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Abstract
Several efficient methods have been developed in the literature for approximating solutions
of fixed point and optimization problems. However, the S-iteration process has been shown to
outperformmany of these existingmethods. In this paper, we study the problem of finding the
common solution of split variational inclusion problem, equilibrium problem and common
fixed point of nonexpansive mappings. We introduce an improved S-iteration method, which
combines inertial and viscosity techniques with self-adaptive step size for approximating
the solution of the problem in the framework of Hilbert spaces. Moreover, under some
mild conditions we prove strong convergence theorem for the proposed algorithm without
the knowledge of the operator norm and we apply our result to study split minimization
problem, split feasibility problem and relaxed split feasibility problem. Finally, we present
some numerical experiments with graphical illustrations to demonstrate the implementability
and efficiency of our proposed method in comparison with some existing state of the art
methods in the literature.
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1 Introduction

Throughout this paper, let R denote the set of all real numbers and N denote the set of all
positive numbers. Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm
|| · ||, and let C be a nonempty closed convex subset of H . Let S : C → C be a nonlinear
mapping. A point x̂ ∈ C is called a fixed point of S if Sx̂ = x̂ . We denote by F(S), the set
of all fixed points of S, i.e.

F(S) = {x̂ ∈ C : Sx̂ = x̂}. (1.1)

A mapping S : C → C is called a nonexpansive mapping if

||Sx − Sy|| ≤ ||x − y|| ∀ x, y ∈ C .

The study of fixed point theory for nonexpansive mappings has flourished in recent years
due to its vast applications in fields like economics, compressed sensing, and other applied
sciences. In particular, certain problems such as variational inequalities problems, convex
optimization problems, convex feasibility problems,monotone inclusion problems and image
restoration problems can be formulated as finding the fixed points of nonexpansive mapping
(seeBauschke andBorwein 1996;Chen et al. 2013). Several researchers haveput considerable
efforts in the study and formulation of iterative methods to approximate the fixed points of
nonexpansive mappings (for example, see Halpern 1967; Moudafi 2000 and the reference
therein).
In 2007, Agarwal et al. (2007) introduced the following iterative method known as the S-
iteration. Let C be a convex subset of a linear space X and S a mapping of C into itself. The
sequence {xn} is generated as follows:

Algorithm 1.1

x1 ∈ C,

yn = (1 − βn)xn + βn Sxn,

xn+1 = (1 − αn)Sxn + αn Syn, n ∈ N,

where {αn} and {βn} are sequences in (0, 1). The authors showed that the S-iteration process
has a better rate of convergence than Mann and Ishikawa iteration processes.
Some authors have used the S-iteration process and its modifications to find common fixed
points of two mappings; see for example (Bussaban and Kettapun 2018; Pandey et al. 2019)
and the references therein.
Let F : C × C → R be a bifunction. The equilibrium problem (EP) for the bifunction F on
C is formulated as finding a point x̂ ∈ C such that

F(x̂, y) ≥ 0, ∀y ∈ C . (1.2)

The solution set of EP (1.2) is denoted by EP(F). The EP covers a wide range of topics
that have emerged from the social sciences, economics, finance, image restoration, ecology,
transport, networking, elasticity and optimization problems (see Olona et al. 2021a; Patriks-
son 2015). The problem is a generalized concept that unifies several mathematical problems
as special cases, namely minimization problems, variational inequality problems, mathe-
matical programming problems, complementarity problems, saddle point problems, Nash
equilibrium problems in noncooperative games, minimax inequality problems, fixed point
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problems, scalar and vector minimization problems, and others; see (Alakoya et al. 2021;
Blum 1994) and the references therein. Recently, the EP and its various generalizations have
attracted considerable research efforts and various iterative methods have been proposed for
approximating their solutions (see Alakoya et al. 2021; Jolaoso et al. 2020; Ogwo et al. 2021;
Olona et al. 2021b; Oyewole et al. 2021; Taiwo et al. 2021a, b and the references therein).
In the recent time, the Split Inverse Problem (SIP) has attracted the attention of several
authors (see Alakoya et al. 2021; Oyewole et al. 2021; Taiwo et al. 2021 and the references
therein) due to its wide areas of applications, for example, in phase retrieval, image recovery,
signal processing, data compression, intensity-modulated radiation therapy, among others
(see Censor et al. 2006; Censor and Elfving 1994 and the references therein). The SIP model
is formulated as follows: Find a point

x̂ ∈ H1 that solves IP1 (1.3)

such that

ŷ := Ax̂ ∈ H2 solves IP2, (1.4)

where H1 and H2 are real Hilbert spaces, IP1 denotes an inverse problem formulated in H1

and IP2 denotes an inverse problem formulated in H2, and A : H1 → H2 is a bounded linear
operator.
Censor and Elfving (1994) introduced the first instance of the SIP called the split feasibility
problem (SFP) in 1994 for modelling inverse problems which arise from medical image
reconstruction. Since then, the SFP has been studied intensively by several authors due to its
wide areas of application such as in signal processing, control theory, approximation theory,
geophysics, biomedical engineering, communications, etc (Byrne 2002; Censor et al. 2006;
Godwin et al. 2020). Let C and Q be nonempty closed convex subsets of Hilbert spaces H1

and H2, respectively, and A : H1 → H2 be a bounded linear operator. The SFP is formulated
as follows:

find a point x̂ ∈ C such that ŷ = Ax̂ ∈ Q. (1.5)

Moudafi (2011) introduced another instance of the SIP known as the split monotone varia-
tional inclusion problem (SMVIP). Let H1, H2 be real Hilbert spaces, f1 : H1 → H1, f2 :
H2 → H2, are inverse strongly monotone mappings, A : H1 → H2 is a bounded linear
operator, B1 : H1 → 2H1 , B2 : H2 → 2H2 are multivalued maximal monotone mappings.
The SMVIP is formulated as follows:

find a point x̂ ∈ H1 such that 0 ∈ f1(x̂) + B1(x̂) (1.6)

and

ŷ = Ax̂ ∈ H2 such that 0 ∈ f2(ŷ) + B2(ŷ). (1.7)

If f1 ≡ 0 ≡ f2, then the SMVIP (1.6)-(1.7) reduces to the following split variational
inclusion problem (SVIP):

find a point x̂ ∈ H1 such that 0 ∈ B1(x̂) (1.8)

and

ŷ = Ax̂ ∈ H2 such that 0 ∈ B2(ŷ). (1.9)

The SVIP (1.8)-(1.9) constitutes a pair of variational inclusion problems which have to be
solved so that the image ŷ = Ax̂ under a given bounded linear operator A of the solution
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of the SVIP (1.8) in H1 is the solution of the other SVIP (1.9) in another Hilbert space H2.

Moudafi (2011), showed that the SVIP (1.8)-(1.9) includes as a special case the SFP (1.11).
The SVIP is at the core of modelling many inverse problems arising from phase retrieval
and other real world problems, for instance, in sensor networks in computerized and data
compression (Byrne 2002; Combettes 1996). We denote the solution set of SVIP (1.8) by
SOLVIP(B1) while the solution set of SVIP (1.9) is denoted by SOLVIP(B2). Hence, the
solution set of the SVIP (1.8)–(1.9) is denoted by

F = {x∗ ∈ H1 : x∗ ∈ SOLVIP(B1) and Ax∗ ∈ SOLVIP(B2)}. (1.10)

To solve the SVIP for two maximal monotone operators B1 and B2 in Hilbert spaces, Byrne
et al. (2012) proposed the following algorithm:

Algorithm 1.2 {
x0 ∈ H1,

xn+1 = αnx0 + (1 − αn)J
B1
λ (xn + γ A∗(J B2

λ − I )Axn),
(1.11)

for λ > 0 and A∗ is the adjoint operator of the bounded linear operator A, γ ∈ (0, 2
L ), L =

||A∗A||, J B1
λ := (I +λB1)

−1, J B2
λ := (I +λB2)

−1 are the resolvent operators of B1 and B2

respectively, and {αn} is a sequence in [0, 1] satisfying limn→∞ αn = 0 and
∑∞

n=1 αn = ∞.

The authors obtained a strong convergence result for the proposed algorithm under some
mild conditions.
In the recent time, the problems of finding common solutions of the set of fixed points of
nonlinear mappings and the set of solutions of optimization problems have been considered
by some authors (for instance, see Alakoya et al. 2021; Cholamjiak and Suantai 2013; Khan
et al. 2020 and the references therein). The importance and motivation for studying such
a common solution problem lies in its potential application to mathematical models whose
constraints can be expressed as fixed point problems and optimization problems. In this article
we will be studying the problems of finding common solutions of the set of fixed points of
nonlinear mappings and the set of solutions of certain optimization problems.
Recently, Wangkeeree et al. (2018) introduced the following general iterative scheme for
approximating a common solution of SVIP and FPP for a nonexpansive mapping in the
setting of real Hilbert spaces.

