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Abstract
The main aim of this paper is to expand an operational matrix method for solving two-
dimensional nonlinear fractional partial integro-differential Volterra integral equation. First,
we present and use the operational matrix of fractional integration of the Boubaker polynomi-
als. Then, we prove the convergence analysis of the method. Finally, to explain the accuracy
and efficiency of the proposed method, we provide some numerical examples and present
the results in figures and tables.

Keywords Boubaker function · Two-dimensional fractional integro-differential equations ·
Error analysis · Fractional derivative · Operational matrix

Mathematics Subject Classification 26A33 · 65Gxx · 45G10

1 Introduction

The spark of the integral equations started in 1823 along with the generalization of the
tautochrone proposed by Abel, in which the solution of the problem was involved by the
integral equation The latter equation is known as an integral equation of the first kind, In
1837, Liouville, a mathematician, realized in the course of solving a special second-order
linear differential equation that the solution could be found by solving an integral equation
completely different from previous ones. Therefore, he decided to call it the integral equation
of the second kind.
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According to the wide range of applications of the integral and integro-differential equa-
tions in different fields of sciences, many researchers used various numerical methods based
on wavelets, polynomials and orthogonal functions for solving these equations. For more
details, one can refer to Doha et al. (2011), Yi et al. (2013), Asgari and Ezzati (2017) and
Schiavane et al. (2002). The fractional differential equations as well as integro-differential
equations have been sprawled and traced in various scientific areas such as physics, engi-
neering, chemistry, and biology (Safavi 2017; Nikan et al. 2021a, b; Fazli et al. 2015; Nikan
and Avazzadeh 2021). As a result, various procedures for obtaining approximate solutions
for these kind of equations have attracted many researchers. In recent years, several numer-
ical methods have been devoted to solve fractional Volterra integral equation. The authors
of Rahimkhani et al. (2017) applied Bernoulli wavelets operational matrix for solving frac-
tional delay differential equations. Keshavarz et al. (2019) applied BWs method for solving
nonlinear problems in calculus of variations. The authors of Rahimkhani et al. (2016) pre-
sented Bernoulli wavelets and their applications. In Rahimkhani and Ordokhani (2018), the
authors solved partial differential equations using Bernoulli wavelets. Barikbin (2017) pro-
posed a two-dimensional Bernoulli wavelets method for solving the fractional diffusion wave
equation. To study the proposed numerical methods for solving some fractional differential
equations, one can refer to Khajehnasiri and Safavi (2021), Ebadian and Khajehnasiri (2014),
Heydari et al. (2014a), and Saadatmandi and Dehghan (2010).

Boubake (2007) developed Boubaker polynomials as a guide for solving heat transfer
equations in one dimension. Various branches of science employ these sets of orthogo-
nal functions today: cryogenics, biology, dynamical systems, economy, nonlinear systems,
the approximation theory, thermodynamics, mechanics, hydrology, molecular dynamics,
fundamental mathematics, biophysics, photovoltaic, complex analysis, matrix analysis, fun-
damental physics, applied mathematics, cryptography, and algebra Rabiei et al. (2017).

Boubaker polynomials have been successfully applied to solve several problems, but it
has not been used to solve two-dimensional fractional partial Volterra integral equations. In
addition, in approximating an arbitrary function, the advantages of Boubaker polynomials,
overBoubaker polynomials, are given inRabiei et al. (2018). Therefore, the numerical scheme
developed in this paper uses Boubaker polynomials as basis functions, and our numerical
results show that the method can efficiently solve this kind of problem. The benefit of this
method is the low cost of setting up the equations without applying any projection method
such as Galerkin and collocation.

Boubaker polynomials have recently been used to solve integral and differential frac-
tions of fractional order by some researchers. The authors of Rabiei and Ordokhani (2018)
employed the Boubaker hybrid function for solving fractional optimal control problems. In
Rabiei et al. (2017), the fractional-order Boubaker function is used for solving delay frac-
tional optimal control problems. In Davaeifar and Rashidinia (2016), the authors applied the
Boubaker polynomials and collocation method to solve the systems of nonlinear Volterra–
Fredholm integral equations. The authors of Rabiei and Ordokhani (2017) considered the
Boubaker polynomials for solving pantograph delay differential equation.

It should be noted that the operational matrices of integration and differential play an
important role in the development of numerical methods for solving integral and integro-
differential equations, among which we can refer to the operational matrices in Yi and
Huang (2014), Li a and Zhao (2010), Hesameddini and Shahbazi (2018), Jiaquan Xie (2017),
Rawashdeh (2006), and Heydari et al. (2014b).

