γ1⊆̃γ2.
iii. if γ −

1 = γ −
2 and γ +

1 = γ +
2 , then γ1 and γ2 are called equal intervals and is denoted by

γ1 = γ2.

Proposition 1 Let γ1, γ2 ∈ I nt([0, 1]). Then, γ1≤̃γ2 ⇔ γ1⊆̃γ2. Here, “≤̃” is a partially
ordered relation over Int([0, 1]).

In the present paper, the smallest upper bound and greatest lower bound of the elements
of the set I nt([0, 1]) are obtained from the partially ordered relation “≤̃”.

Definition 2 Let γ, γ1, γ2 ∈ I nt(R) and c ∈ R
+ such that γ := [γ −, γ +], γ1 := [γ −

1 , γ +
1 ],

and γ2 := [γ −
2 , γ +

2 ]. Then,
i. γ1 + γ2 := [γ −

1 + γ −
2 , γ +

1 + γ +
2 ]

ii. γ1 − γ2 := [γ −
1 − γ +

2 , γ +
1 − γ −

2 ]
iii. γ1 · γ2 := [min{γ −

1 γ −
2 , γ −

1 γ +
2 , γ +

1 γ −
2 , γ +

1 γ +
2 },max{γ −

1 γ −
2 , γ −

1 γ +
2 , γ +

1 γ −
2 , γ +

1 γ +
2 }]

iv. c · γ := [c · γ −, c · γ +]
Proposition 2 Let γ1, γ2 ∈ I nt([0, 1]) such that γ1 := [γ −

1 , γ +
1 ] and γ2 := [γ −

2 , γ +
2 ]. Then,

i. sup{γ1, γ2} = [max{γ −
1 , γ −

2 },max{γ +
1 , γ +

2 }]
ii. inf{γ1, γ2} = [min{γ −

1 , γ −
2 },min{γ +

1 , γ +
2 }]

Second, this section presents some of the basic definitions to be used in the paper’s next
sections.

Definition 3 (Atanassov and Gargov 1989) Let E be a universal set and κ be a function from
E to I nt([0, 1]) × I nt([0, 1]). Then, the set {(x, κ(x)) : x ∈ E}, being the graphic of κ , is
called an interval-valued intuitionistic fuzzy set (ivif -set) over E .

Here, for all x ∈ E , κ(x) := (α(x), β(x)), α(x) := [α−(x), α+(x)], and β(x) :=
[β−(x), β+(x)] such that α+(x) + β+(x) ≤ 1. Moreover, α and β are called membership
function and non-membership function in an ivif -set, respectively.

From now on, the set of all the ivif -sets over E is denoted by I V I F(E). In I V I F(E),
since the graph(κ) and κ generate each other uniquely, the notations are interchangeable.
Therefore, as long as it causes no confusion, we denote an ivif -set graph(κ) by κ . Moreover,
we use the notation α(x)

β(x)x instead of (x, α(x), β(x)), for brevity. Thus, we represent an ivif -set

over E with κ :=
{

α(x)
β(x)x : x ∈ E

}
.

Note 1 Since [k, k] := k, we use k
t x instead of [k,k]

[t,t] x , for all k, t ∈ [0, 1]. Moreover, we do

not display the elements 0
1x in an ivif -set.
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Definition 4 (Aydın and Enginoğlu 2021a) Let U be a universal set, E be a param-
eter set, κ ∈ I V I F(E), and f be a function from κ to I V I F(U ). Then, the set{(

α(x)
β(x)x, f

(
α(x)
β(x)x

))
: x ∈ E

}
, being the graphic of f , is called an interval-valued intuition-

istic fuzzy parameterized interval-valued intuitionistic fuzzy soft set (d-set) parameterized
via E over U (or briefly over U ).

Note 2 We do not display the elements
(
0
1x, 0U

)
in a d-set. Here, 0U is the empty ivif -set

over U .

Hereinafter, the set of all the d-sets over U is denoted by DE (U ). In DE (U ), since the
graph( f ) and f generate each other uniquely, the notations are interchangeable. Therefore,
as long as it causes no confusion, we denote a d-set graph( f ) by f .

Example 1 Let E = {x1, x2, x3, x4} be a parameter set and U = {u1, u2, u3, u4, u5} be a
universal set. Then,

f =
{([0.1,0.4]

[0.4,0.5]x1,
{[0.4,0.6]

[0.2,0.3]u1,
[0.7,0.8]
[0,0.1] u2,

[0.1,0.4]
[0,0.2] u4

})
,
(
0
1x2,

{[0,0.5]
[0.1,0.2]u3,

[0.3,0.5]
[0.2,0.3]u5

})
,

(
0
1x3, 1U

)
,
([0.2,0.5]

[0.1,0.2]x4,
{[0.3,0.4]

[0.5,0.6]u2,
[0,0.2]
[0.5,0.6]u4,

[0.3,0.7]
[0.1,0.2]u5

})}

is a d-set over U . Here, 1U := {
1
0u : u ∈ U

}
.

3 Interval-valued intuitionistic fuzzy parameterized interval-valued
intuitionistic fuzzy soft matrices

This section first defines the concept of d-matrices and introduces some of its basic properties.
The primary purpose of the present section is to enable a large number of data containing
multiple measurement results to be transferred to a computer environment with the help of
this concept. The second one is to develop effective SDMmethods by improving d-sets’ skills
in modelling such cases. To do so, this section focuses onmaking a theoretical contribution to
the concept of soft matrices and defining product operations over d-matrices to use in SDM
methods based on group decision making for the subsequent studies. From now on, let E be
a parameter set and U be a universal set.

Definition 5 Let f ∈ DE (U ). Then, [ai j ] is called the d-matrix of f and is defined by

[ai j ] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a01 a02 a03 . . . a0n . . .

a11 a12 a13 . . . a1n . . .
...

...
...

. . .
...

...

am1 am2 am3 . . . amn . . .
...

...
...

. . .
...

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

such that for i ∈ {0, 1, 2, · · · } and j ∈ {1, 2, · · · },

ai j :=
⎧
⎨

⎩

α(x j )
β(x j )

, i = 0

f
(

α(x j )
β(x j )

x j
)

(ui ), i �= 0
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Moreover, if |U | = m − 1 and |E | = n, then [ai j ] is an m × n d-matrix. We represent the
entry of a d-matrix [ai j ]with ai j := αi j

βi j
. It must be noted that for all i and j , αi j := [α−

i j , α
+
i j ]

and βi j := [β−
i j , β

+
i j ] such that α+

i j +β+
i j ≤ 1. In this paper, to avoid any confusion, as needed,

the membership and non-membership degrees of ai j , i.e. αi j and βi j , will also be represented
by αa

i j and βa
i j , respectively. Besides, the set of all the d-matrices parameterized via E over

U is denoted by DE [U ] and [ai j ], [bi j ], [ci j ] ∈ DE [U ].
The entries of a d-matrix [ai j ]m×n consist of ivif -values. The entries of row with zero

indexed of its contain membership and non-membership degrees of each parameter. For
example, the entry a01 indicates the membership and non-membership degrees of the first
parameter. Moreover, the entries of the other rows of its involve the membership and non-
membership degrees of an alternative corresponding to each parameter. For instance, the
entry a32 signifies the membership and non-membership degrees of the third alternative
corresponding to the second parameter.

Example 2 The d-matrix of f provided in Example 1 is as follows:

[ai j ] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[0.1,0.4]
[0.4,0.5] 0

1
0
1

[0.2,0.5]
[0.1,0.2]

[0.4,0.6]
[0.2,0.3] 0

1
1
0

0
1

[0.7,0.8]
[0,0.1] 0

1
1
0

[0.3,0.4]
[0.5,0.6]

0
1

[0,0.5]
[0.1,0.2] 1

0
0
1

[0.1,0.4]
[0,0.2] 0

1
1
0

[0,0.2]
[0.5,0.6]

0
1

[0.3,0.5]
[0.2,0.3] 1

0
[0.3,0.7]
[0.1,0.2]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Definition 6 Let [ai j ] ∈ DE [U ]. For all i and j , and for λ, ε ∈ I nt([0, 1]), if αi j = λ and
βi j = ε, then [ai j ] is called (λ, ε)-d-matrix and is denoted by [λε ]. Here,

[
0
1

]
is called empty

d-matrix and
[
1
0

]
is called universal d-matrix.

Definition 7 Let [ai j ], [bi j ], [ci j ] ∈ DE [U ], IE := { j : x j ∈ E}, and R ⊆ IE . If

αc
i j =

{
αa
i j , j ∈ R

αb
i j , j ∈ IE \ R

and βc
i j =

{
βa
i j , j ∈ R

βb
i j , j ∈ IE \ R

then [ci j ] is called Rb-restriction of [ai j ] and is denoted by
[
(aRb)i j

]
.

Briefly, if [bi j ] = [
0
1

]
, then [(aR)i j ] can be used instead of

[(
aR0

1

)

i j

]

and called R-

restriction of [ai j ]. It is clear that

(aR)i j =
{ αi j

βi j
, j ∈ R

0
1, j ∈ IE \ R
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Example 3 For R = {1, 3, 4} and S = {1, 3}, R1
0-restriction and S-restrictionof [ai j ]provided

in Example 2 are as follows:

[(
aR1

0

)

i j

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[0.1,0.4]
[0.4,0.5] 1

0
0
1

[0.2,0.5]
[0.1,0.2]

[0.4,0.6]
[0.2,0.3] 1

0
1
0

0
1

[0.7,0.8]
[0,0.1] 1

0
1
0

[0.3,0.4]
[0.5,0.6]

0
1

1
0

1
0

0
1

[0.1,0.4]
[0,0.2] 1

0
1
0

[0,0.2]
[0.5,0.6]

0
1

1
0

1
0

[0.3,0.7]
[0.1,0.2]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and
[
(aS)i j

] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[0.1,0.4]
[0.4,0.5] 0

1
0
1

0
1

[0.4,0.6]
[0.2,0.3] 0

1
1
0

0
1

[0.7,0.8]
[0,0.1] 0

1
1
0

0
1

0
1

0
1

1
0

0
1

[0.1,0.4]
[0,0.2] 0

1
1
0

0
1

0
1

0
1

1
0

0
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Definition 8 Let [ai j ], [bi j ] ∈ DE [U ]. For all i and j , if αa
i j ≤̃αb

i j and βb
i j ≤̃βa

i j , then [ai j ] is
called a submatrix of [bi j ] and is denoted by [ai j ]⊆̃[bi j ].
Definition 9 Let [ai j ], [bi j ] ∈ DE [U ]. For all i and j , if αa

i j = αb
i j and βa

i j = βb
i j , then [ai j ]

and [bi j ] are called equal d-matrices and is denoted by [ai j ] = [bi j ].
Proposition 3 Let [ai j ], [bi j ], [ci j ] ∈ DE [U ]. Then,
i. [ai j ]⊆̃

[
1
0

]

ii.
[
0
1

] ⊆̃[ai j ]
iii. [ai j ]⊆̃[ai j ]
iv. ([ai j ] = [bi j ] ∧ [bi j ] = [ci j ]) ⇒ [ai j ] = [ci j ]
v. ([ai j ]⊆̃[bi j ] ∧ [bi j ]⊆̃[ai j ]) ⇔ [ai j ] = [bi j ]
vi. ([ai j ]⊆̃[bi j ] ∧ [bi j ]⊆̃[ci j ]) ⇒ [ai j ]⊆̃[ci j ]
Definition 10 Let [ai j ], [bi j ] ∈ DE [U ]. If [ai j ]⊆̃[bi j ] and [ai j ] �= [bi j ], then [ai j ] is called
a proper submatrix of [bi j ] and is denoted by [ai j ]�̃[bi j ].
Definition 11 Let [ai j ], [bi j ], [ci j ] ∈ DE [U ]. For all i and j , if αc

i j = sup{αa
i j , α

b
i j } and

βc
i j = inf{βa

i j , β
b
i j }, then [ci j ] is called union of [ai j ] and [bi j ] and is denoted by [ai j ]∪̃[bi j ].

Definition 12 Let [ai j ], [bi j ], [ci j ] ∈ DE [U ]. For all i and j , if αc
i j = inf{αa

i j , α
b
i j } and

βc
i j = sup{βa

i j , β
b
i j }, then [ci j ] is called intersection of [ai j ] and [bi j ] and is denoted by

[ai j ]∩̃[bi j ].
Proposition 4 Let [ai j ], [bi j ], [ci j ] ∈ DE [U ]. Then,

i. [ai j ]∪̃[ai j ] = [ai j ] and [ai j ]∩̃[ai j ] = [ai j ]
ii. [ai j ]∪̃

[
0
1

] = [ai j ] and [ai j ]∩̃
[
1
0

] = [ai j ]
iii. [ai j ]∪̃

[
1
0

] = [
1
0

]
and [ai j ]∩̃

[
0
1

] = [
0
1

]

iv. [ai j ]∪̃[bi j ] = [bi j ]∪̃[ai j ] and [ai j ]∩̃[bi j ] = [bi j ]∩̃[ai j ]
v. ([ai j ]∪̃[bi j ])∪̃[ci j ] = [ai j ]∪̃([bi j ]∪̃[ci j ])and ([ai j ]∩̃[bi j ])∩̃[ci j ] = [ai j ]∩̃([bi j ]∩̃[ci j ])
vi. [ai j ]∪̃([bi j ]∩̃[ci j ]) = ([ai j ]∪̃[bi j ])∩̃([ai j ]∪̃[ci j ])

[ai j ]∩̃([bi j ]∪̃[ci j ]) = ([ai j ]∩̃[bi j ])∪̃([ai j ]∩̃[ci j ])
vii. [ai j ]⊆̃[bi j ] ⇒ [ai j ]∪̃[bi j ] = [bi j ] and [ai j ]⊆̃[bi j ] ⇒ [ai j ]∩̃[bi j ] = [ai j ]
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Proof vi. Let [ai j ], [bi j ], [ci j ] ∈ DE [U ]. Then,

[ai j ]∪̃([bi j ]∩̃[ci j ]) = [ai j ]∪̃
[
inf
{
αb
i j ,α

c
i j

}

sup
{
βb
i j ,β

c
i j

}

]

=
[
sup

{
αa
i j ,inf

{
αb
i j ,α

c
i j

}}

inf
{
βa
i j ,sup

{
βb
i j ,β

c
i j

}}

]

=
[
inf
{
sup

{
αa
i j ,α

b
i j

}
,sup

{
αa
i j ,α

c
i j

}}

sup
{
inf
{
βa
i j ,β

b
i j

}
,inf

{
βa
i j ,β

c
i j

}}

]

=
[
sup

{
αa
i j ,α

b
i j

}

inf
{
βa
i j ,β

b
i j

}

]

