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Abstract
Picture fuzzy numbers (PFNs) are extremely reasonable to be utilized for delineating dubious
or fuzzy data. In this article, we introduce the aggregation strategies of PFNs with assistance
fromAczel–Alsina operations.We initially broaden theAczel–Alsina t-norm and t-conorm to
picture fuzzy (PF) situations and present a few new operations of PFNs; for example, Aczel–
Alsina sum, Aczel–Alsina product, Aczel–Alsina scalar multiplication, and Aczel–Alsina
exponentiation, in viewofwhichwebuild up a fewnewPFaggregationoperators; for instance,
the PFAczel–Alsinaweighted average (PFAAWA)operator, PFAczel–Alsina orderweighted
average (PFAAOWA)operator, andPFAczel–Alsina hybrid average (PFAAHA)operator.We
further build up various characteristics of those operators, keep several exceptional instances
among themselves, and investigate the connections among such operators. Besides, we apply
such operators to build up a methodology for managing multiple attribute decision-making
(MADM) with PF data. A numerical example is stated to delineate the reasonableness, the
viability of the created operators, and the approach. A comparative analysis is additionally
introduced.

Keywords Aczel–Alsina operations · PFNs · Picture fuzzy Aczel–Alsina average
aggregation operators · MADM

1 Introduction

Recently, there has been an increasing fascination withMADM-related studies. Speculations
and ideas identified with MADM have already been effectively applied in taking care of
various complex real-world issues. The fuzzy set (FS) theory proposed by Zadeh (1965) is
one of the very popular hypotheses that usually connected to MADM, since the decision-
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making is constantly fitting tomuddle, ambiguity, vulnerability, and abstract data. Regardless
of its long achievement, the FS hypothesis which depicted the level of an individual from
the set as membership function has a constraint, especially in portraying an individual from
the set which has no membership. In this manner, Atanassov (1986) stretches out the FS
hypothesis to the intuitionistic fuzzy set (IFS) by including a non-membership function.
Practically like the FS, the hypothesis of IFS has been broadly placed on MADM studies. Be
that as it may, FSs and IFSs cannot fulfill the circumstances where we face conclusions that
include different sorts of answers, for example, yes, abstain, no, and refusal. To forestall this
absence of data, Cuong (2013) presented PF sets (PFSs), which are able to use rather than
FSs or IFSs. PFSs are portrayed by the degrees of positive membership, neutral membership,
negative membership, and refusal membership, and the sum of such membership degrees
should not exceed one. Clearly, utilizing PFS to explain the dubious data tends to be more
reasonable and exact than FSs and IFSs.

After the invention of PFS, a huge number of researchers started working on PFS. Son
together with colleagues (Son 2017; Son et al. 2017; Thong and Son 2016) have done a lot of
works on PFS and PF clustering. Wei et al. (2018) introduced projection models for MADM
issues with PF data. Wei together with colleagues (Wei and Gao 2018; Wei 2018) defined
(Dice) similarity measures on PFSs. Wei (2017) investigated the MADM issues with picture
2-tuple linguistic data. Wei (2016) defined PF cross-entropy and employed it to supervise
MCDM issues. On the basis of a new distance measure, Peng and Dai (2017) defined an
algorithm for PF MADM issues. Peng (2017) examined undertaking hazard the executive’s
evaluation dependent on PFMADMstrategy. Zhang et al. (2018) proposed newworking rules
and aggregation operators of picture 2-tuple linguistic data for MADM issues. In accordance
with 2-TLPPR, Nie et al. (2017) generalized a new group decision-making voting procedure
to resolve the voting selection problem. Jana and Pal (2019) talked about the appraisal of
big business execution in light of PF Hamacher aggregation operators. Ashraf et al. (2019)
presented a progression of PF weighted geometric aggregation operators by utilizing t-norm
and t-conorm. Ashraf et al. (2018) exhibited PF linguistic sets and implemented them in
MAGDMproblems. In viewof Einstein operations, Khan togetherwith colleaguesKhan et al.
(2019) intimated a few PF aggregation information and implemented it in MADM issues.
Zeng together with colleagues Zeng et al. (2019) talked about the exponential Jensen PF
divergencemeasure and applied it in decision-making problems. Qiyas et al. (2019) proposed
linguistic PF Dombi aggregation operators and their application in the MAGDM problem.
Khan et al. (2019) created a logarithmic decision-making strategy to manage uncertainty
in the proper execution of a PFS. Wang et al. (2017) defined a few geometric aggregation
operators dependent on PFS and discussed their implementation in MADM. Khalil and LI
SG, Garg H, LI H, MA S, (2019) contemplated a new procedure on interval-valued PFS,
interval-valued PF soft set. Wei (2018); Wei et al. (2018) considered PF Hamacher and
Heronian mean aggregation operators to address MADM issues. Wei (2017) introduced a
few cosine similarity measures for PFS and implemented them in strategic decision-making.
By making use of the Dombi t-norm, Jana et al. (2019) studied new aggregation operators
for PFS. To address the complex MCDM problems in practice, Wang et al. (2018a) offered
the picture hesitant fuzzy set hypothesis. Recently, Senapati et al. (2021a) introduced Aczel–
Alsina aggregation operators and utilized them in the intuitionistic fuzzy MADM process.