The two-dimensional fractional partialVolterra integral equations (2DFPVIEs) often occur
in some advanced applications, for example, the footprints of such equations could be found in
physics, especially in plasma. In addition, some investigations have been carried out bymath-

123



Boubaker polynomials and their… Page 3 of 18 82

ematicians (Xie et al. 2019; Xie and Yib 2019; Khajehnasiri et al. 2021; Najafalizadeh and
Ezzati 2016; Safavi et al. 2021). In the present paper, we consider the following 2DFPVIEs:

Dα∗χ u(χ, ζ ) + Dβ
∗ζ u(χ, ζ ) + u(χ, ζ ) = g(χ, ζ )

+ 1

�(α)�(β)

∫ χ

0

∫ ζ

0
(χ − τ)(α−1)(ζ − η)(β−1)F(χ, ζ, τ, η, u(τ, η))dηdτ,

(1)

with the initial conditions

∂ i

∂χ i
u(0, ζ ) = 
i (ζ ), i = 0, 1, . . . , ρ − 1, ρ − 1 < α ≤ ρ, ρ ∈ N , (2)

∂ j

∂ζ j
u(ζ, 0) = δ j (ζ ), j = 0, 1, . . . , γ − 1, γ − 1 < β ≤ γ, γ ∈ N , (3)

where Dα
χ and Dβ

ζ are fractional differential operators with ρ − 1 < α ≤ ρ, γ − 1 < β ≤ γ ,

g ∈ L1(R), is a known function defined on region R := [0, 1] × [0, 1] and u is an unknown
function that should be determined. We also suppose that the nonlinear function, F , would
be as follows:

F(χ, ζ, τ, η, u) = k(χ, ζ, s, y)[u(τ, η)]P , (4)

where p is a positive integer. Throughout our work, we initiated a new form of an operational
matrix of fractional integration of Boubaker polynomials (BPs) to approximate the solution
of 2DFPVIE. By the properties of the two-dimensional Boubaker polynomial (2DBPs) and
utilizing operational matrices, Eqs. (1)–(3) were converted to an algebraic equation.

This paper is organized as follows: in Sect. 2, the basic concepts of fractional calculus
are presented. Some necessary properties of the Boubaker polynomials and the operational
matrix of integration, of 2DBPs are discussed in Sect. 3. In general, we describe the method
in this section. Afterwards, the convergence analysis of the proposed method is analyzed by
a theorem in Sect. 5. Section 6 shows the efficiency and accuracy of the proposed scheme by
solving some numerical examples. Finally, Sect. 7 contains the concluding remarks.

2 Preliminaries

The fundamental characteristics and the fractional integral and derivative definitions are
recalled in the following sections.

Definition 2.1 (Abbasa and Benchohra 2014) The Riemann–Liouville fractional integral of
order α is defined as follows:

I α
χ0

f (χ) = 1

�(α)

∫ χ

χ0

(χ − ζ )α−1 f (ζ )dζ, θ1 > 0, χ > 0. (5)

Definition 2.2 (Abbasa and Benchohra 2014) The Riemann–Liouville and Caputo fractional
derivatives of order α is defined as follows:

Dα∗χ0
f (χ) = dn

dχn
[I n−α

χ0
f (χ)], (6)

Dα∗χ0
f (χ) = I n−α

χ0
[ dn

dχn
f (χ)], (7)

such that n − 1 ≤ α < n and n ∈ N.
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Clearly, we can write

Dα∗χ0
f (χ) = 1

�(n − α)

dn

dn

∫ χ

χ0

(χ − ζ )n−α−1 f (ζ )dζ, χ > χ0. (8)

Lemma 2.3 (Mojahedfar and Marzabad 2017) If n − 1 < α ≤ n, n ∈ N, then
Dα∗χ I αu(χ, ζ ) = u(χ, ζ ), and

I α Dα∗χu(χ, ζ ) = u(χ, ζ ) −
n−1∑
k=0

∂ku(0+, ζ )

∂χk

χk

k! , χ > 0.

Lemma 2.4 (Mojahedfar and Marzabad 2017) If n − 1 < β ≤ n, n ∈ N, then
Dβ

∗ζ I βu(χ, ζ ) = u(χ, ζ ), and:

I β Dβ
∗tu(χ, ζ ) = u(χ, ζ ) −

n−1∑
k=0

∂ku(χ, 0+)

∂ζ k

ζ k

k! , ζ > 0.

Definition 2.5 (Abbasa and Benchohra 2014) Let θ = (α, β) ∈ (0,∞) × (0,∞), D :=
[0, a]× [0, b], r = (0, 0), and u ∈ L1(�). The left-sided mixed Riemann–Liouville integral
of order (α, β) of u is defined by

(I (α,β)
θ u)(χ, ζ ) = 1

�(α)�(β)

∫ χ

0

∫ ζ

0
(χ − τ)(α−1)(ζ − η)(β−1)u(τ, η)dηdτ. (9)

In particular,
1. (I r

r u)(χ, ζ ) = u(χ, ζ ),

2. (I σ
r u)(χ, ζ ) = ∫ χ

0

∫ y
0 u(s, ζ )dζds, (χ, ζ ) ∈ �, σ = (1, 1),

3. (I θ
r u)(χ, 0) = (I θ

r )(0, ζ ) = 0, χ ∈ [0, a], y ∈ [0, b],
4. I θ

r χλζω = �(1+λ)×�(1+ω)
�(1+λ+α)×�(1+ω+β)

χλ+αζω+β, (χ, ζ ) ∈ �, λ, ω ∈ (−1,∞).