Algorithm 1.3 ⎧⎪⎨
⎪⎩
x0 ∈ H1,

un = J B1
λ (xn + γ A∗(J B2

λ − I )Axn),

xn+1 = αnβ f (xn) + (I − αnD)Sun,

where f : H1 → H1 is a contraction with constant k ∈ (0, 1), S : H1 → H1 is a
nonexpansive mapping, D : H1 → H1 is a strongly positive bounded linear operator with
constantμ and 0 < β <

μ
k , λ > 0, γ ∈ (0, 1

L ),where L is the spectral radius of the operator
A∗A, {αn} ⊂ (0, 1) and B1 : H1 → 2H1 , B2 : H2 → 2H2 are two multi-valued maximal
monotone operators on H1 and H2 respectively. Under certain conditions, the sequence
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generated by the proposed Algorithm 1.3 was proved to converge strongly to a common
solution of split variational inclusion problem and fixed point problem for a nonexpansive
mapping.

Remark 1.4 Here, we remark that the step size γ of Algorithms 1.2 and 1.3 above plays an
essential role in the convergence properties of the algorithms. Many of the existing iterative
methods for solving SVIP involve step size that depends on the norm of the bounded linear
operator A. Such algorithms are usually not easy to implement because they require compu-
tation of the operator norm which oftentimes is difficult to compute. In addition, the step size
defined by these methods are often very small and deteriorates the convergence rate of the
algorithm. A larger step size can often be used in practice to yield better numerical results.

Very recently, Tang (2020) proposed the followingHalpern-type algorithmwith self-adaptive
step size for solving SVIP in the framework of Hilbert spaces.

Algorithm 1.5
Choose a positive sequence {ρn} satisfying 0 < ρn < 4 and inf ρn(4 − ρn) > 0. Select
arbitrary starting point x0 and set n = 0.
Iterative Step: Given the iterates xn(n ≥ 0). Compute

τn = ρng(xn)

||G(xn)||2 + ||H(xn)||2 ,

and calculate the next iterate as

xn+1 = αnx0 + (1 − αn)J
B1
λ (I − τn A

∗(I − J B2
λ )A)xn .

Stop Criterion: If xn+1 = xn, then stop. Otherwise, set n := n + 1 and return to Iterative
Step,

where g(x) = 1
2 ||(I − J B2

λ )Ax ||2,G(x) = A∗(I − J B2
λ )Ax, H(x) = (I − J B1

λ )x, and {αn} is
a sequence in (0, 1) satisfying limn→∞ αn = 0 and

∑∞
n=1 αn = ∞. Under mild conditions,

strong convergence result was obtained for the proposed algorithm.
Based on the heavy ball methods of a two-order time dynamical system, Polyak (1964) first
introduced an inertial extrapolation as an acceleration process to solve the smooth convex
minimization problem. The inertial algorithm is a two-step iteration where the next iterate
is defined by making use of the previous two iterates. In the recent time, there has been an
increasing interest in the study of inertial type algorithms and several authors have constructed
some fast iterativemethods by employing the inertial technique (see, e.g., Alakoya et al. 2021,
2020, 2021; Izuchukwu et al. 2020; Ogwo et al. 2021; Owolabi et al. 2021).
For approximating the zero point of a maximal monotone operator B, Alvarez and Attouch
(2001) introduced the following inertial proximal algorithm:

Algorithm 1.6

xn+1 = J B
λn

(xn + αn(xn − xn−1)), n ≥ 1.

The authors obtained a weak convergence result for the algorithm under the following con-
ditions:
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(B1) There exists λ > 0 such that for all n ∈ N, λn ≥ λ.

(B2) There exists α ∈ [0, 1) such that for all n ∈ N, 0 ≤ αn ≤ α.

(B3)
∑∞

n=1 αn‖xn − xn−1‖2 < ∞.

Recently, authors have pointed out one of the drawbacks of the summability condition (B3)
of the Algorithm 1.6, that is, to satisfy the summability condition, it is necessary to first
calculate αn at each step (see Moudafi and Oliny 2003).
Very recently, Shehu et al. (2021), Iyiola et al. (2018), Shehu et al. (2020), and Shehu and
Iyiola (2020) proposed some efficient inertial iterative methods with self-adaptive step size
for approximating solutions of certain classes of optimization problems and the authors were
able to establish convergence of the proposed methods under some mild conditions imposed
on the control parameters.
From the above review, the following natural question arises:
Question: Can we construct an inertial iterative method with self-adaptive step size for
approximating a common solution of split variational inclusion problem, equilibrium prob-
lem and fixed point problem in Hilbert spaces such that condition (B3) of Algorithm 1.6 is
dispensed with?
Our interest in this paper is to provide an affirmative answer to the above question.
Inspired by the above results and the ongoing research interest in this direction, in this paper,
we introduce a new inertial iterative schemewhich employs the viscosity S-iteration technique
with self-adaptive step size for approximating a common element of the set of solutions of
split variational inclusion problem, equilibrium problem and common fixed point problem
for nonexpansive mappings in Hilbert spaces. Our motivation for studying such a common
solution problem lies in its potential application to mathematical models whose constraints
can be expressed as split variational inclusion problem, equilibrium problem and common
fixed point problem. This arises in practical problems such as signal processing, network
resource allocation, image recovery. A scenario is in network bandwidth allocation problem
for two services in a heterogeneous wireless access networks in which the bandwidth of
the services are mathematically related (see, for instance, Iiduka 2012; Luo et al. 2009
and the references therein). Unlike in Algorithms 1.2 and 1.3 and several other algorithms
in the literature, our algorithm is designed such that its implementation does not require
the knowledge of the norm of the bounded linear operator. Moreover, our work extend
the results in Agarwal et al. (2007), Wangkeeree et al. (2018), Tang (2020), Alvarez and
Attouch (2001) to the problem of finding a common solution of split variational inclusion
problem, equilibrium problem and common fixed point problem for nonexpansive mappings
and the inertial technique employed is more efficient than that used in Alvarez and Attouch
(2001). Under some mild conditions, we prove strong convergence theorem for the proposed
algorithm. Furthermore, we apply our result to study other optimization problems and we
provide somenumerical experimentswith graphical illustrations to demonstrate the efficiency
of the proposed algorithm in comparison with some existing state of the art algorithms in the
literature.
The outline of the paper is as follows: In Sect. 2, we recall some basic definitions and existing
results which are needed for the convergence analysis of the proposed algorithm. In Sect. 3,
we present the proposed algorithm and highlight some of its important features while in
Sect. 4 we discuss its convergence. In Sect. 5 we apply our results to study split minimization
problem and split feasibility problems. In Sect. 6, numerical examples and comparison with
some related algorithms are presented to demonstrate the performance of our new algorithm.
Finally, we give the concluding remarks in Sect. 7.
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2 Preliminaries

In this section, we recall some concepts and results which will be employed in the sequel.
Let H be a real Hilbert space, for a nonempty closed and convex subset C of H , the metric
projection PC : H → C is defined, for each x ∈ H , as the unique element PCx ∈ C such
that

||x − PCx || = inf{||x − z|| : z ∈ C}.
It is known that PC is firmly nonexpansive, i.e.,

||PCx − PC y||2 ≤ 〈PCx − PC y, x − y〉, (2.1)

for all x, y ∈ H . Moreover, for any x ∈ H and z ∈ C, z = PCx if and only if (see [?])

〈x − z, z − y〉 ≥ 0 ∀ y ∈ C . (2.2)

In what follows, we denote the weak and strong convergence of a sequence {xn} to a point
x ∈ H by xn⇀x and xn → x , respectively and wω(xn) denotes set of weak limits of {xn},
that is,

ωw(xn) := {x ∈ H : xn j ⇀x for some subsequence {xn j } of {xn}}.
Definition 2.1 Let H be a real Hilbert space, C ⊂ H be a subset of H and h : C → H be
an operator from C onto H . The operator h is said to be

(1) firmly nonexpansive if

〈h(x) − h(y), x − y〉 ≥ ||h(x) − h(y)||2, ∀x, y ∈ C;
(2) L-Lipschitz continuous, where L > 0, if

||hx − hy|| ≤ L||x − y||, ∀ x, y ∈ C;
if L ∈ [0, 1), then T is called a contraction mapping;

(3) nonexpansive if T is 1−Lipschitz continuous;
(4) hemicontinuous if it is continuous along each line segment in C .

Lemma 2.2 (Zhao et al. 2018) (Demiclosedness Principle). Let T be a nonexpansivemapping
on a closed convex subset C of a real Hilbert space H . Then I − T is demiclosed at any
point y ∈ H , that is, if xn⇀x and xn − T xn → y ∈ H , then x − T x = y.

Definition 2.3 Let H be a real Hilbert space. A function f : H → R ∪ {+∞} is said to be
weakly lower semicontinuous (w-lsc) at x ∈ H , if

f (x) ≤ lim inf
n→∞ f (xn)

holds for an arbitrary sequence {xn}∞n=0 in H satisfying xn⇀x .