∩̃
[
sup

{
αa
i j ,α

c
i j

}

inf
{
βa
i j ,β

c
i j

}

]

= ([ai j ]∪̃[bi j ])∩̃([ai j ]∪̃[ci j ])
��

Example 4 Let E = {x1, x2, x3} and U = {u1, u2}. Assume that two d-matrices [ai j ] and
[bi j ] are as follows:

[ai j ] =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

[0.2,0.4]
[0,0.6] 0.3

0.4
[0.3,0.4]
[0.1,0.2]

0
1

[0,0.3]
[0.4,0.6] 0.5[0,0.4]

[0.5,0.7]
[0,0.3] 0.2

0.7
[0.5,0.6]
[0.1,0.3]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

and [bi j ] =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

[0.1,0.3]
[0.1,0.2]

[0.2,0.4]
[0.3,0.5]

[0.2,0.8]
[0,0.1]

[0.3,0.5]
[0.1,0.2]

[0.1,0.3]
[0.1,0.2] 0.6

0.1

[0.4,0.8]
[0.1,0.2] 0

1
[0,0.1]
[0,0.4]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Then,

[ai j ]∪̃[bi j ] =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

[0.2,0.4]
[0,0.2]

[0.3,0.4]
[0.3,0.4]

[0.3,0.8]
[0,0.1]

[0.3,0.5]
[0.1,0.2]

[0.1,0.3]
[0.1,0.2] 0.6[0,0.1]

[0.5,0.8]
[0,0.2] 0.2

0.7
[0.5,0.6]
[0,0.3]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

and [ai j ]∩̃[bi j ] =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

[0.1,0.3]
[0.1,0.6]

[0.2,0.3]
[0.4,0.5]

[0.2,0.4]
[0.1,0.2]

0
1

[0,0.3]
[0.4,0.6] 0.5[0.1,0.4]

[0.4,0.7]
[0.1,0.3] 0

1
[0,0.1]
[0.1,0.4]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Definition 13 Let [ai j ], [bi j ], [ci j ] ∈ DE [U ]. For all i and j , if αc
i j = inf{αa

i j , β
b
i j } and

βc
i j = sup{βa

i j , α
b
i j }, then [ci j ] is called difference between [ai j ] and [bi j ] and is denoted by

[ai j ]\̃[bi j ].
Proposition 5 Let [ai j ] ∈ DE [U ]. Then,
i. [ai j ]\̃

[
0
1

] = [ai j ]
ii. [ai j ]\̃

[
1
0

] = [
0
1

]

iii.
[
0
1

] \̃[ai j ] = [
0
1

]

Note 3 The difference operation does not provide associative and commutative properties.

Definition 14 Let [ai j ], [bi j ] ∈ DE [U ]. For all i and j , if αb
i j = βa

i j and βb
i j = αa

i j , then [bi j ]
is complement of [ai j ] and is denoted by [ai j ]c̃ or [ac̃i j ]. It is clear that, [ai j ]c̃ = [

1
0

] \̃[ai j ].
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Proposition 6 Let [ai j ], [bi j ] ∈ DE [U ]. Then,
i. ([ai j ]c̃)c̃ = [ai j ]
ii.
[
0
1

]c̃ = [
1
0

]

iii. [ai j ]\̃[bi j ] = [ai j ]∩̃[bi j ]c̃
iv. [ai j ]⊆̃[bi j ] ⇒ [bi j ]c̃⊆̃[ai j ]c̃
Proposition 7 Let [ai j ], [bi j ] ∈ DE [U ]. Then, the following De Morgan’s laws are valid:

i. ([ai j ]∪̃[bi j ])c̃ = [ai j ]c̃∩̃[bi j ]c̃
ii. ([ai j ]∩̃[bi j ])c̃ = [ai j ]c̃∪̃[bi j ]c̃
Proof i. Let [ai j ], [bi j ] ∈ DE [U ]. Then,

([ai j ]∪̃[bi j ])c̃ =
[
sup{αa

i j ,α
b
i j }

inf{βa
i j ,β

b
i j }

]c̃
=
[
inf{βa

i j ,β
b
i j }

sup{αa
i j ,α

b
i j }

]

=
[

βa
i j

αa
i j

]

∩̃
[

βb
i j

αb
i j

]

= [
ai j
]c̃ ∩̃ [bi j

]c̃

��
Definition 15 Let [ai j ], [bi j ], [ci j ] ∈ DE [U ]. For all i and j , if

αc
i j = sup

{
inf{αa

i j , β
b
i j }, inf{αb

i j , β
a
i j }
}

and βc
i j = inf

{
sup{βa

i j , α
b
i j }, sup{βb

i j , α
a
i j }
}

then [ci j ] is called symmetric difference between [ai j ] and [bi j ] and is denoted by [ai j ]
̃[bi j ].
Proposition 8 Let [ai j ], [bi j ] ∈ DE [U ]. Then,
i. [ai j ]
̃

[
0
1

] = [ai j ]
ii. [ai j ]
̃

[
1
0

] = [ai j ]c̃
iii. [ai j ]
̃[bi j ] = [bi j ]
̃[ai j ]
Note 4 The symmetric difference operation does not provide associative property.

Example 5 For [ai j ] and [bi j ] in Example 4, [ai j ]\̃[bi j ] and [ai j ]
̃[bi j ] are as follows:

[ai j ]\̃[bi j ] =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

[0.1,0.2]
[0.1,0.6] 0.3

0.4
[0,0.1]
[0.2,0.8]

0
1

[0,0.2]
[0.4,0.6] 0.1

0.6

[0.1,0.2]
[0.4,0.8] 0.2

0.7
[0,0.4]
[0.1,0.3]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

and [ai j ]
̃[bi j ] =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

[0.1,0.3]
[0.1,0.4]

[0.3,0.4]
[0.3,0.4]

[0.1,0.2]
[0.2,0.4]

[0.3,0.5]
[0.1,0.2]

[0.1,0.3]
[0.1,0.3]

[0.1,0.4]
0.5

[0.1,0.3]
[0.4,0.7] 0.2

0.7
[0,0.4]
[0.1,0.3]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Definition 16 Let [ai j ], [bi j ] ∈ DE [U ]. If [ai j ]∩̃[bi j ] = [
0
1

]
, then [ai j ] and [bi j ] are called

disjoint.

Definition 17 Let [ai j ]m×n1 ∈ DE1 [U ], [bik]m×n2 ∈ DE2 [U ], and [cip]m×n1n2 ∈
DE1×E2 [U ] such that p = n2( j − 1) + k. For all i and p, if αc

ip = inf{αa
i j , α

b
ik} and

βc
ip = sup{βa

i j , β
b
ik}, then [cip] is called AND-product of [ai j ] and [bik] and is denoted by

[ai j ]∧[bik].
Definition 18 Let [ai j ]m×n1 ∈ DE1 [U ], [bik]m×n2 ∈ DE2 [U ], and [cip]m×n1n2 ∈
DE1×E2 [U ] such that p = n2( j − 1) + k. For all i and p, if αc

ip = sup{αa
i j , α

b
ik} and

βc
ip = inf{βa

i j , β
b
ik}, then [cip] is called OR-product of [ai j ] and [bik] and is denoted by

[ai j ]∨[bik].
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Definition 19 Let [ai j ]m×n1 ∈ DE1 [U ], [bik]m×n2 ∈ DE2 [U ], and [cip]m×n1n2 ∈
DE1×E2 [U ] such that p = n2( j − 1) + k. For all i and p, if αc

ip = inf{αa
i j , β

b
ik} and

βc
ip = sup{βa

i j , α
b
ik}, then [cip] is called ANDNOT-product of [ai j ] and [bik] and is denoted

by [ai j ]∧[bik].
Definition 20 Let [ai j ]m×n1 ∈ DE1 [U ], [bik]m×n2 ∈ DE2 [U ], and [cip]m×n1n2 ∈
DE1×E2 [U ] such that p = n2( j − 1) + k. For all i and p, if αc

ip = sup{αa
i j , β

b
ik} and

βc
ip = inf{βa

i j , α
b
ik}, then [cip] is called ORNOT-product of [ai j ] and [bik] and is denoted by

[ai j ]∨[bik].
Example 6 For [ai j ] and [bik] in Example 4, [ai j ]∧[bik] is as follows:

[ai j ]∧[bik] =

⎡

⎢
⎢
⎢
⎢
⎣

[0.1,0.2]
[0.1,0.6]

[0.2,0.4]
[0.2,0.6]

[0,0.1]
[0.2,0.8]

[0.1,0.2]
0.4

0.3
0.4

[0,0.1]
[0.4,0.8]

[0.1,0.2]
[0.1,0.3]

[0.3,0.4]
[0.2,0.4]

[0,0.1]
[0.2,0.8]

0
1

0
1

0
1

[0,0.2]
[0.4,0.6]

[0,0.2]
[0.4,0.6]

[0,0.1]
0.6

[0.1,0.2]
[0.3,0.5]

[0.1,0.2]
[0.1,0.4] 0.1

0.6

[0.1,0.2]
[0.4,0.8]

[0.5,0.7]
[0,0.3]

[0,0.4]
[0,0.3]

[0.1,0.2]
[0.7,0.8] 0.2

0.7
[0,0.2]
0.7

[0.1,0.2]
[0.4,0.8]

[0.5,0.6]
[0.1,0.3]

[0,0.4]
[0.1,0.3]

⎤

⎥
⎥
⎥
⎥
⎦

Proposition 9 Let [ai j ]m×n1 ∈ DE1 [U ], [bik]m×n2 ∈ DE2 [U ], and [cil ]m×n3 ∈ DE3 [U ].
Then,

i. ([ai j ] ∧ [bik]) ∧ [cil ] = [ai j ] ∧ ([bik] ∧ [cil ])
ii. ([ai j ] ∨ [bik]) ∨ [cil ] = [ai j ] ∨ ([bik] ∨ [cil ])
Proof i. Let [ai j ]m×n1 ∈ DE1 [U ], [bik]m×n2 ∈ DE2 [U ], [cil ]m×n3 ∈ DE3 [U ], [ai j ] ∧

[bik] = [dip], [bik] ∧ [cil ] = [eir ], ([ai j ] ∧ [bik]) ∧ [cil ] = [ fis], and [ai j ] ∧ ([bik] ∧
[cil ]) = [hit ]. Therefore, [dip]m×n1n2 ∈ DE1×E2 [U ], [eir ]m×n2n3 ∈ DE2×E3 [U ], and
[ fis]m×n1n2n3 , [hit ]m×n1n2n3 ∈ DE1×E2×E3 [U ]. Because of Definition 17, since p =
n2( j − 1) + k and s = n3(p − 1) + l, then

s = n3n2( j − 1) + n3(k − 1) + l

Similarly, because of Definition 17, since r = n3(k − 1) + l and t = n2n3( j − 1) + r ,
then

t = n2n3( j − 1) + n3(k − 1) + l

Moreover, for all i , s, and t , since

α
f
is = inf{inf{αa

i j , α
b
ik}, αc

il} and β
f
is = sup{sup{βa

i j , β
b
ik}, βc

il}
and

αh
it = inf{αa

i j , inf{αb
ik, α

c
il}} and βh

it = sup{βa
i j , sup{βb

ik, β
c
il}}

then α
f
is = αh

it and β
f
is = βh

it . Thus, ([ai j ] ∧ [bik]) ∧ [cil ] = [ai j ] ∧ ([bik] ∧ [cil ]).
��

Proposition 10 Let [ai j ]m×n1 ∈ DE1 [U ] and [bik]m×n2 ∈ DE2 [U ]. Then, the following De
Morgan’s laws are valid:

i. ([ai j ] ∨ [bik])c̃ = [ai j ]c̃ ∧ [bik]c̃
ii. ([ai j ] ∧ [bik])c̃ = [ai j ]c̃ ∨ [bik]c̃
iii. ([ai j ] ∨ [bik])c̃ = [ai j ]c̃ ∧ [bik]c̃
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iv. ([ai j ] ∧ [bik])c̃ = [ai j ]c̃ ∨ [bik]c̃

Proof iv. Let [ai j ]m×n1 ∈ DE1 [U ] and [bik]m×n2 ∈ DE2 [U ]. Then,

([ai j ]∧[bik])c̃ =
[
inf{αa

i j ,β
b
ik }

sup{βa
i j ,α

b
ik }

]c̃
=
[
sup{βa

i j ,α
b
ik }

inf{αa
i j ,β

b
ik }

]

= [
ai j
]c̃ ∨ [bi j

]c̃

��
Note 5 The aforesaid products of d-matrices do not provide distributive property upon each
other and commutative property. Moreover, ANDNOT-product and ORNOT-product do not
provide associative property.

