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Abstract
In this study, travelingwave solutions have been exploredwith the newly developed improved
tanh method and modified

(
1/G ′)-expansion method for the Fractional foam drainage equa-

tion, which is famous for modeling physical phenomena such as heat conduction and acoustic
waves. Abundant solutions are successfully achieved which have not been appeared ever in
the literature. The found solutions are represented graphically to bring out the appearances of
different types solitons. In addition, three important points are highlighted in the result and
discussion section. First, the comparison of the applied methods, second, the association of
the obtained solutions with the literature, and finally the effect of the change in the parameters
with physical properties on the wave behavior are discussed.

Keywords Improved tanh method · Modified
(
1/G ′)-expansion method · Fractional foam

drainage equation · Exact solutions

Mathematics Subject Classifications 35C08 · 35R11

1 Introduction

The nature is full of nonlinear phenomena. The interior behaviors of this nonlinearity aremod-
eled for illustration alongside nonlinear partial differential equations (NPDEs) of fractional
order aswell as integer order (Miller andRoss 1993;Hassani et al. 2020). The fractional-order
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equations are mostly considered to analyze the intricated characteristic of complex physi-
cal phenomena arise in numerous branches of science at a small scale (Gomez-Aguilar et al.
2018;Bonyah et al. 2018). Subsequently, intellectuals and specialists have paid their profound
deliberation to explore the approximate and appropriate solutions of the nonlinear evolution
equations. Due to the various angle of vision of researchers, a large number of techniques
have been created recently to solve these equations. Instantly, the Adomian decomposition
method (Helal andMehana 2006), the variational iterationmethod (Mohyud-Din et al. 2009),
the Backlund transformation method (Jianming et al. 2011), the extended finite difference
method (Yokus 2018), the inverse scattering transformation method (Ablowitz and Clarkson
1991), the Bernoulli sub-equation function method (Duran et al. 2021), the extended auxil-
iary equation method (Seadawy 2017), the sine–cosine method (Al-Mdallal and Syam 2007)

the
(
G ′/G

)
-expansion method (Das and Ghosh 2019), the rational fractional

(
Dα

ξ G/G
)
-

expansion method (Islam and Akter 2020), the modified
(
1/G ′)-expansion method (Duran

et al. 2021), the extended tanh method (Islam et al. 2018a).
Let us pour a bottle of cola. We have all witnessed the movement of gas bubbles one by

one. We have all witnessed the formation movement of gas bubbles. In other words, a foam
form quickly. Bubbles appear in the form of elegant polyhedral cells. This gradual change
is shaped by rearrangements after a certain period of time. We can observe the formation
of foam initially and then its change in daily life, especially in a certain time interval that
begins with the pouring of cola. After this observation, let us examine the concept of foam
in the literature. The foam theory was first described by the Belgian physicist Joseph Plateau
in the nineteenth century (Plateau 1873). In this theory, the importance of the concept of
liquid foam in fluid dynamics is mentioned (Cantat et al. 2013). As a result of experimental
studies, especiallywith the soap layer, thefirst foundations ofmathematicalmodels describing
the thin strips in the foam were laid (Kraynik et al. 2003; Weaire and Hutzler 2001). The
physical theory of the foam has left its place in applied mathematics, especially with the
local examination of the foam surface and the emergence of this model as a non-linear
differential equation. In particular, the exact solutions obtained from the fractional foam
drainage equation (FFDE) modeling this format are mathematically important. We think that
combining these exact solutions with physical theory will add a different perspective to the
world of science. Consider the nonlinear space–time FFDE (Shi et al. 2020)

Dα
t u = 1

2
uD2β

x u + 2u2Dβ
x u + (

Dβ
x u

)2
, t > 0, α > 0, β ≤ 1. (1)

u = u(x, t) denotes the function representing the Plateau cross-sectional area dependent
on the spatial x and temporal t variables (Al-Mdallal et al. 2020). It is also the order of the
compatible derivative, which we receive as the fractional derivative operator α and β. In this
study, we physically deal with the concept of foam in fluid dynamics. The local pressure
gradient and gravity are two forces that play an important role, especially in the liquid in
the foam. After a certain period of time, the concept of equilibrium can be defined by the
harmony of these two forces. Of these concepts, the pressure gradient is related to the surface
tension of the foam. This connection is defined as capillarity in the literature. Equation (1)
under consideration is meant to explain themechanisms of how fluid flows through nodes and
channels between foams determined by gravity and capillarity (Weaire et al. 2003). The foam
drainage equation, whose solutions we have investigated in this study, also has application
areas in different sectors such as beer, packaging, manufacturing and ore separation (Cox
et al. 2002; Hoogland et al. 2016).