PFMADM has been extensively applied in numerous fields, for example, weather casting
from satellite image (Son and Thong 2017), risk classification of energy efficiency planning
projects (Wang et al. 2018a, b), selection of a project to modernize the energy efficiency
of a hotel building (Wang et al. 2020), end-of-life vehicle management (Yang et al. 2019),
image segmentation Wu and Chen (2020), choice of charging station for electric vehicles (Ju
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et al. 2019), financial investment risk management (Wang et al. 2019), technical innovation
efficiency evaluation for high-tech industry (Song and Ding 2019), and safety assessment of
construction projects (Wei et al. 2019). For other studies on PFS, the readers are referred to
(Garg 2017; Khan et al. 2020; Khoshaim et al. 2021; Phuong et al. 2018; Qiyas et al. 2021).

Regrettably, along the way of handling PF data, we observe a short of suitable aggregation
operators to combine PF data, that are an irrefutably imperative issue to incorporate PF
data. Subsequently, the intention of such studies includes a few working rules of PFNs and
builds up novel aggregation operators to incorporate PF data. Aczel–Alsina working laws
are significant mathematical operations that are advantageously familiar with inaccurate and
uncertain information. Inspired by these thoughts, we introduced Aczel–Alsina operations of
PFNs and built up some PF Aczel–Alsina aggregation operators to solve PF MADM issues.
The commitments of our technique are expressed in the following ways:

(1) We built up a few Aczel–Alsina operations for PFNs, that may triumph over the defi-
ciency of algebraic operations and capture the connection among diverse PFNs.

(2) We prolonged Aczel–Alsina operators to PF Aczel–Alsina operators: PF Aczel–Alsina
weighted averaging (PFAAWA) operator, PF Aczel–Alsina order weighted averaging
(PFAAOWA) operator, PF Aczel–Alsina hybrid averaging (PFAAHA) operator in sup-
port of PF data, which can conquer the algebraic operator’s disadvantages.

(3) We built up an algorithm to handle MADM issues utilizing PF data.
(4) To exhibit the adequacy and unwavering quality of the suggested PF Aczel–Alsina

aggregation operators, we carried out the suggested operator to a MADM issue.
(5) The outcomes demonstrate that the suggested procedure is progressively powerful and

gives an even more authentic output in comparison to current strategies.

The remaining portion of the paper is sorted out in the prescribed sequence: Some funda-
mental information associated with t-norms, t-conorms, Aczel–Alsina t-norms, PFSs, and
several working rules in terms of PFNs are characterized in Sect. 2. The Aczel–Alsina work-
ing rules and the features of PFNs are discussed in Sect. 3. In Sect. 4, we interpret some PF
Aczel–Alsina aggregation operators and look at several of their desirable properties. In the
next section, we tackle the MADM issue, utilizing PF Aczel–Alsina aggregation operators.
In the next section, we provide an illustrative instance. In Sect. 7, we look at how a parameter
affects decision-making outcomes. Section 8 presents a comparative evaluation of the con-
sidered aggregation operators with the prevailing aggregation operators. Section 9 concludes
the paper and elaborates on future studies.

2 Preliminaries

We’ll go over some basic concepts like t-norms, t-conorms, Aczel–Alsina t-norms, and PFSs
in the sections below.

2.1 t-norms, t-conorms, and Aczel–Alsina t-norms

Definition 1 Menger (1942) A function T : [0, 1]2 → [0, 1] is a t-norm if the underlying
axioms are hold for any d, z, r ∈ [0, 1]
(i) Symmetry: T (d, z) = T (z, d);
(ii) Monotonicity: T (d, z) ≤ T (d, r) if z ≤ r ;
(iii) Associativity: T (d, T (z, r)) = T (T (d, z), r);
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(iv) One identity: T (d, 1) = d .

