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Abstract
This paper deals with a predator-prey model and a modified version consisting of a resource-
consumer with two consumer species. We analyze the stability of equilibria and for the
interior equilibrium, we show that the system undergoes some generic bifurcations such
as fold, Hopf and Hopf-zero bifurcations. We characterize these bifurcations by the center
manifold theorem and the normal form theory. We further compute the critical normal form
coefficients of the reduced system to the center manifold and conclude the non-degeneracy
conditions for the computed bifurcations. By using the numerical continuation method, we
compute several bifurcation curves emanating from the detected bifurcation points to examine
the obtained analytical results as well as to reveal further complex dynamical behaviors of the
system which can not be achieved analytically. Especially for both the original and modified
models on the Hopf bifurcation curve, we detect some codimension two bifurcations namely
Hopf-zero and generalized Hopf.

Keywords Predator-prey model · Intraguild predation (IGP) model · Equilibrium · Fold
bifurcation · Hopf bifurcation · Hopf-zero bifurcation

Mathematics Subject Classification 37M20, 37N25

1 Introduction

One of the important types of population models is the predator-prey model. Predator-prey
models have appeared in many parts of ecology and biology (Kot 2001; Murray 2001).
Intraguild predation (IGP) has been recognized as an important kind of interaction that occurs
between species in the same community which utilizes similar resources (space or food), and
thus there is competition between them. The pioneering works on intraguild predation have
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been done by Polis and McCormick (1987), Polis and Holt (1992), Holt and Polis (1997)
which provided detailed explanations and model formulation of intraguild predation. More
precisely, it was shown that IGP significantly influences the distribution, abundance and
coexistence ofmany species. IGP differs from the pure competition in that energy is gained by
the predator, which promotes its reproduction. IGP also differs from pure predation since the
predator and prey are engaged in the exploitative competition. Thus, an IGP system is capable
of demonstrating more complex dynamics than systems of pure competition or predation.
Indeed, empirical observations indicate that IGP could lead to alternative stable states in a
large number of circumstances, which can significantly affect the abundance, distribution,
and evolution of many species. IGP can be seen, in turn, as a unique and extreme form of
interference competition, where a dominant predator selectively kills and eats subordinate
rivals to gain increased access to resources (Donadio and Buskirk 2006; Mukherjee et al.
2009; de Oliveira and Pereira 2014). For example, in Australian systems the larger and
dominant dingo (Canis dingo) will kill and sometimes consume the invasive red fox, thereby
reducing competition for shared prey (Cupples et al. 2011; Glen et al. 2007). There is a
growing literature in modeling and analyzing IGP in recent years. Tanabe and Namba (2005)
and Namba et al. (2008) observed that intraguild predation might destabilize the system and
induce chaos by numerical simulations. Hsu et al. (2015) considered a three-species food
webmodelwithLotka-Volterra type interaction between populations, classified the parameter
space into three categories containing eight cases, and demonstrated extinction results for five
cases and verified uniform persistence for the other three cases. On the other hand, a growing
number of biological and mathematical models including IGP have also been proposed by
incorporating some more realistic ecological factors. These factors include delay (Shu et al.
2015; Collera 2014), age or stage structure (Yamaguchi et al. 2007; Schellekens and Kooten
2012; Russell et al. 2009), functional response of predator (Abrams and Fung 2010; Verdy
and Amarasekare 2010; Kang andWedekin 2013; Freeze et al. 2014), refuge (Liu and Zhang
2013;Křivan1998), additional speciesKuijper et al. (2003);Holt andHuxel (2007) and spatial
heterogeneity (Amarasekare 2007, 2008; Ryan and Cantrell 2015). One of the main goals in
the studies above is to ascertain the mechanism of extinction and the coexistence of different
species in systems with IGP. Some important predator-prey models are resource-consumer,
parasite-host, plant-herbivore, susceptible-infectious interactions, etc. These models can be
applied in other fields of science such as engineering and economics (Alì et al. 2012; Capone
and De Luca 2012, 2014; Rosenheim et al. 1993; Torcicollo 2016).

In this paper, we consider amodel of resource competition, where the consumption of each
competitor can be enhanced by the presence of the other introduced in Assaneo et al. (2013).
Themodel consists of three equations, one for the resource and two for the consumerswhich is
characterized by a logistically growing resource population and species-specific death rates.
A logistic growth function can better depict individual population growth and has become
extremely popular (Hsu et al. 2015; Kang and Wedekin 2013; Holt and Polis 1997).

We now consider the general model of intraguild predation introduced in Assaneo et al.
(2013), given by:

⎧
⎨

⎩

ẋ = x(h1(z) f1(y) − B1)

ẏ = y(h2(z) f2(x) − B2)

ż = G(z) − B̃1xh1(z) f1(y) − B̃2yh2(z) f2(x)
(1.1)

where two consumer species, x and y, and their resource, z are considered. G is the resource
growth function in the absence of the consumers, hi (z) indicates consumers per-capita catch
rates which are modified to include consumers mutualism via functions fi . B1 and B2 are
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linear death rates, of the consumers which yield to 1/B̃1 and 1/B̃2, respectively. Actually,
B̃1 and B̃2, respectively, show the effects of the death of x and y on specie z.

In the literature for more realistic models, the authors have presented various functional
responses and different growth functions with different types of carrying capacity, see Assa-
neo et al. (2013), Capone et al. (2018), Capone and De Luca (2014), Jeschke et al. (2002),
Kot (2001), Murray (2001), Safuan et al. (2013), Safuan et al. (2014). In this study, for the
system (1.1), we consider the response functions hi of Holling type II with

hi (z) = Ai z

Qi + z
.