123



Ample felicitous wave structures for fractional foam drainage… Page 3 of 13 174

A remarkable and logistic study have appeared in literature with the space–time FFDE.
Akgul et al. (2013) have investigated the space and time FFDE by the improved

(
G ′/G

)
-

expansion method and found only a few analytic solutions; Ege and Misirli (2014) examined
the same equation by the modified Kudryashov method which yields two analytic solutions;
Islam and Akbar (2018a) have used the generalized

(
G ′/G

)
-expansion method which pro-

vides analytic solutions to thementioned equation; Pandir andYildirim (2018) considered the
same equation and obtained three solutions by the extended tanh method; Islam et al. (2018b)
examined the above equation by the rational

(
G ′/G

)
-expansionmethod and gained nine trav-

eling wave solutions; Cevikel (2018) studied the equation by exp-function method and found
only one exact solution; Shi et al. (2020) has taken into account the FFDE via Lie-group scal-
ing transformation method and improved the

(
G ′/G

)
-expansion method; Al-Mdallal et al.

(2020) have found numerical solutions to this equation. The generalized
(
G ′/G

)
-expansion

method has been put forward by Islam and Akbar (2018b) to investigate this equation and
the exact solutions obtained were defined traveling wave solutions.

In this study, we functionate the work by means of the recently established improved tanh
method (Islam and Akter 2021) and modified

(
1/G ′)-expansion method (Yokuş et al. 2021).

According to the present results, traveling wave solutions obtained as a result of the proposed
approaches differ from the literature in terms of novelty and generality in this study. When
the literature is examined (Akgul et al. 2013; Ege and Misirli 2014; Islam and Akbar 2018a,
b; Pandir and Yildirim 2018; Islam et al. 2018b; Cevikel 2018; Al-Mdallal et al. 2020), it
is emphasized that the solutions obtained for FFDE provide the equation, but it can be seen
as a shortcoming that these solutions do not include the discussions about foam in fluid
dynamics. One of the most important purposes of this study is to analyze the responses of the
solutions for different values of the parameters affecting the wave velocity for the traveling
wave solutions to be obtained, supported by simulations. As a result of these analyses, it is
thought that it will offer a different perspective on the foam phenomenon through traveling
wave solutions.

The conformable fractional derivative is adopted together with a composite wave variable
transformation to reduce the considered equations into the differential equations due to a sin-
gle independent variable. Khalil et al., have announced the conformable fractional derivative
as follows (Khalil et al. 2014; Abdeljawad et al. 2019):

The conformable fractional derivative of a function u(x) is

Dα
x (u(x)) = lim

ε→0

u
(
x + εx1−α

) − u(x)

ε
, (2)

where x > 0 and α signifies the order of derivative like α ∈ (0, 1]. The following theorem
highlight the qualities of this formulation (Abdeljawad 2015):

Theorem If v(x) and u(x) are α-differentiable at any point x > 0 for α ∈ (0, 1],

• Dα
x (xn) = nxn−α ∀n ∈ R.

• Dα
x (λ) = 0, here λ is arbitrary constant.

• Dα
x (au(x) + bv(x)) = aDα

x (u(x)) + bDα
x (v(x)), ∀a, b ∈ R.

• Dα
x (u(x)v(x)) = u(x)Dα

x (v(x)) + v(x)Dα
x (u(x)).

• Dα
x (u(x)/v(x)) = v(x)Dα

x (u(x))−u(x)Dα
x (v(x))

v2(x)
.

• Dα
x (u)(x) = x1−α du(x)

dx ,
• Dα

x (u(x).v(x)) = x1−αv′(t)u′(v(t)).
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2 Modified (1/G′)-expansionmethod

This method, which has recently been brought to the literature with a doctoral study (Yokus
2011), has been modified and used to attain the traveling wave solution of NPDEs (Yokuş
et al. 2021).

Consider the general form of the fractional NPDE depending on the spatial variable x and
the temporal variable t as follows:

T
(
u, Dα

t u, . . . , Dα
x1u, D2α

x1 u, Dβ
x1u, D2β

x1 u, . . . , Dα
xn u, D2α

xn u, . . . , Dα
x1t u, Dβ

x1t u, . . .
)

= 0,

(3)

where 0 < α ≤ 1 and 0 < β ≤ 1.