4 The configured soft decision-makingmethod

This section first configures the SDM method (Aydın and Enginoğlu 2021a) to operate it
in d-matrices space. Thus, we can employ this method in the presence of decision-making
problems. The configured method is used to model a problem containing parameters and
alternativeswithmultiple intuitionistic fuzzy values. Thismethod consists of a pre-processing
step and the main process steps. In the pre-processing, the multiple intuitionistic fuzzy values
are inputted for each parameter and the alternatives corresponding to the parameters. In the
first step of the main process, a d-matrix is constructed using the membership function,
the non-membership function, and the multiple intuitionistic fuzzy values. In the second, a
column matrix with the ivif -values is obtained by weighting the non-zero-indexed rows of
the d-matrix with the zero-indexed one. In the third step, a score matrix is attained with the
difference between membership and non-membership values in each entry of this matrix.
Fourthly, an interval-valued fuzzy decision set over a set of alternatives is produced by
normalising the score values and translating them to a closed classical subinterval of [0, 1].
In the final step, the optimal alternatives are selected through the linear ordering relation (Xu
and Yager 2006). Henceforth, In = {1, 2, 3, . . . , n} and I ∗

n = {0, 1, 2, . . . , n}.
Algorithm Steps of the Configured Method

Input Step. Input the values μ
i j
t and ν

i j
t such that i ∈ I ∗

m−1, j ∈ In , and t ∈ Is

Main Steps

Step 1. Construct a d-matrix [ai j ]m×n defined by ai j := αa
i j

βa
i j

Here, π i j
t = 1 − μ

i j
t − ν

i j
t , I =

{
p : μ

i j
p = max

t
μ
i j
t

}
, J =

{
r : ν

i j
r = max

t
ν
i j
t

}
,

i ∈ I ∗
m−1, j ∈ In , and t ∈ Is such that

αa
i j :=

⎡

⎢
⎢
⎣

min
t

μ
i j
t

max
t

μ
i j
t + max

t
ν
i j
t + min

{

min
p∈I π

i j
p ,min

r∈J
π
i j
r

} ,

max
t

μ
i j
t

max
t

μ
i j
t + max

t
ν
i j
t + min

{

min
p∈I π

i j
p ,min

r∈J
π
i j
r

}

⎤

⎥
⎥
⎦

and

βa
i j :=

⎡

⎢
⎢
⎣

min
t

ν
i j
t

max
t

μ
i j
t + max

t
ν
i j
t + min

{

min
p∈I π

i j
p ,min

r∈J
π
i j
r

} ,

max
t

ν
i j
t

max
t

μ
i j
t + max

t
ν
i j
t + min

{

min
p∈I π

i j
p ,min

r∈J
π
i j
r

}

⎤

⎥
⎥
⎦
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Step 2. Obtain the ivif -valued column matrix
[
αi1
βi1

]

(m−1)×1
defined by

αi1 := 1

λ

n∑

j=1

αa
0 jα

a
i j and βi1 := 1

λ

n∑

j=1

βa
0 jβ

a
i j

such that i ∈ Im−1

Here,

λ := 1

2

n∑

j=1

(

1 + (αa
0 j )

− + (αa
0 j )

+

2
− (βa

0 j )
− + (βa

0 j )
+

2

)

Step 3. Obtain the score matrix [si1](m−1)×1 defined by si1 := αi1 −βi1 such that i ∈ Im−1

Step 4. Obtain the decision set {d(uk )uk |uk ∈ U } such that

d(uk) =

⎧
⎪⎪⎨

⎪⎪⎩

[
s−k1+|min

i
s−i1|

max
i

s+i1+|min
i

s−i1|
,

s+k1+|min
i

s−i1|
max
i

s+i1+|min
i

s−i1|

]

, max
i

s+
i1 + |min

i
s−
i1| �= 0

[1, 1], max
i

s+
i1 + |min

i
s−
i1| = 0

Step 5. Select the optimal elements among the alternatives via linear ordering relation (Xu
and Yager 2006)

[
γ −
1 , γ +

1

] ≤XY

[
γ −
2 , γ +

2

]

⇔ [(
γ −
1 + γ +

1 < γ −
2 + γ +

2

) ∨ (γ −
1 + γ +

1 = γ −
2 + γ +

2 ∧ γ −
1 − γ +

1 ≤ γ −
2 − γ +

2

)]

Here, αa
0 j = [(αa

0 j )
−, (αa

0 j )
+], βa

0 j = [(βa
0 j )

−, (βa
0 j )

+], and si1 = [s−
i1, s

+
i1].

5 An application of the configuredmethod to performance-based
value assignment problem

In this section, we apply the configured method to the PVA problem for seven known filters
used in image denoising, namely Based on Pixel Density Filter (BPDF) (Erkan and Gökrem
2018), Modified Decision-Based Unsymmetric Trimmed Median Filter (MDBUTMF)
(Esakkirajan et al. 2011), Decision-Based Algorithm (DBAIN) (Srinivasan and Ebenezer
2007), Noise Adaptive Fuzzy Switching Median Filter (NAFSMF) (Toh and Isa 2010), Dif-
ferent Applied Median Filter (DAMF) (Erkan et al. 2018), Adaptive Weighted Mean Filter
(AWMF) (Tang et al. 2016), and Adaptive Riesz Mean Filter (ARmF) (Enginoğlu et al.
2019b). Hereinafter, let U = {u1, u2, u3, u4, u5, u6, u7} be an alternative set such that u1 =
“BPDF”, u2 = “MDBUTMF”, u3 = “DBAIN”, u4 = “NAFSMF”, u5 = “DAMF”, u6 =
“AWMF”, and u7 = “ARmF”. Moreover, let E = {x1, x2, x3, x4, x5, x6, x7, x8, x9} be a
parameter set determined by a decision-maker such that x1 = “noise density 10%”, x2 =
“noise density 20%”, x3 = “noise density 30%”, x4 = “noise density 40%”, x5 = “noise
density 50%”, x6 = “noise density 60%”, x7 = “noise density 70%”, x8 = “noise density
80%”, and x9 = “noise density 90%”.

First, we consider 20 traditional test images, i.e. “Lena”, “Cameraman”, “Barbara”,
“Baboon”, “Peppers”, “Living Room”, “Lake”, “Plane”, “Hill”, “Pirate”, “Boat”, “House”,
“Bridge”, “Elaine”, “Flintstones”, “Flower”, “Parrot”, “Dark-Haired Woman”, “Blonde
Woman”, and “Einstein”. To this end, we present the noise-removal performance values
of the aforesaid filters by Structural Similarity (SSIM) (Wang et al. 2004) for the images at
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noise densities ranging from 10% to 90%, in Tables 1, 2, 3, and 4, respectively. Moreover, we
obtain the results herein by MATLAB R2021a. When the SSIM values provided in the tables
are examined, it is observed that ARmF absolutely performs better than the other filters at
all the noise densities and for all the images. However, it is non-obvious which one is the
second and third etc. Our motivation is to overcome this problem.

For the problem, let (μ
i j
t ) be ordered-vigintuple such that μ

i j
t corresponds to the SSIM

results in Tables 1, 2, 3, and 4 obtained by t th image for i th filter at j th noise density. Here,
since ν

i j
t = 1 − μ

i j
t and π

i j
t = 0 such that i ∈ I7, j ∈ I9, and t ∈ I20, then for d-matrix

[ai j ],

αa
i j :=

⎡

⎣
min
t

μ
i j
t

max
t

μ
i j
t + max

t
{1 − μ

i j
t }

,

max
t

μ
i j
t

max
t

μ
i j
t + max

t
{1 − μ

i j
t }

⎤

⎦

and

βa
i j :=

⎡

⎣
min
t

{1 − μ
i j
t }

max
t

μ
i j
t + max

t
{1 − μ

i j
t }

,

max
t

{1 − μ
i j
t }

max
t

μ
i j
t + max

t
{1 − μ

i j
t }

⎤

⎦

For example, the ordered-vigintuple

(μ54
t ) = (0.9488, 0.9759, 0.9013, 0.9356, 0.9110, 0.9152, 0.9285, 0.9648, 0.9181, 0.9332,

0.9123, 0.9861, 0.8953, 0.8961, 0.9173, 0.9513, 0.9563, 0.9743, 0.9053, 0.9445)

indicates SSIM results of DAMF for 20 traditional test images at noise density 40%. Since

αa
54 =

⎡

⎣
min
t

μ54
t

max
t

μ54
t + max

t
{1 − μ54

t } ,
max
t

μ54
t

max
t

μ54
t + max

t
{1 − μ54

t }

⎤

⎦

=
[

0.8953

0.9861 + 0.1047
,

0.9861

0.9861 + 0.1047

]

= [0.8207, 0.9040]

and

βa
54 =

⎡

⎣
min
t

{1 − μ54
t }

max
t

μ54
t + max

t
{1 − μ54

t } ,
max
t

{1 − μ54
t }

max
t

μ54
t + max

t
{1 − μ54

t }

⎤

⎦

=
[

0.0139

0.9861 + 0.1047
,

0.1047

0.9861 + 0.1047

]

= [0.0127, 0.0960]

then a54 = [0.8207,0.9040]
[0.0127,0.0960]. Here, [0.8207, 0.9040] signifies that the success of DAMF on

image denoising at noise density 40% ranges from approximately 82% to 90%. Moreover,
[0.0127, 0.0960]means that the rate of DAMF’s failure in image denoising at the same noise
density occurs approximately between 1% and 9%. Similarly, the all rows of the d-matrix
[ai j ] but the zero-indexed row can be obtained. Besides, suppose that the noise-removal
performances of the filters are more significant in high noise densities, in which noisy pixels
outnumber uncorrupted pixels, then performance-based success would be more important in
the presence of high noise densities than of the others. For example, let

[a0 j ] =
[[0,0.01]
[0.9,0.95]

[0,0.05]
[0.85,0.9]

[0,0.1]
[0.8,0.85]

[0.05,0.35]
[0.25,0.5]

[0.2,0.45]
[0.2,0.45]

[0.25,0.5]
[0.05,0.35]

[0.8,0.85]
[0,0.1]

[0.85,0.9]
[0,0.05]

[0.9,0.95]
[0,0.01]

]
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Thus, the d-matrix [ai j ], modelling the SSIM values provided in Tables 1, 2, 3, and 4, is
as follows:

[ai j ] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[0,0.01]
[0.9,0.95]

[0,0.05]
[0.85,0.9]

[0,0.1]
[0.8,0.85]

[0.05,0.35]
[0.25,0.5]

[0.2,0.45]
[0.2,0.45]

[0.9392,0.9666]
[0.0060,0.0334]

[0.8872,0.9368]
[0.0135,0.0632]

[0.8145,0.8948]
[0.0248,0.1052]

[0.7330,0.8465]
[0.0399,0.1535]

[0.6392,0.7873]
[0.0646,0.2127]

[0.9355,0.9653]
[0.0049,0.0347]

[0.8991,0.9248]
[0.0496,0.0752]

[0.7221,0.8002]
[0.1216,0.1998]

[0.6937,0.7736]
[0.1465,0.2264]

[0.7155,0.8046]
[0.1063,0.1954]

[0.9383,0.9676]
[0.0030,0.0324]

[0.8978,0.9451]
[0.0076,0.0549]

[0.8388,0.9116]
[0.0156,0.0884]

[0.7669,0.8702]
[0.0266,0.1298]

[0.6822,0.8205]
[0.0412,0.1795]

[0.9319,0.9618]
[0.0084,0.0382]

[0.8682,0.9261]
[0.0159,0.0739]

[0.7994,0.8875]
[0.0243,0.1125]

[0.7325,0.8505]
[0.0314,0.1495]
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⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Second, we apply the configured method to [ai j ]. Moreover, we obtain the results herein
by MATLAB R2021a.

Step 2. The column matrix
[
αi1
βi1

]
is as follows:

[
αi1
βi1

]
=
[ [0.2061,0.5573]

[0.0143,0.1151]
[0.3256,0.6280]
[0.0454,0.1309]

[0.2769,0.6317]
[0.0088,0.0977]

[0.3142,0.6629]
[0.0131,0.1078]

[0.3708,0.7197]
[0.0044,0.0730]

[0.3747,0.7238]
[0.0058,0.0774]

[0.3805,0.7283]
[0.0029,0.0700]

]T

To exemplify, α11 and β11 are calculated as follows:

α11 = 1
λ

∑9
j=1 αa

0 jα
a
1 j

= 1
4.5

(
αa
01α

a
11 + αa

02α
a
12 + αa

03α
a
13 + αa

04α
a
14 + αa

05α
a
15 + αa

06α
a
16 + αa

07α
a
17 + αa

08α
a
18 + αa

09α
a
19

)

= 1
4.5 ([0, 0.01] · [0.9392, 0.9666] + [0, 0.05] · [0.8872, 0.9368]
+[0, 0.1] · [0.8145, 0.8948] + [0.05, 0.35] · [0.7330, 0.8465] + [0.2, 0.45] · [0.6392, 0.7873]
+[0.25, 0.5] · [0.5210, 0.7135] + [0.8, 0.85] · [0.3982, 0.6263] + [0.85, 0.9] · [0.2732, 0.5243]
+[0.9, 0.95] · [0.0909, 0.3687])

= [0.2061, 0.5573]
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and

β11 = 1
λ

∑9
j=1 βa

0 jβ
a
1 j

= 1
4.5

(
βa
01β

a
11 + βa

02β
a
12 + βa

03β
a
13 + βa

04β
a
14 + βa

05β
a
15 + βa

06β
a
16 + βa

07β
a
17 + βa

08β
a
18 + βa

09β
a
19
)

= 1
4.5 ([0.9, 0.95] · [0.0060, 0.0334] + [0.85, 0.9] · [0.0135, 0.0632] + [0.8, 0.85] · [0.0248, 0.1052]
+[0.25, 0.5] · [0.0399, 0.1535] + [0.2, 0.45] · [0.0646, 0.2127] + [0.05, 0.35] · [0.0940, 0.2865]
+[0, 0.1] · [0.1456, 0.3737] + [0, 0.05] · [0.2245, 0.4757] +[0, 0.01] · [0.3535, 0.6313])

= [0.0143, 0.1151]
such that

λ = 1
2

∑9
j=1

(

1 + (αa
0 j )

−+(αa
0 j )

+
2 − (βa

0 j )
−+(βa

0 j )
+

2

)

= 1
2

((
1 + (αa

01)
−+(αa

01)
+

2 − (βa
01)

−+(βa
01)

+
2

)
+
(
1 + (αa

02)
−+(αa

02)
+

2 − (βa
02)

−+(βa
02)

+
2

)

+
(
1 + (αa

03)
−+(αa

03)
+

2 − (βa
03)

−+(βa
03)

+
2

)
+
(
1 + (αa

04)
−+(αa

04)
+

2 − (βa
04)

−+(βa
04)

+
2

)

+
(
1 + (αa

05)
−+(αa

05)
+

2 − (βa
05)

−+(βa
05)

+
2

)
+
(
1 + (αa

06)
−+(αa

06)
+

2 − (βa
06)

−+(βa
06)

+
2

)

+
(
1 + (αa

07)
−+(αa

07)
+

2 − (βa
07)

−+(βa
07)

+
2

)
+
(
1 + (αa

08)
−+(αa

08)
+

2 − (βa
08)

−+(βa
08)

+
2

)

+
(
1 + (αa

09)
−+(αa

09)
+

2 − (βa
09)

−+(βa
09)

+
2

))

= 1
2

[(
1 + 0+0.01

2 − 0.9+0.95
2

)
+
(
1 + 0+0.05

2 − 0.85+0.9
2

)
+
(
1 + 0+0.1

2 − 0.8+0.85
2

)

+
(
1 + 0.05+0.35

2 − 0.25+0.5
2

)
+
(
1 + 0.2+0.45

2 − 0.2+0.45
2

)
+
(
1 + 0.25+0.5

2 − 0.05+0.35
2

)

+
(
1 + 0.8+0.85

2 − 0+0.1
2

)
+
(
1 + 0.85+0.9

2 − 0+0.05
2

)
+
(
1 + 0.9+0.95

2 − 0+0.01
2

)]

= 4.5

Step 3. The score matrix is as follows:

[si1] = [[0.0909, 0.5430] [0.1946, 0.5826] [0.1792, 0.6229] [0.2064, 0.6498]
[0.2977, 0.7152] [0.2974, 0.7181] [0.3105, 0.7254]]T

Here,

s11 = α11 − β11 = [0.2061, 0.5573] − [0.0143, 0.1151] = [0.0909, 0.5430]
Step 4. The decision set is as follows:

{[0.2228,0.7765]BPDF,[0.3498,0.8251] MDBUTMF,[0.3309,0.8744] DBAIN,
[0.3642,0.9074]NAFSMF, [0.4761,0.9875]DAMF,[0.4757,0.9910] AWMF,[0.4917,1] ARmF

}

Here,

d(u1) =
⎡

⎣
s−
11 + |min

i
s−
i1|

max
i

s+
i1 + |min

i
s−
i1|

,

s+
11 + |min

i
s−
i1|

max
i

s+
i1 + |min

i
s−
i1|

⎤

⎦

=
[
0.0909 + |0.0909|
0.7254 + |0.0909| ,

0.5430 + |0.0909|
0.7254 + |0.0909|

]

= [0.2228, 0.7765]
Step 5. The ranking order

BPDF ≺ MDBUTMF ≺ DBAIN ≺ NAFSMF ≺ DAMF ≺ AWMF ≺ ARmF

is valid. Therefore, the performance ranking of the filters shows that ARmF outper-
forms the other filters.
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Thirdly, we consider 40 test images in the TESTIMAGES database (Asuni and Giachetti
2014), i.e. “Almonds”, “Apples”, “Balloons”, “Bananas”, “Billiard Balls 1”, “Billiard Balls
2”, “Building”, “Cards 1”, “Cards 2”, “Carrots”, “Chairs”, “Clips”, “Coins”, “Cushions”,
“Duck”, “Fence”, “Flowers”, “GardenTable”, “Guitar Bridge”, “Guitar Fret”, “GuitarHead”,
“Keyboard 1”, “Keyboard 2”, “Lion”, “Multimeter”, “Pencils 1”, “Pencils 2”, “Pillar”, “Plas-
tic”, “Roof”, “Scarf”, “Screws”, “Snails”, “Socks”, “Sweets”, “Tomatoes 1”, “Tomatoes 2”,
“Tools 1”, “Tools 2”, and “Wood Game”. To this end, we present the results of the aforesaid
filters by SSIM for the images at noise densities ranging from 10% to 90%, in Tables 5, 6, 7,
8, 9, 10, and 11, respectively. Moreover, we obtain the results herein by MATLAB R2021a.