Following Assaneo et al. (2013), we consider a classical situation, i.e., constant function
f1(y) = 1, while for a more feasible biological model to show facilitation, we suppose
f2(x) = 1+cx and choose logistic growth as G(z) = r z(1− z/K ). Similar to Assaneo et al.
(2013) and Rosenzweig and MacArthur (1963), if we assume qi = 1

Qi
> 1 one may observe

limit cycles in the model for some other parameters. So in this case, also for simplicity, we fix
q1 = q2 = 2 > 1, equivalently Q1 = Q2 = 1/2, and r = K = 1.Moreover, we also assume
that A1 = 1

B̃1
and A2 = 1

B̃2
, equivalently A1 B̃1 = A2 B̃2 = 1 and by this assumption, the

parameters A1 and A2 are expressed in terms of B̃1 and B̃2, respectively. Actually, from an
ecological point of view, due to the structure of response functions, this assumption shows
handling time of resource z is equal to the effect of the death of x on specie z, and also
handling time of resource z is equal to the effect of the death of y on specie z. Thus, the
model reduces to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = x

⎛

⎜
⎝

A1z
1

2
+ z

− B1

⎞

⎟
⎠

ẏ = y

⎛

⎜
⎝

A2z(1 + cx)
1

2
+ z

− B2

⎞

⎟
⎠

ż = z(1 − z) −
⎛

⎜
⎝

z
1

2
+ z

⎞

⎟
⎠ (x + (1 + cx)y)

(1.2)

where all the parameters are non-negative.
The plan of the paper is as follows. Section 2 is devoted to determine the equilibria of the

model and investigating their stability. Bifurcation analysis of the equilibria is presented in
Sect. 3.Wecharacterize several codimension1 and2bifurcations, derive parameter dependent
normal forms of the obtained bifurcations and compute their corresponding normal form
coefficients. In Sect. 4 and in Sect. 5, we employ the numerical continuation technique to
compute several bifurcation curves. We especially compute a family of limit cycles emerging
from a Hopf point. The numerical results assess the founded analytical results and reveal
further dynamical behaviors of the original and modified models. We conclude the paper in
Sect. 6, with a brief conclusion and give the biological implication of the obtained results.

2 Equilibria and stability

The model (1.2) has five equilibria given by
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1. The origin i.e. E0 = (0, 0, 0).
2. E1 = (0, 0, 1).

3. E2 = (0,
A2(2A2 − 3B2)

4(A2 − B2)2
,

B2

2(A2 − B2)
) when A2 > (3/2)B2.

4. E3 = (
A1(2A1 − 3B1)

4(A1 − B1)2
, 0,

B1

2(A1 − B1)
) when A1 > (3/2)B1.

5. E∗ = E4 = (
A1B2 − A2B1

A2B1c
,
A1A2B1(2A1 − 3B1)c − 4(A1 − B1)

2(A1B2 − A2B1)

4A1B2c(A1 − B1)2
,

B1

2(A1 − B1)
) when A1 > B1, A1B2 − A2B1 ≥ 0 and

A1A2B1(2A1 − 3B1)c − 4(A1 − B1)
2(A1B2 − A2B1) ≥ 0 .

The equilibrium E0 is not biologically feasible and E1,2,3 are the boundary equilibria and
E4 is an interior equilibrium.

To study stability of the equilibria, we evaluate the Jacobian matrix of the system at
(x, y, z), given by

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A1z
1

2
+ z

− B1 0 x
( A1

1

2
+ z

− A1z
(1

2
+ z

)2

)

A2cyz
1

2
+ z

A2z(cx + 1)
1

2
+ z

− B2 y
( A2(cx + 1)

1

2
+ z

− A2z(cx + 1)
(1

2
+ z

)2

)

− z(cy + 1)
1

2
+ z

− z(cx + 1)
1

2
+ z

1 − 2z − x + (cx + 1)y
1

2
+ z

− z(x + (cx + 1)y)
(1

2
+ z

)2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The eigenvalues of A evaluated at E0 are−B1,−B2, 1 thus E0 is unstable. The eigenvalues at
E1 are (2/3)A1 − B1, (2/3)A2 − B2,−1. Thus E1 is asymptotically stable when (2/3)A1 <

B1, (2/3)A2 < B2. It becomes unstable when (2/3)A1 > B1, or (2/3)A2 > B2.
The eigenvalues at E2 are given by

1

4A2(A2 − B2)
(

A2B2 − 3B2
2 ±

√

−16A42B2 + 56A32B
2
2 − 64A22B

3
2 + 24A2B

4
2 + A22B

2
2 − 6A2B

3
2 + 9B4

2

)

,

A1B2 − A2B1
A2

When all of the above eigenvalues have negative real parts the equilibrium E2 is asymptoti-
cally stable, otherwise E2 is unstable.

The eigenvalues at E3 are

1

4A1(A1 − B1)
(

A1B1 − 3B2
1 ±

√

−16A41B1 + 56A31B
2
1 − 64A21B

3
1 + 24A1B

4
1 + A21B

2
1 − 6A1B

3
1 + 9B4

1

)

,

2A21A2B1c − 3A1A2B
2
1 c − 4A31B2 + 4A21A2B1 + 8A21B1B2 − 8A1A2B

2
1 − 4A1B

2
1 B2 + 4A2B

3
1

4A1(A
2
1 − 2A1B1 + B2

1 )

Hence, E3 is asymptotically stable if all of the eigenvalues of A at E3 have negative real
parts, otherwise E3 is unstable.
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The characteristic polynomial of the Jacobian matrix at E∗ = E4 is given as

p(r) = − 1

2

1

A13A2B1B2c(A1 − B1)

×
[
( − 2A1

3A2B1B2c(A1 − B1)
)
r3

+(
A1

2A2B1
2B2c(A1 − 3B1)

