
Computational and Applied Mathematics (2022) 41:69
https://doi.org/10.1007/s40314-022-01769-7

Einstein Heronian mean aggregation operator and its
application in decision making problems

V. Anusha1 · V. Sireesha1

Received: 25 March 2021 / Revised: 30 November 2021 / Accepted: 12 January 2022 /
Published online: 9 February 2022
© The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2022

Abstract
In this paper, an aggregation operator for multi-criteria decision-making (MCDM) problems
of interval valued intuitionistic fuzzy sets (IVIFSs) is proposed. In the present approach,
the Heronian mean (HM) operator and Einstein operational laws are combined to develop
interval-valued intuitionistic fuzzy Einstein Heronian mean (IVIFEHM) operator. Properties
of proposed aggregation operator are investigated. Further the technique for order prefer-
ence by similarity to ideal solution (TOPSIS) MCDM model is established using IVIFEHM
operator and Jaccard distance measure. The proposed model is demonstrated by solving a
numerical example and its efficiency is authenticated by comparing with existing methods.

Keywords IVIFSs · Einstein operations · Heronian mean operator · Jaccard distance ·
TOPSIS

Mathematics Subject Classification 91B06 · 03E72

1 Introduction

Assuming membership and non-membership functions as intervals, Atanassov and Gargov
(1989) proposed the interval-valued intuitionistic fuzzy sets (IVIFSs) for solving decision-
making problems. The aggregation operators are the important decision-making tools which
gives the overall evaluation of each alternative, and then based on these overall values, the
ranking of alternatives is made. Therefore, aggregation operators are one of the important
decision-making tools in modern decision theory. In general, the intersection and union in
aggregation operators aremodeled using algebraic operational rules. Xu (2007), Xu andChen
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(2007) proposed arithmetic and geometric averaging operators using algebraic operations of
IVIFNs for aggregating the information and applied to decision making. In the real-world
decision problems, sometimes there exists complex relationships among the criteria. Thus, it
is of utmost importance for an aggregation operator to capture those complex interrelation-
ships and generate more accurate aggregation results (Liu et al. 2015). Therefore, researchers
initiated using union and intersectionwith t-operators as they provide unique optimal solution
(Wang 2018). Developing aggregation operators using t-operators grabbed more attention in
the past decade; different operators were developed using various t-norms and t-conorms
[Dombi (Wu et al. 2018, 2020); Hamacher (Liu 2013); Frank (Zhang 2017) and Einstein
(Liu and Wang 2020)].

Considering the fact that Einstein norms are conventional examples in the class of
Archimedean norms (Klement et al. 2000), several researchers proposed Einstein operations
on various generalizations of fuzzy sets. Wang and Liu (2011, 2012) developed Einstein
norms on intuitionistic fuzzy sets proposed arithmetic and geometric aggregation operators
and studied various properties of these operators. Sireesha and Himabindu (2019) defined
Einstein operational laws on interval-valued intuitionistic trapezoidal fuzzy sets and pre-
sented an Einstein weighted averaging operator. Liu et al. (2015) defined Einstein laws on
IVIFSs and developed several averaging and geometric operators to solve decision making
problems.

Due to extreme criterion values and biased assessments, there may lie a negative effect on
the results of aggregation; to prevent this, researchers developed aggregation operators using
mean operators (Subramanian et al 2020). Different mean operators: Heronian (Yu 2013; Liu
and Chen 2017, Hamy (Wu et al. 2018), Muirhead (Liu and Li 2017), Bonferroni (Zhou et al.
2019) and Maclaurin (Ali and Tahir 2020) were extensively used during aggregation. Yu and
Wu (2012) noted that the Heronian mean (HM) operator considers the interrelationship of
the aggregated arguments and presented HM operator to aggregate IVIFNs. Nevertheless,
they also elucidated the advantages of HM over Bonferroni mean, which also considers the
interrelationship between the aggregated arguments. Therefore, to combine information HM
operator can be used to produce robust aggregation operators.

There are several methods to solve decision making problems. Yoon and Hwang (1981)
developed the decision-making model TOPSIS, which is a major area of research interest.
The TOPSIS method has made enormous success in dealing with IVIF decision making
problems (Bai 2013; Abdullah et al. 2020). Dugenci (2016) proposed a generalized distance
measure for IVIFSs and an extension of TOPSIS method is presented, in which the proposed
distancemeasures are used as separationmeasures and illustrated its application toDM.Wang
(2021) defined novel distance measures between IVIFSs and presented an IVIF-TOPSIS
method by extending conventional TOPSIS method. Moreover, Jaccard similarity measure
provides a very simple and intuitive measure of similarity between data samples and hence
been frequently implemented in decision support systems with various domains (Verma and
Rajesh 2020). The Jaccard distance is the complement of the Jaccard similarity co-efficient
and measures dissimilarity of two sets.

The comprehensive analysis on IVIF decision making problems motivated us to develop
an averaging operator using the Heronian mean with Einstein norms. Further, an integrated
IVIF-TOPSIS model is presented in which the developed operator is used and the Jaccard
distance is used to calculate the separationmeasure. The paper is ordered as follows: In Sect. 2
definitions and operations on IVIFNs, distance measure and mean operator are reviewed. In
the later section, Heronian Mean operator is developed based on Einstein operations for
aggregating IVIFNs. In Sect. 4, a TOPSIS model using the proposed aggregating operator
and a distance measure is presented. A numerical example is illustrated in Sect. 5 for the
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demonstration of model. In Sect. 6, to show the authenticity of the model a comparative
analysis is given. Finally, the study conclusion is given in Sect. 7.