Definition 2.6 (Khajehnasiri et al. 2021) The Caputo time fractional derivative operative of
order α > 0 is defined as

Dα∗ζ f (χ, ζ ) = ∂α f (χ, ζ )

∂ζ α

=
⎧⎨
⎩

1
�(n−α)

∫ ζ

0
∂α f (χ,ζ )

∂sn (ζ − s)n−α−1ds, n − 1 < α < n n ∈ N
⋃{0}

∂n f (χ,ζ )
∂ζ n , n = α.

3 Boubaker polynomials

The BPs in the interval [0, 1] are defined as
B0 = 1,

Bn(χ) =
� n
2 �∑

p=0

(−1)p

(
n − p

p

)
n − 4p

m − p
χn−2p, n ≥ 1,

where �.� is the floor function. The BPs have also a recursive relation:

Bm(ζ ) = ζ Bm−1(ζ ) − Bm−2(ζ ), m > 2. (10)
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3.1 Approximation of the function

It is clear that
Y = span {B0(ζ ), B1(ζ ), . . . , Bk(ζ )} (11)

represents a closed as well as finite-dimensional subspace of the Hilbert space H = L2[0, 1].
Therefore, for every u ∈ H , we have a unique best approximation out of Y such as ũ ∈ Y
such that

∀y ∈ Y , ‖u − ũ‖ ≤ ‖u − y‖. (12)

Therefore, for ũ ∈ Y , there is a unique set of coefficients c0, c1, . . . , ck such that (Kreyszig
1978)

u(ζ ) � ũ(ζ ) =
k∑

j=0

c j B j (ζ ) = CT �(ζ), (13)

where C and �(ζ) are vectors as follows:

C = [c0, c1, . . . , ck]T , �(ζ ) = [B0(ζ ), B1(ζ ), . . . , Bk(ζ )]T . (14)

Suppose that

u j =< u, B j >=
∫ 1

0
u(ζ )B j (ζ )dζ, (15)

in which < ·, · > represents inner product, so we have

u j �
k∑

i=0

ci

∫ 1

0
Bi (ζ )B j (ζ )dζ =

m∑
i=0

ciri j , j = 0, 1, . . . , k, (16)

with

ri j =
∫ 1

0
Bi (ζ )B j (ζ )dζ i, j = 0, 1, . . . , k. (17)

Now, we can write

U =< u, φ >=

⎡
⎢⎢⎢⎢⎢⎣

u0

u1

...

uk

⎤
⎥⎥⎥⎥⎥⎦

, R = [ri j ], (18)

where
u j = CT [r0 j , r1 j , . . . , rk j ]T . (19)

Therefore, we can conclude that U T = CT R, and C could be evaluated as

C = (R−1)T < u, φ >, (20)

where R represents an (m + 1) × (m + 1) matrix as

R =< �(ζ),�(ζ ) >=
∫ 1

0
�(ζ)(�(ζ ))T dζ. (21)
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A function u(χ, ζ ) may be expanded in terms of two-dimensional Boubaker polynomials
(2DBPs) as the following form:

u(χ, ζ ) �
l∑

i=0

k∑
j=0

ci j Bi, j (χ, ζ ) = CT �(χ, ζ ), (22)

where

C = [c0,0, . . . , c0,k, . . . , cl,0 . . . , cl,k]T , Bi j (χ, ζ ) = Bi (χ)B j (ζ ),

�(χ, ζ ) = [B0,0(χ, ζ ), . . . , B0,k(χ, ζ ), . . . , Bl,0(χ, ζ ), . . . , Bl,k(χ, ζ )]T

= �(χ) ⊗ �(ζ), (23)

and also, ⊗ is Kronecker product.
The BPs basis can be represented by

�(χ) = ϒTm(χ), (24)

where ϒ = (�i, j )
m
i, j=0 and Tm(χ) = [1, χ, . . . , χm]T represents a matrix of order (m +

1) × (m + 1). Now, we concentrate on the following statements (Rabiei et al. 2017):

Bn(χ) =
� n
2 �∑

p=0

(−1)p

(
n − p

p

)
n − 4p

m − p
χn−2p, n ≥ 1,

or

Bn(χ) =
n∑

j=n−2� n
2 �

(−1)
n− j
2

( n+ j
2

n− j
2

)
2 j − n

n+ j
2

χ j =
k∑

j=0

�i, jχ
j , n ≥ 1.

Obviously, we can derive entries of the matrix ϒ for all n ≥ 2, j = n − 2� n
2 �, . . . , n, by the

following rule:

�i, j =

⎧⎪⎪⎨
⎪⎪⎩

(−1)
n− j
2

( n+ j
2

n− j
2

)
2 j−n

n+ j
2

, if (n − j) is even,

0, if (n − j) is odd.

According to the definition of B0(ζ ) and B1(ζ ), the previous formula for i = 1, and for
i = 0 are as follows:

�0,0 = 1, �0, j = 1, j = 1, . . . , k.