Example 1 The following are common examples of t-norms:

(i) Minimum t-norm: TM (d, z) = min(d, z);
(ii) Product t-norm: TP (d, z) = d.z;
(iii) Lukasiewicz t-norm: TL(d, z) = max(d + z − 1, 0);
(iv) Drastic t-norm

TD(d, z) =
⎧
⎨

⎩

d, if z = 1
z, if d = 1
0, otherwise

for any d, z ∈ [0, 1].
Definition 2 Klement et al. (2000) A function S : [0, 1]2 → [0, 1] is a t-conorm if the
underlying axioms are hold for any d, z, r ∈ [0, 1]
(i) Symmetry: S(d, z) = S(z, d);
(ii) Monotonicity: S(d, z) ≤ S(d, r) if z ≤ r ;
(iii) Associativity: S(d, S(z, r)) = S(S(d, z), r);
(iv) Zero identity: S(d, 0) = d .

Example 2 The following are common examples of t-conorms:

(i) Maximum t-conorm: SM (d, z) = max(d, z);
(ii) Probabilistic sum: SP (d, z) = d + z − d.z;
(iii) Lukasiewicz t-conorm: SL(d, z) = min(d + z, 1);
(iv) Drastic t-conorm

SD(d, z) =
⎧
⎨

⎩

d, if z = 0
z, if d = 0
1, otherwise

for any d, z ∈ [0, 1].
It also stated the fact Klement et al. (2000) that if T is a t-norm and S is a t-conorm, then

T (d, z) ≤ min{d, z} and S(d, z) ≥ max{d, z} for any d, z ∈ [0, 1], respectively.
Definition 3 Aczel and Alsina (1982); Alsina et al. (2006)(Aczel–Alsina t-norm) Aczel–
Alsina proposed this t-norm category in the early 1980s in the context of functional equations.

The category of Aczel–Alsina t-norms (T ℵ
A )ℵ∈[0,∞] is described by

T ℵ
A (d, z) =

⎧
⎨

⎩

TD(d, z), if ℵ = 0
min(d, z), if ℵ = ∞
e−((− log d)ℵ+(− log z)ℵ)1/ℵ , otherwise.

The category of Aczel–Alsina t-conorms (Sℵ
A)ℵ∈[0,∞] is described by

Sℵ
A(d, z) =

⎧
⎨

⎩

SD(d, z), if ℵ = 0
max(d, z), if ℵ = ∞
1 − e−((− log(1−d))ℵ+(− log(1−z))ℵ)1/ℵ , otherwise.

Limiting cases: T 0
A = TD , T 1

A = TP , T∞
A = min, S0A = SD , S1A = SP , S∞

A = max.
The t-norm T ℵ

A and the t-conorm Sℵ
A are dual to one another for each ℵ ∈ [0,∞].

The Aczel–Alsina t-norm category is strictly increasing, while the Aczel–Alsina t-conorm
category is strictly decreasing.
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2.2 PFSs

PFSs are general forms of FS and IFSs. Cuong (2013) was the first to introduce PFSs.
Cuong (2014) provided additional information regarding PFSs. Let Υ be a universal set. As
demonstrated below, a PFS T can be described this way

T = {〈℘̂T (γ ), ζ̂T (γ ), �̂T (γ )〉|γ ∈ Υ },
℘̂T (γ ) : Υ → [0, 1] (positive membership degree of element γ in PFS T )
ζ̂T (γ ) : Υ → [0, 1] (neutral membership degree of element γ in PFS T )
�̂T (γ ) : Υ → [0, 1] (negative membership degree of element γ in PFS T )
πT (γ ) : Υ → [0, 1] (degree of refusal memberships for element γ in PFS T ).
The sum of positive, neutral, and negative degree values lies on the interval [0, 1]. The pair
(℘̂T , ζ̂T , �̂T ) is named as PF number (PFN) or PF value (PFV). The refusal degree values
could be computed utilizing the accompanying equation πT (γ ) = 1 − ℘̂T (γ ) − ζ̂T (γ ) −
�̂T (γ ).

If πT (γ ) = 0 for any element in the universal set, PFS comes back to an IFS. Whether
either πT (γ ) = 0 and ζ̂T (γ ) = 0 for any element in the universal set, PFS comes back
to a conventional FS. PFSs are clearly more comprehensive than fuzzy and IFSs. In the
computing procedures, PFS gives extra data concerning our informational indexes, which is
often reviewed as better inference results.