2 Preliminaries

This section reviews definition and literature about IVIFSs, Heronian mean and Jaccard
distance measure.

Definition 1 Interval-valued intuitionistic fuzzy sets (IVIFSs) (Atanassov and Gargov 1989).

Let X be a universe set and E � {x1, x2, . . . , xn} be a subset of its elements, then the
interval-valued intuitionistic fuzzy set P̃ has the form

P̃ � {
< xi ,

([
μP̃ L (xi ), μP̃U (xi )

]
,
[
ϑP̃ L (xi ), ϑP̃U (xi )

])
> xi ∈ V

}
,

where μP̃ : X → S[0, 1] and ϑP̃ : X → S[0, 1] satisfying the condition 0 ≤ μU
P̃
(xi ) +

ϑU
P̃

(xi ) ≤ 1 for x ∈ X and S[0, 1] are closed subintervals of [0, 1].

Note: 1. If μL
P̃
(xi ) � μU

P̃
(xi ) and ϑ L

P̃
(xi ) � ϑU

P̃
(xi ) then the IVIFS P̃ reduces to IFS

(Atanassov 1994).

2. Let P̃ � {< xi , (
[
μL
P̃
(xi ), μU

P̃
(xi )

]
,
[
ϑ L
P̃
(xi ), ϑU

P̃
(xi )

]
) > xi ∈ V } be an IVIFS, then

the pair (
[
μL
P̃
(xi ), μU

P̃
(xi )

]
,
[
ϑ L
P̃
(xi ), ϑU

P̃
(xi )

]
) is called as an IVIFN (Atanassov 1994).

3. For convenience, we can denote an IVIFN by
∼
δ� ([a, b], [c, d]).

Definition 2 Interval hesitancy degree (Atanassov 1994).

For each element xi , the unknown degree (hesitancy degree) of an intuitionistic fuzzy
interval of xi ∈ X in P̃ can be computed.

The interval hesitancy degree of P̃ is defined as follows:

πP̃ (xi ) � [1 − μU
P̃
(xi ) − ϑU

P̃
(xi ), 1 − μL

P̃
(xi ) − ϑ L

P̃
(xi )]

Definition 3 Operations on IVIFNs (Atanassov 1994).

Let
∼
γ1� ([s1, t1], [u1, v1]) and

∼
γ2� ([s2, t2], [u2, v2]) be IVIFNs, the operations on

∼
γ1

and
∼
γ2 are given as:

∼
γ1 ∩ ∼

γ2� ([min(s1, s2),min(t1, t2)], [max(u1, u2),max(v1, v2)])

∼
γ1 ∪ ∼

γ2� ([max(s1, s2),max(t1, t2)], [min(u1, u2),min(v1, v2)])

γ̃1 ⊕ γ̃2 � ([s1 + s2 − s1s2, t1 + t2 − t1t2], [u1u2, v1v2])

γ̃1 ⊗ γ̃2 � ([s1s2, t1t2], [u1 + u2 − u1u2, v1 + v2 − v1v2])

r
∼
γ1�

([
1 − (1 − s1)

r , 1 − (1 − t1)
r ],

[
u1

r , v1
r ]), r > 0

∼
γ1

r � ([
s1

r , t1
r ],

[
1 − (1 − u1)

r , 1 − (1 − v1)
r ]), r > 0
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Definition 4 Triangular operators (Navara 2007).

t-norm: a triangular norm (t-norm) operator T , is a binary operation on [0,1] satisfying the
following conditions:

• T (a, b) � T (b, a)
• T (a, T (b, c)) � T (T (a, b), c)
• b ≤ c ⇒ T (a, b) ≤ T (a, c)
• T (a, 1) � a

t-conorm: a triangular conorm (t-conorm) operator S, is a binary operation on [0, 1]; is the
dual notion to a t-norm satisfying the following conditions:

• S(a, b) � S(a, b)
• S(a, S(b, c)) � S(S(a, b), c)
• b ≤ c ⇒ S(a, b) ≤ S(a, c)
• S(a, 0) � a

The representation of t-conorms is dual to those of t-norms i.e., S(a, b) � 1 − T (1 −
a, 1 − b).

Example The Einstein t-norm (T ) and t-conorm (S) are defined as follows (Beliakov et al.
2007).

T (s, t) � st

1 + (1 − s)(1 − t)

S(s, t) � s + t

1 + st
Definition 5 Aggregation operator.

The aggregation operators are mathematical objects that have the function of reducing a
set of numbers into a unique number.

Example Generalized Heronian mean operartor (Sykora 2009).

Let p, q ≥ 0 and I � [0, 1], then the function GHMp,q : I n → I given by

GHMp,q(b1, b2, . . . bm) �
(

2

m(m + 1)

m∑

s�1

m∑

t�s

bs
pbt

q

) 1
p+q

is called Generalized Heronian operator.

Definition 6 Einstein operational rules of IVIFNs (Liu et al. 2015).