Now, we can present 2DBPs as follows:

Bn,m(χ, ζ ) =
� n
2 �∑

p=0

� m
2 �∑

q=0

(−1)p+q n − 4p

n − p

m − 4q

m − q

(
n − p

p

)(
m − q

q

)
χ(n−4p)ζ (m−4q),

where m = 0, 1, . . . , M , n = 0, 1, . . . , N , and p = 0, 1, . . . 
 n
2 �, q = 0, . . . , 
m

2 �.
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3.2 Operational matrix for fractional integration of 2DBPs

In this section, we describe the process of obtaining Pα,β, the operational matrix of fractional
integration of 2DBPs, such that

I α I β�(χ, ζ ) = Pα,β�(χ, ζ ), (25)

where �(χ, ζ ) is defined in Eq. (23). By the help of definition of Bn,m(χ, ζ ) and using the
linearity of Riemann–Liouville fractional integration, one can derive that

I α I β Bn,m(χ, ζ )

=
� n
2 �∑

p=0

� m
2 �∑

q=0

(−1)p+q n − 4p

n − p

m − 4q

m − q

(
n − p

p

) (
m − q

q

)
I α I βχ(n−4p)ζ (m−4q)

=
� n
2 �∑

p=0

bn,pχ
n−2p+α

� m
2 �∑

q=0

bm,qζm−2q+β, n, m ≥ 2, (26)

where

bn,p = (−1)p (n − p − 1)!(n − 4p)

p!�(n − 2p + α + 1)
, (27)

bm,q = (−1)q (m − q − 1)!(m − 4q)

q!�(m − 2q + β + 1)
. (28)

Now, we can expand χαn−2α p−v and ζ βm−2βq−w in terms of BPs as

χn−2p−α �
k∑

i=0

cpi Bi (χ), (29)

ζm−2q−β �
k∑

j=0

cq j B j (ζ ), (30)

where

cpi = 〈χn−2p+α, Bi (ζ )〉
〈Bi (ζ ), Bi (ζ )〉 , cq j = 〈tm−2q+β, B j (ζ )〉

〈B j (ζ ), B j (ζ )〉 . (31)

By substituting Eqs. (29)–(31) in (26), we have

I α Bn(χ) �
� n
2 �∑

p=0

bn,p

k∑
j=0

cp, j B j (χ) =
k∑

j=0

⎛
⎝

� n
2 �∑

p=0

bn,pcp, j

⎞
⎠ B j (χ)

I β Bm(ζ ) �
� m
2 �∑

q=0

bm,q

k∑
j=0

yq, j B j (ζ ) =
k∑

j=0

⎛
⎝

� m
2 �∑

q=0

bm,q yq, j

⎞
⎠ B j (ζ ).

(32)

Now, by supposing
θn, j,p = bn,pcp, j , �m,i,q = bm,q yq,i , (33)

we can write Eq. (32) in the following form:

I α Bn(χ) �
⎡
⎣

� n
2 �∑

p=0

θn,0,p,

� n
2 �∑

p=0

θn,1,p, . . . ,

� n
2 �∑

p=0

θn,k,p

⎤
⎦ �(χ), (34)
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I β Bm(ζ ) �
⎡
⎣

� m
2 �∑

q=0

�m,0,q ,

� m
2 �∑

q=0

�m,1,q , . . . ,

� m
2 �∑

q=0

�m,k,q

⎤
⎦ �(ζ). (35)

For n, m = 0, 1, we have

I α B0(χ) = 1

�(α + 1)
χα, I α B1(χ) = 1

�(α + 2)
χα+1,

I β B0(ζ ) = 1

�(β + 1)
ζ α, I β B1(ζ ) = 1

�(β + 2)
ζ β+1,

so like the previous process χα , χα+1, ζ β and ζ β+1 are expanded with respect to BPs as

χα �
k∑

j=0

v0, j B j (χ), χα+1 �
k∑

j=0

v1, j B j (χ) (36)

ζ β �
k∑

j=0

ω0, j B j (ζ ), tβ+1 �
k∑

j=0

ω1, j B j (ζ ). (37)

Hence, by defining

Pα =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

υ0,0,0
�(α+1)

υ0,1,0
�(α+1) . . .

υ0,k,0
�(α+1)

υ1,0,0
�(α+1)

υ1,1,0
�(α+1) . . .

υ1,k,0
�(α+1)∑1

p=0 θ2,0,p
∑1

p=0 θ2,1,p . . .
∑1

p=0 θ2,k,p

...
...

...
...

∑� k
2 �

p=0 θk,0,p
∑� k

2 �
p=0 θk,1,p . . .

∑� k
2 �

p=0 θk,k,p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (38)

Pβ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω0,0,0
�(β+1)

ω0,1,0
�(β+1) . . .

ω0,k,0
�(β+1)

ω1,0,0
�(β+1)

ω1,1,0
�(β+1) . . .

ω1,k,0
�(β+1)∑1

q=0 �2,0,q
∑1

q=0 �2,1,q . . .
∑1

q=0 �2,k,q

...
...

...
...

∑� k
2 �

q=0 �k,0,q
∑� k

2 �
q=0 �k,1,q . . .

