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Abstract
Spatial pattern formation via Turing instability in the reaction–diffusion system associated
with the replicator dynamics is concernedwith the long-term effects of perturbations,whereas
the notion of reactivity describes the transient behaviour of perturbations to an asymptotically
stable equilibriumpoint. This article establishes the connection between these two concepts—
Turing instability and reactivity—in the context of the reaction–diffusion system associated
with game replicator dynamics. In particular, we show that for Turing instability to occur
in the reaction–diffusion system, the smallest diffusion coefficient of the system must be
strictly less than the ratio of positive reactivity of the stable equilibrium point and square of
wavenumber. This connection is also explored in terms of elements of the symmetric part of
the associated stability matrix.

Keywords Evolutionary game theory · ESS · Replicator dynamics · Reaction–diffusion
systems · Turing instability · Reactivity

Mathematics Subject Classification 91A22 · 92D25

1 Introduction

Mathematical game theory was initially developed as a tool to tackle the social and economic
problems in which there is strategic interaction among rational players. Evolutionary game
theory originated as its application to study population games in biology. Evolutionary game
theory studies the behaviour of large populations inwhich players engage in repeated strategic
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interactions. The first major contributions in population game are by Maynard Smith and
collaborators; see Smith and Price (1973), Smith (1974), Smith (1982). Evolutionary game
theory has found many applications also in social science and economics; see, e.g., Hofbauer
et al. (1998), Weibull (1997), Novozhilov et al. (2012), Roca et al. (2009), Nanda and Durrett
(2017), Park and Gokhale (2019), and the references therein.

In evolutionary game theory, we consider an infinitely large population in which indi-
viduals take part in pairwise symmetric contests. Each individual has finitely many (say r )
pure strategies, labelled 1, 2, . . . , r . If an individual plays strategy i against another who
plays strategy j , then the pay-off to the individual playing strategy i is ai j , giving rise to
the r × r pay-off matrix A = (ai j ). The state of the population at time t is described by
the probability vector p(t) = (p1(t), p2(t), . . . , pr (t))T , where pi (t) is the proportion of
individuals playing strategy i . In this context, Smith and Price (1973) introduced the concept
of ESS which is widely used to study the evolution of animals conflicts. A population state
p is said to be an ESS; if all the members of the population adopt it, then no mutant strategy
could invade the population. However, the theory of ESS does not tell us how it is achieved or
how quickly mutants are defeated. Later, a dynamical approach for the analysis of population
games, using replicator dynamics, was offered by Taylor and Jonker (1978), which allows the
investigation of the time evolution of population states p(t). However, due to the migration
of species, which involve spatial as well as temporal variations, replicator dynamics is not
sufficient to incorporate spatial variations.

Vickers (1989) introduced the reaction–diffusion model, in which pi (t) is replaced by
ni (x, t), the number density of i-strategists at time t at position x . Later, Cressman and
Vickers (1997) also presented amodelwith slightmodification (see Sect. 2). Both theseworks
analyzed the stability of equilibrium points of their respective reaction–diffusion models.
Spatially homogeneous equilibrium points which are stable in the absence of diffusion, but
become unstable upon addition of diffusion, can give rise to a special kind of instability named
diffusion-driven instability or Turing instability (see Turing 1952). Vickers (1989), Cressman
and Vickers (1997), and Vickers et al. (1993) derived some results on Turing instability, in
terms of elements of the Jacobian matrix B (see Sect. 2) when each player have four or less
strategies.

Spatial pattern formation via diffusion-driven instability (i.e., Turing instability) wherein
an equilibrium of the reaction–diffusion system is asymptotically stable in the absence of
dispersal but unstable in the presence of dispersal, plays an important role in biology, physics,
and chemistry. Now, the question arises: does each asymptotically stable equilibrium point
in the absence of diffusion can become unstable in the presence of diffusion ? The answer
to this question is ‘no’. It was found that some perturbations to asymptotically stable equi-
librium point in the absence of diffusion grow initially and growth can continue for some
time; on the other hand, some perturbations decrease monotonically (see, e.g., Neubert and
Caswell 1997). Neubert and Caswell call such asymptotically stable equilibrium point for
which perturbations initially grow before decaying, as reactive, and it was found that reactive
equilibrium point can only become unstable in the presence of diffusion. In this regard, the
concept of reactivity was introduced by Neubert and Caswell (1997) and defined as the max-
imum amplification rate, over all initial perturbations to an asymptotically stable equilibrium
point. Specifically, reactivity describes the short-term transient behaviour of perturbations to
an asymptotically stable equilibrium point. Neubert and Caswell (1997) also found that reac-
tivity of the asymptotically stable equilibrium point is the largest eigenvalue of the symmetric

part Hr(B) = (B + BT )

2
of the associated Jacobian matrix B (see Sect. 2). Later, Neubert

et al. (2002) establishes that positive reactivity of an asymptotically stable equilibrium point
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is necessary for the occurrence of Turing instability in the reaction–diffusion system under
consideration.

The main objective of this paper is to explore the connection between Turing instability
and reactivity, in the reaction–diffusion system (see (7) in Sect. 2) associated with the game
replicator dynamics. Since reactivity is the largest eigenvalue of the symmetricmatrix Hr(B)

and positive reactivity is necessary for Turing instability, it motivates us to find more explicit
conditions for Turing instability in terms of the diffusion coefficients, reactivity, and elements
of the symmetric matrix Hr(B). In this connection, we derive a theorem giving the necessary
condition for Turing instability in terms of reactivity and diffusion coefficients (see Sect. 3).
Furthermore, we also derive some results for Turing instability when r = 3, 4 in terms of
diffusion coefficients and elements of the matrix Hr(B) (see Sect. 4).