The Einstein norm operations on IVIFNs
∼
γ1� ([s1, t1], [u1, v1]) and

∼
γ2�

([s2, t2], [u2, v2]) are defined as follows:

γ̃1 ⊕E γ̃2 �
([

s1 + s2
1 + s1s2

,
t1 + t2
1 + t1t2

]
,

[
u1u2

1 + (1 − u1)(1 − u2)
,

v1v2

1 + (1 − v1)(1 − v2)

])

γ̃1 ⊗E γ̃2 �
([

s1s2
1 + (1 − s1)(1 − s2)

,
t1t2

1 + (1 − t1)(1 − t2)

]
,

[
u1 + u2
1 + u1u2

,
v1 + v2

1 + v1v2

])

for n > 0

nγ̃1 �
([

(1 + s1)n − (1 + s2)n

(1 + s1)n + (1 + s2)n
,
(1 + t1)n − (1 + t2)n

(1 + t1)n + (1 + t2)n

]
,

[
2un1

(2 − u1)n + un1
,

2vn1
(2 − v1)n + vn1

])

γ̃1
n �

([
2sn1

(2 − s1)n + sn1
,

2tn1
(2 − t1)n + tn1

]
,

[
(1 + u1)n − (1 + u2)n

(1 + u1)n + (1 + u2)n
,
(1 + v1)

n − (1 + v2)
n

(1 + v1)
n + (1 + v2)

n

])
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Definition 7 Jaccard distance (Michael and David 1971).

Jaccard distance is a measure of dissimilarity between two sets, given by

dJ

( ∼
P1,

∼
P2

)
� 1 − SJ

( ∼
P1,

∼
P2

)
,

where SJ

( ∼
P1,

∼
P2

)
�

∣∣∣∣
∼
P1∩

∼
P2

∣∣∣∣
∣∣∣∣

∼
P1∪

∼
P2

∣∣∣∣

is Jaccard similarity co-efficient.

Definition 8 Jaccard distance measure on IVIFSs (Anusha and Sireesha 2021).

For any IVIFSs
∼
P1,

∼
P2 on U .

The Jaccard distance between
∼
P1 and

∼
P2 is

dJ

( ∼
P1,

∼
P2

)
� 1

−

∣∣∣∣∣∣∣∣

⎡

⎢⎢
⎣

min

(
μ ∼
P1

L (xi ) , μ ∼
P2

L (xi )

)
,

min

(
μ ∼
P1

U (xi ) , μ ∼
P2

U (xi )

)

⎤

⎥⎥
⎦ ,

⎡

⎢
⎣
max

(
ϑ ∼
P1

L (xi ) , ϑ ∼
P2

L (xi )

)
,

max(ϑ ∼
P1

U (xi ) , ϑ ∼
P2

U (xi ))

⎤

⎥
⎦ ,

⎡

⎢
⎣
min

(
π L∼
P1

(xi ) , π L∼
P2

(xi )

)
,

max(πU∼
P1

(xi ) , πU∼
P2

(xi ))

⎤

⎥
⎦

∣∣∣∣∣∣∣∣
∣∣∣∣
∣∣∣∣

⎡

⎢
⎢
⎣

max

(
μ ∼
P1

L (xi ) , μ ∼
P2

L (xi )

)
,

max

(
μ ∼
P1

U (xi ) , μ ∼
P2

U (xi )

)

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎣
min

(
ϑ ∼
P1

L (xi ) , ϑ ∼
P2

L (xi )

)
,

min(ϑ ∼
P1

U (xi ) , ϑ ∼
P2

U (xi ))

⎤

⎥
⎦ ,

⎡

⎢
⎣

min(π L∼
P1

(xi ) , π L∼
P2

(xi )),

max

(
πU∼
P1

(xi ) , πU∼
P2

(xi )

)

⎤

⎥
⎦

∣∣∣∣
∣∣∣∣

3 Proposed Einstein Heronianmean operator for IVIFSs

In fuzzy set theory, the t-operators are important applications in fuzzy decision making. It
has been observed that a suitable choice of triangular operators on different applications can
considerably enhance or deteriorate the system’s performance (Roy andWang 1998). As, the
Heronian mean considers the interrelationship of the aggregated arguments and relieves the
calculation redundancy, an aggregation operator using Heronian mean is developed.

3.1 Interval-valued intuitionistic fuzzy Einstein Heronianmean (IVIFEHM) operator

The IVIFEHM operator is defined using the generalized Heronian mean operator combined
with Einstein operational rules, given as:

Definition 9 Let
∼
γi� ([si , ti ], [ui , vi ]) be a set of i IVIFNs. The IVIFEHM operator on

∼
γ1,

∼
γ2, . . . ,

∼
γn :

IVIFEHMp,q(γ̃1, γ̃2, . . . , γ̃n) �
(

2

n(n + 1)
⊕n

i�1 ⊕n
j�i

(
γ̃i

p ⊗ γ̃i
q)
) 1

p+q

.