Definition 2.4 Let H be a real Hilbert space and λ > 0. The operator B : H → 2H is said
to be

• monotone if

〈u − v, x − y〉 ≥ 0 for all u ∈ B(x), v ∈ B(y).
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• maximal monotone mapping if the graph G(B) of B,

G(B) := {(x, u) ∈ H × H |u ∈ B(x)},
is not properly contained in the graph of any other monotone mapping.

• The resolvent of B with parameter λ > 0 denoted by J B
λ is given by

J B
λ := (I + λB)−1,

where I is the identity operator.

Remark 2.5 For λ > 0, the following results hold (Tang 2020):

(1) B is maximal monotone if and only if J B
λ is single-valued, firmly nonexpansive and

dom(J B
λ ) = H , where dom(B) := {x ∈ H |B(x) �= ∅}.

(2) The point x∗ ∈ B−1(0) if and only if x∗ = J B
λ x∗.

(3) The solution set F of the SVIP (1.8)-(1.9) is equivalent to the following:

Find x∗ ∈ H1 with x∗ = J B1
λ x∗ such that y∗ = Ax∗ ∈ H2 and y∗ = J B2

λ y∗ (2.3)

Assumption 2.6 For solving the EP, we assume that the bifunction F : C ×C → R satisfies
the following conditions:

(A1) F(x, x) = 0 for all x ∈ C;
(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C;
(A3) F is upper hemicontinuous, that is, for all x, y, z ∈ C , limt↓0 F

(
t z + (1 − t)x, y

) ≤
F(x, y);

(A4) for each x ∈ C, y �→ F(x, y) is convex and lower semicontinuous.

Lemma 2.7 Ma et al. (2015) Let C be a nonempty closed convex subset of a Hilbert space
H and F : C × C → R be a bifunction satisfying Assumption 2.6. For r > 0 and x ∈ H ,

define a mapping T F
r : H → C as follows:

T F
r (x) = {z ∈ C : F(z, y) + 1

r
〈y − z, z − x〉 ≥ 0, ∀ y ∈ C}. (2.4)

Then T F
r is well defined and the following hold:

(1) for each x ∈ H , T F
r (x) �= ∅;

(2) T F
r is single-valued;

(3) T F
r is firmly nonexpansive, that is, for any x, y ∈ H ,

‖T F
r x − T F

r y‖2 ≤ 〈T F
r x − T F

r y, x − y〉;
(4) F(T F

r ) = EP(F);
(5) EP(F) is closed and convex.

Lemma 2.8 Chuang (2013), Ogwo et al. (2021) Let H be a real Hilbert space. Then the
following results hold for all x, y ∈ H and δ ∈ R :
(i) ||x + y||2 ≤ ||x ||2 + 2〈y, x + y〉;
(ii) ||x + y||2 = ||x ||2 + 2〈x, y〉 + ||y||2;
(iii) ||x − y||2 = ||x ||2 − 2〈x, y〉 + ||y||2.
(iv) ||δx + (1 − δ)y||2 = δ||x ||2 + (1 − δ)||y||2 − δ(1 − δ)||x − y||2.
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Lemma 2.9 Maingé (2007) Let {an}, {cn} ⊂ R+, {σn} ⊂ (0, 1) and {bn} ⊂ R be sequences
such that

an+1 ≤ (1 − σn)an + bn + cn for all n ≥ 0.

Assume
∑∞

n=0 |cn | < ∞. Then the following results hold:

(1) If bn ≤ βσn for some β ≥ 0, then {an} is a bounded sequence.
(2) If we have

∞∑
n=0

σn = ∞ and lim sup
n→∞

bn
σn

≤ 0,

then limn→∞ an = 0.

Lemma 2.10 Saejung and Yotkaew (2012) Let {an} be a sequence of non-negative real num-
bers, {αn} be a sequence in (0, 1)with

∑∞
n=1 αn = ∞ and {bn} be a sequence of real numbers.

Assume that

an+1 ≤ (1 − αn)an + αnbn, for all n ≥ 1,

if lim supk→∞ bnk ≤ 0 for every subsequence {ank } of {an} satisfying lim infk→∞(ank+1 −
ank ) ≥ 0, then limn→∞ an = 0.

3 Proposedmethod

In this section, we present the proposed algorithm. First, we define the following functions:

g(x) = 1

2
||(I − J B2

λ2
)Ax ||2, h(x) = 1

2
||(I − J B1

λ1
)x ||2

and

G(x) = A∗(I − J B2
λ2

)Ax, H(x) = (I − J B1
λ1

)x .

From Aubin (1993), it can easily be verified that g and h are weak lower semi-continuous
and convex differentiable. Moreover, G and H are Lipschitz continuous (see Tang 2020).
In what follows, we assume thatC and Q are nonempty closed convex subsets of real Hilbert
spaces H1 and H2, respectively, B1 : H1 → 2H1 and B2 : H2 → 2H2 are maximal monotone
mappings, F : C × C → R is a bifunction satisfying Assumption 2.6, and A : H1 → H2 is
a bounded linear operator with A∗ being its adjoint operator (A∗ = AT in finite dimensional
spaces). Let S, T : H1 → H1 be nonexpansive mappings and f : H1 → H1 be a contraction
with coefficient k ∈ (0, 1).Wedenote the solution set by� = F(S)∩F(T )∩F∩EP(F) �= ∅.
We establish the convergence of the algorithm under the following conditions on the control
parameters:

(C1) Let {αn} ⊂ (0, 1) such that limn→∞ αn = 0 and
∑∞

n=0 αn = ∞;
(C2) Let {βn}, {σn}, {δn}, {ξn} ⊂ [a, b], a, b ∈ (0, 1) and such that αn + δn + ξn = 1;
(C3) Let θ > 0, {μn} be a positive sequence such that limn→∞ μn

αn
= 0;

(C4) 0 < a ≤ ρn ≤ b < 4, {rn} ⊂ (0,∞) such that lim infn→∞ rn > 0, and λi > 0, i =
1, 2.

123



39 Page 10 of 31 T. O. Alakoya, O. T. Mewomo

Now, our main algorithm is presented as follows:

Algorithm 3.1

Step 0. Let x0, x1 ∈ H be two arbitrary initial points and set n = 1.
Step 1. Given the (n − 1)th and nth iterates, choose θn such that 0 ≤ θn ≤ θ̂n with θ̂n

defined by

θ̂n =
{
min

{
θ,

μn||xn−xn−1||
}
, if xn �= xn−1,

θ, otherwise.
(3.1)

Step 2. Compute

wn = xn + θn(xn − xn−1).

Step 3. Find un ∈ C such that

F(un, y) + 1

rn
〈y − un, un − wn〉 ≥ 0. (3.2)

Step 4. Compute

vn = βnwn + (1 − βn)un .

Step 5. Compute

tn = J B1
λ1

(I − γn A
∗(I − J B2

λ2
)A)vn,

where

γn :=
{

ρng(vn)
||G(vn)||2+||H(vn)||2 , if ||G(vn)||2 + ||H(vn)||2 �= 0,

0, otherwise.

Step 6. Compute

zn = (1 − σn)vn + σn Stn .

Step 7. Compute

xn+1 = αn f (xn) + δn Stn + ξnT zn .

Set n := n + 1 and return to Step 1.

Remark 3.2 By conditions (C1) and (C3), one can easily verify from (3.1) that

lim
n→∞ θn ||xn − xn−1|| = 0 and lim

n→∞
θn

αn
||xn − xn−1|| = 0.

Remark 3.3 Observe that the step size of our proposed Algorithm (3.1) is constructed such
that its implementation does not require knowledge of the operator norm. Moreover, the
implementation of the inertial term does not require the very stringent summability condition
(B3) of Algorithm 1.6 (Alvarez and Attouch 2001). These important features make our
proposed method easily implementable.
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Remark 3.4 We remark that since the split variational inclusion problem generalizes the split
feasibility problem and variational inequality problem, our proposedmethod could be viewed
as an extension of themethods proposed in Shehu andOgbuisi (2015), Cai et al. (2018), Gibali
and Shehu (2019).

Remark 3.5 Observe that according to Lemma 2.7, the operator defined in (2.4) is single-
valued. To compute un in (3.2) is equivalent to evaluating T F

rn (wn). In doing this, we find an
element un ∈ C such that inequality (3.2) holds. By applying the given definition of F(un, y)
and simplifying the resulting inequality, we will obtain a quadratic function in variable y.
Since the operator T F

rn is single-valued, then the quadratic function will have at most one
solution in R. Hence, the value of un for which the discriminant of the quadratic function is
zero is determined and this gives the value of the operator T F

rn at wn .

4 Convergence analysis

Next, we state the strong convergence theorem for the proposed algorithm as follows.

Theorem 4.1 Let H1 and H2 be real Hilbert spaces, and A : H1 → H2 be a bounded
linear operator with adjoint A∗. Suppose S, T : H1 → H1 are nonexpansive mappings,
and f : H1 → H1 is a contraction with coefficient k ∈ (0, 1). Let {xn} be the sequence
generated by Algorithm 3.1 such that conditions (A1)-(A4) and (C1)-(C4) are satisfied. Then
{xn} converges strongly to a point x̂ ∈ �, where x̂ = P� ◦ f (x̂).