Let u = u(t, x1, x2, . . . , xn) = U (ξ), ξ = k

(
xβ
1
β

+ xβ
2
β

+ · · · + xβ
n
β

)
+ l t

α

α
,

where l is the velocity of the wave and k is the wavelength. The values α and β are the order
of the conformable derivative, which we consider as the fractional derivative operator. We
may be converted into the following ODE for U (ξ) :

L
(
U ,U ′,U ′′,U ′′′, . . .

) = 0. (4)

The solution of Eq. (4) is supposed to have the form

U (ξ) = a0 +
n∑

i=1

ai

(
1

G ′

)i

+ a−i

(
1

G ′

)−i

, (5)

where ai , a−i , i = {1, 2, . . . , n} are scalars, G = G(ξ) provides the following second-order
IODE

G ′′ + λG ′ + μ = 0, λ, μ ∈ R. (6)

The solution named the expansion method is in the form below

1

G ′[ξ ]
= 1

−μ
λ

+ A cos h[ξλ] − A sin h[ξλ]
, (7)

where A is an integral constant. The desired derivatives of Eq. (5) are computed and entered
into Eq. (4), yielding a polynomial with

(
1/G ′). An algebraic system of equations is formed

by equating the coefficients of this polynomial to zero. The package software solves the
equation, and the default Eq. (4) is substituted in the solution function. Finally, the solutions
to Eq. (3) are discovered.

3 Explication of the improved tanhmethod

This method is an expansion method used to obtain traveling wave solutions of NPDEs in
the form of tanh functions (Malfliet 1992). This method has recently been modified and used
to obtain a traveling wave solution of the NPDEs (Islam and Akter 2021).

Consider the following NPDE involving u(t, x1, x2, . . . , xn):

F
(
u, Dα

t u, . . . , Dα
x1u, D2α

x1 u, Dβ
x1u, D2β

x1 u, . . . , Dα
xn u, D2α

xn u, . . . , Dα
x1t u, Dβ

x1t u, . . .
)

= 0.

(8)
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If the classical wave transform below the Eq. (8) is taken into account,

u = u(t, x1, x2, . . . , xn) = U (ξ), ξ = xβ
1

β
+ xβ

2

β
+ · · · + xβ

n

β
+ tα

α
, (9)

become the following ODE due to ξ :

R
(
U ,U ′,U ′′,U ′′′, . . .

) = 0. (10)

For the purposes of examining soliton solutions, we could disregard the constant of inte-
gration. Equation (8) is supposed to be satisfied by

u(ξ) = a0 + ∑n
i=1

(
aiφi (ξ) + biφ−i (ξ)

)

c0 + ∑n
i=1

(
ciφi (ξ) + diφ−i (ξ)

) . (11)

The arbitrary constants that Eq. (11) contains and that will be calculated later are
a0, a1, . . . , an, b1, b2, . . . , bn . n is a constant determined using the balance principle and
taking into consideration the Eq. (10). The Riccati differential equation is provided by the
function φ = φ(ξ)

φ′(ξ) = δ + φ2(ξ), δ ∈ R. (12)

The following are the solutions to Eq. (12):

(i) φ(ξ) = −√−δtanh
(√−δξ

)
or φ(ξ) = −√−δcoth

(√−δξ
)
, δ < 0.

(ii) φ(ξ) = −1/ξ , δ = 0.

(iii) φ(ξ) = √
δtan

(√
δξ

)
or φ(ξ) = −√

δcot
(√

δξ
)
, δ > 0.

Equation (10), when combined with Eqs. (11) and (12), yields a polynomial in φ(ξ)

whose coefficients are equated to zero and may be solved using any computing software for
the values of the obscure arbitrary constants involved in Eq. (11). Insert these values into
Eq. (11), which, coupled with the solutions of Eq. (12), yields the solutions of Eq. (8).