)
r2

+(
(A1 − B1)((−2A1

3A2B
2
1 B2c − 2A1

3A2B1B2
2c + 2A1

2A2
2B1

3c + 3A1
2A2B1

3B2c

+3A1
2A2B1

2B2
2c − 3A1A2

2B1
4c + 4A1

4B2
3 − 4A1

3A2B1
2B2 − 4A1

3A2B1B2
2

−8A1
3B1B2

3 + 4A1
2A2

2B1
3 + 8A1

2A2B1
3B2 + 8A1

2A2B1
2B2

2 + 4A1
2B1

2B2
3

−8A1A2
2B1

4 − 4A1A2B1
4B2 − 4A1A2B1

3B2
2 + 4A2

2B1
5))

)
r

+B1B2(A1 − B1)(A1B2 − A2B1)(−2A1
2A2B1c + 3A1A2B1

2c + 4A1
3B2 − 4A1

2A2B1

−8A1
2B1B2 + 8A1A2B1

2 + 4A1B1
2B2 − 4A2B1

3)

]

.

By the Routh-Hurwitz conditions, the roots of p(r) have negative real parts if

(S1) (A1 − 3B1)(A1 − B1) < 0;
(S2) (A1B2 − A2B1)[−A1A2B1(2A1 − 3B1)c + 4(A1 − B1)

2(A1B2 − A2B1)] < 0;
(S3)−(A1 − B1)[−A1A2B1(2A1 − 3B1)(2A

3
1B

2
2 − 2A21A2B1B2 − 2A21B1B

2
2

+2A1A2B
2
1 B2 + A21B1B2 + A21B

2
2 − A1A2B

2
1 − 3A1B

2
1 B2 − 3A1B1B

2
2 + 3A2B

3
1 )c

+4(A1 − B1)
2(2A31B

2
2 − 2A21A2B1B2 − 2A21B1B

2
2 + 2A1A2B

2
1 B2 + A21B

2
2 − A1A2B

2
1

−3A1B1B
2
2 + 3A2B

3
1 )(A1B2 − A2B1)] < 0 .

Therefore we can state the following theorem.

Theorem 2.1 Consider the system (1.2) and interior equilibrium E∗. Under conditions (S1)–
(S3), the equilibrium E∗ is asymptotically stable.

3 Bifurcations

We focus on the equilibrium E∗ which represents the coexistence of predator and prey. For
the sake of simplicity and following the ecological-subject paper (Assaneo et al. 2013), we
consider the fixed set of parameters A1 = 4, A2 = 2, B2 = 2. Then characteristic polynomial
reduces to

p(r) = r3 − B1(3B1 − 4)

8(B1 − 4)
r2

− (B1
5 − 3B14c − 12B14 + 20B13c + 40B13 − 8B12c + 32B12 − 64B1c − 384B1 + 512)

32B1c
r

− (B1 − 4)(B13 − 3B12c − 12B12 + 8B1c + 48B1 − 64)

16c
. (3.1)

Theorem 3.1 For the system (1.2), let c > 0 and the following statements hold:

(i) If

c = (B1 − 4)3

B1(3B1 − 8)
, B1 �= 4

3
,
8

3
, 4
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then the characteristics polynomial (3.1) has a simple eigenvalue r = 0 and two other
eigenvalues with non-zero real parts.

(ii) If

c = (3B3
1 + 12B2

1 − 152B1 + 288)(B1 − 4)3

B1(3B1 − 8)(3B3
1 − 136B1 + 288)

,

B1 �= 4

3
,
8

3
, 4,

4
√
34

3
sin

(
1

3
tan−1

(√
3256

81

)

+ π

6

)

,

2
√
34

3

(√
3 cos

(
1

3
tan−1

(√
3256

81

)

+ π

6

)

− sin

(
1

3
tan−1

(√
3256

81

)

+ π

6

))

then the characteristics polynomial (3.1) has a non-zero real root and a pair of pure
conjugate imaginary eigenvalue r1,2 = ±iω0, where

ω0 =
√

2B1(3B1 − 8)(3B3
1 + 12B2

1 − 152B1 + 288)(B1 − 4)

3B3
1 + 12B2

1 − 152B1 + 288
.

(iii) If (c, B1) = ( 329 , 4
3 ) then the roots of the characteristics polynomial (3.1) are ±iω0, 0,

in which ω0 =
√
6
3 .

Regarding the above discussion with A1 = 4, A2 = 2, B2 = 2 and c > 0, we study the
bifurcations of the system (1.2) at E∗. For the dynamical behavior of the bifurcations, we
refer to Kuznetsov (2004) and Wiggins (2003).

We obtain non-degeneracy conditions of bifurcations. We use the multilinear functions B
andC as defined in Kuznetsov (2004). The left and right eigenvectors p and q are normalized
such that< p, q >= 1.We compute all critical coefficients of the normal forms for themodel
reduced to the corresponding center manifold.

3.1 Fold bifurcation

If c = ĉ , where

ĉ = (B1 − 4)3

B1(3B1 − 8)
, B1 �= 4

3
,
8

3
, 4

then byTheorem3.1, part (i), the characteristics polynomial (3.1) has a simple eigenvalue r =
0 and two other eigenvalues have non-zero real parts. Therefore the system (1.2) undergoes
a generic fold bifurcation at c = ĉ. We compute the normal form of generic fold bifurcation
at c = ĉ. If we use the translations (x, y, z) = (X , Y , Z) + E∗ and c = C + ĉ, then system
(1.2) reduces to

⎛

⎝
Ẋ
Ẏ
Ż

⎞

⎠ = FC

⎛

⎝
X
Y
Z

⎞

⎠ , (3.2)

where the origin is an equilibrium at C = 0. By Kuznetsov (2004), the restriction of the
vector field FC to one-dimensional center manifold at the critical value C = 0, has the form

u̇ = bu2 + O(u3) (3.3)
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where

b = 1

2
< p, B(q, q) > (3.4)

and Aq = 0, At p = 0 and < p, q >= 1. For non-degeneracy of this bifurcation of system
(3.2), it is sufficient to show that the corresponding critical normal form coefficient b is
non-zero. Here

A =
⎛

⎝
0 0 − 3B1−8

2
0 0 0

− 1
4 B1 −1 B1(3B1−4)

8(B1−4)

⎞

⎠ , q =
⎛

⎝
− 4

B1
1
0

⎞

⎠ , p =
⎛

⎝
0
1
0

⎞

⎠ ,

and

B(q, q) = (B1 − 4)3

B1(3B1 − 8)

⎛

⎝
0

−4
2

⎞

⎠ .