We divide the proof of the strong convergence theorem into the following lemmas.

Lemma 4.2 Suppose that {xn} is the sequence generated by Algorithm 3.1. Then {xn} is
bounded.

Proof Observe that by (3.2), un = T F
rn wn . Also, we note that the mapping P� ◦ f is a

contraction. Then by the Banach Contraction Principle, there exists p ∈ H1 such that p =
P�◦ f (p) and in particular p ∈ �.Thus, it follows that Sp = p = T p, Trn p = p, J B1

λ1
p = p

and J B2
λ2

(Ap) = Ap. Since T F
rn is nonexpansive, then we have

||un − p|| = ||T F
rn wn − p|| ≤ ||wn − p||. (4.1)

Applying (4.1), we get

||vn − p|| = ||βnwn + (1 − βn)un − p||
≤ βn ||wn − p|| + (1 − βn)||un − p||
≤ βn ||wn − p|| + (1 − βn)||wn − p||
= ||wn − p||. (4.2)

Next, by the definition of G(x) and the firmly nonexpansivity of I − J B2
λ2

, we have

〈G(vn), vn − p〉 = 〈A∗(I − J B2
λ2

)Avn, vn − p〉
= 〈(I − J B2

λ2
)Avn, Avn − Ap〉

= 〈(I − J B2
λ2

)Avn − (I − J B2
λ2

)Ap, Avn − Ap〉
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≥ ||(I − J B2
λ2

)Avn ||2
= 2g(vn). (4.3)

Then byLemma2.8(iii) and applying (4.3) togetherwith the nonexpansivity of J B1
λ1

, it follows
that

||tn − p||2 = ||J B1
λ1

(I − γn A
∗(I − J B2

λ2
)A)vn − p||2

≤ ||vn − γn A
∗(I − J B2

λ2
)Avn − p||2

= ||vn − p − γnG(vn)||2
= ||vn − p||2 + γ 2

n ||G(vn)||2 − 2γn〈G(vn), vn − p〉
≤ ||vn − p||2 + γ 2

n ||G(vn)||2 − 4γng(vn)

= ||vn − p||2 + ρ2
n g

2(vn)

(||G(vn)||2 + ||H(vn)||2)2 ||G(vn)||2 − 4ρng2(vn)

||G(vn)||2 + ||H(vn)||2

≤ ||vn − p||2 − (4 − ρn)ρng2(vn)

||G(vn)||2 + ||H(vn)||2 . (4.4)

By the condition on ρn, we have that

||tn − p|| ≤ ||vn − p||. (4.5)

Applying (4.5), we obtain

||zn − p|| = ||(1 − σn)vn + σn Stn − p||
≤ (1 − σn)||vn − p|| + σn ||Stn − p||
≤ (1 − σn)||vn − p|| + σn ||tn − p||
≤ (1 − σn)||vn − p|| + σn ||vn − p||
= ||vn − p||. (4.6)

Next, applying the triangle inequality, we get

||wn − p|| = ||xn + θn(xn − xn−1) − p||
≤ ||xn − p|| + θn ||xn − xn−1||
= ||xn − p|| + αn

θn

αn
||xn − xn−1||. (4.7)

By Remark 3.2, limn→∞ θn
αn

||xn − xn−1|| = 0. Then, it follows that there exists a constant

M1 > 0 such that θn
αn

||xn − xn−1|| ≤ M1 for all n ≥ 1. Hence, from (4.7) we obtain

||wn − p|| ≤ ||xn − p|| + αnM1. (4.8)

Applying (4.2), (4.5), (4.6) and (4.8), we have

||xn+1 − p|| = ||αn f (xn) + δn Stn + ξnT zn − p||
= ||αn( f (xn) − f p) + αn( f (p) − p) + δn(Stn − p) + ξn(T zn − p)||
≤ αnk||xn − p|| + αn || f (p) − p|| + δn ||tn − p|| + ξn ||zn − p||
≤ αnk||xn − p|| + αn || f (p) − p|| + δn(||xn − p|| + αnM1)

+ ξn(||xn − p|| + αnM1)

= (αnk + (1 − αn))||xn − p|| + αn || f (p) − p|| + (1 − αn)αnM1
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= (1 − αn(1 − k))||xn − p|| + αn(1 − k)
{ || f (p) − p||

1 − k
+ (1 − αn)M1

1 − k

}
≤ (1 − αn(1 − k))||xn − p|| + αn(1 − k)M∗,

where M∗ := supn∈N
{ || f (p)−p||

1−k + (1−αn)M1
1−k }. Setting an := ||xn − p||; bn := αn(1 −

k)M∗; cn := 0, and σn := αn(1−k).By invoking Lemma 2.9 together with the assumptions
on the control parameters, we have that {||xn − p||} is bounded and this implies that {xn} is
bounded. Consequently, {wn}, {un}, {vn}, {tn} and {zn} are all bounded. ��
Lemma 4.3 Let {xn} be the sequence generated by Algorithm 3.1 and p ∈ �. Then, under
conditions (C1)-(C4) and for all n ∈ N, we have

||xn+1 − p||2 ≤
(
1 − 2αn(1 − k)

(1 − αnk)

)
||xn − p||2 + 2αn(1 − k)

(1 − αnk)

{ αnM3

2(1 − k)

+ 3M2(1 − αn)
2

2(1 − k)

θn

αn
||xn − xn−1||

+ 1

(1 − k)
〈 f (p) − p, xn+1 − p〉

}
− ξn(1 − αn)

(1 − αnk)

{
βn(1 − βn)||wn − un ||2

+ (4 − ρn)σnρng2(vn)

||G(vn)||2 + ||H(vn)||2
+ σn(1 − σn)||vn − Stn ||2

}
.

Proof Let p ∈ �. Then, applying Lemma 2.8(iv) and (4.1), we get

||vn − p||2 = ||βnwn + (1 − βn)un − p||2
= βn ||wn − p||2 + (1 − βn)||un − p||2 − βn(1 − βn)||wn − un ||2
≤ βn ||wn − p||2 + (1 − βn)||wn − p||2 − βn(1 − βn)||wn − un ||2
≤ ||wn − p||2 − βn(1 − βn)||wn − un ||2. (4.9)

Again, by invoking Lemma 2.8(ii) and applying Cauchy-Schwartz inequality we have

||wn − p||2 = ||xn + θn(xn − xn−1) − p||2
= ||xn − p||2 + θ2n ||xn − xn−1||2 + 2θn〈xn − p, xn − xn−1〉
≤ ||xn − p||2 + θ2n ||xn − xn−1||2 + 2θn ||xn − xn−1||||xn − p||
= ||xn − p||2 + θn ||xn − xn−1||(θn ||xn − xn−1|| + 2||xn − p||)
≤ ||xn − p||2 + 3M2θn ||xn − xn−1||
= ||xn − p||2 + 3M2αn

θn

αn
||xn − xn−1||, (4.10)

where M2 := supn∈N{||xn − p||, θn ||xn − xn−1||} > 0.
Next, applying Lemma 2.8(iv), (4.4), (4.9) and (4.10), we obtain

||zn − p||2 = ||(1 − σn)vn + σn Stn − p||2
= (1 − σn)||vn − p||2 + σn ||Stn − p||2 − σn(1 − σn)||vn − Stn ||2
≤ (1 − σn)||vn − p||2 + σn ||tn − p||2 − σn(1 − σn)||vn − Stn ||2

≤ (1 − σn)||vn − p||2 + σn

{
||vn − p||2 − (4 − ρn)ρng2(vn)

||G(vn)||2 + ||H(vn)||2
}
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− σn(1 − σn)||vn − Stn ||2

= ||vn − p||2 − (4 − ρn)σnρng2(vn)

||G(vn)||2 + ||H(vn)||2
− σn(1 − σn)||vn − Stn ||2

≤ ||wn − p||2 − βn(1 − βn)||wn − un ||2 − (4 − ρn)σnρng2(vn)

||G(vn)||2 + ||H(vn)||2
− σn(1 − σn)||vn − Stn ||2. (4.11)

Now, invoking Lemma 2.8 and applying (4.2), (4.5) and (4.11) we have

||xn+1 − p||2 = ||αn f (xn) + δn Stn + ξnT zn − p||2
≤ ||δn(Stn − p) + ξn(T zn − p)||2 + 2αn〈 f (xn) − p, xn+1 − p〉
≤ δ2n ||Stn − p||2 + ξ2n ||T zn − p||2 + 2δnξn ||Stn − p||||T zn − p||

+ 2αn〈 f (xn) − p, xn+1 − p〉
≤ δ2n ||Stn − p||2 + ξ2n ||T zn − p||2 + δnξn

(||Stn − p||2 + ||T zn − p||2)
+ 2αn〈 f (xn) − p, xn+1 − p〉

= δn(δn + ξn)||Stn − p||2 + ξn(ξn + δn)||T zn − p||2
+ 2αn〈 f (xn) − p, xn+1 − p〉