For the problem, let (μ
i j
t ) be ordered-quadragintuple such that μ

i j
t corresponds to the

SSIM results in Tables 5, 6, 7, 8, 9, 10, and 11, obtained by t th image for i th filter at j th

noise density. Here, since ν
i j
t = 1 − μ

i j
t and π

i j
t = 0 such that i ∈ I7, j ∈ I9, and t ∈ I40,

then for d-matrix [bi j ],

αb
i j :=

⎡

⎣
min
t

μ
i j
t

max
t

μ
i j
t + max

t
{1 − μ

i j
t }

,

max
t

μ
i j
t

max
t

μ
i j
t + max

t
{1 − μ

i j
t }

⎤

⎦

and

βb
i j :=

⎡

⎣
min
t

{1 − μ
i j
t }

max
t

μ
i j
t + max

t
{1 − μ

i j
t }

,

max
t

{1 − μ
i j
t }

max
t

μ
i j
t + max

t
{1 − μ

i j
t }

⎤

⎦

For example, the ordered-quadragintuple

(μ11
t ) = (0.9815, 0.9931, 0.9935, 0.9873, 0.9953, 0.9901, 0.9821, 0.9814, 0.9894, 0.9866,

0.9970, 0.9869, 0.9782, 0.9937, 0.9956, 0.9840, 0.9841, 0.9751, 0.9788, 0.9874,
0.9776, 0.9845, 0.9782, 0.9900, 0.9760, 0.9824, 0.9822, 0.9861, 0.9735, 0.9884,
0.9816, 0.9832, 0.9913, 0.9688, 0.9895, 0.9924, 0.9951, 0.9824, 0.9844, 0.9915)

indicates SSIM results of BPDF for 40 test images at noise density 10%. Since

αb
11 =

⎡

⎣
min
t

μ11
t

max
t

μ11
t + max

t
{1 − μ11

t } ,
max
t

μ11
t

max
t

μ11
t + max

t
{1 − μ11

t }

⎤

⎦

=
[

0.9688

0.9970 + 0.0312
,

0.9970

0.9970 + 0.0312

]

= [0.9422, 0.9696]

and

βb
11 =

⎡

⎣
min
t

{1 − μ11
t }

max
t

μ11
t + max

t
{1 − μ11

t } ,
max
t

{1 − μ11
t }

max
t

μ11
t + max

t
{1 − μ11

t }

⎤

⎦

=
[

0.003

0.9970 + 0.0312
,

0.0312

0.9970 + 0.0312

]

= [0.0029, 0.0304]

then b11 = [0.9422,0.9696]
[0.0029,0.0304]. Here, [0.9422, 0.9696] denotes that the success of BPDF on

image denoising (i.e. correcting corrupted pixels) at noise density 10% occurs approximately
between 94% and 96%. Moreover, [0.0029, 0.0304] means that the rate of BPDF’s failure in
image denoising at the same noise density ranges from approximately 0% to 3%. Similarly,
the all rows of the d-matrix [bi j ] but the zero-indexed row can be obtained. Besides, suppose

123



d-Matrices and their application to PVA to noise-removal filters Page 25 of 45 192

Ta
bl
e
5

SS
IM

re
su
lts

of
th
e
fil
te
rs
fo
r
al
m
on
ds
,a
pp
le
s,
ba
llo

on
s,
an
d
ba
na
na
s
im

ag
es

F
ilt
er
s

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

A
lm

on
ds

B
P
D
F

0.
98

15
0.
95

65
0.
92

20
0.
87

34
0.
80

94
0.
71

82
0.
59

18
0.
40

91
0.
16

92

M
D
B
U
T
M
F

0.
96

95
0.
92

75
0.
84

14
0.
80

66
0.
83

17
0.
83

27
0.
79

33
0.
70

99
0.
45

22

D
B
A
IN

0.
98

66
0.
96

93
0.
94

45
0.
90

95
0.
85

97
0.
79

56
0.
70

00
0.
58

38
0.
43

57

N
A
F
SM

F
0.
97

26
0.
94

44
0.
91

43
0.
88

36
0.
84

86
0.
81

06
0.
76

20
0.
69

75
0.
57

28

D
A
M
F

0.
98

79
0.
97

51
0.
95

91
0.
93

96
0.
91

54
0.
88

49
0.
84

21
0.
78

00
0.
66

06

A
W

M
F

0.
97

56
0.
96

57
0.
95

43
0.
94

02
0.
92

16
0.
89

47
0.
85

36
0.
79

23
0.
67

85

A
R
m
F

0.
99

08
0.
98

09
0.
96

84
0.
95

29
0.
93

29
0.
90

47
0.
86

19
0.
79

85
0.
68

18

A
pp

le
s

B
P
D
F

0.
99

31
0.
98

36
0.
96

93
0.
94

92
0.
91

85
0.
87

10
0.
78

92
0.
63

55
0.
31

76

M
D
B
U
T
M
F

0.
98

61
0.
92

34
0.
76

33
0.
73

25
0.
85

08
0.
92

45
0.
92

04
0.
82

69
0.
38

25

D
B
A
IN

0.
99

58
0.
98

98
0.
98

11
0.
96

87
0.
94

97
0.
92

04
0.
87

80
0.
81

58
0.
70

84

N
A
F
SM

F
0.
98

67
0.
97

65
0.
96

73
0.
95

86
0.
94

89
0.
93

59
0.
91

82
0.
88

38
0.
77

31

D
A
M
F

0.
99

68
0.
99

27
0.
98

76
0.
98

15
0.
97

36
0.
96

30
0.
94

89
0.
92

54
0.
87

22

A
W

M
F

0.
99

24
0.
98

96
0.
98

63
0.
98

19
0.
97

58
0.
96

64
0.
95

25
0.
93

02
0.
88

37

A
R
m
F

0.
99

73
0.
99

42
0.
99

05
0.
98

58
0.
97

91
0.
96

92
0.
95

49
0.
93

21
0.
88

48

B
al
lo
on

s
B
P
D
F

0.
99

35
0.
98

35
0.
96

66
0.
94

25
0.
90

19
0.
83

61
0.
73

27
0.
53

23
0.
14

23

M
D
B
U
T
M
F

0.
99

58
0.
95

61
0.
83

86
0.
81

48
0.
89

31
0.
94

54
0.
93

53
0.
84

93
0.
43

94

D
B
A
IN

0.
99

62
0.
99

06
0.
98

05
0.
96

63
0.
94

19
0.
90

36
0.
84

15
0.
74

37
0.
59

73

N
A
F
SM

F
0.
99

05
0.
98

22
0.
97

37
0.
96

54
0.
95

45
0.
94

12
0.
91

92
0.
88

28
0.
76

18

D
A
M
F

0.
99

81
0.
99

50
0.
98

99
0.
98

38
0.
97

52
0.
96

39
0.
94

75
0.
91

97
0.
85

47

A
W

M
F

0.
99

21
0.
99

06
0.
98

81
0.
98

45
0.
97

81
0.
96

85
0.
95

26
0.
92

50
0.
86

26

A
R
m
F

0.
99

82
0.
99

59
0.
99

27
0.
98

86
0.
98

16
0.
97

15
0.
95

53
0.
92

74
0.
86

45

123



192 Page 26 of 45 T. Aydın, S. Enginoğlu

Ta
bl
e
5

co
nt
in
ue
d F
ilt
er
s

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

B
an

an
as

B
P
D
F

0.
98

73
0.
97

26
0.
95

57
0.
93

20
0.
90

39
0.
85

35
0.
79

43
0.
66

22
0.
31

33

M
D
B
U
T
M
F

0.
98

57
0.
91

60
0.
72

70
0.
68

92
0.
81

78
0.
91

11
0.
90

88
0.
82

94
0.
41

96

D
B
A
IN

0.
98

80
0.
97

69
0.
96

24
0.
94

70
0.
92

58
0.
89

58
0.
85

68
0.
79

71
0.
70

84

N
A
F
SM

F
0.
98

25
0.
96

88
0.
95

56
0.
94

31
0.
92

99
0.
91

58
0.
89

53
0.
86

54
0.
75

79

D
A
M
F

0.
98

54
0.
97

39
0.
96

19
0.
94

88
0.
93

38
0.
91

66
0.
89

67
0.
87

38
0.
83

63

A
W

M
F

0.
98

43
0.
97

81
0.
96

90
0.
95

79
0.
94

45
0.
92

82
0.
90

85
0.
88

49
0.
85

06

A
R
m
F

0.
99

10
0.
98

21
0.
97

25
0.
96

14
0.
94

81
0.
93

16
0.
91

14
0.
88

70
0.
85

17

B
ol
d
va
lu
es

in
di
ca
te
th
e
be
st
sc
or
es

123



d-Matrices and their application to PVA to noise-removal filters Page 27 of 45 192