Therefore

b = −2(B1 − 4)3

B1(3B1 − 8)
�= 0 .

Corollary 1 If c = ĉ , where

ĉ = (B1 − 4)3

B1(3B1 − 8)
, B1 �= 4

3
,
8

3
, 4,

then equilibrium E∗ of the system (1.2) undergoes a generic fold bifurcation.

3.2 Hopf bifurcation

If c = c̃, where

c = c̃ = (3B3
1 + 12B2

1 − 152B1 + 288)(B1 − 4)3

B1(3B1 − 8)(3B3
1 − 136B1 + 288)

,

B1 �= 4

3
,
8

3
, 4,

4
√
34

3
sin

(
1

3
tan−1

(√
3256

81

)

+ π

6

)

,

2
√
34

3

(√
3 cos

(
1

3
tan−1

(√
3256

81

)

+ π

6

)

− sin

(
1

3
tan−1

(√
3256

81

)

+ π

6

))

then by Theorem 3.1, part (ii), the characteristics polynomial (3.1) has a non-zero real root
and a pair of pure imaginary eigenvalue r1,2 = ±iω0, where

ω0 =
√

2B1(3B1 − 8)(3B3
1 + 12B2

1 − 152B1 + 288)(B1 − 4)

3B3
1 + 12B2

1 − 152B1 + 288
.

Therefore, the system (1.2) undergoes a Hopf bifurcation at c = c̃. We compute the normal
form of Hopf bifurcation at c = c̃. If we use the translations (x, y, z) = (X , Y , Z) + E∗ and
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c = C + c̃ then system (1.2) reduces to
⎛

⎝
Ẋ
Ẏ
Ż

⎞

⎠ = GC

⎛

⎝
X
Y
Z

⎞

⎠ , (3.5)

where the origin is an equilibrium at C = 0. By Kuznetsov (2004), the restriction of the
vector field GC to center manifold in the complex domain which at the critical value C = 0,
has the form

ẇ = iω0w + l1(0)w|w|2 + O(w5), w ∈ C (3.6)

where

l1(0) = 1

2ω0
�[< p,C(q, q, q̄) > −2 < p, B(q, A−1B(q, q̄)) > + < p, B(q̄,

(2iω0 I − A)−1B(q, q)) >] (3.7)

and Aq = iω0q , At p = −iω0 p and < p, q >= 1. If

l1(0) �= 0

a unique closed invariant curve for GC emerges around the equilibrium point on the center
manifold, when the bifurcation parameter crosses the critical value corresponding to the Hopf
bifurcation.

For non-degeneracy of the Hopf bifurcation of system (3.5), it is sufficient to show that
the corresponding critical normal form coefficient l1(0), is non-zero. Here

A =
⎛

⎝
0 0 α

β 0 γ

λ −1 μ

⎞

⎠ , q =
⎛

⎝
1

γ
α

− β
ω0
i

ω0
α
i

⎞

⎠ , p =

⎛

⎜
⎜
⎝

1
2 + ω0λ

2β i

−ω0
2β i
ω2
0

2β

⎞

⎟
⎟
⎠ ,

where

α = − (3B3
1 − 136B1 + 288)(3B1 − 8)

2(3B3
1 + 12B2

1 − 152B1 + 288)
,

β = − B2
1 (B1 − 4)(3B1 − 4)

2(3B3
1 − 136B1 + 288)

,

γ = − B1(3B1 − 8)(3B1 − 4)

3B3
1 + 12B2

1 − 152B1 + 288
,

λ = −2B1(2B2
1 − 19B1 + 36)

3B3
1 − 136B1 + 288

,

μ = B1(3B1 − 4)

8(B1 − 4)
.

Therefore

l1(0) = 1

2ω0
�

{(
1

2
+ ω0λ

2β
i

)[
[
C(q̄, q̄, q)

]

1 − 2

[

B(q̄, A−1B(q̄, q))

]

1

+
[

B(q, (−2iω0 I − A)−1B(q̄, q̄))
]

1

]
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+
(

− ω0

2β
i

)[
[
C(q̄, q̄, q)

]

2 − 2

[

B(q̄, A−1B(q̄, q))

]

2
+

[

B(q, (−2iω0 I − A)−1B(q̄, q̄))

]

2

]

+
(

ω2
0

2β

)[[

C(q̄, q̄, q)

]

3
− 2

[

B(q̄, A−1B(q̄, q))

]

3
+

[

B(q, (−2iω0 I − A)−1B(q̄, q̄))
]

3

]}

(3.8)

where
[

C(q̄, q̄, q)

]

1
= 3(B1 − 4)2(3B1 − 8)(3B3

1 − 136B1 + 288)Z3

4(3B3
1 + 12B2

1 − 152B1 + 288)

(
ω0

α

)3
i + (B1 − 4)3

(
ω0

α

)2

[

C(q̄, q̄, q)

]

2
= 3(3B1 − 4)B1(3B1 − 8)(B1 − 4)2

2(3B3
1 + 12B2

1 − 152B1 + 288)