≤ δn(1 − αn)||tn − p||2 + ξn(1 − αn)||zn − p||2
+ 2αn〈 f (xn) − f (p), xn+1 − p〉 + 2αn〈 f (p) − p, xn+1 − p〉

≤ δn(1 − αn)||wn − p||2 + ξn(1 − αn)
{
||wn − p||2

− βn(1 − βn)||wn − un ||2 − (4 − ρn)σnρng2(vn)

||G(vn)||2 + ||H(vn)||2
− σn(1 − σn)||vn − Stn ||2

}
+ 2αnk||xn − p||||xn+1 − p||

+ 2αn〈 f (p) − p, xn+1 − p〉
≤ (1 − αn)

2||wn − p||2 − ξn(1 − αn)
{
βn(1 − βn)||wn − un ||2

+ (4 − ρn)σnρng2(vn)

||G(vn)||2 + ||H(vn)||2
+ σn(1 − σn)||vn − Stn ||2

}
+ αnk

(||xn − p||2 + ||xn+1 − p||2)
+ 2αn〈 f (p) − p, xn+1 − p〉

≤ (1 − αn)
2(||xn − p||2 + 3M2αn

θn

αn
||xn − xn−1||

)
− ξn(1 − αn)

{
βn(1 − βn)||wn − un ||2

+ (4 − ρn)σnρng2(vn)

||G(vn)||2 + ||H(vn)||2 + σn(1 − σn)||vn − Stn ||2
}

+ αnk
(||xn − p||2 + ||xn+1 − p||2)

+ 2αn〈 f (p) − p, xn+1 − p〉
= (

(1 − αn)
2 + αnk

)||xn − p||2 + αnk||xn+1 − p||2
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+ 3M2(1 − αn)
2αn

θn

αn
||xn − xn−1||

− ξn(1 − αn)
{
βn(1 − βn)||wn − un ||2 + (4 − ρn)σnρng2(vn)

||G(vn)||2 + ||H(vn)||2
+ σn(1 − σn)||vn − Stn ||2

}
+ 2αn〈 f (p) − p, xn+1 − p〉

From this, we obtain

||xn+1 − p||2 ≤ (1 − 2αn + α2
n + αnk)

(1 − αnk)
||xn − p||2 + αn

(1 − αnk)

{
3M2(1 − αn)

2 θn

αn
||xn

− xn−1|| + 2〈 f (p) − p, xn+1 − p〉
}

− ξn(1 − αn)

(1 − αnk)

{
βn(1 − βn)||wn − un ||2 + (4 − ρn)σnρng2(vn)

||G(vn)||2 + ||H(vn)||2
+ σn(1 − σn)||vn − Stn ||2

}
= (1 − 2αn + αnk)

(1 − αnk)
||xn − p||2 + α2

n

(1 − αnk)
||xn − p||2

+ αn

(1 − αnk)

{
3M2(1 − αn)

2 θn

αn
||xn − xn−1||

+ 2〈 f (p) − p, xn+1 − p〉
}

− ξn(1 − αn)

(1 − αnk)

{
βn(1 − βn)||wn − un ||2

+ (4 − ρn)σnρng2(vn)

||G(vn)||2 + ||H(vn)||2
+ σn(1 − σn)||vn − Stn ||2

}
≤

(
1 − 2αn(1 − k)

(1 − αnk)

)
||xn − p||2 + 2αn(1 − k)

(1 − αnk)

{ αnM3

2(1 − k)

+ 3M2(1 − αn)
2

2(1 − k)

θn

αn
||xn − xn−1||

+ 1

(1 − k)
〈 f (p) − p, xn+1 − p〉

}
− ξn(1 − αn)

(1 − αnk)

{
βn(1 − βn)||wn − un ||2

+ (4 − ρn)σnρng2(vn)

||G(vn)||2 + ||H(vn)||2
+ σn(1 − σn)||vn − Stn ||2

}
,

where M3 := sup{||||xn − p||2 : n ∈ N}. This completes the proof. ��

Lemma 4.4 Let {xn} be a sequence generated by Algorithm 3.1 such that conditions (C1)-
(C4) hold. Then, the following inequality holds for all p ∈ � and n ∈ N :
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||xn+1 − p||2 ≤(1 − αn)||xn − p||2 + αn || f (xn) − p||2

+ 3M2(1 − αn)αn
θn

αn
||xn − xn−1|| − δn ||tn − vn ||2

+ 2M4δn ||A∗(I − J B2
λ2

)Avn || − δnξn ||Stn − T zn ||2.
Proof Let p ∈ �. From (4.4), observe that

||vn − γn A
∗(I − J B2

λ2
)Avn − p||2 ≤ ||vn − p||2.

Applying Lemma 2.8 and the firmly nonexpansivity of J B1
λ1

, we have

||tn − p||2 = ||J B1
λ1

(I − γn A
∗(I − J B2

λ2
)A)vn − p||2

≤ 〈tn − p, vn − γn A
∗(I − J B2

λ2
)Avn − p〉

= 1

2

(||tn − p||2 + ||vn − γn A
∗(I − J B2

λ2
)Avn − p||2 − ||tn − vn

+ γn A
∗(I − J B2

λ2
)Avn ||2

)
≤ 1

2

(||tn − p||2 + ||vn − p||2 − ||tn − vn + γn A
∗(I − J B2

λ2
)Avn ||2

)
= 1

2

(||tn − p||2 + ||vn − p||2 − (||tn − vn ||2 + γ 2
n ||A∗(I − J B2

λ2
)Avn ||2

− 2γn〈vn − tn, A
∗(I − J B2

λ2
)Avn〉

))
≤ 1

2

(||tn − p||2 + ||vn − p||2 − ||tn − vn ||2 − γ 2
n ||A∗(I − J B2

λ2
)Avn ||2

+ 2γn ||vn − tn ||||A∗(I − J B2
λ2

)Avn ||
)

≤ 1

2

(||tn − p||2 + ||vn − p||2 − ||tn − vn ||2 + 2γn ||vn − tn ||||A∗

× (I − J B2
λ2

)Avn ||
)
.

Consequently, we have that

||tn − p||2 ≤ ||vn − p||2 − ||tn − vn ||2 + 2γn ||vn − tn ||||A∗(I − J B2
λ2

)Avn ||
≤ ||vn − p||2 − ||tn − vn ||2 + 2M4||A∗(I − J B2

λ2
)Avn ||

≤ ||wn − p||2 − ||tn − vn ||2 + 2M4||A∗(I − J B2
λ2

)Avn ||, (4.12)

where M4 := sup{γn ||vn − tn || : n ∈ N}.
Next, by invoking Lemma 2.8(iv) and applying (4.2), (4.6), (4.10) and (4.12) we obtain

||xn+1 − p||2 = ||αn f (xn) + δn Stn + ξnT zn − p||2
= αn || f (xn) − p||2 + δn ||Stn − p||2 + ξn ||T zn − p||2 − δnξn ||Stn − T zn ||2
≤ αn || f (xn) − p||2 + δn ||tn − p||2 + ξn ||zn − p||2 − δnξn ||Stn − T zn ||2
≤ αn || f (xn) − p||2 + δn

(||wn − p||2 − ||tn − vn ||2
+ 2M4||A∗(I − J B2

λ2
)Avn ||

) + ξn ||wn − p||2
− δnξn ||Stn − T zn ||2

= αn || f (xn) − p||2 + (1 − αn)||wn − p||2 − δn ||tn − vn ||2
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+ 2M4δn ||A∗(I − J B2
λ2

)Avn ||
− δnξn ||Stn − T zn ||2

≤ αn || f (xn) − p||2 + (1 − αn)
(
||xn − p||2 + 3M2αn

θn

αn
||xn − xn−1||

)
− δn ||tn − vn ||2
+ 2M4δn ||A∗(I − J B2

λ2
)Avn || − δnξn ||Stn − T zn ||2

= (1 − αn)||xn − p||2 + αn || f (xn) − p||2

+ 3M2(1 − αn)αn
θn

αn
||xn − xn−1|| − δn ||tn − vn ||2

+ 2M4δn ||A∗(I − J B2
λ2

)Avn || − δnξn ||Stn − T zn ||2,
which is the required inequality. ��
Lemma 4.5 Let {xn} be the sequence generated by Algorithm 3.1 such that conditions (A1)-
(A4) and (C1)-(C4) are satisfied. Then {xn} converges strongly to a point x̂ ∈ �, where
x̂ = P� ◦ f (x̂).

Proof Let x̂ = P� ◦ f (x̂). It then follows from Lemma 4.3 that

||xn+1 − x̂ ||2 ≤
(
1 − 2αn(1 − k)

(1 − αnk)

)
||xn − x̂ ||2 + 2αn(1 − k)

(1 − αnk)

{ αnM3

2(1 − k)

+ 3M2(1 − αn)
2

2(1 − k)

θn

αn
||xn − xn−1||

+ 1

(1 − k)
〈 f (x̂) − x̂, xn+1 − x̂〉

}
. (4.13)

Now, we claim that the sequence {||xn − x̂ ||} converges to zero. To do this, by Lemma 2.10 it
suffices to show that lim supk→∞〈 f (x̂)−x̂, xnk+1−x̂〉 ≤ 0 for every subsequence {||xnk−x̂ ||}
of {||xn − x̂ ||} satisfying

lim inf
k→∞ (||xnk+1 − x̂ || − ||xnk − x̂ ||) ≥ 0.