Theorem 1 Let
∼
γi� ([si , ti ], [ui , vi ]) bei IVIFNs and p, q ≥ 0. Then the aggregated value

of
∼
γi ’s by IVIFEHM operator is also an IVIFN, and is:

IVIFEHMp,q(γ̃1, γ̃2, . . . , γ̃n) �
(

2

n(n + 1)
⊕n

i�1 ⊕n
j�i

(
γ̃i

p ⊗ γ̃i
q)
) 1

p+q
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�

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

2

(
∏n

i�1
∏n

j�i ei j
2

n(n+1) −∏n
i�1

∏n
j�i fi j

2
n(n+1)

) 1
p+q

(
∏n

i�1
∏n

j�i ei j
2

n(n+1) +3
∏n

i�1
∏n

j�i fi j
2

n(n+1)

) 1
p+q

+

(
∏n

i�1
∏n

j�i ei j
2

n(n+1) −∏n
i�1

∏n
j�i fi j

2
n(n+1)

) 1
p+q

,

2

(
∏n

i�1
∏n

j�i gi j
2

n(n+1) −∏n
i�1

∏n
j�i hi j

2
n(n+1)

) 1
p+q

(
∏n

i�1
∏n

j�i gi j
2

n(n+1) +3
∏n

i�1
∏n

j�i hi j
2

n(n+1)

) 1
p+q

+

(
∏n

i�1
∏n

j�i gi j
2

n(n+1) −∏n
i�1

∏n
j�i hi j

2
n(n+1)

) 1
p+q

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

(
∏n

i�1
∏n

j�i ki j
2

n(n+1) +3
∏n

i�1
∏n

j�i li j
2

n(n+1)

) 1
p+q −

(
∏n

i�1
∏n

j�i ki j
2

n(n+1) −∏n
i�1

∏n
j�i li j

2
n(n+1)

) 1
p+q

(
∏n

i�1
∏n

j�i ki j
2

n(n+1) +3
∏n

i�1
∏n

j�i li j
2

n(n+1)

) 1
p+q

+

(
∏n

i�1
∏n

j�i ki j
2

n(n+1) −∏n
i�1

∏n
j�i li j

2
n(n+1)

) 1
p+q

,

(
∏n

i�1
∏n

j�i ni j
2

n(n+1) +3
∏n

i�1
∏n

j�i mi j

2
n(n+1)

) 1
p+q −

(
∏n

i�1
∏n

j�i ni j
2

n(n+1) −∏n
i�1

∏n
j�i mi j

2
n(n+1)

) 1
p+q

(
∏n

i�1
∏n

j�i ni j
2

n(n+1) +3
∏n

i�1
∏n

j�i mi j

2
n(n+1)

) 1
p+q

+

(
∏n

i�1
∏n

j�i ni j
2

n(n+1) −∏n
i�1

∏n
j�i mi j

2
n(n+1)

) 1
p+q

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where ei j � (2 − ai )p
(
2 − a j

)q + 3ai pa
q
j

fi j � (2 − ai )
p(2 − a j

)q − ai
paqj

gi j � (2 − bi )
p(2 − b j

)q + 3bi
pbqj

hi j � (2 − bi )
p(2 − b j

)q − bi
pbqj

ki j � (1 + ci )
p(1 + c j

)q + 3(1 − ci )
p(1 − c j

)q

li j � (1 + ci )
p(1 + c j

)q − (1 − ci )
p(1 − c j

)q

ni j � (1 + di )
p(1 + d j

)q + 3(1 − di )
p(1 − d j

)q

mi j � (1 + di )
p(1 + d j

)q − (1 − di )
p(1 − d j

)q

Proof

γ̃ E
p

i �
([

2a p
i(

(2 − ai )p + a p
i

) ,
2bp

i(
(2 − bi )p + bp

i

)

]

,

[
(1 + ci )p − (1 − ci )p

(1 + ci )p + (1 − ci )p
,
(1 + di )p − (1 − di )p

(1 + di )p + (1 − di )p

])

γ̃ E
q

j �
⎛

⎝

⎡

⎣
2aqj((

2 − a j
)q + aqj

) ,
2bqj((

2 − b j
)q + bqj

)

⎤

⎦,

[(
1 + c j

)q − (
1 − c j

)q
(
1 + c j

)q +
(
1 − c j

)q ,

(
1 + d j

)q − (
1 − d j

)q
(
1 + d j

)q +
(
1 − d j

)q

])

Then,

γ̃ E
p

i ⊗E γ̃ E
q

j

�

⎛

⎜⎜
⎝

[
2a p

i a
q
j

(2−ai )p(2−a j)
q+a p

i a
q
j
,

2bpi b
q
j

(2−bi )p(2−b j)
q+bpi b

q
j

]
,

[
(1+ci )p(1+c j)

q−(1−ci )p(1−c j)
q

(1+ci )p(1+c j)
q+(1−ci )p(1−c j)

q ,
(1+di )p(1+d j)

q−(1−di )p(1−d j)
q

(1+di )p(1+d j)
q+(1−di )p(1−d j)

q

]

⎞

⎟⎟
⎠
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Thus,

2

n(n + 1)
⊗E

(
γ̃ E

p

l ⊗E γ̃ E
q

j

)

�

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡

⎢⎢⎢⎢⎢⎢
⎣

(
(2−ai )p(2−a j)

q+3a p
i a

q
j

) 2
n(n+1) −

(
(2−ai )p(2−a j)

q−a p
i a

q
j

) 2
n(n+1)

(
(2−ai )p(2−a j)

q+3a p
i a

q
j

) 2
n(n+1) +

(
(2−ai )p(2−a j)

q−a p
i a

q
j

) 2
n(n+1)

,

(
(2−bi )p(2−b j)

q+3bpi b
q
j

) 2
n(n+1) −((2−bi )p(2−b j)

q−bpi b j
q
) 2
n(n+1)