(
ω0

α

)3
i

− 2

α

(B1 − 4)5(3B3
1 + 12B2

1 − 152B1 + 288)

4(B1(3B1 − 8)(3B3
1 − 136B1 + 288))

(

β + γω0

α
i

)

− 2B1(B1 − 4)4(3B1 − 4)

4(3B3
1 − 136B1 + 288)

(
ω0

α

)2
+ 2

(B1 − 4)3

B1

(
ω0

α

)2(γ

α
+ 3

β

ω0
i

)

[

C(q̄, q̄, q)

]

3
= − 3

16
(B1 − 4)2(3B1 − 8)

(
ω0

α

)3
i − 2(B1 − 4)3(2B2

1 − 19B1 + 36)

(3B3
1 − 136B1 + 288)

(
ω0

α

)2

+ 2

α

(B1 − 4)5(3B3
1 + 12B2

1 − 152B1 + 288)

8(B1(3B1 − 8)(3B3
1 − 136B1 + 288))

(

β + γω0

α
i

)

− (B1 − 4)3

B1

(
ω0

α

)2(γ

α
+ 3

β

ω0
i

)

[

B(q̄, A−1B(q̄, q))

]

1
= (B1 − 4)(3B1 − 8)(3B3

1 − 136B1 + 288)

2(3B3
1 + 12B2

1 − 152B1 + 288)

(

r3
ω0

α

)

i

+1

2
(B1 − 4)2

(

r3 − r1
ω0

α
i

)

[

B(q̄, A−1B(q̄, q))

]

2
= B1(3B1 − 4)(B1 − 4)(3B1 − 8)

(3B3
1 + 12B2

1 − 152B1 + 288)

(

r3
ω0

α

)

i

+ (3B3
1 + 12B2

1 − 152B1 + 288)(B1 − 4)3

2((3B3
1 − 136B1 + 288)(3B1 − 8))

(

r2 + r1
γ

α
+ r1

β

ω0
i

)

− (B1 − 4)3B1(3B1 − 4)

4(3B3
1 − 136B1 + 288)

(

r3 − r1
ω0

α
i

)

+ (B1 − 4)2

B1

[

r3
γ

α
+

(

r3
β

ω0
− r2

ω0

α
i

)]

[

B(q̄, A−1B(q̄, q))

]

3
= −1

8
(3B2

1 − 20B1 + 16))

(

r3
ω0

α

)

i

− (B1 − 4)2(2B2
1 − 19B1 + 36)

(3B3
1 − 136B1 + 288)

(

r3 − r1
ω0

α
i

)

− (3B3
1 + 12B2

1 − 152B1 + 288)(B1 − 4)3

4((3B3
1 − 136B1 + 288)(3B1 − 8))

(

r2 + r1
γ

α
+ r1

β

ω0
i

)

− (B1 − 4)2

2B1

[

r3
γ

α
+

(

r3
β

ω0
− r2

ω0

α

)

i

]
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r = A−1B(q̄, q) =
⎛

⎝
r1
r2
r3

⎞

⎠ ,

[

B(q̄, q)

]

1
= − (B1 − 4)(3B1 − 8)(3B3

1 − 136B1 + 288)

3B3
1 + 12B2

1 − 152B1 + 288

(
ω0

α

)2

[

B(q̄, q)

]

2
= −2B1(3B1 − 4)(B1 − 4)(3B1 − 8)

(3B3
1 + 12B2

1 − 152B1 + 288)

(
ω0

α

)2

+ (3B3
1 + 12B2

1 − 152B1 + 288)(B1 − 4)3

(3B3
1 − 136B1 + 288)(3B1 − 8)

(
γ

α

)

−2(B1 − 4)2

B1

(
β

α

)

[

B(q̄, q)

]

3
= 1

4
(3B2

1 − 20B1 + 16))

(
ω0

α

)2

− (3B3
1 + 12B2

1 − 152B1 + 288)(B1 − 4)3

2(3B3
1 − 136B1 + 288)(3B1 − 8)

(
γ

α

)

+ (B1 − 4)2

B1

(
β

α

)

.

Corollary 2 Let c = c̃, where

c = c̃ = (3B3
1 + 12B2

1 − 152B1 + 288)(B1 − 4)3

B1(3B1 − 8)(3B3
1 − 136B1 + 288)

,

B1 �= 4

3
,
8

3
, 4,

4
√
34

3
sin

(
1

3
tan−1

(√
3256

81

)

+ π

6

)

,

2
√
34

3

(√
3 cos

(
1

3
tan−1

(√
3256

81

)

+ π

6

)

− sin

(
1

3
tan−1

(√
3256

81

)

+ π

6

))

.

If l1(0) �= 0, given by (3.8), then equilibrium E∗ of the system (1.2) undergoes a generic
Hopf bifurcation.

Remark 3.2 Wenote that the above corollary refers to critical normal formofHopf bifurcation
of equilibrium E∗ at c = c̃, where the explicit formula of critical coefficient is obtained by
(3.8). Actually the curve

c = c̃ = (3B3
1 + 12B2

1 − 152B1 + 288)(B1 − 4)3

B1(3B1 − 8)(3B3
1 − 136B1 + 288)

,

when

B1 �= 4

3
,
8

3
, 4,

4
√
34

3
sin

(
1

3
tan−1

(√
3256

81

)

+ π

6

)

,

2
√
34

3

(√
3 cos

(
1

3
tan−1

(√
3256

81

)

+ π

6

)

− sin

(
1

3
tan−1

(√
3256

81

)

+ π

6

))

represents a curve of Hopf bifurcations. The numerical results also confirm non-degeneracy
of the computed Hopf point.
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3.3 Hopf-zero bifurcation in the appearance of the rate of conflict

If (c, B1) = ( 329 , 4
3 ) then by Theorem 3.1, part (iii), roots of the characteristics polynomial

(3.1) are ±iω0, 0, in which ω0 =
√
6
3 . Therefore, at (c, B1) = ( 329 , 4

3 ) the equilibrium E∗
of the system (1.2) may undergo a generic Hopf-zero bifurcation. But this bifurcation is
degenerate (the coefficient C(0) corresponding to the normal form of Hopf-zero becomes
zero). Due to this degeneracy, we modify the model.

