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Abstract
In this work, we use a formulation based on forward Euler and backward derivative condition
to obtain A-stable SSP implicit SGLMs up to order five and stage order q = p and SSP
implicit–explicit (IMEX) SGLMs where the implicit part of the method is A-stable and the
time-step is apart from the explicit part. These kind of methods compared to explicit ones
of the same order and number of stages have quite larger SSP time-step. Moreover, the
construction of SSP IMEX schemes of order p = q = s and r = 2 up to order p = 3
is presented where the implicit part of the method has Runge–Kutta stability together with
A-stability property. Numerical results to show the expected order of convergence of the
proposed methods are presented on a variety of linear and nonlinear problems.

Keywords General linear methods · Second derivative methods · Monotonicity · Strong
stability preserving · Implicit methods.

Mathematics Subject Classification 65L05

1 Introduction

To approximate the solution of hyperbolic partial differential equations (PDEs)

Ut + f (U )x = 0, (1.1)
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the use of high-order time integrations as part of the method of lines technique is required to
solve the resulting system of ordinary differential equations (ODEs)

yt = F(y). (1.2)

Here, y is a vector of approximation toU . The simplest method is the explicit forward Euler
method

yn+1 = yn + Δt F(yn),

which is a one-step, one-stage, and one-derivative method which preserves various properties
of the PDE and the fully discrete scheme is strong stable, that is

‖yn + Δt F(yn)‖ ≤ ‖yn‖, (1.3)

under a suitable restricted time-step 0 ≤ Δt ≤ ΔtFE . The condition (1.3) is known as
forward Euler condition and ‖ · ‖ is some convex functional. Due to the small absolute
stability region and first order of accuracy of forward Euler method, we do not wish to use
this method as time discretization. Instead, we consider this method as a basis for a higher
other method that satisfies the forward Euler condition (1.3), perhaps under a different time-
step restrictionΔt ≤ CΔtFE . Such higher ordermethods are called strong stability preserving
(SSP) methods and the value C is referred as SSP coefficient. These methods can be one of
three types: one-stage multistep, one-step multistage, or multistep-multistage methods.

Awide variety of successful studies on SSP schemes and their capability to preserve essen-
tial solution properties have been published by Shu (1988), Shu andOsher (1988), and Spijker
Ferracina and Spijker (2004, 2005, 2008), Gottlieb et al. (2009, 2011), Higueras (2004) and
Gottlieb et al. (2001). SSP general linear methods (GLMs) as multistep-multistage methods
were studied by Spijker (2007) and investigated more by Izzo et al., for instance in Califano
et al. (2018) and Izzo and Jackiewicz (2015a, b, 2019). Recently, SSP explicit multistage
two-derivative methods with one-step [(e.g., two-derivative Runge–Kutta (TDRK) methods]
or multistep [e.g., second derivative general linear methods (SGLMs)] have been introduced
and applied to the numerical solution of hyperbolic PDEs (Christlieb et al. 2016; Moradi
et al. 2019). To study the stability properties of the two derivative time-stepping methods,
considering some conditions that include the second derivative G = dF

dt = F ′F , in addition
to the forward Euler condition (1.3), are necessary. Christlieb et al. (2016) demonstrated that
TDRK methods preserve the strong stability property of the forward Euler condition (1.3)
when coupled with the second derivative condition

‖yn + Δt2G(yn)‖ ≤ ‖yn‖, for Δt ≤ ˜KΔtFE , (1.4)

where ˜K has a positive value that relates to the stability condition of second derivative term
and forward Euler term. Using the general order conditions for SGLMs provided in Moradi
et al. (2021), Moradi et al. (2019) extended the SSP approach of the TDRK methods to the
SGLMs as a class of second derivative multistep-multistage time discretization and studied
more in Moradi et al. (2020a, b, c); Moradi and Abdi (2021); Moradi et al. (2021). Another
possible condition on second derivative is Taylor series condition Ditkowski et al. (2020),
Grant et al. (2019) and Moradi and Abdi (2021)

‖yn + Δt F(yn) + Δt2

2
G(yn)‖ ≤ ‖yn‖, Δt ≤ ̂KΔtFE ,

where ̂K > 0. Explicit SSP time integrations are frequently desired due to their favorable
stability regions, low computational costs, and absence of difficulty in implementation. For
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such methods, the time-step size Δt is related to the mesh size and the speed of propagation
of the physical problems. In the case of the problems with diffusion, very small local mesh
sizes are often needed because of infinite speed of propagation of information and so that,
undesirably, the maximal acceptable time-step possibly be small. To overcome these intense
limitations, SSP implicit time integrations can be used to allow for larger time-steps at the cost
of increasing the computational cost per time-step. Most of the research has been evoked to
find SSP implicit methods which are optimal in terms of their time-step restriction (Ferracina
and Spijker 2008; Ketcheson et al. 2009; Ketcheson 2004, 2011; Macdonald et al. 2008). For
such methods, the SSP coefficient is bounded by C ≤ 2s (Ketcheson 2011). Unconditionally
SSP implicit methods of order p = 2 were first studied by Ketcheson (2011) which use a
second operator ˜F that approximates F and satisfies a downwind condition

‖yn − Δt˜F(yn)‖ ≤ ‖yn‖, Δt ≤ ΔtFE .

In the case of implicit multiderivative Runge–Kutta (RK) methods, neither the second
derivative condition nor the Taylor series condition leads to unconditional SSP methods for
order p > 1. This follows from the fact that both the second derivative and Taylor series
conditions require positive coefficients on the derivative of the operator, while the uncondi-
tional SSP property needs negative coefficients. Due to this restriction on the coefficients of
the methods, to find unconditional SSP multiderivative RK methods, Gottlieb et al. (2021)
introduced a new condition on the second derivative

‖yn − Δt2G(yn)‖ ≤ ‖yn‖, Δt2 ≤ KΔt2FE .

This new second derivative condition is called backward derivative condition. In Gottlieb
et al. (2021) , unconditional SSP two-derivative RK methods are obtained up to order p = 4
in the sense of preserving the forward Euler and backward second derivative conditions.
In this paper, we extend this new second derivative conditions for SGLMs and obtain SSP
implicit SGLMs up to order p = 5 and stage order q = p. Although derived methods in
this paper are not unconditional SSP, their SSP coefficients are significant large and also not
bounded by twice the number of stages.