Motivated by the operations of Xu and Yager (2006), Cuong (2013) and Wei (2017)
developed a few working rules for PFNs in the following way:

Definition 4 Cuong (2013); Wei (2017) Let T = (℘̂T , ζ̂T , �̂T ), T1 = (℘̂T1 , ζ̂T1 , �̂T1) and
T2 = (℘̂T2 , ζ̂T2 , �̂T2) be three PFNs in the universe Υ , and then, succeeding operations are
denominated as

(1) T1 ⊆ T2, if ℘̂T1(γ ) ≤ ℘̂T2(γ ), ζ̂T1(γ ) ≤ ζ̂T2(γ ) and �̂T1(γ ) ≥ �̂T2(γ );
(2) T1 = T2 iff T1 ⊆ T2 and T2 ⊆ T1;
(3) T1 ∪ T2 = 〈max{℘̂T1(γ ), ℘̂T2(γ )},min{ζ̂T1(γ ), ζ̂T2(γ )},min{�̂T1(γ ), �̂T2 (γ )}〉;
(4) T1 ∩ T2 = 〈min{℘̂T1(γ ), ℘̂T2(γ )},max{ζ̂T1(γ ), ζ̂T2(γ )},max{�̂T1(γ ), �̂T2}〉;
(5) T = 〈�̂T (γ ), ζ̂T (γ ), ℘̂T (γ )〉;
(6) T1

⊕
T2 = 〈

℘̂T1(γ ) + ℘̂T2(γ ) − ℘̂T1(γ )℘̂T2(γ ), ζ̂T1(γ )ζ̂T2(γ ), �̂T1(γ )�̂T2(γ )
〉
;

(7) T1
⊗

T2 = 〈
℘̂T1(γ )℘̂T2(γ ), ζ̂T1(γ )+ ζ̂T2(γ )− ζ̂T1(γ )ζ̂T2(γ ), �̂T1(γ )+ �̂T2(γ )− �̂T1(γ )

�̂T2(γ )
〉
;

(8) £T = 〈
1 − (1 − ℘̂T (γ ))£, ζ̂ £

T (γ ), �̂£
T (γ )

〉
;

(9) T £ = 〈
℘̂£
T (γ ), 1 − (1 − ζ̂T (γ ))£, 1 − (1 − �̂T (γ ))£

〉
.

On the basis of Definition 4, Wei (2017) derived following operations in the following
ways:

Definition 5 Let T = (℘̂T , ζ̂T , �̂T ), T1 = (℘̂T1 , ζ̂T1 , �̂T1) and T2 = (℘̂T2 , ζ̂T2 , �̂T2) be three
PFNs over the universe Υ and £, £1, £2 > 0, and then

(i) T1
⊕

T2 = T2
⊕

T1;
(ii) T1

⊗
T2 = T2

⊗
T1;

(iii) £(T1
⊕

T2) = £T1
⊕

£T2;
(iv) (T1

⊗
T2)£ = T £

1

⊗
T £
2 ;
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(v) £1T
⊕

£2T = (£1 + £2)T ;
(vi) T £1

⊗
T £2 = T (£1+£2);

(vii) (T £1)£2 = T £1£2 .

Definition 6 Tian et al. (2019) Let T1 = (℘̂T1 , ζ̂T1 , �̂T1) and T2 = (℘̂T2 , ζ̂T2 , �̂T2) be a couple
of PFNs, and the comparison technique of PFNs can be exhibited as

(1) If Ŷ (T1) > Ŷ (T2) or Ŷ (T1) = Ŷ (T2) and K̂ (T1) > K̂ (T2), then T1  T2;
(2) If Ŷ (T1) < Ŷ (T2) or Ŷ (T1) = Ŷ (T2) and K̂ (T1) < K̂ (T2), then T1 ≺ T2;
(3) If Ŷ (T1) = Ŷ (T2) and K̂ (T1) = K̂ (T2), then T1 = T2;

where Ŷ (Ti ) = 1
3 (℘̂Ti + 1 − ζ̂Ti + 1 − �̂Ti ), Ŷ (Ti ) ∈ [0, 1] and K̂ (Ti ) = ℘̂Ti − �̂Ti ,

K̂ (Ti ) ∈ [−1, 1] (i = 1, 2) represent score function, and accuracy function, respectively.

Wei (2017) prepared the PF aggregation operator portrayed in the succeeding definitions.

Definition 7 Let δ̃q = (℘̂q , ζ̂q , �̂q) (q = 1, 2, . . . h) be several PFNs. A PF weighted aver-
aging (PFWA) operator of dimension h is a mapping P̃h → P̃ related to weight vector
ð = (ð1, ð2, . . . , ðh)

T , such that ð > 0 and
∑h

q=1 ðq = 1, as PFW Aw(δ̃1, δ̃2, . . . , δ̃h) =
h⊕

q=1
(ðq δ̃q) =

(
1 − ∏h

q=1 (1 − ℘̂q)
ðq ,

∏h
q=1 ζ̂

ðq
q ,

∏h
q=1 �̂

ðq
q

)
.