Ta
bl
e
6

SS
IM

re
su
lts

of
th
e
fil
te
rs
fo
r
bi
lli
ar
d
ba
lls

1,
bi
lli
ar
d
ba
lls

2,
bu
ild

in
g,

ca
rd
s
1,
ca
rd
s
2,

ca
rr
ot
s,
an
d
ch
ai
rs
im

ag
es

F
ilt
er
s

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

B
ill
ia
rd

B
al
ls
1

B
P
D
F

0.
99

53
0.
98

88
0.
97

72
0.
96

10
0.
93

71
0.
89

49
0.
83

52
0.
71

12
0.
30

91

M
D
B
U
T
M
F

0.
99

15
0.
93

44
0.
77

37
0.
74

01
0.
86

25
0.
94

34
0.
94

60
0.
87

02
0.
46

93

D
B
A
IN

0.
99

67
0.
99

27
0.
98

60
0.
97

59
0.
96

03
0.
93

32
0.
89

20
0.
82

56
0.
70

76

N
A
F
SM

F
0.
98

86
0.
98

16
0.
97

58
0.
96

92
0.
96

24
0.
95

24
0.
93

85
0.
90

74
0.
78

91

D
A
M
F

0.
99

69
0.
99

42
0.
99

05
0.
98

56
0.
97

97
0.
97

16
0.
96

00
0.
94

03
0.
88

97

A
W

M
F

0.
99

29
0.
99

21
0.
99

04
0.
98

72
0.
98

28
0.
97

57
0.
96

45
0.
94

52
0.
90

08

A
R
m
F

0.
99

81
0.
99

62
0.
99

38
0.
99

01
0.
98

54
0.
97

79
0.
96

65
0.
94

69
0.
90

21

B
ill
ia
rd

B
al
ls
2

B
P
D
F

0.
99

01
0.
97

60
0.
95

79
0.
93

32
0.
89

55
0.
84

41
0.
77

20
0.
63

00
0.
41

04

M
D
B
U
T
M
F

0.
98

81
0.
93

67
0.
80

30
0.
77

58
0.
86

06
0.
91

27
0.
90

48
0.
83

60
0.
49

91

D
B
A
IN

0.
99

26
0.
98

33
0.
97

13
0.
95

34
0.
92

80
0.
89

12
0.
83

95
0.
75

97
0.
63

65

N
A
F
SM

F
0.
98

41
0.
97

07
0.
95

82
0.
94

56
0.
93

09
0.
91

40
0.
89

11
0.
85

50
0.
74

07

D
A
M
F

0.
99

38
0.
98

69
0.
97

92
0.
96

96
0.
95

74
0.
94

24
0.
92

28
0.
89

14
0.
82

90

A
W

M
F

0.
98

61
0.
98

26
0.
97

79
0.
97

10
0.
96

13
0.
94

79
0.
92

87
0.
89

75
0.
83

82

A
R
m
F

0.
99

52
0.
99

03
0.
98

44
0.
97

70
0.
96

66
0.
95

26
0.
93

27
0.
90

05
0.
84

01

B
ui
ld
in
g

B
P
D
F

0.
98

21
0.
96

53
0.
93

43
0.
89

78
0.
84

37
0.
76

47
0.
65

25
0.
46

83
0.
21

05

M
D
B
U
T
M
F

0.
97

20
0.
92

62
0.
80

90
0.
77

86
0.
83

92
0.
86

96
0.
84

81
0.
77

70
0.
48

12

D
B
A
IN

0.
98

98
0.
97

70
0.
95

97
0.
93

23
0.
89

68
0.
84

06
0.
76

93
0.
66

02
0.
50

44

N
A
F
SM

F
0.
97

79
0.
95

83
0.
93

74
0.
91

75
0.
89

43
0.
86

80
0.
83

52
0.
78

35
0.
65

95

D
A
M
F

0.
98

70
0.
97

75
0.
96

51
0.
95

08
0.
93

34
0.
91

16
0.
88

14
0.
83

80
0.
75

25

A
W

M
F

0.
97

85
0.
97

33
0.
96

58
0.
95

69
0.
94

39
0.
92

39
0.
89

53
0.
85

08
0.
76

68

A
R
m
F

0.
99

22
0.
98

60
0.
97

75
0.
96

74
0.
95

35
0.
93

27
0.
90

27
0.
85

68
0.
77

05

C
ar
ds

1
B
P
D
F

0.
98

14
0.
95

33
0.
91

69
0.
86

82
0.
80

09
0.
71

22
0.
59

46
0.
41

37
0.
13

08

M
D
B
U
T
M
F

0.
97

55
0.
92

32
0.
80

63
0.
76

03
0.
80

59
0.
82

19
0.
78

21
0.
68

73
0.
36

97

D
B
A
IN

0.
98

37
0.
96

45
0.
93

67
0.
90

06
0.
84

92
0.
77

93
0.
68

83
0.
57

39
0.
43

20

N
A
F
SM

F
0.
97

19
0.
94

50
0.
91

51
0.
88

33
0.
84

75
0.
80

42
0.
75

42
0.
69

02
0.
56

44

123



192 Page 28 of 45 T. Aydın, S. Enginoğlu

Ta
bl
e
6

co
nt
in
ue
d F
ilt
er
s

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

D
A
M
F

0.
98

84
0.
97

42
0.
95

56
0.
93

42
0.
90

76
0.
87

27
0.
82

74
0.
76

34
0.
65

06

A
W

M
F

0.
97

29
0.
96

13
0.
94

65
0.
93

10
0.
90

81
0.
87

67
0.
83

30
0.
76

87
0.
65

76

A
R
m
F

0.
98

90
0.
97

71
0.
96

18
0.
94

48
0.
92

07
0.
88

76
0.
84

20
0.
77

56
0.
66

08

C
ar
ds

2
B
P
D
F

0.
98

94
0.
97

43
0.
95

14
0.
92

00
0.
87

69
0.
81

63
0.
73

29
0.
58

23
0.
18

61

M
D
B
U
T
M
F

0.
98

69
0.
91

08
0.
72

37
0.
68

31
0.
80

81
0.
89

24
0.
87

94
0.
78

29
0.
35

47

D
B
A
IN

0.
99

08
0.
97

99
0.
96

38
0.
94

13
0.
91

14
0.
86

82
0.
81

09
0.
73

27
0.
62

20

N
A
F
SM

F
0.
97

63
0.
96

03
0.
94

52
0.
93

12
0.
91

51
0.
89

46
0.
86

56
0.
82

51
0.
70

05

D
A
M
F

0.
99

31
0.
98

56
0.
97

51
0.
96

34
0.
94

86
0.
92

84
0.
90

17
0.
86

41
0.
78

91

A
W

M
F

0.
98

26
0.
97

63
0.
96

87
0.
95

96
0.
94

75
0.
92

93
0.
90

39
0.
86

59
0.
79

52

A
R
m
F

0.
99

30
0.
98

61
0.
97

74
0.
96

74
0.
95

43
0.
93

52
0.
90

87
0.
86

97
0.
79

78

C
ar
ro
ts

B
P
D
F

0.
98

66
0.
96

74
0.
94

35
0.
91

05
0.
86

32
0.
78

71
0.
68

17
0.
46

19
0.
08

61

M
D
B
U
T
M
F

0.
98

70
0.
93

21
0.
79

68
0.
76

04
0.
84

51
0.
89

39
0.
87

63
0.
77

46
0.
36

49

D
B
A
IN

0.
99

05
0.
97

79
0.
96

17
0.
93

90
0.
90

47
0.
85

63
0.
79

05
0.
68

57
0.
54

68

N
A
F
SM

F
0.
98

39
0.
96

66
0.
94

96
0.
93

21
0.
91

08
0.
88

63
0.
85

80
0.
81

20
0.
69

64

D
A
M
F

0.
99

29
0.
98

42
0.
97

40
0.
96

20
0.
94

60
0.
92

60
0.
90

01
0.
86

01
0.
78

08

A
W

M
F

0.
98

43
0.
97

83
0.
97

13
0.
96

32
0.
95

03
0.
93

27
0.
90

70
0.
86

73
0.
79

03

A
R
m
F

0.
99

41
0.
98

74
0.
97

99
0.
97

07
0.
95

74
0.
93

88
0.
91

22
0.
87

12
0.
79

27

C
ha

ir
s

B
P
D
F

0.
99

70
0.
99

21
0.
98

31
0.
97

14
0.
94

90
0.
91

64
0.
86

09
0.
74

19
0.
20

90

M
D
B
U
T
M
F

0.
99

72
0.
94

73
0.
81

06
0.
77

71
0.
89

12
0.
96

41
0.
96

84
0.
89

49
0.
47

88

D
B
A
IN

0.
99

81
0.
99

54
0.
99

08
0.
98

39
0.
97

10
0.
95

43
0.
92

20
0.
86

90
0.
78

11

N
A
F
SM

F
0.
99

41
0.
99

04
0.
98

68
0.
98

41
0.
97

97
0.
97

40
0.
96

15
0.
93

59
0.
83

21

D
A
M
F

0.
99

89
0.
99

72
0.
99

48
0.
99

17
0.
98

77
0.
98

26
0.
97

58
0.
96

25
0.
93

22

A
W

M
F

0.
99

53
0.
99

50
0.
99

39
0.
99

19
0.
98

89
0.
98

43
0.
97

77
0.
96

48
0.
93

89

A
R
m
F

0.
99

88
0.
99

74
0.
99

58
0.
99

36
0.
99

02
0.
98

55
0.
97

88
0.
96

57
0.
93

96

B
ol
d
va
lu
es

in
di
ca
te
th
e
be
st
sc
or
es

123



d-Matrices and their application to PVA to noise-removal filters Page 29 of 45 192

Ta
bl
e
7

SS
IM

re
su
lts

of
th
e
fil
te
rs
fo
r
cl
ip
s,
co
in
s,
cu
sh
io
ns
,d

uc
k,

fe
nc
e,
flo

w
er
s,
an
d
ga
rd
en

ta
bl
e
im

ag
es

F
ilt
er
s

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

C
lip

s
B
P
D
F

0.
98

69
0.
96

21
0.
92

15
0.
86

06
0.
77

45
0.
65

53
0.
49

58
0.
31

62
0.
13

69

M
D
B
U
T
M
F

0.
98

79
0.
96

03
0.
90

24
0.
87

61
0.
88

57
0.
87

47
0.
83

21
0.
75

15
0.
54

60

D
B
A
IN

0.
98

91
0.
97

46
0.
95

11
0.
91

26
0.
85

57
0.
77

33
0.
64

86
0.
48

60
0.
30

59

N
A
F
SM

F
0.
97

81
0.
95

65
0.
93

13
0.
90

25
0.
86

99
0.
83

05
0.
77

73
0.
70

12
0.
56

57

D
A
M
F

0.
99

46
0.
98

64
0.
97

42
0.
95

75
0.
93

59
0.
90

74
0.
86

53
0.
79

70
0.
65

46

A
W

M
F

0.
97

63
0.
97

09
0.
96

39
0.
95

32
0.
93

77
0.
91

30
0.
87

19
0.
80

41
0.
66

17

A
R
m
F

0.
99

43
0.
98

78
0.
97

88
0.
96

62
0.
94

90
0.
92

27
0.
88

03
0.
81

11
0.
66

68

C
oi
ns

B
P
D
F

0.
97

82
0.
94

97
0.
91

36
0.
86

93
0.
80

91
0.
72

81
0.
62

54
0.
45

83
0.
16

98

M
D
B
U
T
M
F

0.
97

40
0.
92

51
0.
82

43
0.
78

35
0.
81

60
0.
82

07
0.
78

30
0.
69

99
0.
43

57

D
B
A
IN

0.
98

25
0.
96

16
0.
93

51
0.
89

96
0.
85

00
0.
78

63
0.
70

17
0.
59

30
0.
47

45

N
A
F
SM

F
0.
96

89
0.
93

81
0.
90

68
0.
87

39
0.
83

77
0.
79

67
0.
74

77
0.
68

54
0.
56

58

D
A
M
F

0.
98

50
0.
96

88
0.
95

06
0.
92

82
0.
90

12
0.
86

71
0.
82

35
0.
75

96
0.
65

15

A
W

M
F

0.
96

91
0.
95

75
0.
94

37
0.
92

63
0.
90

33
0.
87

21
0.
82

85
0.
76

50
0.
65

77

A
R
m
F

0.
98

67
0.
97

32
0.
95

82
0.
93

92
0.
91

53
0.
88

25
0.
83

70
0.
77

09
0.
66

09

C
us
hi
on

s
B
P
D
F

0.
99

37
0.
98

46
0.
97

14
0.
95

22
0.
92

16
0.
87

89
0.
80

96
0.
64

74
0.
21

09

M
D
B
U
T
M
F

0.
99

39
0.
93

72
0.
78

09
0.
74

65
0.
86

01
0.
94

21
0.
94

14
0.
87

05
0.
47

78

D
B
A
IN

0.
99

58
0.
99

02
0.
98

20
0.
97

04
0.
95

00
0.
92

24
0.
88

32
0.
81

17
0.
69

52

N
A
F
SM

F
0.
98

87
0.
98

04
0.
97

29
0.
96

55
0.
95

63
0.
94

54
0.
92

82
0.
89

92
0.
78

62

D
A
M
F

0.
99

64
0.
99

27
0.
98

77
0.
98

15
0.
97

39
0.
96

43
0.
95

09
0.
93

04
0.
88

38

A
W

M
F

0.
99

21
0.
99

00
0.
98

70
0.
98

29
0.
97

69
0.
96

87
0.
95

55
0.
93

55
0.
89

27

A
R
m
F

0.
99

71
0.
99

42
0.
99

07
0.
98

60
0.
97

97
0.
97

10
0.
95

76
0.
93

72
0.
89

39

D
uc
k

B
P
D
F

0.
99

56
0.
98

91
0.
97

88
0.
96

49
0.
94

43
0.
91

20
0.
84

54
0.
68

64
0.
30

34

M
D
B
U
T
M
F

0.
99

55
0.
94

97
0.
80

97
0.
78

55
0.
88

78
0.
95

55
0.
95

31
0.
87

54
0.
43

43

D
B
A
IN

0.
99

73
0.
99

31
0.
98

71
0.
97

73
0.
96

29
0.
93

91
0.
90

01
0.
83

44
0.
71

05

N
A
F
SM

F
0.
99

53
0.
99

08
0.
98

66
0.
98

15
0.
97

54
0.
96

66
0.
95

12
0.
92

32
0.
80

85

123



192 Page 30 of 45 T. Aydın, S. Enginoğlu

Ta
bl
e
7

co
nt
in
ue
d

F
ilt
er
s

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

D
A
M
F

0.
99

83
0.
99

57
0.
99

22
0.
98

78
0.
98

20
0.
97

46
0.
96

32
0.
94

62
0.
90

47

A
W

M
F

0.
99

44
0.
99

30
0.
99

11
0.
98

82
0.
98

35
0.
97

68
0.
96

61
0.
94

97
0.
91

09

A
R
m
F

0.
99

83
0.
99

63
0.
99

38
0.
99

05
0.
98

56
0.
97

87
0.
96

77
0.
95

11
0.
91

21

F
en
ce

B
P
D
F

0.
98

40
0.
96

71
0.
94

58
0.
91

46
0.
87

59
0.
81

53
0.
71

42
0.
53

83
0.
21

33

M
D
B
U
T
M
F

0.
98

27
0.
94

89
0.
85

65
0.
83

09
0.
87

72
0.
90

25
0.
87

79
0.
79

35
0.
43

82

D
B
A
IN

0.
99

33
0.
98

33
0.
96

82
0.
94

45
0.
91

21
0.
86

19
0.
79

23
0.
68

10
0.
50

20

N
A
F
SM

F
0.
98

12
0.
96

71
0.
95

28
0.
93

65
0.
91

93
0.
89

49
0.
86

27
0.
81

21
0.
68

14

D
A
M
F

0.
99

34
0.
98

74
0.
97

81
0.
96

54
0.
95

05
0.
93

14
0.
90

44
0.
86

24
0.
76

54

A
W

M
F

0.
97

85
0.
97

72
0.
97

35
0.
96

73
0.
95

77
0.
94

15
0.
91

56
0.
87

36
0.
77

81

A
R
m
F

0.
99

32
0.
98

88
0.
98

34
0.
97

58
0.
96

51
0.
94

79
0.
92

13
0.
87

85
0.
78

21

F
lo
w
er
s

B
P
D
F

0.
98

41
0.
96

11
0.
92

72
0.
88

05
0.
80

68
0.
70

58
0.
56

86
0.
36

79
0.
17

90

M
D
B
U
T
M
F

0.
97

95
0.
93

74
0.
84

55
0.
81

21
0.
84

56
0.
85

96
0.
82

55
0.
74

49
0.
46

91

D
B
A
IN

0.
98

89
0.
97

42
0.
95

28
0.
92

15
0.
87

38
0.
80

60
0.
71

14
0.
57

90
0.
39

94

N
A
F
SM

F
0.
97

44
0.
94

86
0.
92

23
0.
89

51
0.
86

19
0.
82

79
0.
78

50
0.
72

31
0.
59

75

D
A
M
F

0.
99

20
0.
98

22
0.
96

92
0.
95

40
0.
93

33
0.
90

65
0.
86

98
0.
81

13
0.
69

19

A
W

M
F

0.
97

89
0.
97

22
0.
96

40
0.
95

38
0.
93

80
0.
91

39
0.
87

92
0.
82

05
0.
70

21

A
R
m
F

0.
99

35
0.
98

61
0.
97

66
0.
96

51
0.
94

78
0.
92

25
0.
88

64
0.
82

62
0.
70

57

G
ar
de
n
Ta

bl
e

B
P
D
F

0.
97

51
0.
94

32
0.
90

13
0.
84

77
0.
77

84
0.
67

57
0.
55

49
0.
38

96
0.
22

67

M
D
B
U
T
M
F

0.
96

68
0.
92

06
0.
83

33
0.
79

14
0.
80

57
0.
79

69
0.
74

90
0.
66

49
0.
40

36

D
B
A
IN

0.
97

91
0.
95

53
0.
92

29
0.
88

23
0.
82

98
0.
75

27
0.
65

93
0.
54

17
0.
40

17

N
A
F
SM

F
0.
96

71
0.
93

45
0.
90

00
0.
86

35
0.
82

39
0.
77

61
0.
72

09
0.
65

47
0.
53

21

D
A
M
F

0.
98

13
0.
96

19
0.
93

95
0.
91

32
0.
88

26
0.
84

29
0.
79

39
0.
72

74
0.
61

50

A
W

M
F

0.
96

71
0.
95

32
0.
93

57
0.
91

56
0.
88

95
0.
85

29
0.
80

42
0.
73

65
0.
62

41

A
R
m
F

0.
98

52
0.
96

98
0.
95

13
0.
92

97
0.
90

25
0.
86

46
0.
81

42
0.
74

44
0.
62

86

B
ol
d
va
lu
es

in
di
ca
te
th
e
be
st
sc
or
es

123



d-Matrices and their application to PVA to noise-removal filters Page 31 of 45 192