Let the predator y is affected under the rate of conflict in the prey z with rates ζ . For this
purpose, near the equilibrium E∗ = (x∗, y∗, z∗), we consider the following model,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = x

⎛

⎜
⎝

A1z
1

2
+ z

− B1

⎞

⎟
⎠

ẏ = y

⎛

⎜
⎝

A2z(1 + cx)
1

2
+ z

− B2

⎞

⎟
⎠ + ζ(z − z∗)2

ż = z(1 − z) −
⎛

⎜
⎝

z
1

2
+ z

⎞

⎟
⎠ (x + (1 + cx)y)

(3.9)

where ζ is a parameter and

z∗ = B1

2(A1 − B1)
.

Remark 3.3 Notice that when (c, B1) = ( 329 , 4
3 ), the equilibrium E∗ is reduced to a boundary

equilibrium.

For simplicity let ζ = 1. We notice that the characteristics polynomial of the corresponding
Jacobian matrix at equilibrium E∗ for both models (1.2) and (3.9) are the same. If (c, B1) =
( 329 , 4

3 ) then by Theorem 3.1, part (iii), roots of the characteristics polynomial (3.1) are

±iω0, 0, where ω0 =
√
6
3 . Therefore, the system (3.9) undergoes a Hopf-zero bifurcation

at (c, B1) = ( 329 , 4
3 ). We investigate the normal form of Hopf-zero bifurcation at (c, B1) =

( 329 , 4
3 ). If we use the translations (x, y, z) = (X , Y , Z)+E∗ and (c, B1) = (C,B1)+( 329 , 4

3 )

then system (3.9) reduces to
⎛

⎝
Ẋ
Ẏ
Ż

⎞

⎠ = HCB1

⎛

⎝
X
Y
Z

⎞

⎠ , (3.10)

where the origin is an equilibrium at (C,B1) = (0, 0). ByKuznetsov (2004), restriction of the
vector field HCB1 to center manifold at the critical value (C,B1) = (0, 0), for (u, w) ∈ R×C,
has the form

u̇ = B(0)u2 + C(0)|w|2 + O(||(u, w, w̄)||), (3.11)

ẇ = iω0w + D(0)uw + E(0)u2w + O(||(u, w, w̄)||), (3.12)

where

B(0) = G200(0)
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C(0) = G011(0)

D(0) = H110(0) − iω0
G300(0)

G200(0)

E(0) = �
[

H210(0) + H110(0)

(�H021(0)

G011(0)
− 3G300(0)

2G200(0)
+ G111(0)

2G011(0)

)

− H021(0)G200(0)

G011(0)

]

with

G200 = 1

2
< p0, B(q0, q0) >, H110 =< p1, B(q0, q1) >, G011 =< p0, B(q1, q̄1) >,

h200 = −AI NV [B(q0, q0)− < p0, B(q0, q0) > q0],
h020 = (2iω0 I − A)−1B(q1, q1),

h110 = (iω0 I − A)I NV [B(q0, q1)− < p1, B(q0, q1) > q1],
h011 = −AI NV [B(q1, q̄1)− < p0, B(q1, q̄1) > q0]

and

G300 = 1

6
< p0,C(q0, q0, q0) + 3B(q0, h200) >,

G111 = < p0,C(q0, q1, q̄1) + B(q1, h̄110) + B(q̄1, h110) + B(q0, h011) >,

H210 = 1

2
< p1,C(q0, q0, q1) + 2B(q0, h110) + B(q1, h200) >,

H021 = 1

2
< p1,C(q1, q1, q̄1) + 2B(q1, h011) + B(q̄1, h020) >

and Aq0 = 0, Aq1 = iω0q1, At p0 = 0, At p1 = −iω0 p1 and< p0, q0 >=< p1, q1 >= 1,
< p0, q1 >=< p1, q0 >= 0.

The non-degeneracy of the Hopf-zero bifurcation of system (3.10), are given by

ZH1. B(0)C(0)E(0) �= 0;

ZH2. the map (X , Y , Z , c, B1) → (HCB1 , Tr(
∂HCB1

∂X∂Y ∂Z ), det(
∂HCB1

∂X∂Y ∂Z ))(X , Y , Z , c, B1) is
regular at (X , Y , Z , c, B1) = (0, 0, 0, 0, 0).

Here, we have

A =
⎛

⎝
0 0 2
0 0 0

− 1
3 −1 0

⎞

⎠ , q0 =
⎛

⎝
−3
−1
0

⎞

⎠ , q1 =
⎛

⎝
−

√
6
2 i
0
1
2

⎞

⎠ , p0 =
⎛

⎝
0
1
0

⎞

⎠ , p1 =
⎛

⎜
⎝

−
√
6
6 i

−
√
6
2 i
1

⎞

⎟
⎠ .