Manymultiphysics andbiological problems associatedwith the diffusion termaremodeled
by differential equations of the form

yt = ε yxx + F( y),

with ε ≥ 0. Here, F( y) characterizes the chemical or biological reactions. For such systems,
discretizing the diffusion term by suitable spatial discretizations leads to a system of ODEs
of the form

yt = f1(y) + f2(y), t ∈ [t0, T ], (1.5)

where f1(y) and f2(y), respectively, correspond to the diffusion process and the chemical
or biological reactions. To integrate these systems of ODEs, we employ implicit–explicit
(IMEX) methods, where the diffusion process is handled by the SSP implicit and the reaction
term by explicit schemes. Such methods are useful for diffusion-dominated systems not
for the case of the systems with highly stiff reactions. In Sect. 2, we determine sufficient
conditions for class of implicit SGLMs to preserve the strong stability properties of spatial
discretizations when coupled with forward Euler and backward derivative conditions and
present SSP implicit SGLMs up to order p = 5. In Sect. 3, we extend the theory developed
in Sect. 2 to IMEX SGLMs for which the implicit method has Runge–Kutta stability (RKS)
property and it is A-stable.We conclude each section by presenting numerical results to show
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the theoretical results on a variety of problems with diffusion part. Finally, in Sect. 4, some
concluding remarks are given.

2 SSP conditions for implicit SGLMs

In this section, we are going to consider SSP implicit SGLMs for the system of ODEs (1.2)
on the interval [t0, T ] raised from the spatial discretization of the original PDE (1.1). We first
recall the structure of SGLMs introduced by Butcher and Hojjati (2005). The general form
of these methods is given by

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Y [n]
i = h

s
∑

j=1

ai j f (Y
[n]
j ) + h2

s
∑

j=1

ai j g(Y
[n]
j ) +

r
∑

j=1

ui j y
[n−1]
j , i = 1, 2, . . . , s,

y[n]
i = h

s
∑

j=1

bi j f (Y
[n]
j ) + h2

s
∑

j=1

bi j g(Y
[n]
j ) +

r
∑

j=1

vi j y
[n−1]
j , i = 1, 2, . . . , r ,

(2.1)

where n = 1, 2, . . . , N and Nh = T − t0. Here, Y
[n]
i , i = 1, 2, . . . , s, is an approximation to

y(tn−1 + ci h) of stage order q , f (Y [n]
i ) and g(Y [n]

i ), respectively, denote the first and second

derivative stage values, and y[n]
i , i = 1, 2, . . . , r , is an approximation of order p to the linear

combinations of the solution u and its derivatives at the point tn , that is

y[n]
i =

p
∑

k=0

αik y
(k)(tn)h

k + O(h p+1), i = 1, 2, . . . , r , (2.2)

for some real parameters αik , i = 1, 2, . . . , r . The SGLM (2.1) to be of order p and stage
order q = p must satisfies the following conditions (Abdi and Hojjati 2011):

UW = C − ACK − ACK 2,

VW = WE − BCK − BCK 2,
(2.3)

where the matricesC ∈ R
s×(p+1), K ∈ R

(p+1)×(p+1) and E ∈ R
(p+1)×(p+1) are determined

by

C :=
[

e
c

1!
c2

2! . . .
cp

p!
]

, K := [0 e1 e2 . . . ep], E := exp(K ),

with c j as the component-wise powers of abscissa vector c, e = [1 1 · · · 1]T ∈ R
s , and

e j as the j th unit vector in R
p+1. To reduce the implementation costs when applied to stiff

problems, it is important that the coefficient matrices A ∈ R
s×s and A ∈ R

s×s have the form

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣
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...

. . .
. . .
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⎥

⎥

⎥

⎥
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, A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

μ

a21 μ
...

. . .
. . .

as−1,1
. . .

. . . μ

as,1 as,2 . . . as,s−1 μ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

whereλ > 0 andμ < 0.Moreover, to ensure the zero stability of SGLM(2.1),we suppose that
the matrix V is a rank-one matrix, i.e., V = evT with e = [1 1 . . . 1], v = [v1 v2 . . . vr ]T ,
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and vT e = 1. Applying SGLM (2.1) to the standard linear test equation y′ = ξ y Dahlquist
(1963), t ≥ 0, ξ ∈ C, leads to the stability matrix M(z) defined by

M(z) = V + (zB + z2B)(I − zA − z2A)−1U ,

and the stability function defined by p(w, z) = det(w I − M(z)), where z = ξh. If the
stability function has the special form p(w, z) = wr−1(w − R(z)), then the method is said
to possesses Runge–Kutta stability (RKS) property.

2.1 Strong stability preserving conditions

With the aim of studying the SSP properties of implicit SGLMs, as discussed in Moradi et al.
(2021), the SGLM (2.1) can be written in the following form:

Y [n]
i =

l
∑

j=1

si j y
[n−1]
j + h

m
∑

j=1

ti j F(tn−1 + c j h, Y [n]
j ) + h2

m
∑

j=1

t i j G(tn−1 + c j h, Y [n]
j ),

i = 1, 2, . . . ,m,

y[n]
i = Y [n]

m−l+i , i = 1, 2, . . . , l,

where n = 1, 2, . . . , N and 1 ≤ l ≤ m. Introducing the vectors F(Y [n]) and G(Y [n]), the
matrices T, T and S as

F(Y [n]) :=
[

F(Y [n]
i ), . . . , F(Y [n]

m )
]T

, G(Y [n]) :=
[

G(Y [n]
i ), . . . ,G(Y [n]

m )
]T

,

T =
(

A 0
B 0

)

, T =
(

A 0
B 0

)

, S =
(

U
V

)

,

the matrix form of this representation is characterized by

Y [n] = Sy[n−1] + ΔtTF(Y [n]) + Δt2TG(Y [n]). (2.4)

Because of the negative diagonal components of A, μ < 0, using both the forward Euler
condition and second derivative or Taylor series conditions leads to methods with C = 0.
So that in the case of implicit SGLMs to be SSP, we require a new condition on the second
derivative. Considering new second derivative condition discussed in Gottlieb et al. (2021)

Backward derivative condition: ‖un − Δt2G(un)‖ ≤ ‖un‖, Δt2 ≤ KΔt2FE (2.5)

seems to be a useful condition to obtain SSP implicit SGLMs as well. Under this condition,
coefficients on the second derivative must be negative. Due to this reason, in this paper, we
consider methods with T ≤ 0 which will be SSP under the following conditions:

Theorem 1 Let the first and second derivative operators F and G satisfy (1.3) and (2.5). If
the SGLM given by (2.4) satisfies the conditions

(

I + γT + γ 2

K 2 |T|
)−1

S ≥0, (2.6)

γ

(

I + γT + γ 2

K 2 |T|
)−1

T ≥0, (2.7)

γ 2

K 2

(

I + γT + γ 2

K 2 |T|
)−1

|T| ≥0, (2.8)
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with |T| as the component-wise absolute values of the elements of T, then it will preserve
the strong stability preserving property ‖Y [n+1]‖ ≤ ‖Y [n]‖ under the time-step restriction
Δt ≤ γΔtFE .