The rest of this paper is organized as follows. In Sect. 2, we recall some basic results
regarding the stability of matrices and replicator dynamics. Subsequently, we introduce the
reaction–diffusion system associated with the spatial games and describe the concept of
Turing instability in this system. The definition and some properties of the stable equilibrium
points are given at the end of Sect. 2. In Sect. 3, we derive necessary condition for Turing
instability in terms of reactivity and diffusion coefficients of the reaction–diffusion systems
(7). Section 4 contains results on Turing instability in terms of the diffusion coefficients and
elements of the symmetric matrix Hr(B), when r = 3, 4. We end the paper with concluding
remarks in Sect. 5.

2 Preliminaries

In this section, we outline some basic results regarding the stability of matrices, the analysis
of Turing instability, and the concept of reactivity in the reaction–diffusion system associated
with replicator dynamics.

2.1 Stability of matrices and the Routh–Hurwitz criterion

We begin with the definition of stable and negative definite matrices.

Definition 1 (Qian and Murray 2001) A r × r real matrix, B, is said to be:

(i) stable if all its eigenvalues have negative real parts, and
(ii) negative definite if the quadratic form yT By < 0, ∀y(�= 0) ∈ R

r .

Remark 1 Negative definiteness implies stability, but the converse is not true.

For a fixed diagonal matrix D with nonnegative entries and a real parameter k, let B(k) =
B − k2D. The next lemma relates the negative definiteness of B with that of B(k).

Lemma 1 (Qian and Murray 2001) If B is negative definite, then the matrix B(k) is also
negative definite.

To state the Routh–Hurwitz criterion for the stability of B, consider its characteristic
equation

a0λ
r + a1λ

r−1 + a2λ
r−2 + · · · + ar−1λ + ar = 0, (1)

where the coefficients ai , i = 0, 1, . . ., r are all real.
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The Routh–Hurwitz matrix corresponding to B is

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a0 0 0 0 0 · · · 0
a3 a2 a1 a0 0 0 · · · 0
a5 a4 a3 a2 a1 a0 · · · 0
...

...
...

a2l+1 a2l · · · ...
...

...

0 0 0 0 0 0 · · · ar

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
r×r

.

Proposition 1 (Stability criterion of Routh–Hurwitz) (Gantmakher 1998; Murray 2007) The
roots of characteristic equation (1) have negative real parts (or equivalently, B is stable) iff
all the principal diagonal minors �1, �2, …, �r of the matrix H (Routh–Hurwitz matrix)
are positive, provided that ar > 0 and a0 = 1.

Remark 2 By the definition of Routh–Hurwitz matrix H , it follows that�r = ar�r−1. Now,
using this, we can rewrite the above proposition as follows: “the matrix B is stable iff all
coefficients of characteristics equation (1) are positive”.

2.2 Reaction–diffusion system associated with the replicator dynamics and Turing
instability

In this subsection, we first introduce replicator dynamics and evolutionarily stable states,
followed by the associated reaction–diffusion system and its Turing instability.
Replicator dynamics

Generally, an evolutionary process consists of two basic elements: a mutation mecha-
nism that provides variety and a selection mechanism that provides choice among currently
available strategies. While the criterion of evolutionary stability highlights the role of muta-
tions, the replicator dynamics highlights the role of selection. The term replicator dynamics
has been introduced by Schuster and Sigmund (1983). Replicators are entities that can get
copied. The probability of being copied may depend on the performance and environment of
the replicator, and a copy of the replicator is an identical replicator that may again get copied.

Consider a large population of individuals who are programmed to play pure strategies
i ∈ K = {1, 2, . . . , r} in a symmetric two-player game with mixed strategy simplex �

and pay-off function u(p, q) = pT Aq , where Ar×r is the pay-off matrix. At any time t ,
let xi (t) be the number of individuals who are playing the pure strategy i ∈ K , and let
X(t) = ∑

i∈K xi (t) be the total population size. The associated population state is defined as
the column vector p(t) = (p1(t), p2(t), . . . , pr (t))T , where pi (t) = xi (t)

X(t) is the population
share programmed to the pure strategy i at time t . Then, the replicator dynamics for the
evolution of population state p(t) is

ṗi = pi [u(ei , p) − u(p, p)], 1 ≤ i ≤ r .

Here, u(ei , p) and u(p, p) are average pay-offs to pure strategy i at a random match and
population average pay-off, respectively, when population is in state p. Therefore, pure
strategies that perform better than average grow, while those performing worse than average
decline.

We now recall the definition of an ESS (Evolutionarily Stable State) (see Smith and Price
1973; Smith 1974; Weibull 1997; Cressman and Vickers 1997; Hofbauer et al. 1998).
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Definition 2 A population state p ∈ � is said to be an ESS if for every state q �= p, there
exists ε̄ ∈ (0, 1), such that

u(p, εq + (1 − ε)p) > u(q, εq + (1 − ε)p), 0 < ε < ε̄.

Remark 3 Note that p being an ESS is equivalent to the following set of conditions:

u(p, p) ≥ u(q, p), ∀q ∈ �,

q �= p & u(p, p) = u(q, p) ⇒ u(p, q) > u(q, q).