∑� k
2 �

q=0 �k,k,q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (39)

we conclude that

I α I β�(χ, ζ ) = I α I β�(χ) ⊗ �(ζ) = I α�(χ) ⊗ I β�(ζ ) = Pα�(χ) ⊗ Pβ�(ζ )

= (Pα ⊗ Pβ)�(χ, ζ ), (40)

hence,
Pα,β = Pα ⊗ Pβ. (41)

Clearly, we have

I α�(χ, ζ ) = I α�(χ) ⊗ �(ζ)

= I α�(χ) ⊗ I�(ζ)

= Pα�(χ) ⊗ I�(ζ)

= (Pα ⊗ I )(�(χ) ⊗ �(ζ)) = (Pα ⊗ I )�(χ, ζ ),
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I β�(χ, ζ ) = �(χ) ⊗ I β�(ζ )

= I�(χ) ⊗ I β�(ζ )

= I�(χ) ⊗ Pβ�(ζ )

= (I ⊗ Pβ)(�(χ) ⊗ �(ζ)) = (I ⊗ Pβ)�(χ, ζ ),

where I is the identity matrix. The product of two matrices of 2DBPs satisfies the following
proposition:

�(χ, ζ )�T (χ, ζ )C � C̃�(χ, ζ ), (42)

where C̃ is a matrix of order (m + 1) · (n + 1) × (m + 1) · (n + 1) and C is arbitrary vector
(Rabiei et al. 2018).

3.3 Operational matrix of partial differential for 2DBPs

By applying the operator Dβ∗ on the 2DBPs, �(χ, ζ ), we have

Dβ∗ �(χ, ζ ) = Dβ∗ �(χ) ⊗ �(ζ)

= �(χ) ⊗ Dβ∗ �(ζ)

= I�(χ) ⊗ D(β)
∗ζ �(ζ )

= (I ⊗ D(β)
∗ζ )(�(χ) ⊗ �(ζ))

= (I ⊗ D(β)
∗ζ )�(χ, ζ ), (43)

where D(β)
∗ζ is the operational matrix of differential for the �(ζ). Therefore, I ⊗ D(β)

∗ζ is
defined as the operational matrix of partial differential for 2DBPs,�(χ, ζ ),withe to variable
t (Patel et al. 2018).

4 Applying themethod

In this part, operational matrix of the 2DBPs is applied for solving Eq. (1). Let

Dα∗ u(χ, ζ ) � CT �(χ, ζ ). (44)

Using Eq. (44) and Lemma (2.3), we have

u(χ, ζ ) = CT (Pα ⊗ I )�(χ, ζ ) +
n∑

k=0

∂ku(0+, ζ )

∂χk
, χ > 0. (45)

Therefore, by substituting the initial condition (2) as well as using 2DBPs to approximate
the second term in the R.H.S of the above equation, we get

u(χ, ζ ) � (CT (Pα ⊗ I ) + CT
p )�(χ, ζ ). (46)

Using Eq. (44), we can write

Dβ∗ u(χ, ζ ) � (CT (Pα ⊗ I ) + CT
p )Dβ∗ �(χ, ζ )

= (CT (Pα ⊗ I ) + CT
p )Dβ∗ �(χ) ⊗ �(ζ)

= (CT (Pα ⊗ I ) + CT
p )�(χ) ⊗ Dβ∗ �(ζ)

123



82 Page 10 of 18 A. A. Khajehnasiri, R. Ezzati

= (CT (Pα ⊗ I ) + CT
p )I�(χ) ⊗ D(β)

∗t �(ζ)

= (CT (Pα ⊗ I ) + CT
p )(I ⊗ D(β)

∗ζ )�(x) ⊗ �(ζ)

= (CT (Pα ⊗ I ) + CT
p )(I ⊗ D(β)

∗ζ )�(χ, ζ ) = B(β)�(χ, ζ ), (47)

where I is the identify matrix. In addition, from above equation, we conclude that

I β Dβ∗ u(χ, ζ ) = B(β) I β�(χ, ζ ). (48)

Now, using Lemma (2.4) as well as condition (3), we have

u(χ, ζ ) − LT
P�(χ, ζ ) � B(β) I β�(χ, ζ ) = B(β)(I β ⊗ Pβ)�(χ, ζ ), (49)

where
n−1∑
k=0

∂ku(χ, 0)

∂ζ k

ζ k

k! � LT
p �(χ, ζ ). (50)

Hence

Dβ∗ u(χ, ζ ) � LT
p + Bβ(I ⊗ Pβ)Dβ∗ �(χ, ζ ) = A(β)�(χ, ζ ) (51)

A(β) = LT
p + B(β)(I ⊗ Pβ)(I ⊗ D(β)

∗ζ ). (52)

To get the approximation of [u(τ, η)]p , we have

[u(τ, η)]2 � (�(τ, η)U )(�T (τ, η)U ) = (U T �(τ, η))(�T (τ, η)U )

= U T Û�(τ, η) = �T (χ, ζ )e2,

where e2 = (U T Û )T . In the same way, [u(τ, η)]3 can be represented such as

[u(τ, η)]3 � (�T (τ, η)U )(�T (τ, η)e2) = (U T �(τ, η))(�T (τ, η)e2)

= U T ê2�(τ, η) = �T (τ, η)e3,

where e3 = (U T ê2)T . Therefore, one can deduce that

[u(τ, η)]P � (�T (τ, η)U )(�T (τ, η)ep−1) = (U T �(τ, η))(�T (τ, η)ep−1)

= U T êp−1�(τ, η) = �T (τ, η)ep,

where ep = (U T êp−1)
T .