4 Construction of solutions of the space–time FFDE usingmodified
(1/G′)-expansionmethod

Let us consider the methodology of the modified (1/G ′)-expansion method to construct the
traveling wave transform of the space–time FFDE. The wave variable transformation

u(x, t) = u(ξ), ξ = kxβ

β
+ ltα

α
, (13)

translates Eq. (1) into the ODE,

−lu′ + 1

2
k2uu′′ + 2ku2u′ + k2

(
u′)2 = 0. (14)

The equilibrium term of Eq. (14) is n = 1, according to the homogeneous balancing
principle and the following situation is attained in Eq. (5),

U (ξ) = a0 + a1

(
1

G ′[ξ ]

)
+ a2G

′[ξ ], a2 �= 0ora1 �= 0. (15)

By replacing Eq. (15) into Eq. (14) and the coefficients of Eq. (1) are equal to zero, we
can create the following algebraic equation systems.
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Const : lτa2 + 1
2k

2λτa0a2 − 2kτa20a2 − k2λ2a1a2 + k2τ 2a22 − 2kτa1a22 = 0,
1

G ′[ξ ] : −lλa1 + 1
2k

2λ2a0a1 + 2kλa20a1 − 2k2λτa1a2 + 2kλa21a2 = 0,

1

G ′[ξ ]2
: −lτa1 + 3

2
k2λτa0a1 + 2kτa20a1 + 3

2
k2λ2a21 + 4kλa0a

2
1 − k2τ 2a1a2 + 2kτa21a2 = 0,

1

G ′[ξ ]3
: k2τ 2a0a1 + 7

2
k2λτa21 + 4kτa0a

2
1 + 2kλa31 = 0,

1

G ′[ξ ]4
:2k2τ 2a21 + 2kτa31 = 0,

G ′[ξ ] : lλa2 + 1

2
k2λ2a0a2 − 2kλa20a2 + 5

2
k2λτa22 − 4kτa0a

2
2 − 2kλa1a

2
2 = 0,

G ′[ξ ]2 : 3
2
k2λ2a22 − 4kλa0a

2
2 − 2kτa32 = 0,

G ′[ξ ]3 : − 2kλa32 = 0.
(16)

In Eq. (16), considering−2kλa32 = 0 formed by the coefficient of theG ′[ξ ]3 term, a2 = 0
is encountered. In addition, when Eq. (16) is solved by the aid of computer programs, the
following case is presented:

Case 1

a0 = −kλ

2
, a1 = −kτ, a2 = 0, l = k3λ2

4
, (17)

By substituting values fromEq. (17) into Eq. (15) and obtaining hyperbolic wave solutions
for Eq. (1):

u1(x, t) = −kλ

2
− kτ

− τ
λ

+ ACosh
[
λ
(
kxβ

β
+ k3tαλ2

4α

)
]−ASinh[λ

(
kxβ

β
+ k3tαλ2

4α

)] (18)

The exponential form of the solution is as follows:

u1(x, t) = kλ

(
1

2
+ Aλ

−Aλ + e
kxβλ

β
+ k3 tαλ3

4α τ

)

. (19)

5 Construction of solutions of the space–time FFDE using Improved
tanhmethod

If we consider Eq. (14), balancing principle to Eq. (14) forces the solution (3.4) to be

u = a0 + a1φ(ξ) + b1φ−1(ξ)

c0 + c1φ(ξ) + d1φ−1(ξ)
. (20)

Using Eq. (19) and its various derivatives as needed alongside Eq. (12) we find a poly-
nomial in φ(ξ) from Eq. (14). The coefficient of each term of this polynomial is set to zero.
Next, a system of equations is constructed and solved to calculate the constants contained
in Eq. (19). By substituting the calculated constants in Eq. (19), the solution of Eq. (14)
is reached. When the wave transform is operated in reverse, the solution of the Eq. (1) is
produced.

Case 1: a0 = 0, a1 = −c0k, b1 = δkc0, c1 = 0, d1 = 0, l = −4k3δ.
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This case offers

U1(ξ) = −
(
tanh2

(√−δξ
) + 1

)
δk√−δtanh

(√−δξ
) , δ < 0 (21)

U2(ξ) = −
(
coth2

(√−δξ
) + 1

)
δk√−δcoth

(√−δξ
) , δ < 0 (22)

U3(ξ) =
(
1 − tan2

(√
δξ

))√
δk

tan
(√

δξ
) , δ > 0 (23)

U4(ξ) = −
(
1 − cot2

(√
δξ

))√
δk

cot
(√

δξ
) , δ > 0 (24)

where ξ = k
(
αxβ−4βk2δtα

)

αβ
.

Case 2: a0 = −kd1, c0 = 0, a1 = 0, b1 = 0, c1 = 0, δ = − l
k3
.

Accordingly,

U5(ξ) = k
√−δtanh

(√−δξ
)
, δ < 0 (25)

U6(ξ) = k
√−δcoth

(√−δξ
)
, δ < 0 (26)

U7(ξ) = −k
√

δtan
(√

δξ
)
, δ > 0 (27)

U8(ξ) = k
√

δcot
(√

δξ
)
, δ > 0 (28)

where ξ = kxβ

β
+ ltα

α
.