Therefore,

B(q0, q0) =
⎛

⎝
0

− 128
9

64
9

⎞

⎠ , B(q0, q1) =
⎛

⎜
⎝

− 16
3

8
3 − 32

√
6

27 i
16

√
6

27 i

⎞

⎟
⎠ ,

B(q1, q1) =
⎛

⎜
⎝

− 4
3 − 16

√
6

9 i
1
2

− 1
6 + 4

√
6

9 i

⎞

⎟
⎠ , B(q1, q̄1) =

⎛

⎝
−8
1
2− 1
6

⎞

⎠ ,

and

B(0) = G200 = −64

9
, H110 = 32

9
− 28

√
6

27
i, C(0) = G011 = 1

2
.
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Fig. 1 The continuation curve of the equilibrium E∗ of the system (1.2)

Also h200, h011, h110, are the solutions of the following nonsingular 4-dimensional real
bordered systems, respectively,

(
A q0
pT0 0

) (
h200
s

)

=
(−B(q0, q0)+ < p0, B(q0, q0) > q0

0

)

,

(
A q0
pT0 0

)(
h011
s

)

=
(−B(q1, q̄1)+ < p0, B(q1, q̄1) > q0

0

)

,

(
iω0 I3 − A q1

p̄T1 0

) (
h110
s

)

=
(
B(q0, q1)− < p1, B(q0, q1) > q1

0

)

,

where s is a one-dimensional stack variable. Thus

h200 =
⎛

⎝

64
3
0

− 64
3

⎞

⎠ , h011 =
⎛

⎝
− 1

2
0
191
4

⎞

⎠ , h110 =
⎛

⎜
⎝

8 + 37
√
6

9 i

− 32
9 − 4

√
6

3 i
1
9 + 4

√
6

9 i

⎞

⎟
⎠ .

We also have

C(q0, q0, q0) = C(q0, q0, q1) =
⎛

⎝
0
0
0

⎞

⎠ ,
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Fig. 2 Phase diagram for the Hopf bifurcation of the equilibrium E∗ of the system (1.2): the projection of
family of limit cycles in (x, z)-plane with respect to parameter c

C(q0, q1, q̄1) =
⎛

⎝

64
9
32
9− 32
9

⎞

⎠ , C(q1, q1, q̄1) =
⎛

⎜
⎝

8
3 + 32

√
6

27 i
0

− 2
3 − 8

√
6

27 i

⎞

⎟
⎠ ,

h020 =

⎛

⎜
⎜
⎝

1
3 + 32

9

√
6 −

(
8
3 + 8

9

√
6
)
i

i
1
18 − 8

9

√
6 −

(
1
3 + 16

27

√
6
)
i

⎞

⎟
⎟
⎠ ,

B(q0, h200) =
⎛

⎜
⎝

2048
9

5120
81

− 7744
81

⎞

⎟
⎠ , B(q1, h̄110) =

⎛

⎜
⎜
⎝

248
27 − 512

√
6

81 i
1
9 + 1780

√
6

243 i

− 65
27 − 452

√
6

243 i

⎞

⎟
⎟
⎠ ,

B(q̄1, h110) =

⎛

⎜
⎜
⎝

248
27 + 512

√
6

81 i
1
9 − 1780

√
6

243 i

− 65
27 + 452

√
6

243 i

⎞

⎟
⎟
⎠ , B(q0, h011) =

⎛

⎜
⎝

− 1528
3

− 6844
27

6860
27

⎞

⎟
⎠ ,

B(q0, h110) =

⎛

⎜
⎜
⎝

− 32
27 − 128

√
6

27 i
464
81 − 640

√
6

243 i

− 208
81 + 608

√
6

243 i

⎞

⎟
⎟
⎠ , B(q1, h200) =

⎛

⎜
⎝

2560
27 + 1024

√
6

27 i

− 64
3

− 64
27 − 256

√
6

27 i

⎞

⎟
⎠ ,

123



Bifurcation analysis of an intraguild predator-prey model Page 15 of 21 184

Fig. 3 H curve in (c, B1)-plane for the system (1.2)

B(q1, h011) =
⎛

⎜
⎝

− 1154
9 − 764

√
6

9 i
191
4

− 565
36 + 191

√
6

9 i

⎞

⎟
⎠ ,

B(q̄1, h020) =

⎛

⎜
⎜
⎜
⎝

(
212
243

√
6 + 512

243

√
3 + 16

27

√
2 + 4

9

)
+

(
− 256

81

√
3 + 8

81

√
2 − 104

27

)
i

(
− 56

27

√
6 + 1

18

)
+

(
− 16

27

√
6 + 7

3

)
i

−
(
56
81

√
6 + 128

243

√
3 + 4

27

√
2 + 1

6

)
+

(
16
27

√
6 + 64

81

√
3 − 2

81

√
2 − 1

27

)
i

⎞

⎟
⎟
⎟
⎠

.

Therefore

G300 = 2560

81
, G111 = − 6742

27
,

H210 = − 424

81

√
6 − 304

81
+

(
512

81
+ 544

243

√
6

)

i,

H021 = −
(
253

81

√
6 + 88

243

√
3 + 146

243

√
2 + 1153

81

)

−
(
6839

324

√
6 + 92

243

√
3 + 7

9

√
2 + 511

6

)

i .

Finally,

E(0) = −
(
17464

243

√
6 + 5632

729

√
3 + 9344

729

√
2 + 10544

9

)

< 0,
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Fig. 4 The continuation curve of the equilibrium E∗ of the system (3.9)

s = sign(B(0)C(0)) = −1, θ(0) = �H110

B(0)
= −1

4
< 0,

and therefore we have subcritical Hopf bifurcations and no tori.

4 Numerical continuation analysis for original model

This section deals with the numerical continuation method using the matlab package mat-
cont. This matlab package can be found in Dhooge et al. (2003). We compute several
bifurcation curves emanating from the detected bifurcation points, to examine the obtained
analytical results as well as to reveal more complicated dynamics of the system which can
not be achieved by analytical argument.