Proof Considering method (2.4) as

Y [n] = Sy[n−1] + ΔtTF(Y [n]) − Δt2|T|G(Y [n]),

and adding γTY [n] and γ̂ |T|Y [n] on both sides of the above relation lead to

(I + γT + γ̂ |T|)Y [n] = Sy[n−1]+γT
(

Y [n]+ Δt

γ
F(Y [n])

)

+γ̂ |T|
(

Y [n]− Δt2

γ̂
G(Y [n])

)

.

Now, introducing

R = (I + γT + γ̂ |T|)−1S, P = γ (I + γT + γ̂ |T|)−1T, Q = γ̂ (I + γT + γ̂ |T|)−1T,

we obtain

Y [n] =Ry[n−1] + P
(

Y [n] + Δt

γ
F(Y [n])

)

+ Q
(

Y [n] − Δt2

γ̂ 2 G(Y [n])
)

. (2.9)

Assuming R + P +Q = I and using the forward Euler and backward derivative conditions,
we have

∥

∥Y [n]∥
∥ ≤ R

∥

∥y[n−1]∥
∥ + P

∥

∥Y [n] + Δt

γ
F

∥

∥ + Q
∥

∥Y [n] − Δt2

γ̂
G

∥

∥,

which is SSP whenever R ≥ 0, P ≥ 0 and Q ≥ 0, and under the time-step restrictions
Δt ≤ γΔtFE and Δt ≤ K

√
γ̂ ΔtFE . To obtain the optimal time-step, these two time-step

restrictions must be set equal, and so we require γ = K
√

γ̂ .
�	

This theorem allows us to formulate the search for optimal implicit SGLMs of order
p = q = s and r = 2 with SSP coefficient at least γ > 0 as follows:

For a given method of order p, find all the coefficients matrices of the method with T ≥ 0,
and T ≤ 0, and abscissa vector with elements −1 ≤ ci ≤ 1, i = 1, 2, . . . , s that maximize
the value of C = max γ , such that the related order conditions (2.3) together with the SSP

conditions R ≥ 0, P ≥ 0, and Q ≥ 0 are satisfied.

In the following subsection, we use this optimization problem to find SSP implicit SGLMs
up to order five and the SSP coefficients of such methods are presented. For the sake of com-
parison, we have also presented the SSP coefficients of SSP implicit RKmethods investigated
in Ketcheson et al. (2009).

2.2 Construction of SSP implicit SGLMs

In this subsection, we are interested in finding SSP implicit methods for solving stiff problems
obtained by spatial discretization of PDEs which involve diffusion. For such methods, A- or
L-stability is essential. Considering these properties, we will construct L-stable SSP implicit
SGLMs with RKS property, abscissa vector with elements −1 ≤ ci ≤ 1, i = 1, 2, . . . , s,
r = 2 and p = q = s up to order five. Assuming A-stability, to L-stability, it is required
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the coefficient of z2s in the numerator of tr(M(z)) to be zero. Denoting Cp+1 as the error
constant of a method of order p with RKS stability, we have

C-condition: exp(z) − tr(M(z)) =
s−1
∑

i=1

Cs+i z
s+i + O(z2s).

Algorithm for construction of SSP implicit SGLMs of order p = q = s and r = 2 is
described as follows:

– To ensure L-stability of a given method, choose λ > 0 and μ < 0, such that the stability
function takes the form p(w, z) = wr−1(w − R(z)) with

R(z) = N (z)

D(z)
=

1 +
2s−1
∑

i=1

ni z
i

(1 − λz − μz2)s
,

where as a consequence of order conditions

1 +
2s−1
∑

i=1

ni z
i = exp(z)(1 − λz − μz2)s − Cs+1z

s+1 − Cs+2z
s+2 − · · · − C2s−1z

2s−1

+O(z2s),

and E-polynomial, E(y) = |N (iy)|2s − |D(iy)|s , with i as the imaginary unit, is non-
negative for all real value of y.

– Choose arbitrary, but small, constants Cs+i , i = 1, 2, . . . , s − 1, and determine the pairs
of (λ, μ) in domain [0, 2] × [−2, 0] which give A-stable methods.

– In addition to order conditions, consider RKS conditions, L-stability conditions, and C-
condition as equality constraints together with the nonlinear inequality SSP conditions
to the optimization problem with objective function

min −γ,

with γ appearing in (2.6)–(2.8).
– Solve the optimization problem using fmincon command with the sequential quadratic

programming (SQP) algorithm from theMATLAB andwithmany randomstartingpoints.

In the rest of the paper, we consider methods of order p = q = s and r = 2. For all the
methods, since r = 2, the RKS property is equivalent to have det(M(z)) = 0 and the stability
function of the method takes the form p(w, z) = w(w − R(z)).

2.2.1 Methods of order 2

In this part, we search for L-stable SSP implicit SGLMs of order p = q = s = r = 2
with λ > 0, μ < 0, abscissa vector c = [c1 c2]T and RKS property. Based on the above
algorithm, to ensure the L-stability, it is important to choose λ and μ, such that the stability
function of the method has the form

R(z) = 1 + n1z + n2z2 + n3z3

(1 − λz − μz2)2
,

and as a consequence of order conditions

1 + n1z + n2z
2 + n3z

3 = exp(z)(1 − λz − μz2)2 − C3z
3 + O(z4).
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Fig. 1 L-stable choices of (λ, μ) for p = q = s = r = 2

For such methods, A-stability requirement implies that λ > 0 and μ < 0, so that the E-
polynomial E(y) = y4(E0 + E1y2 + E2y4) is non-negative for all real value of y where E0,
E1 and E2 are expressions in λ, μ and C3. Choosing C3 = −10−3 and λ > 0 and μ < 0 in
such a way that E0 + E1x + E2x2 is non-negative for all positive real numbers x lead to the
range of (λ, μ) which provide L-stable methods. These pairs of (λ, μ) are plotted in Fig. 1.