(
(2−bi )p(2−b j)

q+3bpi b
q
j

) 2
n(n+1) +

(
(2−bi )p(2−b j)

q−bpi b
q
j

) 2
n(n+1)

⎤

⎥⎥⎥⎥⎥⎥
⎦

,

⎡

⎢⎢⎢
⎣

2((1+ci )p(1+c j)
q−(1−ci )p(1−c j)

q
)

2
n(n+1)

((1+ci )p(1+c j)
q+3(1−ci )p(1−c j)

q
)

2
n(n+1) +((1+ci )p(1+c j)

q−(1−ci )p(1−c j)
q
)

2
n(n+1)

,

2((1+di )p(1+d j)
q−(1−di )p(1−d j)

q
)

2
n(n+1)

((1+di )p(1+d j)
q+3(1−di )p(1−d j)

q
)

2
n(n+1) +((1+di )p(1+d j)

q−(1−di )p(1−d j)
q
)

2
n(n+1)

⎤

⎥⎥⎥
⎦

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Let ei j � (2 − ai )p
(
2 − a j

)q + 3a p
i a j

q

fi j � (2 − ai )
p(2 − a j

)q − a p
i a j

q

gi j � (2 − bi )
p(2 − b j

)q + 3bp
i b j

q

hi j � (2 − bi )
p(2 − b j

)q − bp
i b j

q

ki j � (1 + ci )
p(1 + c j

)q + 3(1 − ci )
p(1 − c j

)q

li j � (1 + ci )
p(1 + c j

)q − (1 − ci )
p(1 − c j

)q

ni j � (1 + di )
p(1 + d j

)q + 3(1 − di )
p(1 − d j

)q

mi j � (1 + di )
p(1 + d j

)q − (1 − di )
p(1 − d j

)q

Then,

2

n(n + 1)
⊗E

(
γ̃ E

p

i ⊗E γ̃ E
q

j

)

�
([

ei j
2

n(n+1) − fi j
2

n(n+1)

ei j
2

n(n+1) + fi j
2

n(n+1)

,
gi j

2
n(n+1) − hi j

2
n(n+1)

gi j
2

n(n+1) + hi j
2

n(n+1)

]

,

[
2li j

2
n(n+1)

ki j
2

n(n+1) + li j
2

n(n+1)

,
2mi j

2
n(n+1)

ni j
2

n(n+1) + mi j
2

n(n+1)

])

Thereafter,

⊕E
n
j�i

(
2

n(n + 1)
⊗E

(
γ̃ E

p

i ⊗E γ̃ E
q

j

))

�

⎛

⎜⎜⎜⎜
⎝

[
∏n

j�i ei j
2

n(n+1) −∏n
j�i fi j

2
n(n+1)

∏n
j�i ei j

2
n(n+1) +

∏n
j�i fi j

2
n(n+1)

,

∏n
j�i gi j

2
n(n+1) −∏n

j�i hi j
2

n(n+1)

∏n
j�i gi j

2
n(n+1) +

∏n
j�i hi j

2
n(n+1)

]

,

[
2
∏n

j�i li j
2

n(n+1)

∏n
j�i ki j

2
n(n+1) +

∏n
j�i li j

2
n(n+1)

,
2
∏n

j�i mi j

2
n(n+1)

∏n
j�i ni j

2
n(n+1) +

∏n
j�i mi j

2
n(n+1)

]

⎞

⎟⎟⎟⎟
⎠

And

⊕E
n
i�1⊕E

n
j�i

(
2

n(n + 1)
⊗E

(
γ̃ E

p

i ⊗E γ̃ E
q

j

))
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�

⎛

⎜⎜⎜⎜
⎝

[
∏n

i�1
∏n

j�i ei j
2

n(n+1) −∏n
i�1

∏n
j�i fi j

2
n(n+1)

∏n
i�1

∏n
j�i ei j

2
n(n+1) +

∏n
i�1

∏n
j�i fi j

2
n(n+1)

,

∏n
i�1

∏n
j�i gi j

2
n(n+1) −∏n

i�1
∏n

j�i hi j
2

n(n+1)

∏n
i�1

∏n
j�i gi j

2
n(n+1) +

∏n
i�1

∏n
j�i hi j

2
n(n+1)

]

,

[
2
∏n

i�1
∏n

j�i li j
2

n(n+1)

∏n
i�1

∏n
j�i ki j

2
n(n+1) +

∏n
i�1

∏n
j�i li j

2
n(n+1)

,
2
∏n

i�1
∏n

j�i mi j

2
n(n+1)

∏n
i�1

∏n
j�i ni j

2
n(n+1) +

∏n
i�1

∏n
j�i mi j

2
n(n+1)

]

⎞

⎟⎟⎟⎟
⎠

Thus,

(
⊕E

n
i�1⊕E

n
j�i

(
2

n(n + 1)
⊗E

(
γ̃ E

p

i ⊗E γ̃ E
q

j

))) 1
p+q

�

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

2

(
∏n
i�1

∏n
j�i ei j

2
n(n+1) −∏n

i�1
∏n

j�i fi j

2
n(n+1)

) 1
p+q

(
∏n
i�1

∏n
j�i ei j

2
n(n+1) +3

∏n
i�1

∏n
j�i fi j

2
n(n+1)

) 1
p+q

+

(
∏n
i�1

∏n
j�i ei j

2
n(n+1) −∏n

i�1
∏n

j�i fi j

2
n(n+1)