We now do a numerical continuation of the equilibrium E∗ of the system (1.2) by using
matcont, by fixing A1 = 4, A2 = 2, B1 = 1.7, B2 = 2 and c free with the initial value
c = 2.7. The matcont reports are: (for this continuation the initial point in state space is
x(0) = 0.45, y(0) = 0.02, z(0) = 0.35)

label = H , x = ( 0.496311 0.022055 0.369565 2.725996 ) First
Lyapunov coefficient = -1.049516e+00

label = BP, x = ( 0.548204 0.000000 0.369565 2.467951 )
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Fig. 5 Phase diagram for the Hopf bifurcation of the equilibrium E∗ of the system (3.9): the projection of a
family of limit cycles in (x, z)-plane with respect to parameter c

The corresponding curve is plotted in the Figure 1.A supercriticalHopf bifurcation is detected
with the first Lyapunov coefficient l1(0) = −1.049516 < 0 and therefore there is a unique
and stable limit cycle for each c after bifurcation point.

The projection of limit cycles in (x, z)-plane with respect to parameter c is plotted in
Fig. 2. We also compute a branch point BP when c = 2.467951.

We select the Hopf (H ) point to start a continuation of a Hopf bifurcation curve in two
control parameters c and B1 and keep all other parameters fixed. The matcont reports are:

label = ZH, x = ( 0.562500 0.000000 0.250000 1.333333
3.55555 60.666667 ) (s,theta,E0)=(1, -2.500000e-01, 1)

label = GH, x = ( 0.083328 0.160492 0.702089 2.336229
8.546494 0.349916 ) l2=1.257748e-01

The Hopf curve is depicted in Fig. 3.
Notice that ZH and GH indicate Hopf-zero bifurcation and generalized Hopf bifurcation,

respectively. We have a generalized Hopf (GH) on the Hopf curve with corresponding second
Lyapunov coefficient in the matcont report.

5 Numerical continuation analysis for modifiedmodel

In this section, we do a numerical continuation of the equilibrium E∗ of the system (3.9) by
using matcont, by fixing A1 = 4, A2 = 2, B1 = 1.7, B2 = 2 and c free with the initial
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Fig. 6 H curve in (c, B1)-plane for the system (3.9)

value c = 2.7. The matcont reports are: (for this continuation the initial point in state space
is x(0) = 0.45, y(0) = 0.02, z(0) = 0.35)

label = H , x = ( 0.496311 0.022055 0.369565 2.725996 ) First
Lyapunov coefficient = 6.231433e+00

label = BP, x = ( 0.548204 0.000000 0.369565 2.467951 )

The corresponding curve is depicted in the Fig. 4. A subcritical Hopf bifurcation is detected
with the first Lyapunov coefficient l1(0) = 6.231433 > 0 and therefore a unique and unstable
limit cycle emerges beyond c before bifurcation point.

The projection of limit cycles in (x, z)-plane with respect to parameter c is plotted in
Fig. 5.

We select the Hopf point (H ) point to start a continuation of a Hopf bifurcation curve
in two control parameters c and B1 and keep all other parameters the same. The matcont
reports are:

label = ZH, x = ( 0.562500 0.000000 0.250000 1.333333 3.555556
0.666667 ) (s,theta,E0)=(-1, -2.500000e-01, -1)

label = GH, x = ( 0.409038 0.052771 0.457367 1.910936 2.672646
0.607064 ) l2=-1.781534e+02

The Hopf curve is shown in Fig. 6.
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6 Conclusion and biological discussion

In this paper we first consider a predator-prey model consisting of a resource-consumer
with two consumer species. We investigate the stability of interior equilibrium and identify
codimension one generic bifurcations, i.e, fold and Hopf. However, continuation with two
free parameters gives a degenarate Hopf-zero bifurcation. We then modify the model by
adding the rate of conflict with the same equilibrium to obtain the non-degenerate Hopf-zero
bifurcation. For all these bifurcations we compute the critical normal form coefficients and
the corresponding parameter dependent normal forms of the reduced system to the center
manifold and then conclude the non-degeneracy conditions of generic bifurcations. Finally,
we numerically analyze the bifurcations by the toolbox matcont. On the Hopf bifurcation
curve we detect codimension two bifurcations, namely a Hopf-zero bifurcation and a gen-
eralized Hopf bifurcation. Also, for the modified model on the Hopf bifurcation curve we
detect codimension two bifurcations, i.e., Hopf-zero and generalized Hopf bifurcations.

Concerning to the biological implication of the system at E∗, both predators (consumers)
x, y and prey (resource) z are in stationary cases with positive populations. Parameter c in the
model (1.2) backs to rate that modifies consumers per-capita catch rates to include consumer
mutualism. The fixed parameters A1 = 4, A2 = 2, B2 = 2, are valid in point of ecological
view by the results of Assaneo et al. (2013). By Corollary 1, at c = ĉ the equilibrium E∗
of the system (1.2) undergoes a generic fold bifurcation and therefore in a neighborhood of
c = ĉ a curve of stable equilibria and a curve of unstable equilibria were born from E∗,
in which they exhibit stable and unstable stationary cases of populations and they collide
and both disappear at E∗. Therefore, at a slight parameter variation, some populations can
suddenly disappear or equivalently extinction occurs. Ecologically, we can refer to Scheffer
et al. (2001) for this catastrophic shift.

Also, by Corollary 2, at c = c̃ the equilibrium E∗ of the system (1.2) undergoes a generic
Hopf bifurcation and naturally if the first Lyapunov coefficient is negative, there is a unique
and stable limit cycle for each c after bifurcation point, i.e., stable populations of predators
x, y and prey z oscillate and have periodic behaviour. In an equivalent phrase, all the three
species coexist and have densities that vary periodically over time with a common period.
Near the Hopf-zero bifurcation and generalized Hopf bifurcation, generally we have complex
dynamics and complexity in populations.
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