Now, considering the order conditions (2.3), RKS and L-stability conditions together
with C-condition as equality constraints and SSP conditions as inequality constraints to the
minimization problem leads to the SSP implicit methods. For K = 1, the SSP coefficient of
derived method is C = 5.33, while for the optimal implicit RK method of the same order and
stage p = s = 2, it is 4. The coefficients matrices of the derived method are given by

A =
[

0.437508016495166 0
0.481922545952264 0.437508016495166

]

,

A =
[−0.095099529112491 0

−0.094720307035320 −0.095099529112491

]

,

B =
[

0.486156602801407 0.513390888590178
0.487744233794554 0.513800602965683

]

,

B =
[−0.097209917437713 −0.087158520960135

−0.096932706945793 −0.090079484978238

]

,

U =
[

0.773444985770947 0.226555014229053
0.773444985770931 0.226555014229069

]

,

V =
[

0.773444985770929 0.226555014229071
0.773444985770929 0.226555014229071

]

,

c =
[

0.518077454047736
1

]

, α0 =
[

1
1

]

,
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Fig. 2 L-stable choices of (λ, μ) for p = q = s = 3 and r = 2

α1 =
[

0.080116928944154
0.082114274312806

]

, α2 =
[

0.003410910293517
0.000002041597084

]

.

2.2.2 Methods of order 3

In this part, we are going to construct L-stable SSP implicit SGLMs of order p = q = s = 3
and r = 2 with λ > 0, μ < 0, abscissa vector c = [c1 c2 c3]T and RKS property. To do
this, we first consider process for selecting λ and μ, such that the stability function has the
form

R(z) = 1 + n1z + n2z2 + n3z3 + n4z4 + n5z5

(1 − λz − μz2)3
,

and as a consequence of order conditions

1 + n1z + n2z
2 + n3z

3 + n4z
4 + n5z

5 = exp(z)(1 − λz − μz2)3 − C4z
4 − C5z

5 + O(z6),

where C4 and C5 are constant numbers. For these methods, the related E-polynomial takes
the form

E(y) = y4(E0 + E1y
2 + E2y

4 + E3y
6 + E4y

8),

where the coefficients E0, E1, E2, E3, and E4 are complicated expressions in λ, μ, C4, and
C5. Choosing C4 = 10−3 and C5 = 3 × 10−4 and λ > 0 and μ < 0 in such a way as to
ensure that E0+E1x2+E2x4+E3x6+E4x8 for all positive real numbers x is non-negative,
lead to the pairs of (λ, μ) which give L-stable schemes. Such pairs of (λ, μ) are shown in
Fig. 2.

To obtain SSP implicit SGLMs, we solve optimization problem with largest allowable
time-step as objective function and subject to the order conditions (2.3), RKS and L-stability
conditions along with C-conditions as equality constraints and SSP conditions as inequality
constraints. Note that, in search for such methods, λ and μ must be selected from the L-
stable choices of (λ, μ) plotted in Fig. 2. We select single value of K , given by K = 1,
and search for SSP implicit SGLM of order p = q = s = 3 and r = 2 which satisfies the
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above conditions. For this method, the SSP coefficient is C = 6.05, while for the implicit
RK method of the same order and stage p = s = 3, it is 4.83. The coefficients matrices of
the derived method are given by

A =
⎡

⎣

0.267603000892177 0 0
0.341953350263364 0.267603000892177 0
0.335702875305309 0.342847250249487 0.267603000892177

⎤

⎦ ,

A =
⎡

⎣

−0.026123057956006 0 0
−0.033405914492044 −0.026123057956006 0
−0.034477399219702 −0.034526686814204 −0.026123057956006

⎤

⎦ ,

B =
[

0.336331551893402 0.339883216735631 0.300285484825070
0.336935379056885 0.334580595998755 0.329427239736687

]

,

B =
[−0.034398297797059 −0.035589703970484 −0.033672528176838

−0.034332122074900 −0.035648146579086 −0.035263083663109

]

,

U =
⎡

⎣

0 1.0
0.036810987781440 0.963189012218560
0.039064548546729 0.960935451453271

⎤

⎦ ,

V =
[

0.038588400941909 0.961411599058091
0.038588400941909 0.961411599058091

]

,

c =
⎡

⎣

0.322404727695027
0.663458308407227

1.0

⎤

⎦ , α0 =
[

1
1

]

,

α1 =
[

0.030358765464626
0.054801726802850

]

,

α2 =
[−0.007973590605640

−0.008181010456956

]

,

α3 =
[

0.000286450015294
0.000099608997408

]

.

2.2.3 Methods of order 4

As the previous subsections, to construct L-stable implicit SGLMs of order p = q = s = 4
with r = 2, we first consider the process for choosing λ and μ in a manner that the stability
function has the form

R(z) = 1 + n1z + n2z2 + n3z3 + n4z4 + n5z5 + n6z6 + n7z7

(1 − λz − μz2)4
,

with

1 + n1z + n2z
2 + n3z

3 + n4z
4 + n5z

5 + n6z
6 + n7z

7

= exp(z)(1 − λz − μz2)4 − C5z
5 − C6z

6 − C7z
7 + O(z8),

whereC5,C6, andC7 are constant numbers. We selectC5 = 2×10−4,C6 = −2×10−5 and
C7 = −3 × 10−6. To ensure L-stability, we determine for which pairs of (λ, μ), the related
E-polynomial defined by

E(y) = y6(E0 + E1y
2 + E2y

4 + E3y
6 + E4y

8 + E5y
10),
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Fig. 3 L-stable choices of (λ, μ) for p = q = s = 4 and r = 2

is non-negative for all positive real value of y, so that λ > 0 andμ < 0. These pairs of (λ, μ)

providing L-stability are plotted in Fig. 3.
Considering the RKS and L-stability conditions along with C-conditions in addition to

the order conditions as equality constraints to the optimization problem allows us to search
for SSP implicit SGLMs in which λ and μ are chosen from the L-stable choices of (λ, μ)
shown in Fig. 3. For one selected value of K , given by K = 1, the SSP coefficient of derived
method is C = 4.93, while for the optimal implicit RK method of the same order and stage
p = s = 4, it is 4.42. The coefficients matrices of this method are characterized by

A =

⎡

⎢

⎢

⎣

0.254176341984116 0 0 0
0.261582621254152 0.254176341984116 0 0
0.339390711604040 0.029861425647354 0.254176341984116 0
0.331676441093089 0.029142345541208 0.347123997405635 0.254176341984116

⎤

⎥

⎥

⎦

,

A =

⎡

⎢

⎢

⎣

−0.020938442042814 0 0 0
−0.031521072388081 −0.020938442042814 0 0
−0.024788471132196 −0.007067900027874 −0.020938442042814 0
−0.023784317743168 −0.006911223412509 −0.033444226057938 −0.020938442042814