Now, suppose that {||xnk − x̂ ||} is a subsequence of {||xn − x̂ ||} such that

lim inf
k→∞ (||xnk+1 − x̂ || − ||xnk − x̂ ||) ≥ 0. (4.14)

From Lemma 4.3 we have

ξnk (1 − αnk )

(1 − αnk k)
βnk (1 − βnk )||wnk − unk ||2

≤
(
1 − 2αnk (1 − k)

(1 − αnk k)

)
||xnk − p||2 − ||xnk+1 − p||2 + 2αnk (1 − k)

(1 − αnk k)

{ αnk M3

2(1 − k)

+ 3M2(1 − αnk )
2

2(1 − k)

θnk

αnk
||xnk − xnk−1|| + 1

(1 − k)
〈 f (p) − p, xnk+1 − p〉

}
.

By (4.14) together with the fact that limk→∞ αnk = 0, we obtain

ξnk (1 − αnk )

(1 − αnk k)
βnk (1 − βnk )||wnk − unk ||2 → 0, k → ∞.
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Consequently, we have

||wnk − unk || → 0, k → ∞. (4.15)

Following similar argument, from Lemma 4.3 we obtain

||vnk − Stnk | → 0, k → ∞, (4.16)

and

(4 − ρnk )σnkρnk g
2(vnk )

||G(vnk )||2 + ||H(vnk )||2
→ 0, k → ∞.

Since G and H are Lipschitz continuous, then by the condition on ρn it follows that

g2(vnk ) → 0, k → ∞.

From this, we obtain

lim
k→∞ g(vnk ) = lim

k→∞
1

2
||(I − J B2

λ2
)Avnk ||2 = 0. (4.17)

Consequently, we have

||(I − J B2
λ2

)Avnk || → 0, k → ∞. (4.18)

From this, we get

||A∗(I − J B2
λ2

)Avnk || ≤ ||A∗||||(I − J B2
λ2

)Avnk || = ||A||||(I − J B2
λ2

)Avnk || → 0, k → ∞.

(4.19)

Also, from Lemma 4.4 we have

δnk ||tnk − vnk ||2 ≤(1 − αnk )||xnk − p||2 − ||xnk+1 − p||2 + αnk || f (xnk ) − p||2

+ 3M2(1 − αnk )αnk
θnk

αnk
||xnk − xnk−1|| + 2M4δnk ||A∗(I − J B2

λ2
)Avnk ||.

By (4.14), and by applying (4.19) togetherwithRemark 3.2 and the fact that limk→∞ αnk = 0,
we obtain

||tnk − vnk || → 0, k → ∞. (4.20)

Similarly, from Lemma 4.4 we get

||Stnk − T znk || → 0, k → ∞. (4.21)

By Remark 3.2, we obtain

||wnk − xnk || = θnk ||xnk − xnk−1|| → 0, k → ∞. (4.22)

Applying (4.15) and (4.22), we get

||xnk − unk || → 0, k → ∞; ||vnk − xnk || → 0, k → ∞. (4.23)

On the other hand, by applying (4.16), (4.20), (4.21) and (4.23) we obtain

||xnk − tnk || → 0, k → ∞; ||xnk − Stnk || → 0, k → ∞; ||xnk − T znk || → 0,

k → ∞. (4.24)
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Also, by applying (4.23)–(4.25) we get

||znk − xnk || → 0, k → ∞; ||tnk − Stnk || → 0, k → ∞; ||znk − T znk || → 0,

k → ∞. (4.25)

Now, by using (4.24) together with the fact that limk→∞ αnk = 0, we have

||xnk+1 − xnk || ≤ αnk || f (xnk ) − xnk || + δnk ||Stnk − xnk || + ξnk ||T znk − xnk || → 0,

k → ∞. (4.26)

To complete the proof, we need to show that wω(xn) ⊂ �. First, we claim that wω(xn) ⊂
EP(F). Since {xn} is bounded, then wω(xn) is nonempty. Let x∗ ∈ wω(xn) be an arbitrary
element. Then there exists a subsequence {xnk } of {xn} such that xnk⇀x∗ as k → ∞. By
(4.23), it follows that unk⇀x∗ as k → ∞. By the definition of T F

rnk
wnk , we have that

F(unk , y) + 1

rnk
〈y − unk , unk − wnk 〉 ≥ 0, ∀y ∈ C .

It follows from the monotonicity of F that

1

rnk
〈y − unk , unk − wnk 〉 ≥ F(y, unk ), ∀ y ∈ C .

By (4.15), lim infk→∞ rnk > 0, and condition (A4), we have that

F(y, x∗) ≤ 0, ∀ y ∈ C . (4.27)

Let yt = t y + (1 − t)x∗, ∀ t ∈ (0, 1] and y ∈ C . This implies that yt ∈ C, and it follows
from (4.27) that F(yt , x∗) ≤ 0. So, by applying conditions (A1)-(A4), we have

0 = F(yt , yt )

≤ t F(yt , y) + (1 − t)F(yt , x
∗)

≤ t F(yt , y).

Hence, we have

F(yt , y) ≥ 0, ∀ y ∈ C .

Letting t → 0, by condition (A3), we get

F(x∗, y) ≥ 0, ∀ y ∈ C .

This implies that x∗ ∈ EP(F).

Next, we show that x∗ ∈ F . By the lower semicontinuity of g, it follows from (4.17) that

0 ≤ g(x∗) ≤ lim
k→∞ g(vnk ) = lim

n→∞ g(vn) = 0,

which implies that

g(x∗) = 1

2
||(I − J B2

λ2
)Ax∗||2 = 0.

Thus, by Remark 2.5 we have that

Ax∗ ∈ B−1
2 (0) or 0 ∈ B2(Ax

∗). (4.28)
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Since tnk = J B1
λ1

(vnk − γnk A
∗(I − J B2

λ2
)Avnk ) can be rewritten as

vnk − γnk A
∗(I − J B2

λ2
)Avnk ∈ tnk + λ1B1(tnk )

or, equivalently

(vnk − tnk ) − γnk A
∗(I − J B2

λ )Avnk

λ1
∈ B1(tnk ). (4.29)

By passing to limit as k → ∞ in (4.29), applying (4.19), (4.20) and (4.24), and taking into
consideration the fact that the graph of a maximal monotone operator is weakly-strongly
closed, we obtain 0 ∈ B1(x∗). This together with (4.28) implies that x∗ ∈ �.

Next, we show that x∗ ∈ F(S) ∩ F(T ). By (4.24) and (4.25), we have tnk⇀x∗ and znk⇀x∗
as k → ∞. Since S and T are nonexpansive, by the demiclosedness principle, it follows
from (4.25) that x∗ ∈ F(S) ∩ F(T ). Consequently, we have that wω(xn) ⊂ �.

Moreover, from (4.24) and (4.25) it follows that wω{tn} = wω{xn} = wω{zn}. By the
boundedness of {xnk }, there exists a subsequence {xnk j } of {xnk } such that xnk j ⇀x† and

lim
j→∞〈 f (x̂) − x̂, xnk j − x̂〉 = lim sup

k→∞
〈 f (x̂) − x̂, xnk − x̂〉 = lim sup

k→∞
〈 f (x̂) − x̂, tnk − x̂〉.

Since x̂ = P� ◦ f (x̂), then it follows that

lim sup
k→∞

〈 f (x̂) − x̂, xnk − x̂〉 = lim
j→∞〈 f (x̂) − x̂, xnk j − x̂〉 = 〈 f (x̂) − x̂, x† − x̂〉 ≤ 0.

(4.30)

Now, from (4.26) and (4.30), we obtain

lim sup
k→∞

〈 f (x̂) − x̂, xnk+1 − x̂〉 = lim sup
k→∞

〈 f (x̂) − x̂, xnk − x̂〉 = 〈 f (x̂) − x̂, x† − x̂〉 ≤ 0.

(4.31)

Applying Lemma 2.10 to (4.13), and using (4.31) together with the fact that limn→∞ θn
αn

||xn−
xn−1|| = 0 and limn→∞ αn = 0, we deduce that limn→∞ ||xn − x̂ || = 0 as desired. ��

5 Applications

In this section we apply our results to study some related optimization problems.