) 1
p+q

,

2

(
∏n
i�1

∏n
j�i gi j

2
n(n+1) −∏n

i�1
∏n

j�i hi j

2
n(n+1)

) 1
p+q

(
∏n
i�1

∏n
j�i gi j

2
n(n+1) +3

∏n
i�1

∏n
j�i hi j

2
n(n+1)

) 1
p+q

+

(
∏n
i�1

∏n
j�i gi j

2
n(n+1) −∏n

i�1
∏n

j�i hi j

2
n(n+1)

) 1
p+q

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

(
∏n
i�1

∏n
j�i ki j

2
n(n+1) +3

∏n
i�1

∏n
j�i li j

2
n(n+1)

) 1
p+q

−
(
∏n
i�1

∏n
j�i ki j

2
n(n+1) −∏n

i�1
∏n

j�i li j

2
n(n+1)

) 1
p+q

(
∏n
i�1

∏n
j�i ki j

2
n(n+1) +3

∏n
i�1

∏n
j�i li j

2
n(n+1)

) 1
p+q

+

(
∏n
i�1

∏n
j�i ki j

2
n(n+1) −∏n

i�1
∏n

j�i li j

2
n(n+1)

) 1
p+q

,

(
∏n
i�1

∏n
j�i ni j

2
n(n+1) +3

∏n
i�1

∏n
j�i mi j

2
n(n+1)

) 1
p+q

−
(
∏n
i�1

∏n
j�i ni j

2
n(n+1) −∏n

i�1
∏n

j�i mi j

2
n(n+1)

) 1
p+q

(
∏n
i�1

∏n
j�i ni j

2
n(n+1) +3

∏n
i�1

∏n
j�i mi j

2
n(n+1)

) 1
p+q

+

(
∏n
i�1

∏n
j�i ni j

2
n(n+1) −∏n

i�1
∏n

j�i mi j

2
n(n+1)

) 1
p+q

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where ei j � (2 − ai )p
(
2 − a j

)q + 3a p
i a

q
j

fi j � (2 − ai )
p(2 − a j

)q − a p
i a

q
j

gi j � (2 − bi )
p(2 − b j

)q + 3bp
i b

q
j

hi j � (2 − bi )
p(2 − b j

)q − bp
i b

q
j

ki j � (1 + ci )
p(1 + c j

)q + 3(1 − ci )
p(1 − c j

)q

li j � (1 + ci )
p(1 + c j

)q − (1 − ci )
p(1 − c j

)q

ni j � (1 + di )
p(1 + d j

)q + 3(1 − di )
p(1 − d j

)q

mi j � (1 + di )
p(1 + d j

)q − (1 − di )
p(1 − d j

)q

Hence, the given formula for the novel aggregation operator IVIFEHM is obtained.
The following properties of the proposed aggregation operator are verified and proofs are

omitted.

Property 1 Idempotency

If
∼
γi� ([si , ti ], [ui , vi ]) �∼

γ are equal i � 1, 2, . . . ,n then

IVIFEHMp,q
(∼
γ1,

∼
γ2, . . . ,

∼
γn

)
�∼

γ .
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Property 2 Monotonicity

Let
∼
γi� ([si , ti ], [ui , vi ]) and

∼
γi

′
�
([

si
′
, ti

′]
,
[
ui

′
, vi

′])
be tow collections of IVIFNs.

If si ≤ si
′
, ti ≤ ti

′
and ui ≥ ui

′
, vi ≥ vi

′
then IVIFEHMp,q

(∼
γ1,

∼
γ2, . . . ,

∼
γn

)
≤

IVIFEHMp,q
(

∼
γi

′
,

∼
γi

′
, . . . ,

∼
γi

′)
.

Property 3 Boundedness

Let
∼
γi� ([si , ti ], [ui , vi ]) (i � 1, 2, . . . , n) be a set of IVIFNs.

If
∼
γi

+ � ([max(si ),max(ti )], [min(ui ),min(vi )])

And
∼
γi

− � ([min(si ),min(ti )], [max(ui ),max(vi )])

Then
∼
γi

− ≤ IVIFEHMp,q
(∼
γ1,

∼
γ2, . . . ,

∼
γn

)
≤ ∼

γi
+
.

4 Proposed TOPSIS model using Einstein Heronianmean aggregation
operator

Here, we presented a TOPSIS model for IVIF MCDM problem.
Let O � O1, O2, . . . , On be a set of n alternatives and U � u1, u2, . . . , um is set of

m criteria. The performance of each alternative Oi and criterion u j is denoted by ỹi j . Let
D̃ � [

ỹi j
]
n×m be the fuzzy decision matrix.

i.e., D̃ � [
ỹi j
]
n×m �

⎡

⎢
⎣

⎡

⎢
⎣

([s11, t11], [u11, v11]) · · · ([s1m, t1m], [u1m, v1m])
...

. . .
...

([sn1, tn1], [un1, vn1]) · · · ([snm, tnm], [unm, vnm])

⎤

⎥
⎦

⎤

⎥
⎦.