Recall that we have a population in which there are random pairwise contests between the
players, each player has r strategies, and A = (ai j )r×r is the pay-off matrix where ai j is the
pay-off to an individual who plays strategy i against the opponent playing strategy j . In this
context, we can rewrite the replicator dynamics as

dpi
dt

= pi [(Ap)i − pT Ap], 1 ≤ i ≤ r . (2)

For this system (2), we can find equilibrium points and investigate their stability. An ESS
of the pay-off matrix A is always an equilibrium point of system (2) (see Weibull 1997).
In replicator dynamics, spatial effects are ignored, but we know that the concept of ESS
involves the consideration of migrating groups (or invaders or mutants) that produce a spatial
variation. This motivates one to incorporate the dispersal or diffusion effects in system (2).
We take the dispersal rate for each strategy to be fixed, but may vary between strategies.
When dispersal rates are independent of strategies, the replicator model may be modified to
the following spatial model:

∂ pi
∂t

= pi [(Ap)i − pT Ap] + d �2 pi , 1 ≤ i ≤ r ,

where pi = pi (x, t), x ∈ � (� ⊂ R
l ) is the position vector, d is the common diffusion

coefficient and �2 is the Laplace operator. Throughout this paper, we take one-dimensional

space where �2 = ∂2

∂x2
. This spatial model cannot be immediately generalized to allow

different dispersion rates for different strategies. The difficulty lies in the fact that p represents
the frequencies rather than the numbers and dispersal usually depends upon the variation in
the numbers.

Therefore, we consider the following two models in which growth rate depends upon how
well individuals perform relative to the average pay-off or the common background fitness.
The first model introduced by Vickers (1989) and is given as

∂ni
∂t

= ni

[
(An)i

N
− nT An

N 2

]
+ di �2 ni , 1 ≤ i ≤ r , (3)

where

N (x, t) =
r∑

i=1

ni (x, t).

In this system of reaction–diffusion equations, ni (x, t) is the number density of i-
strategists at position x and N (x, t) is the total number density, at time t . The constant
di is the dispersal rate for i-strategists. The system (3) is assumed to hold in the region
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� × [0,∞) (where � ⊂ R) with zero Neumann boundary conditions being imposed on ∂�.
It is also clear that

∂N

∂t
=

r∑
i=1

di �2 ni ,

and after integrating this on �, it follows that
∫
Ndx is a constant (carrying capacity, inde-

pendent of t).
In the second model, an individual’s fitness comprises its pay-off in a random contest

along with a common background fitness function, F(N ), to all strategies. This function
controls the growth rate of all strategists present in the population. Generally, F(N ) is taken
as a decreasing function of the density N (see Cressman and Vickers 1997). The model is
given as

∂ni
∂t

= ni

[
(An)i

N
+ F(N )

]
+ di �2 ni , 1 ≤ i ≤ r , (4)

∂ni
∂x

= 0, x ∈ ∂�.

The dynamics of p is given by (2) and associated density dynamics becomes

Ṅ = N
[
pT Ap + F(N )

]
. (5)

Note that the equilibrium point of the system (4) is n∗ = N∗ p∗, where p∗ and N∗ are the
equilibrium points of (2) and (5), respectively. In the case of interior ESS of the matrix A, p
evolve to p∗ and N evolve to N∗. For typical F(N ), we expect a unique positive equilibrium
density N∗.

Remark 4 If all ni are independent of x , then the reaction–diffusion system (3) reduces to

dni
dt

= ni

[
(An)i

N
− nT An

N 2

]
, 1 ≤ i ≤ r , (6)

and hence, N is constant. Consequently, (6) becomes equivalent to (2) by taking pi = ni
N .

Thus, spatially constant equilibrium point n∗ of (3) and p∗ of (2) are related by n∗ = N∗ p∗.

We now recall the definitions of stable and unstable equilibrium points of the reaction–
diffusion system (3) or (4).

Definition 3 (Vickers et al. 1993) A homogeneous (that is, spatially constant) equilibrium
point n∗ of (3) (or (4)) is said to be:

(i) temporally stable if it is asymptotically stable for spatially homogeneous perturbations
of the reaction system (3) (or (4)) with di = 0, 1 ≤ i ≤ r .

(ii) spatially stable equilibrium point with a particular set of di if it is asymptotically stable
for spatially heterogeneous perturbations.

(iii) uniformly spatially stable if it is asymptotically stable for spatially heterogeneous per-
turbations, for all di ≥ 0.

Definition 4 (Turing instability) (Turing 1952; Vickers et al. 1993)
The reaction–diffusion system (3) or (4) is said to exhibit Turing instability (diffusion-

driven instability) if there is a homogeneous steady-state n∗ asymptotically stable to small
perturbations in the absence of diffusion, but unstable to small spatial perturbations when
diffusion is present.
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The interplay between diffusion and nonlinear reaction kinetics gives rise to spatially
inhomogeneous patterns. It has been proved by Vickers (1989) that if p∗ is an interior ESS
of the pay-off matrix A, then the corresponding n∗ is uniformly spatially stable for system
(3) and hence no Turing instability. In this regard, Cressman and Vickers (1997) also shown
that ESS can also become unstable under dynamics (4) and results in spatial patterns. This
motivates us to study general necessary conditions for Turing instability when r ≥ 2. To this
end, we note that the reaction–diffusion systems (3) or (4) can be expressed as

∂ni
∂t

= fi (n1, n2, . . . , nr ) + di �2 ni , 1 ≤ i ≤ r ,

∂ni
∂x

= 0, x ∈ ∂�, (7)

where the terms fi (n), i = 1, 2, . . . , r , represent the reaction part of system (3) or (4), that is

fi (n) = ni

[
(An)i

N
− nT An

N 2

]
for system (3), and fi (n) = ni

[
(An)i

N
+ F(N )

]
for system

(4).
For the equilibrium point p∗ of (2), let n∗ = N∗ p∗ be the spatially constant equilibrium

point of system (7) under consideration. We take the perturbation in n∗ of the form exp(λt +
ιkx) (or exp(λt) cos(kx)) in infinite (or in finite) domain and thus

n = n∗ + y exp(λt + ιkx), (8)

where λ ∈ R, k ∈ R is the wavenumber, and y ∈ R
r (see Vickers 1989).