5.1 Split minimization problem

Let H1 and H2 be real Hilbert spaces, A : H1 → H2 be a bounded linear operator. Given
some proper, lower semicontinuous and convex functions f1 : H1 → R ∪ {+∞} and
f2 : H2 → R ∪ {+∞}, the Split Minimization Problem (SMP) is defined as

Find x̄ ∈ H1 such that x̄ ∈ arg min
x∈H1

f1(x) and Ax̄ ∈ arg min
y∈H2

f2(y). (5.1)

We denote the set of solution of the SMP (5.1) by �SMP . The SMP was first introduced by
Moudafi and Thakur (2014). It has attracted lots of attention in recent years and has been
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applied in the study of many applied science problems such as multi-resolution sparse reg-
ularization, Fourier regularization, hard-constrained inconsistent feasibility and alternating
projection signal synthesis problems (see (Abbas et al. 2018) and the references therein).
In a real Hilbert space H , the proximal operator of f is defined by

proxλ, f (x) := argmin
z∈H

{
f (z) + 1

2λ
‖x − z‖2

}
∀ x ∈ H , λ > 0.

It is well known that

proxλ, f (x) = (I + λ∂ f )−1(x) = J ∂ f
λ (x), (5.2)

where ∂ f is the subdifferential of f defined by

∂ f (x) = {z ∈ H : f (x) − f (y) ≤ 〈z, x − y〉,∀y ∈ H},
for each x ∈ H . From [?], ∂ f is a maximal monotone operator and proxλ, f is firmly
nonexpansive.
By setting B1 = ∂ f1 and B2 = ∂ f2 in Theorem 4.1, we obtain the following result for
approximating a common solution of split minimization problem, equilibrium problem and
and common fixed point of nonexpansive mappings in Hilbert spaces.

Theorem 5.1 Let H1 and H2 be real Hilbert spaces, and A : H1 → H2 be a bounded
linear operator with adjoint A∗. Let f1 : H1 → R ∪ {+∞} and f2 : H2 → R ∪ {+∞}
be proper, lower semicontinuous and convex functions, S, T : H1 → H1 be nonexpansive
mappings, and f : H1 → H1 be a contraction with coefficient k ∈ (0, 1). Suppose that
� = F(S) ∩ F(T ) ∩ �SMP ∩ EP(F) �= ∅, and conditions (A1)-(A4) and (C1)-(C4) are
satisfied. Then the sequence {xn} generated by the following algorithm converges strongly to
a point x̂ ∈ �, where x̂ = P� ◦ f (x̂).

Algorithm 5.2

Step 0. Let x0, x1 ∈ H be two arbitrary initial points and set n = 1.
Step 1. Given the (n − 1)th and nth iterates, choose θn such that 0 ≤ θn ≤ θ̂n with θ̂n

defined by

θ̂n =
{
min

{
θ,

μn||xn−xn−1||
}
, if xn �= xn−1,

θ, otherwise.
(5.3)

Step 2. Compute

wn = xn + θn(xn − xn−1).

Step 3. Compute

F(un, y) + 1

rn
〈y − un, un − wn〉 ≥ 0. (5.4)

Step 4. Compute

vn = βnwn + (1 − βn)un .
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Step 5. Compute

tn = proxλ1, f1(I − γn A
∗(I − proxλ2, f2)A)vn,

where

γn :=
{

ρng(vn)
||G(vn)||2+||H(vn)||2 , if ||G(vn)||2 + ||H(vn)||2 �= 0,

0, otherwise.

Step 6. Compute

zn = (1 − σn)vn + σn Stn .

Step 7. Compute

xn+1 = αn f (xn) + δn Stn + ξnT zn .

Set n := n + 1 and return to Step 1,

where

g(x) = 1

2
‖(I − proxλ2, f2)Ax‖2, h(x) = 1

2
‖(I − proxλ1, f1)x‖2

and

G(x) = A∗(I − proxλ2, f2)Ax, H(x) = (I − proxλ1, f1)x .

5.2 Split feasibility problem

Let H1 and H2 be two real Hilbert spaces and letC and Q be nonempty closed convex subsets
of H1 and H2, respectively. The Split Feasibility Problem (SFP) is defined as follows:

Find x∗ ∈ C such that Ax∗ ∈ Q, (5.5)

where A : H1 → H2 is a bounded linear operator. Let the solution set of SFP (5.5) be
denoted by �SFP . In 1994, the SFP was introduced by Censor and Elfving (1994) in finite
dimensional Hilbert spaces for modelling inverse problems which arise from phase retrievals
and in medical image reconstruction (Byrne 2004). Furthermore, the problem (5.5) is also
useful in various disciplines such as computer tomography, image restoration, and radiation
therapy treatment planning (Censor et al. 2006, 2005). The problem has been studied by
numerous researchers, (see Byrne 2004; Censor et al. 2006, 2005 and the references therein).
Let C be a nonempty closed convex subset of a real Hilbert space H and ic be the indicator
function on C , that is

ic(x) =
{
0 if x ∈ C;
∞ if x /∈ C .

Moreover, we define the normal cone NCu of C at u ∈ C as follows:

NCu = {z ∈ H : 〈z, v − u〉 ≤ 0,∀v ∈ C}.
It is known that iC is a proper, lower semicontinuous and convex function on H . Hence, the
subdifferential ∂iC of iC is a maximal monotone operator. Therefore, we define the resolvent
J ∂iC
r of ∂iC , ∀r > 0 as follows:

J ∂iC
r x = (I + r∂iC )−1x,∀x ∈ H .
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Moreover, for each x ∈ C , we have

∂iC x = {z ∈ H : iC x + 〈z, u − x〉 ≤ iCu,∀u ∈ H}
= {z ∈ H : 〈z, u − x〉 ≤ 0,∀u ∈ C}
= NCx .

Hence, for all α > 0, we derive

u = J ∂iC
r x ⇔ x ∈ u + r∂iCu

⇔ x − u ∈ r∂iCu

⇔ 〈x − u, z − u〉 ≤ 0 ∀z ∈ C

⇔ u = PCx .

Now, by applying Theorem 4.1 we obtain the following result for approximating a com-
mon solution of split feasibility problem, equilibrium problem and common fixed point of
nonexpansive mappings in Hilbert spaces.

Theorem 5.3 Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1

and H2, respectively, A : H1 → H2 be a bounded linear operator with adjoint A∗. Let
S, T : H1 → H1 be nonexpansive mappings, and f : H1 → H1 be a contraction with
coefficient k ∈ (0, 1). Suppose that� = F(S)∩F(T )∩�SFP ∩EP(F) �= ∅, and conditions
(A1)-(A4) and (C1)-(C4) are satisfied. Then the sequence {xn} generated by the following
algorithm converges strongly to a point x̂ ∈ �, where x̂ = P� ◦ f (x̂).

Algorithm 5.4

Step 0. Let x0, x1 ∈ H be two arbitrary initial points and set n = 1.
Step 1. Given the (n − 1)th and nth iterates, choose θn such that 0 ≤ θn ≤ θ̂n with θ̂n

defined by

θ̂n =
{
min

{
θ,

μn||xn−xn−1||
}
, if xn �= xn−1,

θ, otherwise.
(5.6)

Step 2. Compute

wn = xn + θn(xn − xn−1).

Step 3. Compute

F(un, y) + 1

rn
〈y − un, un − wn〉 ≥ 0. (5.7)

Step 4. Compute

vn = βnwn + (1 − βn)un .

Step 5. Compute

tn = PC (I − γn A
∗(I − PQ)A)vn,

where

γn :=
{

ρng(vn)
||G(vn)||2+||H(vn)||2 , if ||G(vn)||2 + ||H(vn)||2 �= 0,

0, otherwise.

123



39 Page 24 of 31 T. O. Alakoya, O. T. Mewomo

Step 6. Compute

zn = (1 − σn)vn + σn Stn .

Step 7. Compute

xn+1 = αn f (xn) + δn Stn + ξnT zn .

Set n := n + 1 and return to Step 1,

where

g(x) = 1

2
‖(I − PQ)Ax‖2, h(x) = 1

2
‖(I − PC )x‖2

and

G(x) = A∗(I − PQ)Ax, H(x) = (I − PC )x .

5.3 Relaxed split feasibility problem

Next, we study the Relaxed Split Feasibility Problem (RSFP) which is a special case of the
split feasibility problem when the sets C and Q are defined as follows:

C := {u ∈ H1 : c(u) ≤ 0} and Q := {v ∈ H2 : q(v) ≤ 0}, (5.8)

where c : H1 → R and q : H2 → R are convex and lower semicontinuous functions such
that ∂c and ∂q are bounded on bounded sets. We denote the solution set of the RSFP by
�RSFP . Now, by applying Theorem 4.1 we obtain the following result for approximating
a common solution of relaxed split feasibility problem, equilibrium problem and common
fixed point of nonexpansive mappings in Hilbert spaces.

Theorem 5.5 Let H1 and H2 be real Hilbert spaces H1 and H2, and let A : H1 → H2

be a bounded linear operator with adjoint A∗. Let S, T : H1 → H1 be nonexpansive
mappings, and f : H1 → H1 be a contraction with coefficient k ∈ (0, 1). Suppose that
� = F(S) ∩ F(T ) ∩ �RSFP ∩ EP(F) �= ∅, and conditions (A1)-(A4) and (C1)-(C4) are
satisfied. Then the sequence {xn} generated by the following algorithm converges strongly to
a point x̂ ∈ �, where x̂ = P� ◦ f (x̂).