Definition 8 Let δ̃q = (℘̂q , ζ̂q , �̂q) (q = 1, 2, . . . h) be several PFNs. A PF orderedweighted
averaging (PFOWA) operator of dimension h is a mapping P̃h → P̃ related to weight vector
ð = (ð1, ð2, . . . , ðh)

T including ð > 0 and
∑h

q=1 ðq = 1, as PFOW Aw(δ̃1, δ̃2, . . . ,

δ̃h) =
h⊕

q=1

(
ðq δ̃(	q )

)
=

(
1 − ∏h

q=1

(
1 − ℘̂	(q)

)ðq
,
∏h

q=1 ζ̂
ðq

	(q),
∏h

q=1 �̂
ðq

	(q)

)
, where

(	(1), 	(2), . . . , 	(h)) is a permutation of (1, 2, . . . , h), including δ̃	(q−1) ≥ δ̃	(q) for
all q = 1, 2, . . . , h.

3 Aczel–Alsina operations of PFNs

In consideration of Aczel–Alsina t-norm and Aczel–Alsina t-conorm, we expounded Aczel–
Alsina operations in connection with PFNs.

Definition 9 Let δ̃ = (℘̂, ζ̂ , �̂), δ̃1 = (℘̂1, ζ̂1, �̂1) and δ̃2 = (℘̂2, ζ̂2, �̂2) be three PFNs,
F ≥ 1 and £ > 0. Then, Aczel–Alsina T -norm and Aczel–Alsina T -conorm operations of
PFNs are clarified as

(i) δ̃1 ⊕ δ̃2 =
〈
1 − e−((− log(1−℘̂1))

F+(− log(1−℘̂2))
F)1/F , e−((− log ζ̂1)

F+(− log ζ̂2)
F)1/F ,

e−((− log �̂1)
F+(− log �̂2)

F)1/F
〉
;

(ii) δ̃1 ⊗ δ̃2 =
〈
e−((− log ℘̂1)

F+(− log ℘̂2)
F)1/F , 1 − e−((− log(1−ζ̂1))

F+(− log(1−ζ̂2))
F)1/F , 1 −

e−((− log(1−�̂1))
F+(− log(1−�̂2))

F)1/F
〉
;

(iii) £. δ̃ =
〈
1 − e−(£(− log(1−℘̂))F)1/F , e−(£(− log ζ̂ )F)1/F , e−(£(− log �̂)F)1/F

〉
;

(iv) δ̃£ =
〈
e−(£(− log ℘̂)F)1/F , 1 − e−(£(− log(1−ζ̂ ))F)1/F , 1 − e−(£(− log(1−�̂))F)1/F

〉
.
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Example 3 Let δ̃ = (0.48, 0.21, 0.30), δ̃1 = (0.65, 0.15, 0.20) and δ̃2 = (0.25, 0.45, 0.28)
be three PFNs; at that point utilizingAczel–Alsina operation on PFNs according to Definition
9 for F = 4 and £ = 5, we can get

(i) δ̃1 ⊕ δ̃2 =
〈
1 − e−((− log(1−0.65))4+(− log(1−0.25))4)1/4 , e−((− log 0.15)4+(− log 0.45)4)1/4 ,

e−((− log 0.20)4+(− log 0.28)4)1/4
〉
= 〈0.650516506, 0.147809098, 0.174127295〉.

(ii) δ̃1 ⊗ δ̃2 =
〈
e−((− log 0.65)4+(− log 0.25)4)1/4 , 1 − e−((− log(1−0.15))4+(− log(1−0.45))4)1/4 , 1 −

e−((− log(1−0.20))4+(− log(1−0.28))4)1/4
〉
= 〈0.249196223, 0.450447822, 0.291598446〉.

(iii) 5. δ̃ =
〈
1 − e−(5(− log(1−0.48))4)1/4 , e−(5(− log 0.21)4)1/4 , e−(5(− log 0.30)4)1/4

〉
= 〈0.62388

0417, 0.096935186, 0.165239513〉.
(iv) δ̃5 =

〈
e−(5(− log 0.48)4)1/4 , 1 − e−(5(− log(1−0.21))4)1/4 , 1 − e−(5(− log(1−0.30))4)1/4

〉
=

〈0.333690984, 0.297062365, 0.413365577〉.
Theorem 1 Let δ̃ = (℘̂, ζ̂ , �̂), δ̃1 = (℘̂1, ζ̂1, �̂1), δ̃2 = (℘̂2, ζ̂2, �̂2) be three PFNs, and then,
we get

(i) δ̃1 ⊕ δ̃2 = δ̃2 ⊕ δ̃1;
(ii) δ̃1 ⊗ δ̃2 = δ̃2 ⊗ δ̃1;
(iii) £(δ̃1 ⊕ δ̃2) = £δ̃1 ⊕ £δ̃2, £ > 0;
(iv) (£1 + £2)δ̃ = £1δ̃ ⊕ £2δ̃, £1, £2 > 0;
(v) (δ̃1 ⊗ δ̃2)

£ = δ̃£1 ⊗ δ̃£2 , £ > 0;
(vi) δ̃£1 ⊗ δ̃£2 = δ̃(£1+£2), £1, £2 > 0.