To select the best alternative below given steps are followed:
Step 1: calculate the comprehensive evaluation of each alternative using the IVIFEHM

operator using definition 9. And represent the obtained value as

IVIFEHMp,q(ỹi1, ỹi2, . . . , ỹim) � ỹi � ([si , ti ], [ui , vi ]), i � 1, 2 . . . n

Step 2: from the evaluated values of step1, identify the Positive Ideal Solution (PIS) and
Negative ideal solution (NIS) as:

ỹ+ � ([max(si ),max(ti )], [min(ui ),min(vi )]), i � 1, 2, . . . , n

And ỹ− � ([min(si ),min(ti )], [max(ui ),max(vi )]), i � 1, 2, . . . , n.
Step 3: calculate the Jaccard distance of each evaluated value of alternative ỹi to the PIS

ỹ+i using Definition 8.

dJ
(
ỹi , ỹ

+
i

) � 1 −

∣∣∣∣

[
min

(
μỹi

L , μỹ+
L
)
,

min
(
μỹi

U , μỹ+
U
)
]
,

[
max

(
ϑỹi

L , ϑỹ+
L
)
,

max(ϑỹi
U , ϑỹ+

U )

]
,

[
min

(
πỹi

L , πỹ+
L
)
,

max(πỹi
U , πỹ+

U )

]∣∣∣∣
∣∣∣∣∣∣

⎡

⎣
max

(
μỹi

L , μỹ+i
L
)
,

max
(
μỹi

U , μỹ+i
U
)

⎤

⎦,

[
min

(
ϑỹi

L , ϑỹ+i
L
)
,

min(ϑỹi
U , ϑỹ+i

U )

]

,

[
min

(
πỹi

L , πỹ+i
L
)
,

max(πỹi
U , πỹ+i

U )

]∣∣∣∣∣∣
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Similarly, calculate the Jaccard distance of each evaluated value of alternative ỹi to the
NIS ỹ−

i .

dJ
(
ỹi , ỹ

−
i

) � 1 −

∣∣∣∣∣∣

⎡

⎣
min

(
μL
ỹi
, μL

ỹ−
)
,

min
(
μU
ỹi
, μU

ỹ−
)

⎤

⎦,

[
max

(
ϑ L
ỹi
, ϑ L

ỹ−
)
,

max(ϑU
ỹi

, ϑU
ỹ− )

]

,

[
min

(
π L
ỹi
, π L

ỹ−
)
,

max(πU
ỹi

, πU
ỹ− )

]∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

⎡

⎢⎢
⎣

max

(
μL
ỹi
, μL

ỹ−
i

)
,

max

(
μU
ỹi
, μU

ỹ−
i

)

⎤

⎥⎥
⎦,

⎡

⎢
⎣
min

(
ϑ L
ỹi
, ϑ L

ỹ−
i

)
,

min(ϑU
ỹi

, ϑU
ỹ−
i
)

⎤

⎥
⎦,

⎡

⎢
⎣
min

(
π L
ỹi
, π L

ỹ−
i

)
,

max(πU
ỹi

, πU
ỹ−
i
)

⎤

⎥
⎦

∣∣∣∣∣∣∣∣

Step 4: calculate the closeness co-efficient of each alternative to PIS using:

R(Oi ) � dJ
(
ỹi , ỹ+

)

dJ
(
ỹi , ỹ+i

)
+ dJ

(
ỹi , ỹ−) , i � 1, 2, . . . , n

Step 5: rank the alternatives as
If R(Oi ) < R

(
Oj
)
then Oi < Oj

If R(Oi ) > R
(
Oj
)
then Oi > Oj

If R(Oi ) � R
(
Oj
)
then Oi � Oj

5 Numerical example

The applicability of the proposed method is demonstrated by taking an example from Wu
et al. (2020). The problem is about selecting the best forest ecological tourism area out of
the given five possible areas (alternatives) Oi , i � 1, 2, 3, 4, 5. These areas are evaluated
by means of four criteria, Ui , i � 1, 2, 3, 4: U1 is the tourism and leisure value; U2 is the
material production value; U3 is the scientific research and cultural value; U4 is the climatic
regulation value. The preference values given by expert in the form of IVIFNs are given in
Table 1.

Step 1: the comprehensive evaluation of each alternative by using the IVIFEHM operator
is calculated and are shown in Table 2.

Step 2: the PIS and NIS are obtained as:
ỹ+ � ([0.37, 0.57], [0.15, 0.33]) and ỹ− � ([0.2, 0.37], [0.29, 0.46]),
Step 3: the Jaccard distance from the aggregated value of each alternative ỹi , i �

1, 2, 3, 4, 5 obtained in step 1 to the IVIF PIS and IVIF NIS is calculated and presented
in Table 3.

Table 1 Decision matrix

U1 U2 U3 U4

O1 ([0.4,0.6], [0.2,0.3]) ([0.3,0.5], [0.1,0.3]) ([0.3,0.5], [0.1,0.2]) ([0.1,0.3], [0.3,0.4])

O2 ([0.2,0.5], [0.1,0.4]) ([0.3,0.6], [0.2,0.4]) ([0.4,0.6], [0.1,0.3]) ([0.1,0.4], [0.3,0.5])

O3 ([0.5,0.7], [0.2,0.3]) ([0.3,0.6], [0.2,0.3]) ([0.2,0.4], [0.3,0.4]) ([0.4,0.5], [0.1,0.2])

O4 ([0.4,0.4], [0.2,0.4]) ([0.3,0.4], [0.2,0.3]) ([0.2,0.4], [0.4,0.3]) ([0.2,0.3], [0.1,0.2])