Algorithm 5.6

Step 0. Let x0, x1 ∈ H be two arbitrary initial points and set n = 1.
Step 1. Given the (n − 1)th and nth iterates, choose θn such that 0 ≤ θn ≤ θ̂n with θ̂n

defined by

θ̂n =
{
min

{
θ,

μn||xn−xn−1||
}
, if xn �= xn−1,

θ, otherwise.
(5.9)

Step 2. Compute

wn = xn + θn(xn − xn−1).
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Step 3. Compute

F(un, y) + 1

rn
〈y − un, un − wn〉 ≥ 0. (5.10)

Step 4. Compute

vn = βnwn + (1 − βn)un .

Step 5. Compute

tn = PCn (I − γn A
∗(I − PQn )A)vn,

where

γn :=
{

ρng(vn)
||G(vn)||2+||H(vn)||2 , if ||G(vn)||2 + ||H(vn)||2 �= 0,

0, otherwise.

Cn = {v ∈ H1 : c(vn) + 〈cn, v − vn〉 ≤ 0}, cn ∈ ∂c(vn),

Qn = {w ∈ H2 : q(Avn) + 〈qn, w − Avn〉 ≤ 0}, qn ∈ ∂q(Avn).

Step 6. Compute

zn = (1 − σn)vn + σn Stn .

Step 7. Compute

xn+1 = αn f (xn) + δn Stn + ξnT zn .

Set n := n + 1 and return to Step 1,

where

g(x) = 1

2
‖(I − PQn )Ax‖2, h(x) = 1

2
‖(I − PCn )x‖2

and

G(x) = A∗(I − PQn )Ax, H(x) = (I − PCn )x .

6 Numerical examples

In this section, we present some numerical experiments to illustrate the performance of our
method, Algorithm 3.1 in comparisonwith Algorithms 1.2, Algorithm 1.3, Algorithm 1.5 and
Algorithm 7.2 in the literature. All numerical computations were carried out using Matlab
version R2019(b).
In our computations, we choose ρn = 3 − 1

2n+1 , βn = n
n+3 , σn = n

2n+1 , αn = 1
2n+3 , δn =

ξn = n+1
2n+3 , μn = 1

(2n+3)3
, rn = n

n+3 , λ = λ1 = λ2 = 0.5, θ = 0.8 for each n ∈ N. It can
easily be checked that all the conditions of Theorem 4.1 are satisfied. We take γ = 0.0001
in Algorithms 1.2, 1.3 and 7.2, and Dx = 1

3 x, β = 0.5 in Algorithm 1.3.

Example 6.1 Let H1 = R
3 = H2 and C = {x = (x1, x2, x3) ∈ R

3|〈a, x〉 ≥ b}. For
r > 0, T F

r x = PCx = b−〈a,x〉
‖a‖22

a + x . Here we take a = (8,−3, 1), b = −1 and define
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Table 1 Numerical results for
Example 6.1

Alg. 1.2 Alg. 1.3 Alg. 1.5 Alg. 7.2 Alg. 3.1

No. of Iter. 12 7 30 7 8

No. of Iter. 11 6 30 6 7

No. of Iter. 11 7 30 7 7

No. of Iter. 12 7 30 7 7

S, T : H1 → H1 by Sx = 1
2 x, T x = 1

3 x for all x ∈ H1. Define the operators A, B1 and B2

as follows:

Ax =
⎛
⎝6 3 1
8 7 5
3 6 2

⎞
⎠

⎛
⎝x1
x2
x3

⎞
⎠ , B1x =

⎛
⎝6 0 0
0 4 0
0 0 3

⎞
⎠

⎛
⎝x1
x2
x3

⎞
⎠ , B2x =

⎛
⎝7 0 0
0 5 0
0 0 2

⎞
⎠

⎛
⎝x1
x2
x3

⎞
⎠

where x = (x1, x2, x3) ∈ R
3 and set f (x) = 1

5 x . We choose different initial values as
follows:
Case I: x0 = (−3, 2, 5)T , x1 = (2, 1,−1)T ;
Case II: x0 = (7, 2.1, 3.5)T , x1 = (5, 1, 2)T ;
Case III: x0 = (2.3, 4.7,−3.5)T , x1 = (3, 1, 0)T ;
Case IV: x0 = (8, 2, 5)T , x1 = (−5, 1,−1)T .

UsingMATLAB2019(b), we compare the performance of Algorithm 3.1withAlgorithm 1.2,
Algorithm 1.3, Algorithm 1.5 and Algorithm 7.2. The stopping criterion used for our compu-
tation is ||xn+1 − xn || < 10−3. We plot the graphs of errors against the number of iterations
in each case. The numerical results are reported in Fig. 1 and Table 1.

Example 6.2 Let H1 = (l2(R), ‖·‖2) = H2,where l2(R) := {x = (x1, x2, . . . , xn, . . .), x j ∈
R : ∑∞

j=1 |x j |2 < ∞}, ||x ||2 = (
∑∞

j=1 |x j |2) 1
2 for all x ∈ l2(R). We set f (x) = 1

2 x

and define S, T : H1 → H1 by Sx = 1
3 x, T x = 1

5 x, A : H1 → H2 be defined by
Ax = x

3 for all x ∈ H1, then A∗y = y
3 for all y ∈ H2. Define B1 : H1 → H1 by

B1x = 5
2 x, and B2 : H2 → H2 by B2x = 3

2 x . Then B1 and B2 are maximal monotone
operators. Define the bifunction F by F(x, y) = x(y − x). It can be verified that

T F
r x = x

1 + r
for all x ∈ H1.

We choose different initial values as follows:
Case I: x0 = (0,−3, 7, . . . ), x1 = (−1, 2, 3, . . . ),
Case II: x0 = (5,−1, 1

5 , . . . ), x1 = (3, 0.3, 0.03, . . . ),
Case III: x0 = (0, 3,−7, . . . ), x1 = (1,−2, 3, . . . ),
Case IV: x0 = (7,−3,− 1

7 , . . . ), x1 = (4, 0.4, 0.04, . . . ).
UsingMATLAB2019(b), we compare the performance of Algorithm 3.1withAlgorithm 1.2,
Algorithm 1.3, Algorithm 1.5 and Algorithm 7.2. The stopping criterion used for our compu-
tation is ||xn+1 − xn || < 10−3. We plot the graphs of errors against the number of iterations
in each case. The numerical results are reported in Fig. 2 and Table 2.

Remark 6.3 By using different starting points and plotting the graphs of errors against the
number of iterations in each example (Examples 6.1–6.2), we obtain the numerical results
displayed in Tables 1 and 2 and Figs. 1 and 2. We compared our proposed Algorithm 3.1
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Fig. 1 Top left: Case I; Top right: Case II; Bottom left: Case III; Bottom right: Case IV

Table 2 Numerical results for
Example 6.2

Alg. 1.2 Alg. 1.3 Alg. 1.5 Alg. 7.2 Alg. 3.1

No. of Iter. 13 7 37 7 6

No. of Iter. 13 7 37 7 6

No. of Iter. 13 7 37 7 6

No. of Iter. 13 7 37 7 6

with Algorithm 1.2, Algorithm 1.3, Algorithm 1.5 and Algorithm 7.2. Furthermore, we note
the following from our numerical experiments:

• We observe that the different choices of the starting point and key parameters does not
have a significant effects on the output of our method with respect to the performance of
the proposed algorithm.

• In all the examples, we can see from the tables and figures that the number of iterations
for our proposed method remain consistent (well-behaved).

• From the Table 2 and Fig. 2, we can see clearly that in terms of number of iterations, our
proposed Algorithm 3.1 outperforms the other four existing methods. Table 1 and Fig. 1
also show that our method performs favourable well compared with the four existing
methods.
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Fig. 2 Top left: Case I; Top right: Case II; Bottom left: Case III; Bottom right: Case IV

7 Conclusion

In this paper, we studied the problem of finding the common solution of split variational inclu-
sion problem, equilibrium problem and common fixed point of nonexpansive mappings. We
introduced a new inertial viscosity S-iteration method for approximating the solution of the
problem and we proved strong convergence theorem for the proposed algorithm without the
knowledge of the operator norm. Finally, we applied our results to study other optimization
problems and provided some numerical experiments with graphical illustrations to demon-
strate the efficiency of our method in comparison with some existing methods in the current
literature.

Appendix 7.1 (Algorithm 3.1 in Kazmi and Rizvi 2014)

Algorithm 7.2 ⎧⎪⎨
⎪⎩
x0 ∈ H1,

un = J B1
λ (xn + γ A∗(J B2

λ − I )Axn),

xn+1 = αn f (xn) + (1 − αn)Sun,

where f : H1 → H1 is a contraction with constant k ∈ (0, 1), S : H1 → H1 is a
nonexpansive mapping, γ ∈ (0, 1

L ), where L is the spectral radius of the operator A∗A,
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and A∗ is the adjoint of A, {αn} ⊂ (0, 1) and B1 : H1 → 2H1 , B2 : H2 → 2H2 are two
multi-valued maximal monotone operators on H1 and H2, respectively.
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