Ta
bl
e
8

SS
IM

re
su
lts

of
th
e
fil
te
rs
fo
r
gu

ita
r
br
id
ge
,g
ui
ta
r
fr
et
,g

ui
ta
r
he
ad
,k
ey
bo

ar
d
1,

ke
yb

oa
rd

2,
lio

n,
an
d
m
ul
tim

et
er

im
ag
es

F
ilt
er
s

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

G
ui
ta
r
B
ri
dg

e
B
P
D
F

0.
97

88
0.
95

33
0.
92

39
0.
88

83
0.
84

18
0.
77

91
0.
70

03
0.
56

88
0.
28

42

M
D
B
U
T
M
F

0.
97

60
0.
91

37
0.
78

11
0.
73

52
0.
80

24
0.
83

58
0.
80

72
0.
71

57
0.
37

13

D
B
A
IN

0.
98

35
0.
96

45
0.
94

17
0.
91

10
0.
87

30
0.
82

29
0.
75

88
0.
67

51
0.
57

80

N
A
F
SM

F
0.
97

36
0.
94

65
0.
92

07
0.
89

19
0.
86

28
0.
82

97
0.
78

93
0.
73

84
0.
62

98

D
A
M
F

0.
98

45
0.
96

87
0.
95

15
0.
93

11
0.
90

73
0.
87

78
0.
84

10
0.
78

92
0.
70

91

A
W

M
F

0.
97

12
0.
96

05
0.
94

77
0.
93

19
0.
91

23
0.
88

53
0.
84

87
0.
79

60
0.
71

67

A
R
m
F

0.
98

73
0.
97

53
0.
96

23
0.
94

60
0.
92

56
0.
89

75
0.
85

93
0.
80

43
0.
72

16

G
ui
ta
r
F
re
t

B
P
D
F

0.
98

74
0.
97

13
0.
94

80
0.
91

55
0.
86

76
0.
79

55
0.
68

63
0.
51

61
0.
27

84

M
D
B
U
T
M
F

0.
98

55
0.
93

43
0.
80

19
0.
76

98
0.
84

59
0.
89

93
0.
88

61
0.
80

56
0.
47

55

D
B
A
IN

0.
99

05
0.
98

05
0.
96

44
0.
94

24
0.
91

11
0.
86

54
0.
79

73
0.
70

73
0.
58

77

N
A
F
SM

F
0.
97

74
0.
95

77
0.
94

04
0.
92

03
0.
90

00
0.
87

73
0.
84

60
0.
80

21
0.
67

65

D
A
M
F

0.
98

98
0.
98

13
0.
97

08
0.
95

81
0.
94

31
0.
92

46
0.
90

02
0.
86

16
0.
78

26

A
W

M
F

0.
98

17
0.
97

83
0.
97

26
0.
96

51
0.
95

47
0.
93

90
0.
91

59
0.
87

88
0.
80

41

A
R
m
F

0.
99

33
0.
98

82
0.
98

15
0.
97

33
0.
96

21
0.
94

56
0.
92

16
0.
88

36
0.
80

79

G
ui
ta
r
H
ea
d

B
P
D
F

0.
97

76
0.
95

20
0.
92

02
0.
87

28
0.
81

03
0.
72

82
0.
61

77
0.
44

92
0.
24

14

M
D
B
U
T
M
F

0.
97

31
0.
92

61
0.
82

15
0.
78

30
0.
82

26
0.
83

38
0.
79

66
0.
71

98
0.
48

77

D
B
A
IN

0.
98

48
0.
96

77
0.
94

25
0.
90

94
0.
86

27
0.
79

54
0.
70

86
0.
59

56
0.
45

13

N
A
F
SM

F
0.
96

85
0.
93

91
0.
90

84
0.
87

64
0.
84

24
0.
80

29
0.
75

31
0.
69

30
0.
57

40

D
A
M
F

0.
98

47
0.
97

15
0.
95

46
0.
93

51
0.
91

02
0.
87

87
0.
83

84
0.
77

87
0.
66

98

A
W

M
F

0.
96

86
0.
96

06
0.
94

95
0.
93

59
0.
91

59
0.
88

76
0.
84

81
0.
78

82
0.
67

97

A
R
m
F

0.
98

73
0.
97

69
0.
96

46
0.
94

93
0.
92

82
0.
89

84
0.
85

74
0.
79

57
0.
68

46

K
ey
bo

ar
d
1

B
P
D
F

0.
98

45
0.
96

25
0.
93

25
0.
89

08
0.
83

36
0.
75

80
0.
65

75
0.
51

87
0.
21

50

M
D
B
U
T
M
F

0.
97

89
0.
92

59
0.
80

36
0.
76

44
0.
82

31
0.
84

67
0.
81

92
0.
74

52
0.
49

59

D
B
A
IN

0.
98

73
0.
97

13
0.
94

89
0.
91

73
0.
87

27
0.
80

64
0.
72

28
0.
61

62
0.
49

66

N
A
F
SM

F
0.
96

83
0.
94

24
0.
91

54
0.
88

65
0.
85

30
0.
81

32
0.
77

18
0.
71

08
0.
58

95

123



192 Page 32 of 45 T. Aydın, S. Enginoğlu

Ta
bl
e
8

co
nt
in
ue
d

F
ilt
er
s

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

D
A
M
F

0.
98

99
0.
97

86
0.
96

52
0.
94

81
0.
92

59
0.
89

72
0.
85

83
0.
80

03
0.
69

44

A
W

M
F

0.
97

35
0.
96

62
0.
95

58
0.
94

26
0.
92

35
0.
89

70
0.
85

96
0.
80

21
0.
69

93

A
R
m
F

0.
99

04
0.
98

04
0.
96

87
0.
95

39
0.
93

35
0.
90

55
0.
86

63
0.
80

64
0.
70

05

K
ey
bo

ar
d
2

B
P
D
F

0.
97

82
0.
95

36
0.
92

14
0.
87

92
0.
82

62
0.
75

03
0.
63

68
0.
42

57
0.
13

68

M
D
B
U
T
M
F

0.
97

73
0.
94

10
0.
85

58
0.
82

71
0.
85

57
0.
85

75
0.
82

36
0.
73

07
0.
40

98

D
B
A
IN

0.
98

60
0.
96

83
0.
94

35
0.
91

04
0.
86

65
0.
80

80
0.
72

51
0.
61

64
0.
47

85

N
A
F
SM

F
0.
97

13
0.
95

00
0.
92

69
0.
90

11
0.
87

38
0.
83

91
0.
80

00
0.
74

14
0.
61

95

D
A
M
F

0.
98

65
0.
97

31
0.
95

54
0.
93

49
0.
90

92
0.
88

04
0.
84

34
0.
79

17
0.
69

59

A
W

M
F

0.
96

95
0.
96

20
0.
95

12
0.
93

74
0.
91

79
0.
89

19
0.
85

51
0.
80

20
0.
70

51

A
R
m
F

0.
98

83
0.
97

74
0.
96

44
0.
94

91
0.
92

84
0.
90

10
0.
86

33
0.
80

85
0.
70

99

L
io
n

B
P
D
F

0.
99

00
0.
97

67
0.
95

59
0.
93

10
0.
89

73
0.
85

06
0.
78

28
0.
68

99
0.
51

69

M
D
B
U
T
M
F

0.
98

61
0.
92

24
0.
75

93
0.
72

32
0.
82

94
0.
90

30
0.
89

22
0.
80

11
0.
43

26

D
B
A
IN

0.
99

27
0.
98

39
0.
97

07
0.
95

30
0.
92

53
0.
88

80
0.
83

41
0.
76

27
0.
66

49

N
A
F
SM

F
0.
98

31
0.
96

78
0.
95

13
0.
93

45
0.
91

58
0.
89

44
0.
86

37
0.
82

30
0.
70

29

D
A
M
F

0.
99

30
0.
98

67
0.
97

86
0.
96

85
0.
95

56
0.
93

90
0.
91

61
0.
87

96
0.
80

79

A
W

M
F

0.
98

22
0.
97

90
0.
97

41
0.
96

72
0.
95

72
0.
94

30
0.
92

10
0.
88

47
0.
81

63

A
R
m
F

0.
99

34
0.
98

85
0.
98

27
0.
97

48
0.
96

37
0.
94

87
0.
92

58
0.
88

89
0.
81

88

M
ul
ti
m
et
er

B
P
D
F

0.
97

60
0.
94

96
0.
91

93
0.
88

33
0.
83

57
0.
77

45
0.
69

23
0.
56

82
0.
36

38

M
D
B
U
T
M
F

0.
97

88
0.
92

26
0.
78

67
0.
74

77
0.
81

35
0.
85

23
0.
82

57
0.
75

27
0.
47

43

D
B
A
IN

0.
98

03
0.
96

04
0.
93

47
0.
90

36
0.
86

42
0.
81

46
0.
75

21
0.
67

11
0.
55

45

N
A
F
SM

F
0.
97

69
0.
95

47
0.
93

14
0.
90

59
0.
87

68
0.
84

64
0.
80

76
0.
75

87
0.
63

96

D
A
M
F

0.
98

35
0.
96

56
0.
94

43
0.
92

04
0.
89

16
0.
86

10
0.
82

47
0.
77

92
0.
70

64

A
W

M
F

0.
97

22
0.
96

07
0.
94

49
0.
92

48
0.
90

03
0.
87

09
0.
83

44
0.
78

69
0.
71

51

A
R
m
F

0.
98

56
0.
97

11
0.
95

42
0.
93

40
0.
90

92
0.
87

93
0.
84

16
0.
79

24
0.
71

82

B
ol
d
va
lu
es

in
di
ca
te
th
e
be
st
sc
or
es

123



d-Matrices and their application to PVA to noise-removal filters Page 33 of 45 192