Proof For the three PFNs δ̃, δ̃1 and δ̃2, and £, £1, £2 > 0, in accordance with Definition 9,
we may get

(i) δ̃1 ⊕ δ̃2 =
〈
1 − e−((− log(1−℘̂1))

F+(− log(1−℘̂2))
F)1/F , e−((− log ζ̂1)

F+(− log ζ̂2)
F)1/F ,

e−((− log �̂1)
F+(− log �̂2)

F)1/F
〉

=
〈
1 − e−((− log(1−℘̂2))

F+(− log(1−℘̂1))
F)1/F ,

e−((− log ζ̂2)
F+(− log ζ̂1)

F)1/F , e−((− log �̂2)
F+(− log �̂1)

F)1/F
〉
= δ̃2 ⊕ δ̃1.

(ii) It is obvious.
(iii) Let t = 1 − e−((− log(1−℘̂1))

F+(− log(1−℘̂2))
F)1/F . Then, log(1 − t) = −((− log(1 −

℘̂1))
F + (− log(1 − ℘̂2))

F)1/F. Using this, we get £(δ̃1 ⊕ δ̃2) = £〈
1 − e−((− log(1−℘̂1))

F+(− log(1−℘̂2))
F)1/F , e−((− log ζ̂1)

F+(− log ζ̂2)
F)1/F ,

e−((− log �̂1)
F+(− log �̂2)

F)1/F
〉
=

〈
1−

e−(£((− log(1−℘̂1))
F+(− log(1−℘̂2))

F)1/F , e−(£((− log ζ̂1)
F+(− log ζ̂2)

F))1/F ,

e−(£((− log �̂1)
F+(− log �̂2)

F))1/F
〉
=

〈
1 − e−(£(− log(1−℘̂1))

F)1/F , e−(£(− log ζ̂1)
F)1/F ,

e−(£(− log �̂1)
F)1/F

〉
⊕

〈
1− e−(£(− log(1−℘̂2))

F)1/F , e−(£(− log ζ̂2)
F)1/F , e−(£(− log �̂2)

F)1/F
〉

= £δ̃1 ⊕ £δ̃2.

(iv) £1δ̃ ⊕ £2δ̃ =
〈
1 − e−(£1(− log(1−℘̂))F)1/F , e−(£1(− log ζ̂ )F)1/F , e−(£1(− log �̂)F)1/F

〉
⊕

〈
1 −

e−(£2(− log(1−℘̂))F)1/F , e−(£2(− log ζ̂ )F)1/F , e−(£2(− log �̂)F)1/F
〉

=
〈
1 − e−((£1+£2)(− log(1−℘̂))F)1/F , e−((£1+£2)(− log ζ̂ )F)1/F , e−((£1+£2)(− log �̂)F)1/F

〉
=

(£1 + £2)δ̃.
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(v) (δ̃1 ⊗ δ̃2)
£ =

〈
e−((− log ℘̂1)

F+(− log ℘̂2)
F)1/F , 1 − e−((− log(1−ζ̂1))

F+(− log(1−ζ̂2))
F)1/F ,

1 − e−((− log(1−�̂1))
F+(− log(1−�̂2))

F)1/F
〉£ =

〈
e−(£((− log ℘̂1)

F+(− log ℘̂2)
F))1/F ,

1 − e−(£((− log(1−ζ̂1))
F+(− log(1−ζ̂2))

F)1/F , 1 − e−(£((− log(1−�̂1))
F+(− log(1−�̂2))

F)1/F
〉

=
〈
e−(£(− log ℘̂1)

F)1/F , 1 − e−(£(− log(1−ζ̂1))
F)1/F , 1 − e−(£(− log(1−�̂1))

F)1/F
〉

⊕
〈
e−(£(− log ℘̂2)

F)1/F , 1 − e−(£(− log(1−ζ̂2))
F)1/F , 1 − e−(£(− log(1−�̂2))

F)1/F
〉
= δ̃£1 ⊗ δ̃£2 .

(vi) δ̃£1 ⊗ δ̃£2 =
〈
e−(£1(− log ℘̂)F)1/F , 1−e−(£1(− log(1−ζ̂ ))F)1/F , 1−e−(£1(− log(1−�̂))F)1/F

〉
⊗

〈
e−(£2(− log ℘̂)F)1/F , 1 − e−(£2(− log(1−ζ̂ ))F)1/F ,1 − e−(£2(− log(1−�̂))F)1/F

〉

=
〈
e−((£1+£2)(− log ℘̂)F)1/F , 1 − e−((£1+£2)(− log(1−ζ̂ ))F)1/F , 1 − e−((£1+£2)(− log(1−�̂))F)1/F

〉
=

δ̃(£1+£2). ��

4 PF Aczel–Alsina average aggregation operators

Using the Aczel–Alsina operations, we demonstrate a few PF average aggregation operators
in this section.