⎤

⎥

⎥

⎦

,

B =
[

0.323965463961283 0.028015482596813 0.333701564772902 0.348274873064158
0.330670550287511 0.029289756044977 0.351865052580348 0.270751486096503

]

,

B =
[ −0.023759085240579 −0.006643983373337 −0.032151019957030 −0.038561682229809

−0.023822609235787 −0.006897405040536 −0.033811615960564 −0.031540463372965

]

,

U =

⎡

⎢

⎢

⎣

0.226197082870204 0.773802917129796
0.312126402799657 0.687873597200343
0.349341360031528 0.650658639968472
0.331291225574177 0.668708774425823

⎤

⎥

⎥

⎦

, V =
[

0.339100274129694 0.660899725870306
0.339100274129694 0.660899725870306

]

,

c =

⎡

⎢

⎢

⎣

0.286657422221648
0.552655138282832
0.662236778855867

1.0

⎤

⎥

⎥

⎦

, α0 =
[

1
1

]

, α1 =
[

0.072239491497979
0.020858952112161

]

,
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Fig. 4 L-stable choices of (λ, μ) for p = q = s = 5 and r = 2

α2 =
[ −0.005850201740369

−0.012294545942157

]

, α3 =
[ −0.003292370185643

0.000296750273909

]

, α4 =
[

0.000668051239820
−0.000009500761051

]

.

2.2.4 Methods of order 5

In this part, we will look for L-stable SSP implicit SGLMs of order p = q = s = 5 and
r = 2 with RKS property in which their stability function takes the form

R(z) = 1 + ∑9
j=1 n j z j

(1 − λz − μz2)5
,

with

1 +
9

∑

j=1

n j z
j = exp(z)(1 − λz − μz2)5 − C6z

6 − C7z
7 − C8z

8 − C9z
9 + O(z10),

where C6, C7, C8, and C9 are constant numbers. In search for SSP implicit SGLMs of order
p = q = s = 5, we observed thatC-conditions with arbitrary selected constant numbersC6,
C7, C8, and C9 do not result in SSP methods and provide most restriction to the optimization
problem.However, considering these constant numbers as free parameters to the optimization
problem provides a practical way to dominate this disadvantage. Taken together, for one
selected value of K , chosen by K = 1, limiting λ and μ to 0 ≤ λ ≤ 1 and −1 ≤ μ ≤ 0 and
solving the optimization problemwith unknown entries of coefficientsmatrices of themethod
together with constant numbers C6, C7, C8, and C9 as free parameters, subject to the order
conditions (2.3), the RKS and L-stability conditions along with C-conditions correspond
to the equality constraints and SSP conditions correspond to the inequality constraints lead
to the SSP implicit SGLM with C = 1.58. Considering the obtained constant numbers
C6 = −1.791× 10−4, C7 = 1.681× 10−4, C8 = −5.126× 10−5, and C9 = 6.522× 10−6,
L-stable choices of (λ, μ) are shown in Fig. 4. Note that the SSP coefficient for proposed
method in this part is smaller than that for SSP implicit RK method of the same order and
stage p = s = 5 obtained in Ketcheson (2011).

123



Strong stability preserving implicit and implicit–explicit… Page 13 of 23 135

The coefficients matrices of the derived method are given by

A =

⎡

⎢

⎢

⎢

⎣

0.387643780986819 0 0 0 0
0.637727168252425 0.387643780986819 0 0 0
0.611159777449862 0.741766315721221 0.387643780986819 0 0
0.520242656261881 0.421920886114798 0.236581114595714 0.387643780986819 0
0.586674660944235 0.722670449888464 0.170921769330670 0.130086060748346 0.387643780986819

⎤

⎥

⎥

⎥

⎦

,

A =

⎡

⎢

⎢

⎢

⎣

−0.049561787393363 0 0 0 0
−0.042621446052528 −0.049561787393363 0 0 0
−0.045746185534674 −0.036083052428533 −0.049561787393363 0 0
−0.052172656158891 −0.233540265356757 −0.064974933988016 −0.049561787393363 0
−0.048662224553958 −0.065726996285724 −0.040949385111455 −0.017303063024367 −0.049561787393363

⎤

⎥

⎥

⎥

⎦

,

B =
[

0.540812948434475 0.247074745148801 0.053325659996030 0.075410913921221 0.081281076462137
0.543208809191779 0.260917804212698 0.064866888255913 0.062806443761092 0.073308956951426

]

,

B =
[ −0.061534523519883 −0.181529377484374 −0.014167338763988 −0.076536493310707 −0.003953899336315

−0.058526265069824 −0.168881377810191 −0.034960256366596 −0.063010928351178 −0.003566097409785

]

,

U =

⎡

⎢

⎢

⎢

⎣

1.0 0
0.642756835465249 0.357243164534751
0.724870718130109 0.275129281869891
0.697805587968451 0.302194412031549
0.721904371786921 0.278095628213079

⎤

⎥

⎥

⎥

⎦

, V =
[

0.709219261086733 0.290780738913267
0.709219261086733 0.290780738913267

]

,

c =

⎡

⎢

⎢

⎢

⎣

−0.612356219013181
0.027944371241631
0.742551784010220
0.568565313057531

1.0

⎤

⎥

⎥

⎥

⎦

, α0 =
[

1
1

]

, α1 =
[ −1.0

−0.992796441589756

]

, α2 =
[

0.474427936924484
0.468352176869725

]

,

α3 =
[ −0.141299064850759

−0.150062555313376

]

, α4 =
[

0.029986316568360
0.036784816602692

]

, α5 =
[

0.777139167068760
0.774153079544181

]

.

2.3 Numerical results

In this subsection, we are going to examine our methods to some one-dimensional linear and
nonlinear problems. Moreover, we compare the proposed methods with the explicit methods
investigated in Moradi et al. (2019). Such methods will be referred to as SSP im-SGLMpq

and SSP ex-SGLMpq , corresponding to the SSP implicit SGLMs and SSP explicit SGLMs
of order p = q = s.

In what follows, temporal derivatives are replaced by spatial derivatives using the Lax–
Wendroff type of approach. We begin with the pure heat equation

yt = εyxx , 0 ≤ t ≤ 5

with periodic boundary conditions on the unit interval [0, 1] and initial conditions y0(x) =
sin(2πx), and ε = 0.1. To discrete spatial derivative, we use the fourth-order 5-point spatial
discretization

yxx (x j ) ≈ −y j+1 + 16y j+1 − 30y j + 16y j−1 − y j−2

(Δx)2
,

and the second temporal derivatives are approximated by

ytt = (εyxx )t = ε(yt )xx = ε2yxxxx .