Then, by linear analysis of (7) about the stable spatially constant equilibrium point, n∗
yields the linear system

λyi =
r∑
j=1

y j

[
∂ fi
∂n j

]

n∗
− di k

2yi , 1 ≤ i ≤ r .

The condition for non-trivial solution to this linear system is

det

[[
∂ fi
∂n j

]

n∗
− (di k

2 + λ)δi j

]
= 0.

Let B =
[

∂ fi
∂n j

]

n∗
be the Jacobian matrix for (7) without diffusion, and B(k) = B − k2D be

the Jacobian matrix for (7), where D = diag(d1, d2, . . . , dr ). Note that after taking partial
derivatives, we obtain

B =
(
n∗
i

[
ai j
N∗ − (n∗T A) j

N∗2

])

r×r

=
(
p∗
i [ai j − (p∗T A) j ]

)
r×r

, (9)

B(k) =
(
n∗
i

[
ai j
N∗ − (n∗T A) j

N∗2

]
− k2di

)

r×r

=
(
p∗
i [ai j − (p∗T A) j ] − k2di

)
r×r

, (10)

and

B =
(
p∗
i [ai j − (p∗T Ap∗) − N∗F ′(N∗)]

)
r×r

, (11)
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B(k) =
(
p∗
i [ai j − (p∗T Ap∗) − N∗F ′(N∗)] − k2di

)
r×r

, (12)

for the reaction–diffusion system (7) with reaction term fi (n) as in the reaction–diffusion
models (3) and (4), respectively.

From Definition 4, it is clear that for Turing instability, we require a spatially constant
asymptotically stable equilibriumpoint of system (7),which becomes unstable in the presence
of diffusion. Therefore, Turing instability is concerned with finding the conditions on B, k,
and D (diffusion matrix), such that in the presence of diffusion, the matrix B(k) = B − k2D
has an eigenvaluewith a positive real part.Vickers (1989) andVickers et al. (1993) have shown
that spatial patterns (Turing instability) are observed when the matrix B has all characteristic
roots with negative real parts [together with the zero root, for B in the system (3)] and the
matrix B(k) has at least one root with positive real part for specific ranges of wavenumber k.
Vickers et al. (1993) and Cressman and Vickers (1997) also derived some results regarding
Turing instability in the reaction–diffusion model (3) and (4), respectively.

In the next subsection, we discuss briefly the concept of reactivity, which is going to
play an important role in deriving the necessary condition for Turing instability in terms of
diffusion coefficients.

2.3 Reactivity

It is known that when n∗ is temporally stable, then any perturbation to n∗ tends to zero asymp-
totically. However, some perturbations achieve their maximum first in a very short time, and
after that, they tend to zero. On the other hand, some perturbations tend to zeromonotonically.
The short-term transient behaviour may be different from asymptotic behaviour.

Consider an initial perturbation of magnitude ‖P0‖, to the asymptotically stable equilib-
rium point of the linearised system

dP

dt
= BP, (13)

where B is the linearised Jacobian matrix of system (7) without diffusion. The perturbation
P in n∗, will increase or decrease depending upon the initial condition P(0) = P0 and time.
Now, the reactivity of stable equilibrium point n∗ is defined as

Definition 5 (Reactivity) (Neubert and Caswell 1997) The reactivity of the stable equilibrium
point n∗ is the maximum amplification rate, over all initial perturbations, that is

reactivity = max‖P0‖

{(
1

‖P(t)‖
d‖P(t)‖

dt

)
|t=0

}

or

reactivity = max‖P0‖=1

{(
1

‖P(t)‖
d‖P(t)‖

dt

)
|t=0

}
,

where ‖.‖ is 2-norm.

For a nonlinear system, the reactivity of a stable equilibrium point is computed from the
linearised system near that equilibrium point. Equilibria with positive reactivity are called
reactive.
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Revisiting Definition 5, the term
d‖P(t)‖

dt
can be rewritten as

d‖P(t)‖
dt

= PT (t)(B + BT )P(t)

2‖P(t)‖ . (14)

Define the matrix Hr(B) as

Hr(B) = 1

2

(
B + BT

)
. (15)

Therefore, from Eqs. (14) and (15), we get
(

1

‖P‖
d‖P‖
dt

)
|t=0 = PT

0 Hr(B)P0
PT
0 P0

. (16)

The R.H.S. of (16) is known as the Rayleigh quotient. Consequently, reactivity is the max-
imum of this ratio over P0. By Rayleigh’s Principle (see Johnson and Horn 1985), largest
eigenvalue of matrix Hr(B) is the maximum value of Rayleigh quotient. Thus, the Defini-
tion 5 can also be written as

reactivity = λ1 (Hr(B)) ,

where λ1 (Hr(B)) is the largest eigenvalue of Hr(B) (since Hr(B) is Hermitian, its eigen-
values are real). While the eigenvalues of B determine the asymptotic behaviour of the
linearised system (13), the eigenvalues of Hr(B) determine its transient behaviour. There-
fore, if λ1(Hr(B)) > 0, then the equilibrium point will be reactive, and the magnitude of
corresponding perturbation will initially grow before decaying.

In the following subsection, we describe the connection between reactivity and Turing
instability.