Ta
bl
e
9

SS
IM

re
su
lts

of
th
e
fil
te
rs
fo
r
pe
nc
ils

1,
pe
nc
ils

2,
pi
lla
r,
pl
as
tic
,r
oo
f,
sc
ar
f,
an
d
sc
re
w
s
im

ag
es

F
ilt
er
s

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

P
en
ci
ls
1

B
P
D
F

0.
98

24
0.
96

19
0.
93

46
0.
89

40
0.
82

90
0.
72

71
0.
57

52
0.
33

05
0.
10

55

M
D
B
U
T
M
F

0.
99

14
0.
95

98
0.
87

34
0.
84

47
0.
88

74
0.
90

22
0.
87

86
0.
78

50
0.
42

33

D
B
A
IN

0.
99

41
0.
98

30
0.
96

48
0.
93

84
0.
89

79
0.
83

65
0.
75

02
0.
61

48
0.
45

46

N
A
F
SM

F
0.
98

44
0.
96

78
0.
94

97
0.
92

91
0.
90

72
0.
88

06
0.
84

76
0.
79

31
0.
67

17

D
A
M
F

0.
99

68
0.
99

03
0.
98

04
0.
96

75
0.
95

16
0.
93

32
0.
90

82
0.
86

66
0.
77

94

A
W

M
F

0.
98

62
0.
98

29
0.
97

88
0.
97

22
0.
96

28
0.
94

73
0.
92

32
0.
88

06
0.
79

27

A
R
m
F

0.
99

68
0.
99

26
0.
98

75
0.
98

01
0.
96

95
0.
95

36
0.
92

87
0.
88

56
0.
79

73

P
en
ci
ls
2

B
P
D
F

0.
98

22
0.
96

25
0.
93

83
0.
90

25
0.
85

20
0.
76

49
0.
63

92
0.
41

02
0.
12

71

M
D
B
U
T
M
F

0.
98

77
0.
95

02
0.
84

91
0.
81

82
0.
87

33
0.
90

03
0.
87

77
0.
79

52
0.
47

78

D
B
A
IN

0.
99

34
0.
98

18
0.
96

40
0.
93

85
0.
90

05
0.
84

32
0.
76

45
0.
64

14
0.
47

05

N
A
F
SM

F
0.
98

50
0.
97

08
0.
95

60
0.
93

78
0.
91

63
0.
89

27
0.
85

76
0.
80

30
0.
68

31

D
A
M
F

0.
99

57
0.
98

87
0.
97

84
0.
96

45
0.
94

71
0.
92

80
0.
90

23
0.
85

85
0.
77

05

A
W

M
F

0.
98

34
0.
98

02
0.
97

56
0.
96

91
0.
95

80
0.
94

25
0.
91

69
0.
87

21
0.
78

38

A
R
m
F

0.
99

54
0.
99

08
0.
98

52
0.
97

74
0.
96

56
0.
94

92
0.
92

28
0.
87

75
0.
78

85

P
ill
ar

B
P
D
F

0.
98

61
0.
97

06
0.
94

49
0.
91

38
0.
86

42
0.
79

86
0.
70

14
0.
55

43
0.
24

62

M
D
B
U
T
M
F

0.
97

26
0.
92

60
0.
80

96
0.
77

46
0.
83

82
0.
87

18
0.
84

73
0.
76

30
0.
39

74

D
B
A
IN

0.
99

08
0.
97

94
0.
96

28
0.
93

94
0.
90

55
0.
85

65
0.
79

05
0.
70

35
0.
58

33

N
A
F
SM

F
0.
97

47
0.
95

04
0.
92

68
0.
90

61
0.
88

07
0.
85

23
0.
81

51
0.
76

86
0.
64

98

D
A
M
F

0.
98

76
0.
97

87
0.
96

74
0.
95

48
0.
93

81
0.
91

75
0.
88

88
0.
84

41
0.
75

82

A
W

M
F

0.
98

04
0.
97

53
0.
96

87
0.
96

07
0.
94

84
0.
93

10
0.
90

31
0.
85

96
0.
77

67

A
R
m
F

0.
99

29
0.
98

68
0.
97

91
0.
97

01
0.
95

64
0.
93

81
0.
90

90
0.
86

37
0.
77

94

P
la
st
ic

B
P
D
F

0.
97

35
0.
94

43
0.
91

22
0.
87

32
0.
82

78
0.
76

27
0.
66

51
0.
49

14
0.
14

63

M
D
B
U
T
M
F

0.
97

47
0.
93

40
0.
84

20
0.
80

49
0.
83

29
0.
83

62
0.
80

18
0.
71

30
0.
37

07

D
B
A
IN

0.
97

74
0.
95

47
0.
92

62
0.
89

36
0.
85

42
0.
80

41
0.
73

91
0.
66

35
0.
56

52

N
A
F
SM

F
0.
97

85
0.
95

69
0.
93

29
0.
90

79
0.
87

94
0.
84

82
0.
81

04
0.
76

11
0.
65

42

123



192 Page 34 of 45 T. Aydın, S. Enginoğlu

Ta
bl
e
9

co
nt
in
ue
d F
ilt
er
s

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

D
A
M
F

0.
98

08
0.
96

05
0.
93

67
0.
91

09
0.
88

11
0.
84

67
0.
80

60
0.
75

87
0.
69

95

A
W

M
F

0.
97

05
0.
95

71
0.
93

80
0.
91

55
0.
88

84
0.
85

52
0.
81

38
0.
76

60
0.
70

88

A
R
m
F

0.
98

32
0.
96

59
0.
94

51
0.
92

23
0.
89

50
0.
86

12
0.
81

86
0.
76

88
0.
70

95

R
oo

f
B
P
D
F

0.
98

84
0.
96

92
0.
94

26
0.
90

04
0.
83

98
0.
75

80
0.
66

25
0.
55

44
0.
41

46

M
D
B
U
T
M
F

0.
97

49
0.
91

08
0.
76

18
0.
71

77
0.
80

79
0.
86

90
0.
84

55
0.
75

38
0.
41

81

D
B
A
IN

0.
98

84
0.
97

68
0.
95

71
0.
92

77
0.
88

44
0.
82

22
0.
74

25
0.
65

04
0.
56

33

N
A
F
SM

F
0.
96

00
0.
93

07
0.
90

62
0.
88

13
0.
85

42
0.
82

22
0.
78

10
0.
71

97
0.
60

24

D
A
M
F

0.
98

96
0.
98

26
0.
97

21
0.
95

83
0.
94

02
0.
91

70
0.
88

77
0.
83

98
0.
74

18

A
W

M
F

0.
98

01
0.
97

53
0.
97

06
0.
96

24
0.
95

11
0.
93

11
0.
90

19
0.
85

49
0.
75

72

A
R
m
F

0.
99

44
0.
98

88
0.
98

22
0.
97

29
0.
96

00
0.
93

91
0.
90

90
0.
86

12
0.
76

20

Sc
ar
f

B
P
D
F

0.
98

16
0.
95

38
0.
91

15
0.
85

19
0.
76

73
0.
65

06
0.
49

74
0.
32

55
0.
14

50

M
D
B
U
T
M
F

0.
97

80
0.
94

27
0.
87

52
0.
84

41
0.
85

16
0.
83

81
0.
79

03
0.
70

44
0.
48

62

D
B
A
IN

0.
98

53
0.
96

77
0.
94

01
0.
90

17
0.
84

31
0.
75

68
0.
63

87
0.
49

09
0.
32

94

N
A
F
SM

F
0.
96

83
0.
93

79
0.
90

30
0.
86

88
0.
82

63
0.
78

15
0.
72

33
0.
65

06
0.
52

26

D
A
M
F

0.
98

96
0.
97

79
0.
96

21
0.
94

33
0.
91

73
0.
88

40
0.
83

65
0.
76

44
0.
62

58

A
W

M
F

0.
97

25
0.
96

40
0.
95

29
0.
93

96
0.
91

86
0.
88

81
0.
84

22
0.
77

05
0.
63

25

A
R
m
F

0.
99

06
0.
98

11
0.
96

85
0.
95

32
0.
93

03
0.
89

81
0.
85

06
0.
77

69
0.
63

57

Sc
re
w
s

B
P
D
F

0.
98

32
0.
95

72
0.
91

87
0.
86

67
0.
79

21
0.
68

77
0.
54

60
0.
36

48
0.
13

57

M
D
B
U
T
M
F

0.
97

71
0.
94

29
0.
87

63
0.
84

24
0.
84

68
0.
83

15
0.
78

40
0.
69

66
0.
44

16

D
B
A
IN

0.
98

73
0.
96

93
0.
94

39
0.
90

60
0.
85

20
0.
77

15
0.
66

44
0.
52

46
0.
36

21

N
A
F
SM

F
0.
96

47
0.
93

13
0.
89

47
0.
85

54
0.
81

44
0.
76

62
0.
70

85
0.
63

34
0.
50

80

D
A
M
F

0.
98

99
0.
97

77
0.
96

28
0.
94

43
0.
92

07
0.
88

94
0.
84

50
0.
77

47
0.
63

12

A
W

M
F

0.
97

32
0.
96

50
0.
95

53
0.
94

22
0.
92

41
0.
89

61
0.
85

24
0.
78

22
0.
63

83

A
R
m
F

0.
99

17
0.
98

24
0.
97

13
0.
95

65
0.
93

62
0.
90

68
0.
86

13
0.
78

92
0.
64

26

B
ol
d
va
lu
es

in
di
ca
te
th
e
be
st
sc
or
es

123



d-Matrices and their application to PVA to noise-removal filters Page 35 of 45 192

Ta
bl
e
10

SS
IM

re
su
lts

of
th
e
fil
te
rs
fo
r
sn
ai
ls
,s
oc
ks
,s
w
ee
ts
,t
om

at
oe
s
1,
to
m
at
oe
s
2,

to
ol
s
1,
an
d
to
ol
s
2
im

ag
es

F
ilt
er
s

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

Sn
ai
ls

B
P
D
F

0.
99

13
0.
97

86
0.
96

26
0.
93

52
0.
89

67
0.
84

27
0.
74

73
0.
56

72
0.
26

53

M
D
B
U
T
M
F

0.
98

32
0.
92

89
0.
79

86
0.
76

52
0.
85

90
0.
91

76
0.
90

96
0.
83

65
0.
47

37

D
B
A
IN

0.
99

40
0.
98

68
0.
97

59
0.
95

98
0.
93

62
0.
89

94
0.
84

73
0.
76

24
0.
62

93

N
A
F
SM

F
0.
98

60
0.
97

36
0.
96

28
0.
95

02
0.
93

69
0.
92

02
0.
89

78
0.
85

84
0.
73

58

D
A
M
F

0.
99

35
0.
98

79
0.
98

15
0.
97

26
0.
96

19
0.
94

86
0.
92

95
0.
89

89
0.
83

41

A
W

M
F

0.
98

83
0.
98

56
0.
98

14
0.
97

54
0.
96

74
0.
95

55
0.
93

74
0.
90

78
0.
84

66

A
R
m
F

0.
99

57
0.
99

18
0.
98

71
0.
98

05
0.
97

18
0.
95

94
0.
94

08
0.
91

06
0.
84

83

So
ck
s

B
P
D
F

0.
96

88
0.
93

08
0.
88

38
0.
82

94
0.
76

23
0.
67

63
0.
56

19
0.
39

23
0.
16

33

M
D
B
U
T
M
F

0.
96

90
0.
91

89
0.
82

77
0.
78

08
0.
78

54
0.
76

13
0.
70

76
0.
62

26
0.
41

32

D
B
A
IN

0.
97

28
0.
94

32
0.
90

53
0.
85

90
0.
80

23
0.
72

78
0.
63

61
0.
52

69
0.
38

47

N
A
F
SM

F
0.
96

74
0.
93

31
0.
89

51
0.
85

45
0.
81

07
0.
75

79
0.
69

87
0.
62

64
0.
50

34

D
A
M
F

0.
97

74
0.
95

26
0.
92

32
0.
89

05
0.
85

28
0.
80

41
0.
74

71
0.
67

29
0.
55

37

A
W

M
F

0.
96

34
0.
94

44
0.
92

09
0.
89

32
0.
86

01
0.
81

37
0.
75

68
0.
68

10
0.
56

10

A
R
m
F

0.
98

15
0.
96

12
0.
93

71
0.
90

90
0.
87

51
0.
82

74
0.
76

86
0.
68

97
0.
56

59

Sw
ee
ts

B
P
D
F

0.
98

95
0.
97

55
0.
95

49
0.
92

39
0.
87

83
0.
80

75
0.
69

66
0.
48

42
0.
10

34

M
D
B
U
T
M
F

0.
99

11
0.
95

25
0.
86

04
0.
83

45
0.
89

31
0.
92

31
0.
90

32
0.
81

82
0.
44

01

D
B
A
IN

0.
99

27
0.
98

43
0.
97

07
0.
95

12
0.
92

01
0.
87

29
0.
80

28
0.
69

45
0.
54

57

N
A
F
SM

F
0.
98

70
0.
97

45
0.
96

17
0.
94

80
0.
93

26
0.
91

26
0.
88

36
0.
84

06
0.
71

98

D
A
M
F

0.
99

50
0.
98

91
0.
98

18
0.
97

15
0.
95

99
0.
94

32
0.
91

96
0.
88

17
0.
80

56

A
W

M
F

0.
98

65
0.
98

30
0.
97

87
0.
97

20
0.
96

27
0.
94

81
0.
92

52
0.
88

79
0.
81

38

A
R
m
F

0.
99

54
0.
99

10
0.
98

57
0.
97

82
0.
96

82
0.
95

28
0.
92

93
0.
89

11
0.
81

61

To
m
at
oe
s
1

B
P
D
F

0.
99

24
0.
98

07
0.
96

31
0.
93

76
0.
90

00
0.
83

38
0.
72

64
0.
50

77
0.
16

17

M
D
B
U
T
M
F

0.
99

38
0.
95

02
0.
82

64
0.
80

17
0.
88

92
0.
94

11
0.
93

37
0.
85

39
0.
44

86

D
B
A
IN

0.
99

45
0.
98

84
0.
97

87
0.
96

42
0.
94

04
0.
90

40
0.
84

74
0.
75

03
0.
58

36

N
A
F
SM

F
0.
99

26
0.
98

46
0.
97

86
0.
97

00
0.
96

01
0.
94

80
0.
92

85
0.
89

23
0.
76

98

123



192 Page 36 of 45 T. Aydın, S. Enginoğlu

Ta
bl
e
10

co
nt
in
ue
d

F
ilt
er
s

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

D
A
M
F

0.
99

64
0.
99

18
0.
98

60
0.
97

93
0.
97

01
0.
95

87
0.
94

19
0.
91

62
0.
85

33

A
W

M
F

0.
99

23
0.
99

02
0.
98

71
0.
98

25
0.
97

58
0.
96

58
0.
94

99
0.
92

47
0.
86

63

A
R
m
F

0.
99

72
0.
99

43
0.
99

07
0.
98

58
0.
97

87
0.
96

85
0.
95

24
0.
92

68
0.
86

79

To
m
at
oe
s
2

B
P
D
F

0.
99

51
0.
98

70
0.
97

41
0.
95

54
0.
92

51
0.
87

24
0.
78

78
0.
61

70
0.
30

64

M
D
B
U
T
M
F

0.
98

85
0.
93

11
0.
76

64
0.
73

58
0.
85

16
0.
93

82
0.
93

84
0.
87

37
0.
51

17

D
B
A
IN

0.
99

71
0.
99

28
0.
98

56
0.
97

40
0.
95

78
0.
92

32
0.
87

64
0.
79

08
0.
64

75

N
A
F
SM

F
0.
99

36
0.
98

80
0.
98

26
0.
97

68
0.
96

92
0.
95

83
0.
93

94
0.
90

76
0.
78

62

D
A
M
F

0.
99

84
0.
99

57
0.
99

22
0.
98

69
0.
98

02
0.
97

09
0.
95

78
0.
93

53
0.
88

15

A
W

M
F

0.
99

42
0.
99

31
0.
99

10
0.
98

79
0.
98

32
0.
97

53
0.
96

30
0.
94

18
0.
89

45

A
R
m
F

0.
99

85
0.
99

66
0.
99

43
0.
99

06
0.
98

55
0.
97

75
0.
96

48
0.
94

35
0.
89

59

To
ol
s
1

B
P
D
F

0.
98

24
0.
95

94
0.
92

96
0.
88

41
0.
82

42
0.
73

61
0.
60

63
0.
38

88
0.
14

08

M
D
B
U
T
M
F

0.
98

44
0.
95

22
0.
88

55
0.
85

53
0.
87

45
0.
87

29
0.
83

74
0.
74

73
0.
44

53

D
B
A
IN

0.
98

90
0.
97

32
0.
95

23
0.
92

06
0.
87

72
0.
81

71
0.
72

67
0.
60

35
0.
44

27

N
A
F
SM

F
0.
97

85
0.
95

64
0.
93

38
0.
90

83
0.
87

88
0.
84

68
0.
80

57
0.
74

19
0.
62

49

D
A
M
F

0.
99

21
0.
98

11
0.
96

78
0.
95

02
0.
92

82
0.
90

25
0.
86

76
0.
81

26
0.
70

87

A
W

M
F

0.
97

83
0.
97

10
0.
96

25
0.
95

13
0.
93

48
0.
91

19
0.
87

76
0.
82

23
0.
71

85

A
R
m
F

0.
99

26
0.
98

42
0.
97

47
0.
96

23
0.
94

48
0.
92

07
0.
88

51
0.
82

88
0.
72

32

To
ol
s
2

B
P
D
F

0.
98

44
0.
96

42
0.
93

85
0.
90

35
0.
85

85
0.
79

36
0.
69

36
0.
52

27
0.
25

24

M
D
B
U
T
M
F

0.
98

12
0.
92

26
0.
76

53
0.
73

11
0.
83

34
0.
89

73
0.
88

71
0.
82

32
0.
53

01

D
B
A
IN

0.
98

75
0.
97

54
0.
95

91
0.
93

57
0.
90

47
0.
85

97
0.
79

63
0.
70

41
0.
56

02

N
A
F
SM

F
0.
98

35
0.
96

95
0.
95

58
0.
94

03
0.
92

29
0.
90

26
0.
87

76
0.
83

85
0.
72

00

D
A
M
F

0.
98

84
0.
97

76
0.
96

52
0.
95

01
0.
93

16
0.
91

04
0.
88

48
0.
85

02
0.
79

02

A
W

M
F

0.
97

92
0.
97

33
0.
96

41
0.
95

17
0.
93

59
0.
91

58
0.
89

06
0.
85

60
0.
79

86

A
R
m
F

0.
98

98
0.
98

06
0.
97

03
0.
95

73
0.
94

10
0.
92

07
0.
89

47
0.
85

88
0.
80

02

B
ol
d
va
lu
es

in
di
ca
te
th
e
be
st
sc
or
es

123



d-Matrices and their application to PVA to noise-removal filters Page 37 of 45 192