O5 ([0.2,0.6], [0.2,0.4]) ([0.2,0.4], [0.4,0.6]) ([0.1,0.5], [0.3,0.4]) ([0.3,0.6], [0.2,0.3])
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Table 2 The aggregated values of
the alternatives by IVIFEHM
operator (p � 2, q � 1)

IVIFEHM

O1 ỹ1 �([0.31,0.5], [0.15,0.33])

O2 ỹ2� ([0.27,0.52], [0.15,0.42])

O3 ỹ3 � ([0.37,0.57], [0.2,0.34])

O4 ỹ4 � ([0.31,0.37], [0.18,0.34])

O5 ỹ5 � ([0.2,0.48], [0.29,0.46])

Table 3 Jaccard distance of ỹi
from PIS and NIS Jaccard distance of

∼
yi to

∼
yi

+
Jaccard distance of

∼
yi to

∼
yi

−

dJ
(
ỹ1, ỹ

+) 0.054 dJ
(
ỹ1, ỹ

−) 0.169

dJ
(
ỹ2, ỹ

+) 0.087 dJ
(
ỹ2, ỹ

−) 0.164

dJ
(
ỹ3, ỹ

+) 0.037 dJ
(
ỹ3, ỹ

−) 0.200

dJ
(
ỹ4, ỹ

+) 0.102 dJ
(
ỹ4, ỹ

−) 0.139

dJ
(
ỹ5, ỹ

+) 0.173 dJ
(
ỹ5, ỹ

−) 0.045

Step 4: the closeness co-efficient of alternatives to PIS is calculated and are presented in
Table 4.

Step 5: ranking of alternatives is given in Table 5.
Thus, the best forest ecological tourism area is O3 which is coinciding with the result

obtained in Wu et al. (2020). Further, the obtained results are compared with other MCDM

Table 4 Closeness co-efficient of
alternatives Alternatives Closeness coefficient

O1 0.24

O2 0.34

O3 0.15

O4 0.42

O5 0.79

Table 5 Ranking of alternatives
Alternatives Rank

O1 2

O2 3

O3 1

O4 4

O5 5
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Table 6 Ranking results for different p and q values

p and q Closeness coefficient of alternatives Rank

p � 2 and q � 1 O1 � 0.24, O2 � 0.34 O3 � 0.15,
O4 � 0.42, O5 � 0.79

O3 > O1 > O2 > O4 > O5

p � 2 and q � 2 O1 � 0.25, O2 � 0.35 O3 � 0.08,
O4 � 0.41, O5 � 0.77

O3 > O1 > O2 > O4 > O5

p � 1 and q � 2 O1 � 0.24, O2 � 0.31 O3 � 0.08,
O4 � 0.36, O5 � 0.77

O3 > O1 > O2 > O4 > O5

p � 1 and q � 5 O1 � 0.30, O2 � 0.37 O3 � 0.05,
O4 � 0.43, O5 � 0.72

O3 > O1 > O2 > O4 > O5

p � 5 and q � 5 O1 � 0.30, O2 � 0.39 O3 � 0.07,
O4 � 0.48, O5 � 0.73

O3 > O1 > O2 > O4 > O5

methods (Wuet al. 2018;Bai 2013;Nayagamet al. 2013). From the comparisons it is observed
that the proposed method is working on par with the existing method.

5.1 Effect of variables p and q on the result

In this section, we further investigated the effect of p and q in the IVIFEHM operator on the
ranking results. For this the values of p, q are randomly chosen and closeness co-efficient of
the alternatives is calculated and alternatives are ranked. It is observed that the result is same
for any values of p and q unlike the Heronian mean operator with algebraic operations when
applied for p � 1 and q � 5 and p � 5 and q � 5 (Liu 2017). Some of the tested cases are
presented in Table 6.

6 Comparative study

To study the efficiency of the proposedmethod, we have taken another example fromWu et al.
(2018) and applied the procedure. The closeness coefficients and the ranking of alternatives
of the proposed method are given in the Table 7.

It is observed that the ranking result obtained is identical to the existing approachWu et al.
(2018) and as well as Bai (2013), Nayagam et al. (2013). Moreover, the proposed approach
is not getting affected with the variables p, q .

Table 7 Closeness coefficients and ranking of alternatives of example Wu et al. (2018)

A1 A2 A3 A4 A5 Ranking

p � 1, q � 2 0.524 0.498 1 0.223 0.226 O3 > O1 > O2 > O5 > O4
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7 Conclusion

Aggregation of information plays an imperative role in decision-making. The operators used
in the aggregation should be cautiously chosen so that there is no flaw in final decision.
As mean operators are been proven for effective aggregation, in this paper, an aggregation
approach is developed usingHeronianmean operator. An IVIFEHMoperator is proposed and
is used in TOPSIS to solve the IVIFMCDMproblems. As, the operator has the characteristics
of Heronian mean operator and Einstein operations it helps in avoiding loss of original
decision information during the process of aggregation. In this process, Jaccard distance
which considers the interval hesitancy degree is used as a separation measure to calculate
the relative closeness coefficient of each alternative for ranking. To observe the effectiveness
of the proposed approach two numerical examples from literature are taken and are studied.
The results show that the proposed model is effective in dealing MCDM problems. Further,
we have presented a study on the effect of the variables p and q in ranking the alternatives.
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