2.3.1 Turing instability and reactivity

In this subsection, we briefly discuss the conditions for Turing instability in the reaction–
diffusion system (7) in terms of reactivity. In the absence of diffusion, stability of the
homogeneous equilibrium point is determined by eigenvalues of the linearised matrix B,
whereas reactivity is determined by eigenvalues of the matrix Hr(B). The linearised sys-
tems with and without diffusion are different. Now, we recall that spatially homogeneous
equilibrium point n∗ can be unstable to spatial perturbation only if this equilibrium is reactive,
or equivalently positive reactivity of an equilibrium point is necessary for Turing instability
(see also Neubert et al. 2002).

For a small spatial perturbation P̂(x, t) to n∗ [i.e., P̂(x, t) = y exp(λt + ιkx), using (8)],
we get the linearised system as

d P̂

dt
= B(k)P̂, (17)

where B(k) = B − k2D.
Let λ1(B(k)) be an eigenvalue of B(k) with largest real part. If Re(λ1(B(k))) < 0, then

limt→∞ ‖P̂(x, t)‖ = 0. If this holds for all k, then n∗ is stable in the presence of diffusion.
However, if Re(λ1(B(k))) > 0 for some k, then perturbations with this spatial frequency will
grow and gives rise to Turing instability. Therefore, the equilibrium point n∗ is destabilised
by diffusion. Using (17) and Definition 5, Neubert et al. (2002) established that positive
reactivity is necessary for Turing instability.
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In view of above discussion, we derive a necessary condition for Turing instability in
terms of diffusion coefficients and reactivity, in the next section.

3 Necessary condition for Turing instability in terms of diffusion
coefficients and reactivity

It is well known that for Turing instability, there must be variability in diffusion coefficients
(see, e.g., Turing 1952; Vickers 1989; Cressman and Vickers 1997; Vickers et al. 1993).
Therefore, the discussion in Sect. 2 leads us to derive a necessary condition for Turing
instability in the reaction–diffusion system (7) in term of diffusion coefficients and reactivity,
as given in the theorem below.

Theorem 1 Let n∗ = N∗ p∗ be a temporally stable equilibriumpoint of the reaction–diffusion
system (7) with n∗

i > 0, i = 1, 2, . . . , r . If there is Turing instability in system (7) due to
perturbation (8) corresponding to wavenumber k > 0, with di ≥ 0, i = 1, 2, . . . , r ,

then dmin <
λ1(Hr(B))

k2
(here, dmin = min (d1, d2, . . . , dr ) and λ1(Hr(B)) is positive

reactivity).

Proof Assume that di ≥ 0, i = 1, 2, . . . , r , and there is Turing instability in system (7)
due to perturbation (8) corresponding to wavenumber k. Using the linearised transformation
(17), we have

d‖P̂‖
dt

= P̂T Hr(B(k))P̂

P̂T P̂
‖P̂‖, (18)

where Hr(B(k)) is the Hermitian matrix given by

Hr(B(k)) = Hr(B) − k2D. (19)

By Rayleigh’s Principle (see Johnson and Horn 1985), we get

P̂T Hr(B(k))P̂

P̂T P̂
≤ λ1(Hr(B(k))),

where λ1(Hr(B(k))) is the largest eigenvalue of Hr(B(k)). Thus, from (18) and (19), we
have

d‖P̂‖
dt

≤ λ1(Hr(B(k)))‖P̂‖.
Since there isTuring instability in the reaction–diffusion system,wemust haveλ1(Hr(B(k))) >

0 (otherwise, limt→∞ ‖P̂(k, t)‖ = 0, giving no Turing instability). Also, in (19), the right-
hand side is a sum of symmetric matrices. Therefore, by Weyl’s theorem (see Johnson and
Horn 1985), the largest eigenvalue of the sum is less than or equal to the sum of largest
eigenvalues of each matrix. Note that the largest eigenvalue of the matrix Hr(B) is positive,
that is, λ1(Hr(B)) > 0, for Turing instability (see, e.g., Neubert et al. 2002). Moreover, the
largest eigenvalue of the matrix −k2D is −k2dmin. Thus, for the given k > 0, the smallest

diffusion coefficient dmin is strictly less than
λ1(Hr(B))

k2
which can be written equivalently

as

dmin <
λ1(Hr(B))

k2
.
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This completes the proof. ��
Next, we illustrate Theorem 1 using an example.

Example 1 Suppose that the pay-off matrix of the symmetric contest between two players,
each having two strategies in a population game, is

A =
[
5 −5
9 −9

]
.

Consider the reaction–diffusion model (4) with background fitness function F(N ) =
3 − 3N . Then, N∗ = 1 and p∗ =

(
1

2
,
1

2

)
which is also an ESS of A. Therefore, n∗ =

N∗ p∗ =
(
1

2
,
1

2

)
is an equilibrium point of the associated reaction–diffusion system (4).

The Jacobian matrix in the absence of diffusion [see (11)] is

B =
[
1 −4
3 −6

]
.

The eigenvalues of B are −2,−3. Thus, n∗ =
(
1

2
,
1

2

)
is stable when diffusion is not

present in the system, and Fig. 1 confirms this.

Associated Hermitian matrix Hr(B) is given by

Hr(B) =
[

1 −0.5
−0.5 −6

]

and λ1(Hr(B)) = 24.1421, which shows that n∗ is reactive. Suppose that 0 ≤ d1 < d2 = 2,

and there is Turing instability in system (4). By Theorem 1, d1 <
λ1(Hr(B))

k2
, i.e., d1 <

24.1421

k2
. For instance, take d1 = 0, d2 = 2, then Jacobian matrix B(k) = B − k2D has at

least one positive eigenvalue for k2 > 3. Fix k2 = 4. This yields the Jacobian matrix in the
presence of diffusion (see (12)) as

B(k) =
[
1 −4
3 −14

]
,

having eigenvalues −13.1521, 0.1521. The positive eigenvalue causes Turing instability
in the reaction–diffusion system (4). Figure 2 shows the approximate unstable behaviour

(perturbations in n∗ corresponding to eigenvalue 0.1520673) near n∗ =
(
1

2
,
1

2

)
in the

presence of diffusion.