Ta
bl
e
11

SS
IM

re
su
lts

of
th
e
fil
te
rs
fo
r
w
oo
d
ga
m
e
im

ag
e

F
ilt
er
s

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

W
oo

d
G
am

e
B
P
D
F

0.
99

15
0.
97

93
0.
96

53
0.
94

45
0.
91

86
0.
87

25
0.
79

68
0.
64

39
0.
34

10

M
D
B
U
T
M
F

0.
97

67
0.
90

28
0.
69

15
0.
65

73
0.
80

76
0.
91

88
0.
92

59
0.
82

90
0.
38

16

D
B
A
IN

0.
99

53
0.
99

11
0.
98

39
0.
97

28
0.
95

52
0.
93

03
0.
89

12
0.
82

90
0.
73

66

N
A
F
SM

F
0.
97

57
0.
96

24
0.
95

45
0.
94

76
0.
94

13
0.
93

28
0.
91

72
0.
89

04
0.
77

41

D
A
M
F

0.
99

31
0.
98

77
0.
98

24
0.
97

62
0.
96

80
0.
95

85
0.
94

42
0.
92

25
0.
87

39

A
W

M
F

0.
98

69
0.
98

59
0.
98

34
0.
97

95
0.
97

39
0.
96

61
0.
95

25
0.
93

24
0.
89

15

A
R
m
F

0.
99

43
0.
99

16
0.
98

81
0.
98

35
0.
97

72
0.
96

89
0.
95

48
0.
93

44
0.
89

26

B
ol
d
va
lu
es

in
di
ca
te
th
e
be
st
sc
or
es

123



192 Page 38 of 45 T. Aydın, S. Enginoğlu

that the noise-removal performances of the filters are more significant in high noise densities,
in which noisy pixels outnumber uncorrupted pixels, then performance-based success would
be more important in the presence of high noise densities than of others. For example, let

[b0 j ] =
[[0,0.01]
[0.9,0.95]

[0,0.05]
[0.85,0.9]

[0,0.1]
[0.8,0.85]

[0.05,0.35]
[0.25,0.5]

[0.2,0.45]
[0.2,0.45]

[0.25,0.5]
[0.05,0.35]

[0.8,0.85]
[0,0.1]

[0.85,0.9]
[0,0.05]

[0.9,0.95]
[0,0.01]

]

Thus, the d-matrix [bi j ], modelling the SSIM values provided in Tables 5, 6, 7, 8, 9, 10,
and 11, is as follows:

[bi j ] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[0,0.01]
[0.9,0.95]

[0,0.05]
[0.85,0.9]

[0,0.1]
[0.8,0.85]

[0.05,0.35]
[0.25,0.5]

[0.2,0.45]
[0.2,0.45]

[0.9422,0.9696]
[0.0029,0.0304]

[0.8771,0.9348]
[0.0074,0.0652]

[0.8040,0.8943]
[0.0154,0.1057]

[0.7263,0.8506]
[0.0250,0.1494]

[0.6424,0.7997]
[0.0430,0.2003]

[0.9382,0.9677]
[0.0027,0.0323]

[0.8538,0.9081]
[0.0376,0.0919]

[0.5711,0.7452]
[0.0806,0.2548]

[0.5393,0.7188]
[0.1017,0.2812]

[0.7090,0.8063]
[0.0965,0.1937]

[0.9488,0.9735]
[0.0019,0.0265]

[0.8965,0.9460]
[0.0044,0.0540]

[0.8340,0.9127]
[0.0085,0.0873]

[0.7636,0.8747]
[0.0143,0.1253]

[0.6865,0.8309]
[0.0248,0.1691]

[0.9272,0.9613]
[0.0045,0.0387]

[0.8780,0.9346]
[0.0087,0.0654]

[0.8192,0.9036]
[0.0121,0.0964]

[0.7564,0.8712]
[0.0140,0.1288]

[0.6936,0.8381]
[0.0174,0.1619]

[0.9569,0.9779]
[0.0011,0.0221]

[0.9120,0.9546]
[0.0027,0.0454]

[0.8616,0.9284]
[0.0048,0.0716]

[0.8087,0.9006]
[0.0075,0.0994]

[0.7515,0.8703]
[0.0108,0.1297]

[0.9336,0.9645]
[0.0046,0.0355]

[0.8990,0.9471]
[0.0048,0.0529]

[0.8582,0.9262]
[0.0057,0.0738]

[0.8130,0.9028]
[0.0073,0.0972]

[0.7620,0.8761]
[0.0099,0.1239]

[0.9648,0.9818]
[0.0012,0.0182]

[0.9276,0.9626]
[0.0025,0.0374]

[0.8852,0.9406]
[0.0040,0.0594]

[0.8381,0.9161]
[0.0059,0.0839]

[0.7848,0.8880]
[0.0088,0.1120]

[0.25,0.5]
[0.05,0.35]

[0.8,0.85]
[0,0.1]

[0.85,0.9]
[0,0.05]

[0.9,0.95]
[0,0.01]

[0.5140,0.7240]
[0.0660,0.2760]

[0.3632,0.6306]
[0.1019,0.3694]

[0.2218,0.5204]
[0.1810,0.4796]

[0.0602,0.3613]
[0.3377,0.6387]

[0.6329,0.8015]
[0.0299,0.1985]

[0.5613,0.7681]
[0.0250,0.2319]

[0.4893,0.7034]
[0.0826,0.2966]

[0.2977,0.4583]
[0.3811,0.5417]

[0.5934,0.7781]
[0.0373,0.2219]

[0.4946,0.7170]
[0.0606,0.2830]

[0.3514,0.6284]
[0.0947,0.3716]

[0.2074,0.5295]
[0.1484,0.4705]

[0.6232,0.8009]
[0.0214,0.1991]

[0.5533,0.7614]
[0.0305,0.2386]

[0.4783,0.7147]
[0.0489,0.2853]

[0.3789,0.6262]
[0.1264,0.3738]

[0.6823,0.8338]
[0.0147,0.1662]

[0.6080,0.7942]
[0.0197,0.2058]

[0.5217,0.7463]
[0.0290,0.2537]

[0.4017,0.6762]
[0.0492,0.3238]

[0.6951,0.8408]
[0.0134,0.1592]

[0.6199,0.8008]
[0.0182,0.1992]

[0.5305,0.7515]
[0.0274,0.2485]

[0.4071,0.6814]
[0.0443,0.3186]

[0.7145,0.8510]
[0.0125,0.1490]

[0.6351,0.8088]
[0.0175,0.1912]

[0.5406,0.7568]
[0.0269,0.2432]

[0.4120,0.6840]
[0.0440,0.3160]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Finally, we apply the configured method to [bi j ]. Moreover, we obtain the results herein
by MATLAB R2021a.

Step 2. The column matrix
[
αi1
βi1

]
is as follows:

[
αi1
βi1

]
=

⎡

⎢
⎢
⎢
⎢
⎣

[0.1837,0.5585]
[0.0087,0.1125]

[0.3244,0.6369]
[0.0323,0.1490]

[0.2678,0.6434]
[0.0050,0.0924]

[0.3383,0.6921]
[0.0065,0.0948]
[0.3673,0.7252]
[0.0026,0.0723]

[0.3733,0.7299]
[0.0038,0.0755]

[0.3813,0.7369]
[0.0023,0.0623]

⎤

⎥
⎥
⎥
⎥
⎦

T
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Step 3. The score matrix is as follows:

[si1] = [[0.0712, 0.5497] [0.1754, 0.6047] [0.1753, 0.6384] [0.2436, 0.6856]
[0.2950, 0.7225] [0.2979, 0.7261] [0.3190, 0.7347]]T

Step 4. The decision set is as follows:
{[0.1768,0.7705]BPDF,[0.3060,0.8387] MDBUTMF,[0.3059,0.8805] DBAIN,[0.3906,0.9392] NAFSMF,

[0.4544,0.9849]DAMF,[0.4580,0.9894] AWMF,[0.4842,1] ARmF
}

Step 5. The ranking order

BPDF ≺ MDBUTMF ≺ DBAIN ≺ NAFSMF ≺ DAMF ≺ AWMF ≺ ARmF

is valid. Therefore, the performance ranking of the filters shows that ARmF outper-
forms the other filters.

6 Comparative analysis

In this section, we compare the configuredmethodwith five SDMmethods, namely iMBR01,
iMRB02(I9), iCCE10, iCCE11, and iPEM, provided in (Arslan et al. 2021). For this reason,
first, Table 12 presents the filters’ ranking orders provided in (Arslan et al. 2021) when the
methods are applied to ifpifs-matrix [ai j ] (Arslan et al. 2021) obtained using the results in
Tables 1, 2, 3, and 4. Second, we construct ifpifs-matrix [ci j ] using the membership and
non-membership functions in (Arslan et al. 2021) and the filters’ noise-removal performance
results provided in Tables 5, 6, 7, 8, 9, 10, and 11. We then apply five SDM methods to this
ifpifs-matrix.

[ci j ] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.05
0.9

0.15
0.8

0.25
0.7

0.35
0.6

0.5
0.5

0.65
0.3

0.75
0.2

0.85
0.1

0.9
0.05

0.9688
0.0030

0.9308
0.0079

0.8838
0.0169

0.8294
0.0286

0.7623
0.0510

0.6506
0.0836

0.4958
0.1391

0.3162
0.2581

0.0861
0.4831

0.9668
0.0028

0.9028
0.0397

0.6915
0.0976

0.6573
0.1239

0.7854
0.1069

0.7613
0.0359

0.7076
0.0316

0.6226
0.1051

0.3547
0.4540

0.9728
0.0019

0.9432
0.0046

0.9053
0.0092

0.8590
0.0161

0.8023
0.0290

0.7278
0.0457

0.6361
0.0780

0.4860
0.1310

0.3059
0.2189

0.9600
0.0047

0.9307
0.0092

0.8947
0.0132

0.8545
0.0159

0.8107
0.0203

0.7579
0.0260

0.6987
0.0385

0.6264
0.0641

0.5034
0.1679

0.9774
0.0011

0.9526
0.0028

0.9232
0.0052

0.8905
0.0083

0.8528
0.0123

0.8041
0.0174

0.7471
0.0242

0.6729
0.0375

0.5537
0.0678

0.9634
0.0047

0.9444
0.0050

0.9209
0.0061

0.8932
0.0081

0.8601
0.0111

0.8137
0.0157

0.7568
0.0223

0.6810
0.0352

0.5610
0.0611

0.9815
0.0012

0.9612
0.0026

0.9371
0.0042

0.9090
0.0064

0.8751
0.0098

0.8274
0.0145

0.7686
0.0212

0.6897
0.0343

0.5659
0.0604

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

In Tables 13 and 14, we present the decision sets and the noise-removal filters’ ranking
orders when five SDM methods are applied to [ci j ], respectively. We reveal in Section 5
that the configured method produces the same ranking orders for the filters’ SSIM results
obtained with 20 traditional test images and 40 test images at nine noise densities. Thus,
the configured method confirms the ranking order provided in (Aydın and Enginoğlu 2021a)
and those of iCCE10 and iCCE11 in Tables 12 and 14. On the other hand, although iPEM
provides the same ranking order as iCCE10 and iCCE11 for 40 test images, iMBR01,
iMRB02(I9), and iPEM generate different ranking orders for 20 traditional test images.
Consequently, we observe that the configured method is more consistent than iMBR01,
iMRB02(I9), and iPEM. Thus, these comments exhibit that the SDM method constructed
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Table 12 Ranking orders generated by five SDM methods (Arslan et al. 2021)

Methods Ranking orders

iMBR01 BPDF ≺ DBAIN ≺ NAFSMF ≺ MDBUTMF ≺ DAMF ≺ AWMF ≺ ARmF

iMRB02(I9) BPDF ≺ DBAIN ≺ NAFSMF ≺ MDBUTMF ≺ DAMF ≺ AWMF ≺ ARmF

iCCE10 BPDF ≺ MDBUTMF ≺ DBAIN ≺ NAFSMF ≺ DAMF ≺ AWMF ≺ ARmF

iCCE11 BPDF ≺ MDBUTMF ≺ DBAIN ≺ NAFSMF ≺ DAMF ≺ AWMF ≺ ARmF

iPEM BPDF ≺ DBAIN ≺ MDBUTMF ≺ NAFSMF ≺ DAMF ≺ AWMF ≺ ARmF

with d-matrices is more advantageous in dealing with problems involving multiple measure-
ment results.

7 Conclusion

In this paper, we defined the concept of d-matrices. Furthermore, we introduced its basic
operations and investigated some of their basic properties. We then configured the SDM
method (Aydın and Enginoğlu 2021a) to operate it in d-matrices space. Moreover, we
applied it to two d-matrices constructed with SSIM results of the known noise-removal
filters for 40 test images, provided in the TESTIMAGES database (Asuni and Giachetti
2014), and 20 traditional test images. This application results confirmed the one available
in Aydın and Enginoğlu (2021a). Thus, the configured method enabled problems contain-
ing a large number of data to be processed on a computer. In addition, we applied five
state-of-the-art SDM methods constructed with ifpifs-matrices to the same problem and
compared the ranking performance of the configured method with those of the five meth-
ods.

The results in the present study manifested that the configured method was success-
fully applied to a decision-making problem containing ivif uncertainties. Therefore, further
research should be focussed on developing effective SDM methods based on group deci-
sion making using AND/OR/ANDNOT/ORNOT-products of d-matrices. Moreover, it is
possible to render the SDM methods constructed with fpfs-matrices (Enginoğlu and Memiş
2018d, 2020; Enginoğlu et al. 2018a, b, 2019c, d, 2021a) and ifpifs-matrices (Enginoğlu
and Arslan 2020) operable in d-matrices space. Furthermore, the membership and non-
membership functions used to obtain an ivif -value from multiple intuitionistic fuzzy values
can be defined in a different way and used to construct a d-matrix in the first step of
the configured method. Thus, these new methods can be applied to the problem featured
in the current study and the results of this process can be compared with those herein.
In addition, it is necessary and worthwhile to conduct theoretical and applied studies on
varied topics, such as distance and similarity measures, by making use of the d-matrices.
Researchers can also conduct studies on the various hybrid versions of soft sets and
the other generalisations of fuzzy sets, such as hesitant fuzzy sets (Torra 2010), linear
Diophantine fuzzy sets (Riaz and Hashmi 2019), spherical linear Diophantine fuzzy sets
(Riaz et al. 2021), and picture fuzzy sets (Cuong 2014; Memiş 2021), and their matri-
ces.
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Table 14 Noise removal filters’ ranking orders when five SDM methods are applied to [ci j ]
Methods Ranking orders

iMBR01 BPDF ≺ DBAIN ≺ MDBUTMF ≺ NAFSMF ≺ DAMF ≺ AWMF ≺ ARmF

iMRB02(I9) BPDF ≺ DBAIN ≺ MDBUTMF ≺ NAFSMF ≺ DAMF ≺ AWMF ≺ ARmF

iCCE10 BPDF ≺ MDBUTMF ≺ DBAIN ≺ NAFSMF ≺ DAMF ≺ AWMF ≺ ARmF

iCCE11 BPDF ≺ MDBUTMF ≺ DBAIN ≺ NAFSMF ≺ DAMF ≺ AWMF ≺ ARmF

iPEM BPDF ≺ MDBUTMF ≺ DBAIN ≺ NAFSMF ≺ DAMF ≺ AWMF ≺ ARmF
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