Numerical results for all the methods obtained in this section are presented in Fig. 5. By this
figure, one can see that the expected order of accuracy for each method is achieved. The norm
of global error at the final time T f = 5.0 and the expected order of convergence for SSP
implicit SGLMs with p = q = s = 3, 4 5 and for SSP explicit SGLMs with the same order,
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Fig. 5 Convergence study for SSP im-SGLMspq with p = q = s = 2, 3, 4, 5, and K = 1 and grid refinement
in time

Table 1 Convergence study for
SSP im-SGLMpq and SSP
ex-SGLMpq with
p = q = s = 3; using of
time-steps, Δt = T f /Nt with
T f = 5.0 and spatial grid
Δx = 1/N with N = 8

Nt SSP im-SGLM33 SSP ex-SGLM33
Error Order Error Order

2 5.96e−08 – 2.52e+03 –

4 2.62e−09 4.51 1.63e+08 –

8 6.37e−10 2.04 2.48e+16 –

16 9.34e−11 2.77 1.03e+15 –

32 1.24e−11 2.91 1.08e−10 –

64 1.60e−12 2.96 1.19e−11 3.00

Table 2 Convergence study for
SSP im-SGLMpq and SSP
ex-SGLMpq with
p = q = s = 4; using of
time-steps, Δt = T f /Nt with
T f = 5.0 and spatial grid
Δx = 1/N with N = 8

Nt SSP im-SGLM44 SSP ex-SGLM44
Error Order Error Order

2 4.56e−04 – 4.78e+05 –

4 4.07e−08 13.45 8.59e+15 –

8 6.03e−10 6.08 7.44e+26 –

16 2.93e−11 4.36 2.13e+27 –

32 1.71e−12 4.10 4.83e−12 –

64 1.03e−13 4.05 2.62e−13 4.02

stage order, and internal stages are reported in Tables 1, 2, and 3. The results in these tables
indicate that SSP explicit methods for a large time-step are not desire, while SSP implicit
methods behave as expected.

To show capability of our methods to preserve positivity, we consider a sample problem
Gottlieb et al. (2021)

yt = −10y2, y(0) = 10, (2.10)

123



Strong stability preserving implicit and implicit–explicit… Page 15 of 23 135

Table 3 Convergence study for SSP im-SGLMpq and SSP ex-SGLMpq with p = q = s = 5; using of
time-steps, Δt = T f /Nt with T f = 5.0 and spatial grid Δx = 1/N with N = 8

Nt SSP im-SGLM55 SSP ex-SGLM55
Error Order Error Order

4 4.26e−04 – 1.51e+22 –

8 1.27e−08 15.03 3.62e+35 –

16 1.92e−09 2.71 8.42e+41 –

32 1.08e−10 4.14 1.33e+16 –

64 4.58e−12 4.57 1.72e−11 –

128 1.68e−13 4.77 1.43e−12 3.57
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Fig. 6 The numerical solution of problem (2.10) obtained by SSP im-SGLM22 and Non-SSP im-SGLM22
compared to the correct solution

with final time T f = 2. For positivity, this problem with F = −10y2 and G = 200y3

satisfies the forward Euler and backward derivative conditions, respectively

yn+1 = yn + Δt F(yn) = yn(1 − 10Δt yn) > 0, for Δt ≤ 0.1
yn ,

yn+1 = yn − Δt2G(yn) = yn(1 − 200Δt2(yn)2) > 0, for Δt2 ≤ 0.005
(yn)2

.

Numerical results for second-order SSP implicit SGLM compared to the second-order non-
SSP implicit SGLM studied in Behzad et al. (2018) forΔt = 1

Nt
where Nt = 4, 8, 16, 32, 64

are presented in Fig. 6. Note that because of small yn , explicit methods loss positivity even
for very small time-step, Δt > 4e− 05. The norm of global error at the final time T f = 2.0
for SSP im-SGLMs with p = q = s = 3, 4, and 5 together with that for non-SSP implicit
SGLMs of the same order investigated in Behzad et al. (2018) are reported in Table 4. From
this table, we can conclude that the second-, third-, and fourth-order methods proposed in
this paper preserve positivity up till a large time-step, while in the case of non-SSP implicit
methods, positivity is lost for Δt > 1

256 .
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3 SSP implicit–explicit SGLMs

In this section, we consider equations associated with diffusion terms modeled by

yt = εyxx + F(y), ε ≥ 0,

where F(y) represents the chemical or biological reactions. Discretizing the diffusion term
by suitable spatial discretizations gives an ODE of the form

yt = f1(y) + f2(y), t ∈ [t0, T ], (3.1)

where f1(y) and f2(y), respectively, correspond to the diffusion process and the chemical
or biological reactions. In previous section, we observed that the SSP coefficients of implicit
SGLMs are considerably larger than their explicit peers which at the cost of increasing the
computational cost per time-step provide a remarkable benefit over the explicit ones. In the
case of problems where in addition to the diffusion term there is a nonlinear part that is
expensive to solve implicitly, we turn to implicit–explicit methods which the implicit part
has SSP property. In this section, we are going to search for IMEX methods in which use
SSP implicit SGLMs for integrate the stiff part, corresponds to the diffusion process, and
explicit GLMs for the non-stiff part, corresponds to the reaction processes. To do this, we
use an s-stage implicit SGLM, defined by six matrices A ∈ R

s×s , A ∈ R
s×s , U ∈ R

s×r ,
B ∈ R

r×s , B ∈ R
r×s and V ∈ R

r×r and the abscissa vector c, and s-stage explicit GLM,
defined by four matrices A∗ ∈ R

s×s ,U ∈ R
s×r , B∗ ∈ R

r×s , and V ∈ R
r×r and the abscissa

vector c, such that

Y [n]
i =h

i
∑

j=1

ai j f1
(

Y [n]
j

)

+ h
i−1
∑

j=1

a∗
i j f2

(

Y [n]
j

)

+ h2
i

∑

j=1

ai j g
(

Y [n]
j

)

+
r

∑

j=1

ui j y
[n−1]
j , i = 1, 2, . . . , s,

y[n]
i =h

s
∑

j=1

bi j f1
(

Y [n]
j

)

+ h
s

∑

j=1

b∗
i j f2

(

Y [n]
j

)

+ h2
s

∑

j=1

bi j g
(

Y [n]
j

)