Similarly, when we take d1 = 1

12
, d2 = 6, for 1.22 < k2 < 9.772, the matrix B(k) has

at least one positive eigenvalue. For instance, take k2 = 4. Then, the Jacobian matrix

B(k) =
[2

3
−4

3 −30

]

has eigenvalues −29.603571, 0.2702376, causing Turing instability. Figure 3 shows the
approximate unstable behaviour (perturbations in n∗ corresponding to eigenvalue 0.2702376)

near n∗ =
(
1

2
,
1

2

)
in the presence of diffusion.
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Fig. 1 These figures represent the fluctuations in n1(t) and n2(t)with initial states (1, 0), (0, 1) and (0.2, 0.8),
respectively

Fig. 2 Variations of ni (x, t) in the domain [0, 2π ] × [0, 1] (d1 = 0, d2 = 2, k2 = 4)

Note that here the necessary condition dmin <
λ1(Hr(B))

k2
is satisfied for 1.22 < k2 <

9.772, that is reflected in Fig. 4.

123



Necessary conditions for Turing instability in the... Page 13 of 20 160

Fig. 3 Variations of ni (x, t) in the domain [0, 2π ] × [0, 0.1] (d1 = 1

12
, d2 = 6, k2 = 4)

Fig. 4 This graph shows that, for

d1 = 1

12
, d2 = 6, and

1.22 < k2 < 9.772, the
expression k2dmin − λ1(Hr(B))

is negative

In the next section, we derive necessary conditions for Turing instability that do not depend
explicitly on the reactivity of the equilibrium point.

4 Explicit conditions for diffusion coefficients and the wavenumber k

It is clear from the proof of Theorem 1 (in Sect. 3) that, for Turing instability in the reaction–
diffusion system (7) with di ≥ 0, the largest eigenvalue of the matrix Hr(B(k)) is positive
(i.e., λ1(Hr(B(k))) > 0). In view of this, we use the Routh–Hurwitz criterion for the
symmetric matrix Hr(B(k)) and derive results regarding Turing instability in the reaction–
diffusion system (7).

4.1 Necessary conditions in terms of diffusion coefficients and wavenumber for
three strategies games

Let the characteristic equation of the matrix Hr(B(k)) (with r=3) be

λ3 + p1(k)λ
2 + p2(k)λ + p3(k) = 0, (20)

where p1(k) = −tr [Hr(B(k))], p2(k) = M11(k) + M22(k) + M33(k) and p3(k) =
−det[Hr(B(k))]. Here, Mii (k) is the cofactor of the diagonal element hii (k).
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Now, the Routh–Hurwitz matrix H(k) for (20) can be written as

H(k) =
⎡
⎣
p1(k) 1 0
p3(k) p2(k) p1(k)
0 0 p3(k)

⎤
⎦ .

Therefore, by Proposition 1, thematrix Hr(B(k)) is stable if the followingRouth–Hurwitz
conditions are satisfied:

1. det[Hr(B(k))] = −p3(k) < 0,
2. tr [Hr(B(k))] = −p1(k) < 0,
3. p2(k)p1(k) − p3(k) > 0.

It is useful to note that

p1(k) = −tr [Hr(B)] + (d1 + d2 + d3)k
2,

p2(k) = (d1d2 + d2d3 + d1d3)k
4 − [d1(h22 + h33) + d2(h11 + h33) + d3(h22 + h11)]k2

+(M11 + M22 + M33),

p3(k) = d1d2d3k
6 − (h11d2d3 + h22d1d3 + h33d1d2)k

4

+(d1M11 + d2M22 + d3M33)k
2 − det[Hr(B)].

Here, diagonal elements of Hr(B) are the same as that of the matrix B, that is, hii = bii .

This yields tr [Hr(B)] = tr [B] < 0 (because Hr(B) = B + BT

2
and B is assumed to be

stable). And Mii is the diagonal cofactor of hii . Note that if hii = bii < 0, Mii > 0 for all
i , and det[Hr(B)] ≤ 0, then pi (k) > 0, i = 1, 2, 3. Therefore, the matrix Hr(B(k)) turns
out to be stable. It is now clear that if any of the three Routh–Hurwitz conditions fail to hold,
then Turing instability will occur. In particular, the matrix Hr(B(k)) has at least one positive
eigenvalue and pi (k) is negative for some i . Observe that p1(k) is always positive, which
yields p2(k) < 0 or p3(k) < 0. Keeping this in mind, we derive necessary conditions for
Turing Instability, depending upon diffusion coefficients and wavenumber k, as given below.

Let us suppose that there is Turing instability in system (7). From the above discussion, it
follows that p2(k) < 0 or p3(k) < 0.

Take d1 = d2 = 0. Then, d3 > 0 is the largest diffusion coefficient which satisfies
d3M33k2 < det[Hr(B)] or d3(h11 + h22)k2 >

∑
i Mii , for given wavenumber k. From this

discussion, the next theorem follows.

Theorem 2 Let n∗ = N∗ p∗ be a temporally stable equilibriumpoint of the reaction–diffusion
system (7) with n∗

i > 0, i = 1, 2, 3. Suppose that d1 = d2 = 0 and there is Turing instability
in system (7), for a given wavenumber k. Then, the largest positive diffusion coefficient d3
satisfies d3M33k2 < det[Hr(B)] or d3(h11 + h22)k2 >

∑
i Mii .