4.1 Themethod of solution

In this section, we present the proposed method based on the operational matrix to find the
solution of Eq.(1) with the condition (2)–(3). To do this, we suppose

u(χ, ζ ) = (CT (Pα ⊗ I ) + CT
p )T �(χ, ζ ) = �T (χ, ζ )(CT (Pα ⊗ I ) + CT

p ),

G(χ, ζ ) = GT �(χ, ζ ) = G�T (χ, ζ ),

[u(τ, η)]p = eT
p �(τ, η) = �T (τ, η)ep,

�(χ, ζ )�T (χ, ζ )C = C̃�(χ, ζ ),

k(χ, ζ, τ, η) = �T (χ, ζ ) · K · �(τ, η). (53)

Now, by substituting Eqs. (44) and (52) into Eq. (1), we get

CT �(χ, ζ ) +A(β)T
�(χ, ζ ) + (CT (Pα ⊗ I ) + CT

p )T �(χ, ζ ) = GT �(χ, ζ )
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+ 1

�(α)�(β)

∫ χ

0

∫ ζ

0
(χ − τ)(α−1)(ζ − η)(β−1)k(χ, ζ, τ, η)[u(τ, η)]pdηdτ.

(54)

Substituting Eq. (53) into Eq. (54), we have

CT �(χ, ζ ) + A(β)T
�(χ, ζ ) + (CT (Pα ⊗ I ) + CT

P )T �(χ, ζ ) = GT �(χ, ζ )

1

�(α)�(β)

∫ χ

0

∫ ζ

0
(χ − τ)(α−1)(ζ − η)(β−1)�T (χ, ζ )K�(τ, η)�T (τ, η)epdηdτ.

Using the above equation, Eq. (53) can be rewritten as

CT �(χ, ζ ) + A(β)T
�(χ, ζ ) + (CT (Pα ⊗ I ) + CT

p )T �(χ, ζ ) = GT �(χ, ζ )

�T (χ, ζ )Kẽp
1

�(α)�(β)

∫ χ

0

∫ ζ

0
(χ − τ)(α−1)(ζ − η)(β−1)�(τ, η)dηdτ.

Using (25), the integral part in the above equation can be written as

CT �(χ, ζ ) + A(β)T
�(χ, ζ ) + (CT (Pα) ⊗ I ) + CT

p )T �(χ, ζ ) = GT �(χ, ζ )

�T (χ, ζ )K ẽp Pα,β�(χ, ζ ) =
(

˜K ẽp Pα,β
)T

.�(χ, ζ ) + GT �(χ, ζ ),

or

CT �(χ, ζ ) + A(β)T
�(χ, ζ ) + (CT (Pα ⊗ I ) + CT

p )T �(χ, ζ )

=
(

˜K ẽp Pα,β
)T

.�(χ, ζ ) + GT �(χ, ζ ).

Set
B =

(
˜K ẽp Pα,β

)
,

so

CT �(χ, ζ ) + A(β)T
�(χ, ζ ) + (CT (Pα ⊗ I ) + CT

p )T �(χ, ζ )

= BT �(χ, ζ ) + GT �(χ, ζ ).

Therefore,

CT + A(β)T + (CT (Pα ⊗ I ) + CT
p )T = BT + GT . (55)

The above equation is a system of algebraic equations. By solving the nonlinear system Eq.
(55), the approximate solution of Eq. (1) is obtained.

5 Convergence analysis

The concept of convergence for numerical methods plays the key role for estimating the
effectiveness of the methods. Therefore, in this section, we want to analyze the convergence
of the proposed method based on the 2DBPs for solving 2DFPVIEs by expressing and
proving a theorem. To do this, suppose that (c([0, 1) × [0, 1), ‖ · ‖) be the Banach space of
all continuous function on [0, 1) × [0, 1) with norm

‖u(χ, ζ )‖∞ = max |u(χ, ζ )|, (χ, ζ ) ∈ [0, 1) × [0, 1). (56)
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Theorem 5.1 Assume that u(χ, ζ ) and ul,k(χ, ζ ) are the exact solution and the approximate
solution of Eq. (1) with initial condition (2)–(3), respectively. Moreover, let the following
assumption are satisfied:

(1). ‖u(χ, ζ ) − ul,k(χ, ζ ) ≤ L ‖ K (u(χ, ζ )) − K (ul,k(χ, ζ )) ‖,
(57)

(2). ‖F(χ, ζ, τ, η, u(τ, η)) − F(χ, ζ, τ, η, ul,k(τ, η))‖ ≤ M ‖ u(τ, η) − ul,k(τ, η) ‖,
(58)

(3).
M

�(α + 1)�(β + 1)
<

1

L
, (59)

where L, M > 0, K (u(χ, ζ )) = Dα∗χ (χ, ζ ) + Dβ
∗ζ + u(χ, ζ ). Then, the solution of Eq. (1)

with initial condition (2)–(3) using 2DBPs converges.