Definition 10 Let δ̃q = (℘̂q , ζ̂q , �̂q) (q = 1, 2, . . . , h) be several PFNs. Then, PF Aczel–
Alsina weighted average (PFAAWA) operator is a mapping Ph → P , such that

PFAAW Að(δ̃1, δ̃2, . . . , δ̃h) =
h⊕

q=1

ðq δ̃q = ð1δ̃1
⊕

ð2δ̃2
⊕

· · ·
⊕

ðh δ̃h,

where ð = (ð1, ð2, . . . , ðh)
T is the weight vector of δ̃q (q = 1, 2, . . . , h) with ðq > 0 and

h∑

q=1
ðq = 1.

Consequently, we obtain the succeeding theorem that is subsequent to the Aczel–Alsina
operations concerning PFNs.

Theorem 2 Let δ̃q = (℘̂q , ζ̂q , �̂q) (q = 1, 2, . . . , h) be several PFNs; at that point, aggre-
gated value of them employing the PFAAWA operation is additionally PFNs, and

I FAAW Að(δ̃1, δ̃2, . . . , δ̃h) =
h⊕

q=1

(ðq δ̃q) =
〈

1 − e
−
(

h∑

q=1
ðq (− log(1−℘̂q ))F

)1/F

,

e
−
(

h∑

q=1
ðq (− log ζ̂q )F

)1/F

, e
−
(

h∑

q=1
ðq (− log �̂q )F

)1/F
〉

, (1)

where ð = (ð1, ð2, . . . , ðh) is the weight vector of δ̃q (q = 1, 2, . . . , h), including ðq > 0

and
h∑

q=1
ðq = 1.

Proof We have implemented mathematical induction method to establish the Theorem 2
along the following lines: (i) When h = 2 and the Aczel–Alsina operations of PFNs are
taken into account, we get
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ð1δ̃ =
〈
1 − e−(ð1(− log(1−℘̂1))

F)1/F , e−(ð1(− log ζ̂1)
F)1/F , e−(ð1(− log �̂1)

F)1/F
〉
,

ð2δ̃ =
〈
1 − e−(ð2(− log(1−℘̂2))

F)1/F , e−(ð2(− log ζ̂2)
F)1/F , e−(ð2(− log �̂2)

F)1/F
〉
. Based on

Definition 9, we obtain PFAAW Að(δ̃1, δ̃2) = ð1δ̃1
⊕

ð2δ̃2 =
〈
1−e−(ð1(− log(1−℘̂1))

F)1/F ,

e−(ð1(− log ζ̂1)
F)1/F , e−(ð1(− log �̂1)

F)1/F
〉⊕ 〈

1− e−(ð2(− log(1−℘̂2))
F)1/F , e−(ð2(− log ζ̂2)

F)1/F ,

e−(ð2(− log �̂2)
F)1/F

〉
=

〈

1 − e
−
(
ð1(− log(1−℘̂1))

F+ð2(− log(1−℘̂2))
F

)1/F

,

e
−
(
ð1(− log ζ̂1)

F+ð2(− log ζ̂2)
F

)1/F

, e
−
(
ð1(− log �̂1)

F+ð2(− log �̂2)
F

)1/F〉

=
〈

1 − e
−
(

2∑

q=1
ðq (− log(1−℘̂q ))F

)1/F

, e
−
(

2∑

q=1
ðq (− log ζ̂q )F

)1/F

, e
−
(

2∑

q=1
ðq (− log �̂q )F

)1/F
〉

. As

a result, (1) holds for h = 2. (ii) Assuming that (1) holds for h = k, we obtain

I FAAW Að(δ̃1, δ̃2, . . . , δ̃k) =
k⊕

q=1
(ðq δ̃q) =

〈

1 − e
−
(

k∑

q=1
ðq (− log(1−℘̂q ))F

)1/F

,

e
−
(

k∑

q=1
ðq (− log ζ̂q )F

)1/F

, e
−
(

k∑

q=1
ðq (− log �̂q )F

)1/F
〉

. Now for h = k + 1, then I FAAW Að

(δ̃1, δ̃2, . . . , δ̃k, δ̃k+1) =
k⊕

q=1
(ðq δ̃q)