We now consider an example which illustrates Theorem 2.

Example 2 Consider an infinite population in which there are two-player symmetric contests
with three strategies and pay-off matrix

A =
⎡
⎣
1 2 −3
2 3 −5
1 4 −5

⎤
⎦ .

Take the reaction–diffusion model (4) with background fitness function F(N ) = 4− 4N .

Then, N∗ = 1 and p∗ =
(
1

3
,
1

3
,
1

3

)
, i.e., n∗ = p∗. Clearly, p∗ is not an ESS, because
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E(p∗, q) > E(q, q) is not true for q =
(
1

2
,
1

2
, 0

)
which is an alternate best response to

p∗. The associated Jacobian matrix is

B = 1

3

⎡
⎣

−3 −2 −7
−2 −1 −9
−3 0 −9

⎤
⎦ .

The eigenvalues of B are −4, − 0.1667∓ 0.441ι, implying the stability of the matrix B.
Stability behaviour of n∗ in the absence of diffusion is shown in Fig. 5.

Now, the Hermitian matrix Hr(B) is calculated as

Hr(B) = 1

3

⎡
⎣

−3 −2 −5
−2 −1 −4.5
−5 −4.5 −9

⎤
⎦ ,

having largest eigenvalue λ1(Hr(B)) = 0.3504. This shows that n∗ is reactive.
Take d1 = d2 = 0 and suppose that there is Turing instability in the reaction–diffusion

system (4). Therefore, by Theorem 2, at least one of the two necessary conditions holds. In

Fig. 5 These figures represent the fluctuations in n1(t), n2(t), and n3(t) with initial states (1, 0, 0), (0, 1, 0),
and (0, 0, 1), respectively
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fact, in this example, one of the conditions is satisfied, namely, d3M33k2 < det[Hr(B)], for
d3 = 3 and k2 = 4 (i.e.,

−12

9
< 0.1759). Now, for d1 = d2 = 0, d3 = 3, and k2 = 4, the

Jacobian matrix is

B(k) = 1

3

⎡
⎣

−3 −2 −7
−2 −1 −9
−3 0 −45

⎤
⎦ .

The eigenvalues of B(k) are−15.1745, −1.1836, 0.0247. The single positive eigenvalue
causes the Turing instability in the reaction–diffusion system (4), and Fig. 6 depicts the
approximate unstable behaviour (perturbation in n∗ corresponding to eigenvalue 0.0247)
near n∗ in the presence of diffusion.

Note that in this example, the necessary condition as given in Theorem 1 is also satisfied,

that is, dmin <
λ1(Hr(B))

k2
or 0 < 0.0876.

In the next subsection, we derive analogous necessary conditions for Turing instability
with four strategies, in terms of diffusion coefficients and the wavenumber k.

Fig. 6 Variations of ni (x, t) in the domain [0, 2π ] × [0, 1] (d1 = d2 = 0, d3 = 3, k2 = 4)
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4.2 Necessary conditions in terms of diffusion coefficients and wavenumber for four
strategies games

Let the characteristic equation of the matrix Hr(B(k)) (with r = 4) be

λ4 + p1(k)λ
3 + p2(k)λ

2 + p3(k)λ + p4(k) = 0. (21)

The Routh–Hurwitz matrix H(k) for (21) can be written as

H(k) =

⎡
⎢⎢⎣
p1(k) 1 0 0
p3(k) p2(k) p1(k) 1
0 p4(k) p3(k) p2(k)
0 0 0 p4(k)

⎤
⎥⎥⎦ .

Therefore, by Proposition 1, thematrix Hr(B(k)) is stable if the followingRouth–Hurwitz
conditions are satisfied:

1. det[B(k)] = p4(k) > 0,
2. tr [B(k)] = −p1(k) < 0,
3. p2(k)p1(k) − p3(k) > 0,
4. p1(k) (p3(k)p2(k) − p4(k)p1(k)) − p23(k) > 0,

where

p1(k) = [d1 + d2 + d3 + d4]k2 − [h11 + h22 + h33 + h44],
p2(k) = [d1d2 + d1d3 + d1d4 + d2d3 + d2d4 + d3d4]k4 − [d1(h22 + h33 + h44)

+d2(h11 + h33 + h44) + d3(h11 + h22 + h44) + d4(h11 + h22 + h33)]k2
+(F12 + F13 + F14 + F23 + F24 + F34),

p3(k) = [d1d2d3 + d1d2d4 + d1d3d4 + d2d3d4]k6 − [d1d2(h33 + h44)

+d1d3(h22 + h44) + d1d4(h22 + h33) + d2d4(h11 + h33)

+d2d3(h11 + h44) + d3d4(h11 + h22)]k4
+[d1(F34 + F32 + F24) + d2(F34 + F13 + F14)

+d3(F24 + F12 + F14) + d4(F12 + F13 + F23)]k2 −
4∑

i=1

Mii ,

p4(k) = d1d2d3d4k
8 − [d1d2d3h44 + d1d2d4h33 + d1d3d4h22 + d2d3d4h11]k6

+[d1d2F34 + d1d3F24 + d1d4F23 + d2d3F14 + d2d4F13 + d3d4F12]k4

−
[

4∑
i=1

di Mii

]
k2 + det[Hr(B)].