Proof Clearly, we have

Dα
χ u(χ, ζ ) + Dβ

ζ u(χ, ζ ) + u(χ, ζ ) = g(χ, ζ )

+ 1

�(α)�(β)

∫ χ

0

∫ ζ

0
(χ − τ)(α−1)(ζ − η)(β−1)F(χ, ζ, τ, η, u(τ, η))dηdτ,

(60)

Dα
χ ul,k(χ, ζ ) + Dβ

ζ ul,k(χ, ζ ) + ul,k(χ, ζ ) = g(χ, ζ )

+ 1

�(α)�(β)

∫ χ

0

∫ ζ

0
(χ−τ)(α−1)(ζ −η)(β−1)F(χ, ζ, τ, η, ul,k(τ, η))dηdτ.

(61)

By subtracting (61) from (60), we get

| K (u(χ, ζ )) − K (ul,k(χ, ζ )) |
≤ 1

�(α)�(β)

∫ χ

0

∫ ζ

0
(χ − τ)(α−1)(ζ − η)(β−1)

|F(χ, ζ, τ, η, u(τ, η)) − F(χ, ζ, τ, η, ul,k(τ, η))|dηdτ,
≤ 1

�(α)�(β)

∫ χ

0

∫ ζ

0
(χ − τ)(α−1)(ζ − η)(β−1)

‖F(χ, ζ, τ, η, u(τ, η)) − F(χ, ζ, τ, η, ul,k(τ, η))‖dτdη,

≤ 1

�(α)�(β)
M‖u(χ, ζ )

−ul,k(χ, ζ )‖
∫ χ

0

∫ ζ

0
(χ − τ)(α−1)(ζ − η)(β−1)dηdτ,

= M‖u(χ, ζ ) − ul,k(χ, ζ )‖ (
I α(1)

) (
I β(1)

)

= M‖u(χ, ζ ) − ul,k(χ, ζ )‖ �(1)

�(α + 1)
χα �(1)

�(β + 1)
ζ β

≤ M

�(α + 1)�(β + 1)
‖u(χ, ζ ) − ul,k(χ, ζ )‖.

Now, we conclude that

1

L
‖u(χ, ζ ) − ul,k(χ, ζ )‖ ≤ ‖K (u(χ, ζ ) − K (ul,k(χ, ζ )‖
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≤ L

�(α + 1)�(α + 1)
‖u(χ, ζ ) − ul,k(χ, ζ )‖. (62)

The above inequality implies that

lim
l,k→∞ ‖u(χ, ζ ) − ul,k(χ, ζ )‖ = 0, (63)

which completes the proof. ��

6 Numerical examples

This section considers many instances to demonstrate the efficiency of the Boubaker poly-
nomials operational matrix

Example 6.1 Consider the nonlinear two-dimensional fractional integro-differential equation

∂1/3u(χ, ζ )

∂χ1/3 + ∂u(χ, ζ )

∂ζ
−

∫ χ

0

∫ ζ

0
τ 2 cos(η)(u2(τ, η)+τ 2 sin2(η))dηdτ = g(χ, ζ ), (64)

with

g(χ, ζ ) = 3

2�( 32 )
sin(ζ )χ

2
3 − χ sin(ζ ) − 1

15
χ5 sin(ζ )(cos2(ζ ) − sin2(ζ ) + 2). (65)

The exact solution of this equation is given by u(χ, ζ ) = χ cos(ζ ), for χ, ζ ∈ [0, 1] and
with supplementary conditions

u(0, ζ ) = 0, u(χ, 0) = χ. (66)

Numerical results are presented in Table 1 and Fig. 1.

Example 6.2 In the next example, the following 2DFPVIEs are considered:

∂2/3u(χ, ζ )

∂χ2/3 + u(χ, ζ ) −
∫ χ

0

∫ ζ

0
η3e−η(u(τ, η))dηdτ = g(χ, ζ ), (67)

Table 1 Absolute errors of the
proposed method for Example
(6.1)

l = k = 4 l = k = 5 l = k = 6
(χ, ζ ) u2DB Ps u2DB Ps u2DB Ps

(0.1, 0.8) 0.1853 × 10−3 0.4141 × 10−3 0.5001 × 10−4

(0.2, 0.6) 0.4511 × 10−4 0.2035 × 10−3 0.2564 × 10−4

(0.3, 0.8) 0.1176 × 10−4 0.1104 × 10−4 0.3024 × 10−5

(0.4, 0.6) 0.1021 × 10−4 0.1245 × 10−5 0.8590 × 10−5

(0.5, 0.5) 0.2081 × 10−4 0.7412 × 10−5 0.7401 × 10−6

(0.6, 0.5) 0.3621 × 10−4 0.3205 × 10−5 0.8457 × 10−6

(0.7, 0.3) 0.5200 × 10−3 0.4142 × 10−4 0.3020 × 10−6

(0.8, 0.4) 0.3247 × 10−4 0.3258 × 10−5 0.9410 × 10−7

(0.9, 0.9) 0.1657 × 10−3 0.4741 × 10−4 0.9851 × 10−6
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Fig. 1 Numerical solutions (right) and analytical (left) of Example (6.1), u (χ, ζ ), with l, k = 6