+
r

∑

j=1

vi j y
[n−1]
j , i = 1, 2, . . . , r ,

(3.2)

for n = 1, 2, . . . , N . Here, Y [n]
i are approximations of the stage order q to the

y(tn−1 + ci h), that is

Y [n]
i = y(tn−1 + ci h) + O(hq+1), i = 1, 2, . . . , s, (3.3)

and the values y[n]
i , i = 1, 2, . . . , r , stand for approximations of order p to the linear com-

binations of the solution y := x + z to (3.1) and its derivatives at the point tn as

y[n]
i =

p
∑

k=0

αikh
k x (k)(tn) +

p
∑

k=0

α∗
ikh

k z(k)(tn) + O(h p+1), i = 1, 2, . . . , r , (3.4)

where x is the solution obtained by the implicit SGLM and z obtained by the explicit GLM.
Note that the both implicit SGLM and explicit GLM use the same coefficients matrices
U and V and the same abscissa vector c = [c1, . . . , cs]T . In this section, we develop the
theory explained in the previous section to IMEX methods of order p = q = s with r = 2
up to order p = 4. In fact, to construct implicit methods, we will use the same algorithm
mentioned in Sect. 2. The IMEX SGLMs-GLMs with SSP implicit part are interesting from
the computational perspective, because such methods allow for solve the nonlinear diffusion-
dominated systems. We are going to construct SSP IMEX SGLMs with large region of
absolute stability together with large SSP coefficients. To discuss the stability properties of
the IMEX methods, the scalar test problem

y′(t) = λ1y(t) + λ2y(t), t ≥ 0,
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Table 5 The SSP coefficients, C, together with area(Sπ/2), area(SE ), int(Sπ/2 ), and int(SE ) for the SSP
IMEX SGLMpq of order p = q = s = 2 and p = q = s = 3 and SSP coefficients for IMEX TDRK of order
p = 2 and p = 3

SSP method C Area(Sπ/2) Area(SE ) Int(Sπ/2) Int(SE ) CT DRK

IMEX SGLM22 7.52 5.13 6.71 (− 2.62,0) (−2.63,0) 1.0

IMEX SGLM33 5.11 1.98 2.96 (−1.33,0) (−1.35,0) 0.904

where λ1 and λ2 are complex parameters, is considered. Applying the IMEX method (3.2)
to this problem leads to

y[n] = M(z1, z2)y
[n−1],

where M(z1, z2) is defined as the stability matrix and given by

M(z1, z2) = V + (z1B + z21B + z2B
∗)(I − z1A − z21A − z2B

∗)−1U ,

with z1 = hλ1 and z2 = hλ2. The stability function p(w, z1, z2) corresponds to this stability
matrix is defined by

p(w, z1, z2)

(1 − λz1 − μz21)
s

= det(w Ir − M(z1, z2)).

The aim of this section is to search for IMEX SGLMs-GLMs that their stability region Sα

defined by

Sα =
⋂

y∈R
Sα,y =

{

z2 ∈ C : the IMEX SGLM-GLM is stable for any
z1 ∈ C : Re (z1) < 0 and |Im(z1)| ≤ tan(α)|Re(z1)|

}

,

not only is not insignificant but also includes a part of the stability region of the explicit
scheme, i.e., Sα ⊂ SE = Sα,0 for α ∈ (0, π/2]. Here, for fixed values y ∈ R, Sα,y is defined
as

Sα,y =
{

z2 ∈ C : the IMEX SGLM-GLM is stable for fixed
z1 = −|y|/ tan(α) + iy

}

. (3.5)

In search for SSP IMEX SGLMs-GLMs, we will use the same optimization problem men-
tioned in the previous section with the additional equality constraints corresponding to the
order conditions of explicit part and obtain SSP IMEX SGLMs-GLMs up to order p = 3. In
this section, the constructed methods will be referred to as IMEX SGLMspq , where p is the
order and q is the stage order. The SSP coefficients of the obtained IMEX methods of order
p = q = s = 2, 3, 4 with r = 2 are listed in Table 5, for single value of K = 1, together
with the area(Sπ/2), area(SE ) and intervals of absolute stability int(Sπ/2), and int(SE ). For
the sake of comparison, in this table, the SSP coefficients for IMEX TDRK methods studied
in Gottlieb et al. (2021) are also reported. The stability regions SE and Sπ/2 of the proposed
IMEXmethods are plotted in Figs. 7 and 8 together with the boundaries of the regions Sπ/2,y

for y = −5,−4.8, . . . , 5. We will continue this section by listing the coefficients matrices of
the constructedmethods and presenting numerical results obtained by applying suchmethods
on linear and nonlinear problems.

– Coefficients matrices of the IMEX SGLM22

A =
[

0.420359985237433 0
0.462116390077325 0.420359985237433

]

,
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Fig. 7 Left: the boundaries of the stability regions Sπ/2,y , y = −5,−4.8, . . . , 5 (thin lines), SE (thick line),
and the stability region Sπ/2 (shaded region); right: the boundaries of the stability regions Sπ/2 (thin line) and
SE (thick line) for SSP IMEX SGLMpq with p = q = 2

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

Re(z)

0

0.5

1

1.5

2

2.5

Im
(z

)

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

Re(z)

0

0.5

1

1.5

2

2.5

Im
(z

)

Fig. 8 Left: the boundaries of the stability regions Sπ/2,y , y = −5,−4.8, . . . , 5 (thin lines), SE (thick line),
and the stability region Sπ/2 (shaded region); right: the boundaries of the stability regions Sπ/2 (thin line) and
SE (thick line) for SSP IMEX SGLMpq with p = q = 3

A =
[−0.087297406242430 0

−0.087479459921831 −0.087297406242430

]

,

B =
[

0.455152368103553 0.544847631896447
0.455152368103553 0.544847631896446

]

,

B =
[−0.086161158095212 −0.085981847936385

−0.086161158095212 −0.085981847936385

]

,

A∗ =
[

0 0
0.576079291733572 0

]

, B∗ =
[

0.716798824251877 0.868858072696912
−1.0 0.597537554877228

]

,

U =
[

0.773536868425739 0.226463131574261
0.716214906285628 0.283785093714372

]

,

V =
[

0.705421659275971 0.294578340724029
0.705421659275971 0.294578340724029

]

, c =
[

0.537883609922676
1

]

,

α0 = α∗
0 =

[

1
1

]

, α1 =
[

0.117523624685243
0.117523624685242

]

, α2 =
[

0.005852048827601
0.005852048827601

]

,

α∗
1 =

[

0.988119342071560
−1.0

]

, α∗
2 =

[−0.035007599343755
0.758353275808517

]

.
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– Coefficients matrices of the IMEX SGLM33