Here, hii = bii and Fi j = hii h j j − hi j h ji . In particular, Fi j = Fji and Fii = 0.
TheRouth–Hurwitz conditions are satisfied for thematrix Hr(B(k)) if for all i, j , hii < 0,

Fi j > 0, Mii < 0, and det[Hr(B)] > 0. For Turing instability to occur, at least one of the
pl(k), l = 2, 3, 4 must be negative (because p1(k) is always positive).

Assume that there is Turing instability in the reaction–diffusion system (7) corresponding
to a given wavenumber k. Take d1 = d2 = d3 = 0. Then, the largest diffusion coefficient
d4 > 0, satisfies d4M44k2 > det[Hr(B)] or d4(F12 + F13 + F23)k2 <

∑4
i=1 Mii or

d4(h11 + h22 + h33)k2 > (F12 + F13 + F14 + F23 + F24 + F34). From the above discussion,
the next theorem follows.
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Theorem 3 Let n∗ = N∗ p∗ be a temporally stable equilibrium point of system (7) with
n∗
i > 0, i = 1, 2, 3, 4. Suppose d1 = d2 = d3 = 0 and there is Turing instability in the

reaction–diffusion system (7), for a given wavenumber k. Then, the largest positive diffusion

coefficient d4 satisfies d4M44k2 > det[Hr(B)] or d4(F12 + F13 + F23)k2 <
4∑

i=1
Mii or

d4(h11 +h22 +h33)k2 > (F12 + F13+ F14 + F23+ F24 + F34). Here, Fi j = hii h j j −hi j h ji ,
and Mii is the diagonal cofactor of hii .

For illustration of Theorem 3, we consider the following example.

Example 3 For the pay-off matrix

A =

⎡
⎢⎢⎣
1 2 0 −3
2 1 0 −3
3 1 −4 0
1 3 0 −4

⎤
⎥⎥⎦ ,

in the reaction–diffusion system (4) with F(N ) = 1 − N , the equilibrium point is n∗ =
N∗ p∗ =

(
1

4
,
1

4
,
1

4
,
1

4

)
. The associated Jacobian matrix in the absence of diffusion is

B = 1

4

⎡
⎢⎢⎣
0 1 −1 −4
1 0 −1 −4
2 0 −5 −1
0 2 −1 −5

⎤
⎥⎥⎦ .

The eigenvalues of the matrix B are−0.25, −0.25, −1, −1, and hence, the equilibrium
point n∗ is stable. Now, the Hermitian matrix Hr(B) is

Hr(B) =

⎡
⎢⎢⎣
0 0.25 0.125 −0.5
0.25 0 −0.125 −0.25
0.125 −0.125 −1.25 −0.25
−0.5 −0.25 −0.25 −1.25

⎤
⎥⎥⎦ .

The largest eigenvalue of Hr(B) is λ1(Hr(B)) = 0.1418 which shows that the equilib-
rium point n∗ is reactive.

Take d1 = d2 = d3 = 0, and suppose that there is Turing instability in the reaction–
diffusion system (7) corresponding to the wavenumber k = 2. Therefore, by Theorem 3, at
least one of the three necessary conditions holds. In fact, in this example, two of them are
satisfied, namely, d4M44k2 > det[Hr(B)] and d4(F12 + F13 + F23)k2 <

∑4
i=1 Mii , are

satisfied for d4 = 5 (i.e., 1.406 > −0.1494 and −1.8750 < 0.6562, respectively). Now, the
Jacobian matrix in the presence of diffusion (when d1 = d2 = d3 = 0, d4 = 5, and k2 = 4)
is

B(k) = 1

4

⎡
⎢⎢⎣
0 1 −1 −4
1 0 −1 −4
2 0 −5 −1
0 2 −1 −85

⎤
⎥⎥⎦ .

The eigenvalues of B(k) are −1.1623, − 0.25, − 21.2295, 0.1418. The single positive
eigenvalue gives rise to the Turing instability in system (4). Figure 7 shows the approximate
unstable behaviour of n∗ in the presence of diffusion.

Note that the necessary condition for Turing instability as given in Theorem 1, namely,

0 = dmin <
λ1(Hr(B))

k2
= 0.03545 is also satisfied here.
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Fig. 7 Variations of ni (x, t) in the domain [0, 2π ] × [0, 1] (d1 = d2 = d3 = 0, d4 = 5, k2 = 4)

5 Conclusion

Wehave derived necessary conditions for Turing instability of stable equilibrium points of the
reaction–diffusion system associated with replicator dynamics. The main results (Theorems
1, 2, 3) of the present paper are based on the connection between Turing instability and
reactivity of stable equilibrium point. More specifically, in Theorem 1, we established that
a necessary condition for Turing instability is that the smallest diffusion coefficient dmin is
strictly less than the ratio of positive reactivity and square of the wavenumber k. From a
population perspective, this means that, if individuals adopting pure strategies corresponding
to the minimum diffusion coefficient deviate from the population state or strategy p∗, then
the above-mentioned necessary condition should hold true. Also, while proving Theorem 1,
it was observed that the largest eigenvalue of the matrix Hr(B(k)) is positive, that is, the
corresponding perturbation P̂(x, t) does not die out. This leads us to derive explicit necessary
conditions for Turing instability when players have three (Theorem 2) or four (Theorem 3)
strategies. Again, this may be interpreted as follows: if players adopting the pure strategies
corresponding to the maximum diffusion coefficient in Theorem 2 or 3 deviate from the
population state or strategy p∗, then necessary conditions for Turing instability should hold
true. Note that in Theorems 2 and 3, necessary conditions for Turing instability are obtained
by considering specific values for some diffusion coefficients. It would be interesting to derive
necessary conditions for games with any number of pure strategies with minimal constraints
on diffusion coefficients.
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