Fig. 2 Numerical solutions (right) and analytical (left) of Example (6.2) u (χ, ζ ) with l, k = 6

Table 2 Absolute errors of the
proposed method for Example
(6.2)

l = k = 4 l = k = 5 l = k = 6
(χ, ζ ) u2DB Ps u2DB Ps u2DB Ps

(0.0, 0.7) 0.5008 × 10−3 0.2327 × 10−3 0.1854 × 10−4

(0.1, 0.3) 0.4142 × 10−3 0.4158 × 10−3 0.5208 × 10−4

(0.3, 0.8) 0.4225 × 10−3 0.1001 × 10−4 0.3021 × 10−4

(0.4, 0.2) 0.2710 × 10−3 0.5087 × 10−4 0.2011 × 10−5

(0.6, 0.6) 0.1220 × 10−3 0.5884 × 10−4 0.8421 × 10−4

(0.7, 0.5) 0.8041 × 10−4 0.1019 × 10−4 0.6011 × 10−5

(0.8, 0.4) 0.2104 × 10−4 0.1018 × 10−4 0.1521 × 10−4

(0.9, 0.9) 0.5804 × 10−4 0.4108 × 10−4 0.9618 × 10−4
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Fig. 3 Numerical solutions (right) and analytical (left) of Example (6.3), u (χ, ζ ), with l, k = 7

Table 3 Absolute errors of the
proposed method for Example
(6.3)

l = k = 4 l = k = 5 l = k = 7
(χ, ζ ) u2DB Ps u2DB Ps u2DB Ps

(0.1, 0.1) 0.2051 × 10−3 0.1853 × 10−3 0.1250 × 10−6

(0.2, 0.2) 0.7241 × 10−3 0.8650 × 10−4 0.6751 × 10−6

(0.3, 0.3) 0.9142 × 10−3 0.2253 × 10−5 0.7650 × 10−5

(0.4, 0.4) 0.4210 × 10−3 0.6580 × 10−5 0.8095 × 10−7

(0.5, 0.5) 0.8654 × 10−3 0.5241 × 10−5 0.1260 × 10−7

(0.6, 0.6) 0.1102 × 10−4 0.1751 × 10−4 0.1020 × 10−5

(0.7, 0.7) 0.2534 × 10−3 0.3625 × 10−3 0.9208 × 10−6

(0.8, 0.8) 0.2125 × 10−4 0.1245 × 10−5 0.2910 × 10−6

(0.9, 0.9) 0.4901 × 10−3 0.6412 × 10−5 0.2007 × 10−7

Table 4 CPU time for different
l, k

l = k = 4 l = k = 7

Examples 6.1 0.605 0.917

Examples 6.2 0.840 0.895

Examples 6.3 0.525 0.871

with

g(χ, ζ ) = 3

2π

(
eζ χ

1
3
√
3�

(
2

3

))
−2e−ζ +ζe−ζ +χ (eζ )− 1

8
ζ 4χ2+ζ 2e−ζ −2e−ζ . (68)

The exact solution is given by u(χ, ζ ) = χeζ , for χ, ζ ∈ [0, 1] and with supplementary
conditions u(0, ζ ) = 0. Numerical results are presented in Table 2 and Fig. 2.
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Example 6.3 In the final example, the following 2DFPVIEs are considered:

∂1/2u(χ, ζ )

∂χ1/2 + ∂u
3
2 (χ, ζ )

∂ζ
3
2

+ u(χ, ζ ) −
∫ χ

0

∫ ζ

0
(u2(τ, η))dηdτ = g(χ, ζ ), (69)

with

g(χ, ζ ) = 2
√

χ√
π

+ 4
√

ζ√
π

+ χ + ζ 2 + 1

5
ζχ5 + 1

3
ζ 2χ3 + 1

3
ζ 3χ,

for χ, ζ ∈ [0, 1] and with supplementary conditions

u(0, ζ ) = ζ 2, u(χ, 0) = χ,
∂u

∂ζ
(χ, 0) = 0, (70)

which the exact solution is u(χ, ζ ) = χ + ζ 2. Some numerical results of this example are
presented in Table 3 and Fig. 3.

7 Conclusion

In this article, we presented a new approach based on the 2DBPs for solving the two-
dimensional nonlinear fractional partial integro-differential equation (Table 4). We derived
the operational matrix of fractional integration of 2DBPs. By properties of 2DBPs and the
use of operational matrices, we the considered Eq. (1) with the conditions (2)–(3) to a sys-
tem of algebraic equations. The effectiveness and accuracy of the method were examined by
some examples and the obtained results have shown remarkable performance of the proposed
method. The obtained results show that the proposed method can be a suitable method for
solving such problems.
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