A =
⎡

⎣

0.301498061353180 0 0
0.360536778027282 0.301498061353180 0
0.447174124166318 0.070296353336502 0.301498061353180

⎤

⎦ ,

A =
⎡

⎣

−0.032438555835085 0 0
−0.044744365772315 −0.032438555835085 0
−0.033709196624029 −0.013918564673132 −0.032438555835085

⎤

⎦ ,

B =
[

0.442251850536822 0.069179450030712 0.489179953866666
0.446343288291238 0.070391123434179 0.460409040728055

]

,

B =
[−0.033685357820056 −0.013697419618554 −0.031923155981072

−0.033655282336012 −0.013901892411796 −0.032800247678669

]

,

A∗ =
⎡

⎣

0 0 0
0.580937016698536 0 0
0.237510052522150 0.331407133015593 0

⎤

⎦ ,

B∗ =
[

0.541467328039897 −1.390182660140339 1.901019355283103
1.426576559773577 −1.793525795556836 −0.588847443735250

]

,

U =
⎡

⎣

1.0 0
0.888946596324566 0.111053403675434
0.974077468928260 0.025922531071740

⎤

⎦ ,

V =
[

0.973953485942062 0.026046514057938
0.973953485942062 0.026046514057938

]

, c =
⎡

⎣

0.483137867323211
0.841068466063751

1.0

⎤

⎦ ,

α0 = α∗
0 =

[

1
1

]

, α1 =
[

0.181639805970031
0.158172003989303

]

, α2 =
[

0.003484524891637
0.000125753528738

]

,

α3 =
[−0.000720024972859

−0.000141263142128

]

α∗
1 =

[

0.483137867323211
−1.524962835377959

]

,

α∗
2 =

[

0.116711099420810
−0.276664402530574

]

α∗
3 =

[

0.018795850555706
0.131928682384583

]

.

3.1 Numerical results

In this subsection, to show the order of accuracy of the constructedmethods, first, we consider
the convection–diffusion equation

yt + cyx = εyxx , 0 ≤ t ≤ T f ,

with values c = 1, ε = 0.1, final time T f = 5.0, periodic boundary condition on the domain
x ∈ [0, 2π], and a smooth initial condition y0(x) = sin(x). In this case, to discrete the first
and second derivatives, we use the fourth-order 5-point spatial discretization and the second
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Fig. 9 Convergence study for SSP IMEX SGLMspq with p = q = s = 2, 3 and K = 1

Table 6 Convergence study for SSP IMEX SGLMpq with p = q = s = 2 and p = q = s = 3; using of
time-steps, Δt = T f /Nt with T f = 5.0 and spatial grid Δx = 2/N with N = 8

Nt SSP IMEX SGLM22 SSP IMEX SGLM33
Error Order Error Order

4 8.09e−03 – 2.35e−02 –

8 2.13e−03 1.93 1.74e−04 7.07

16 4.99e−04 2.09 1.72e−05 3.35

32 1.20e−04 2.05 1.75e−06 3.29

64 2.96e−05 2.02 1.95e−07 3.17

128 7.34e−06 2.01 2.29e−08 3.09

temporal derivatives can be approximated by

ytt = c2yxx − 2εcyxxx + ε2yxxxx .

Numerical results for the all methods obtained in this section are presented in Fig. 9. By
this figure, we can conclude that the expected order of accuracy for the proposed methods is
achieved.

As a second test, we consider Fisher’s equation with linear diffusion and reaction terms
(Al-Khaled 2001)

yt = yxx + (1 − y), −1 < x < 1, 0 < t ≤ T f ,

with Dirichlet boundary conditions y(−1, t) = y(1, t) = 0, the initial condition y(x, 0) = 0,
final time T f = 5, and initial time T0 = 0.05. We use the second-order centered differences
to discrete the diffusion term and then integrate this stiff diffusion term in time implicitly and
the other terms explicitly. The norm of global error at the final time for SSP IMEX SGLMs
of order p = q = s = 2 and p = q = s = 3 is reported in Table 6.

As a final test, we consider Fisher’s equation with linear diffusion and nonlinear reaction
terms (Al-Khaled 2001)

yt = ayxx + by(1 − y), −5 < x < 5, 0 < t ≤ T f ,

with values a = 0.1 and b = 1, Dirichlet boundary conditions y(−5, t) = y(5, t) = 0, and
the initial condition y(x, 0) = sech2(7x), final time T f = 5, and initial time T0 = 0.05. As
the previous problem, we solve this problem using the second-order centered differences as
spatial discretization and our IMEX schemes as time integrators. Numerical results for this
nonlinear problem are listed in Table 7. Tables 6 and 7 indicate that the expected order of
convergence of all constructed methods in this section is confirmed.
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Table 7 Convergence study for SSP IMEX SGLMpq with p = q = s = 2 and p = q = s = 3; using
time-steps, Δt = T f /Nt with T f = 5.0 and spatial grid Δx = 10/N with N = 24

Nt SSP IMEX SGLM22 SSP IMEX SGLM33
Error Order Error Order

8 9.30e−03 – 1.57e−03 –

16 5.91e−03 0.65 1.59e−04 3.29

32 2.01e−03 1.56 1.95e−05 3.04

64 5.70e−04 1.82 2.49e−06 2.96

128 1.51e−04 1.92 3.19e−07 2.97

256 3.88e−05 1.96 4.05e−08 2.98

It should be noted that for the problems in this subsection, the reference solutions are
obtained usingMATLAB functions ode45 and ode15s, to linear and nonlinear problems,
respectively, with absolute and relative tolerance equal to 10−14. Moreover, to fulfill the need
of suitable starting procedure, we use several steps of an IMEXRKmethod of the same order.

4 Conclusions

Obtaining SSP implicit second derivative methods using the forward Euler condition and
both second derivative and Taylor series conditions given in Moradi et al. (2019); Moradi
and Abdi (2021) is not possible. To overcome this drawback, we used an alternative to the
second derivative condition, the so-called backward derivative conditions, investigated in
Gottlieb et al. (2021). Using this approach enabled us to find SSP implicit SGLMs up to
order p = 5. To show efficiency of the proposed methods, we compared our methods with
the SSP explicit ones studied in Moradi et al. (2019) and Non-SSP implicit ones investigated
in Behzad et al. (2018). Moreover, we formulated SSP IMEX SGLMs-GLMs up to order
p = 3 which are highly relevant to a range of diffusion-dominated problems. The diffusion
part of these problems is handled by SSP implicit SGLMs and the other parts by explicit
GLMs.
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