Case 3:a0 = −kd1, a1 = 0, c1 = 0, l = − k2b1
c0

, δ = b1
kc0

.
Subsequently,

U9(ξ) = kd1
√−δtanh

(√−δξ
) + b1

d1 − c0
√−δtanh

(√−δξ
) , δ < 0 (29)

U10(ξ) = kd1
√−δcoth

(√−δξ
) + b1

d1 − c0
√−δcoth

(√−δξ
) , δ < 0 (30)

U11(ξ) =
b1 − kd1

√
δtan

(√
δξ

)

c0
√

δtan
(√

δξ
)

+ d1
, δ > 0 (31)

U12(ξ) =
kd1

√
δcot

(√
δξ

)
+ b1

d1 − c0
√

δcot
(√

δξ
) , δ > 0 (32)

where ξ = k
(
xβc0α−βkb1tα

)

c0αβ
.

Case 4: a0 = 0, a1 = 0, b1 = δkc0, c1 = 0, d1 = 0, l = −k3δ.
Afterward,

U13(ξ) = − δk√−δtanh
(√−δξ

) , δ < 0 (33)
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U14(ξ) = − δk√−δcoth
(√−δξ

) , δ < 0 (34)

U15(ξ) =
√

δk

tan
(√

δξ
) , δ > 0 (35)

U16(ξ) = −
√

δk

cot
(√

δξ
) , δ > 0 (36)

where ξ = k
(
αxβ−k2βδtα

)

αβ
.

The well-gained traveling wave solutions to the foam drainage equation of fractional order
are compared with the earlier results (Akgul et al. 2013; Ege and Misirli 2014; Islam and
Akbar 2018a; Pandir and Yildirim 2018; Islam et al. 2018b). It is worth mentioning that the
solutions have newly been appeared in this work and might be significant to be a valuable
part of the literature.

6 Results and discussion

6.1 Graphical representations

Physical appearances of solutions to NPDEs portray the behavior of underlying structures
of natural phenomena. The solutions originated above are taken different 3-D views namely
kink type, bell shape, cuspon, compacton and periodic etc. The 3-D graph of the traveling
wave solution obtained with the help of the modified (1/G′)-expansion method is presented
in Fig. 1 with the help of special values given to arbitrary parameters. Similarly, 3-D graphics
of the solutions obtained by the aid of the improved tanh method are presented in Figs. 2, 3,
4, 5, 6, 7. A few among the drown-graphs are as follows:

6.1.1 For modified (1/G′)-expansion method

See Fig. 1.

6.1.2 For improved tanhmethod

See Figs. 2, 3, 4, 5, 6, 7.

Fig. 1 Outline of solution Eq. (17)
for α = 0.8, β = 0.9,
A = τ = λ = −1, k = 0.5, l = 1
in −10 ≤ x ≤ 10, 0 ≤ t ≤ 1
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Fig. 2 Outline of Eq. (24) for
α = 0.8, β = 0.9, δ = 1, k = 0.5
in −15 ≤ x ≤ 15, 0 ≤ t ≤ 5

Fig. 3 Plot of Eq. (25) for
α = 0.8, β = 0.9, k = l = 0.5 in
−15 ≤ x ≤ 15, 0 ≤ t ≤ 1

Fig. 4 Shape of Eq. (31) for δ =
0.1, α = 0.8, β = 0.9, c0 = 1,
k = 1, b1 = 0.5, d1 = 1 in
−15 ≤ x ≤ 15, 0 ≤ t ≤ 5

Fig. 5 View of Eq. (32) for
α = 0.8, β = 0.9, d1 = 1, k = 1,
b1 = 0.5, c0 = −0.5 in
−15 ≤ x ≤ 15, 0 ≤ t ≤ 5
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Fig. 6 View of Eq. (33) for
α = 0.8, β = 0.9,
k = 0.5, δ = −0.1 in
−15 ≤ x ≤ 15, 0 ≤ t ≤ 5

Fig. 7 Shape of Eq. (36) for
α = 0.8, β = 0.9, k = −1,
δ = 0.1 in
−15 ≤ x ≤ 15, 0 ≤ t ≤ 5

6.2 Physical discussions

The FFDE, which has an important place in fluid dynamics and sheds light on the phys-
ical liquid foam phenomenon, is discussed. Traveling wave solutions are presented using
two different analytical methods to present a different perspective of the liquid foam phe-
nomenon. In this section, first, the advantages and disadvantages of both analytical methods
are discussed, and second, the comparison of the obtained traveling wave solutions with the
solutions in the literature is given. A physically different perspective is presented to the liquid
foam phenomenon by using the third and final solutions.

While some similarities were encountered in terms of the functioning of the two analytical
methods, different aspects were also encountered. Similar aspects are reduced to an ordinary
differential equation with the help of conventional wave transform. In addition, the use of
the balancing principle, the creation of the algebraic equation system and the solution of
the equation systems, and the search for the coefficients in the accepted solutions are other
similar aspects. The different aspects of both analytical methods are that the traveling wave
solutions accepted depending on the basis equation have different forms. It has been observed
that the modified (1/G ′)-expansion method is more useful than the improved tanh method in
terms of processing complexity. However, the improved tanh method is quantitatively richer
in generating traveling wave solutions for Eq. (1). The hyperbolic form of the traveling
wave solution produced by the modified (1/G ′)-expansion method is in a different form
than the wave solutions produced by the improved tanh method. It is difficult to comment
on the superiority of the methods since both analytical methods produce different types of
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traveling wave solution functions. Because the solutions obtained are very important in terms
of different physical meanings as well as providing the equation mathematically.

Second, we can say that the obtained traveling wave solutions are different and more
general when analyzed with the solutions in the literature. Traveling wave solutions produced
by both analytical methods are different from the solutions presented in the literature with
(Akgul et al. 2013; Islam andAkbar 2018a, b; Islam et al. 2018b; Cevikel 2018). In addition, it
was concluded that the solutions obtained in the improved tanh method are more general than
the solutions presented with Pandir and Yildirim (2018) in the literature. The most important
reason for this is the solution function accepted in the operation of the method.

Third, there is no parameter representing a physical phenomenon in Eq. (1), which rep-
resents the liquid foam mechanism. Therefore, the parameters representing the wavelength
(k) and wave velocity (l), which are physically significant in conventional wave conversion,
have been taken into account. Let us discuss the effects of these parameters on the behavior
of traveling wave solutions, which play an important role in the transport of energy. If we

pay attention to Eq. (17), there is a relation l = k3λ2
4 between wavelength and wave velocity.

Therefore, let us present the following simulation for different values of wavelength affecting
wave velocity.

Figure 8, it was observed that there were no distortions in the structure of the solitary
wave for small values of wavelength. For k = 1, the wavelength was in the range of [− 0.5,
0.5]. For k = 1.5, the wavelength was in the range of [− 0.8, 0.8]. In addition, for k = 2.5,
it is seen that the wavelength is in the range of [− 1.8, 1.2], while small distortions occur in
the structure of the solitary wave. Finally, for k = 5.5, it is seen that the wavelength is in the

Fig. 8 Simulation graphs of Eq. (17) for α = β = 1, A = τ = λ = −1
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range of [− 2.75, 2.5], and the disturbances in the structure of the wave have become more
evident.

7 Conclusions

The main purpose of this work was to investigate traveling wave solutions in the appropriate
form of the time and space fractional nonlinear foam drainage equation by using modified
(1/G ′)-expansion method and newly established improved tanh method. Abundant attrac-
tive solutions to the recommended equation are successfully constructed by executing the
advised methods confirming its high performance. By giving special values to the parame-
ters in the traveling wave solutions produced by both analytical methods, graphs representing
the behavior of the wave at any moment were presented with the help of 3D. In addition,
the advantages and disadvantages of both analytical methods are given in the results and
discussion section. In addition, the traveling wave solutions obtained with the help of the
methodswere comparedwith the solutions in the literature. Finally, wave behavior simulation
has been performed using the values assigned to the parameters with physical qualities in
classical wave transformation, which are shared by the methodology of both methods. Con-
sequently, these methods are competent, concise and creative which might be put forward
for further use to search appropriate analytic wave solutions of any other nonlinear fractional
partial differential equations relating to nature sciences. The attained solutions are claimed to
be novel, motivating and substantial which might be advantageous to describe the underlying
constructions of complicated physical phenomena connecting to the real world. In addition,
we think that this study will provide important information for researchers interested in the
wave transformation of NPDEs.
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Duran S, Yokuş SA, Durur H (2021) Surface wave behavior and refraction simulation on the ocean for the

fractional Ostrovsky–Benjamin–Bona–Mahony equation. Modern Phys Lett B 35(31):2150477

123



Ample felicitous wave structures for fractional foam drainage… Page 13 of 13 174
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