⊕
(ðk+1δ̃k+1) =

〈

1− e
−
(

k∑

q=1
ðq (− log(1−℘̂q ))F

)1/F

,

e
−
(

k∑

q=1
ðq (− log ζ̂q )F

)1/F

, e
−
(

k∑

q=1
ðq (− log �̂q )F

)1/F
〉

⊕
〈

1 − e
−
(
ðk+1(− log(1−℘̂k+1))

F

)1/F

, e
−
(
ðk+1(− log ζ̂k+1)

F

)1/F

,

e
−
(
ðk+1(− log �̂k+1)

F

)1/F〉

=
〈

1 − e
−
(

k+1∑

q=1
ðq (− log(1−℘̂q ))F

)1/F

,

e
−
(

k+1∑

q=1
ðq (− log ζ̂q )F

)1/F

,

e
−
(

k+1∑

q=1
ðq (− log �̂q )F

)1/F
〉

.

Thus, (1) is correct for h = k + 1. Consequently, on the basis of (i) and (ii), we draw a
conclusion that (1) is true for all h. ��

Using the operator PFAAWA, we can efficiently show the following features. ��

Theorem 3 (Idempotency) In the event that δ̃q = (℘̂q , ζ̂q , �̂q) (q = 1, 2, . . . , h) be several
completely equivalent PFNs, i.e., δ̃q = δ̃ for all q, then PFAAW Að (δ̃1, δ̃2, . . . , δ̃h) = δ̃.

Proof Since δ̃q = (℘̂q , ζ̂q , �̂q) = δ̃ (q = 1, 2, . . . , h). Then, we have by Eq. (1)

PFAAW Að(δ̃1, δ̃2, . . . , δ̃h) =
h⊕

q=1
(ðq pq) =

〈

1 − e
−
(

h∑

q=1
ðq (− log(1−℘̂q ))F

)1/F

,
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e
−
(

h∑

q=1
ðq (− log ζ̂q )F

)1/F

, e
−
(

h∑

q=1
ðq (− log �̂q )F

)1/F
〉

=
〈

1 − e
−
(

(− log(1−℘̂))F
)1/F

,

e
−
(

(− log ζ̂ )F
)1/F

, e
−
(

(− log �̂)F
)1/F〉

=
〈

1 − elog(1−℘̂), elog ζ̂ , elog �̂

〉

= (℘̂, ζ̂ , �̂)

= δ̃. Thus, PFAAW Að(δ̃1, δ̃2, . . . , δ̃h) = δ̃ holds. ��
Theorem 4 (Boundedness) Let δ̃q = (℘̂q , ζ̂q , �̂q) (q = 1, 2, . . . , h) be an accumula-
tion of PFNs. Let δ̃− = min(δ̃1, δ̃2, . . . , δ̃h) and δ̃+ = max(δ̃1, δ̃2, . . . , δ̃h). Then,
δ̃− ≤ PFAAW Að(δ̃1, δ̃2, . . . , δ̃h) ≤ δ̃+.

Proof Let δ̃q = (℘̂q , ζ̂q , �̂q) (q = 1, 2, . . . , h) be several PFNs. Let δ̃− = min(δ̃1, δ̃2, . . . ,
δ̃h) = 〈℘̂−, ζ̂−, �̂−〉 and δ̃+ = max(δ̃1, δ̃2, . . . , δ̃h) = 〈℘̂+, ζ̂+, �̂+〉. We have ℘̂− =
min
q

{℘̂q}, ζ̂− = max
q

{ζ̂q}, �̂− = max
q

{�̂q}, ℘̂+ = max
q

{℘̂q}, ζ̂+ = min
q

{ζ̂q} and �̂+ =
min
q

{�̂q}. Hence, there have the subsequent inequalities

1 − e
−
(

h∑

q=1
ðq (− log(1−℘̂−))F

)1/F

≤ 1 − e
−
(

h∑

q=1
ðq (− log(1−℘̂q ))F

)1/F

≤ 1 − e
−
(

h∑

q=1
ðq (− log(1−℘̂+))F

)1/F

,

e
−
(

h∑

q=1
ðq (− log ζ̂+)F

)1/F

≤ e
−
(

h∑

q=1
ðq (− log ζ̂q )F

)1/F

≤ e
−
(

h∑

q=1
ðq (− log ζ̂−)F

)1/F

,

e
−
(

h∑

q=1
ðq (− log �̂+)F

)1/F

≤ e
−
(

h∑

q=1
ðq (− log �̂q )F

)1/F

≤ e
−
(

h∑

q=1
ðq (− log �̂−)F

)1/F

.

Therefore, δ̃− ≤ PFAAW Að(δ̃1, δ̃2, . . . , δ̃h) ≤ δ̃+. ��
Theorem 5 (Monotonicity) Let δ̃q and δ̃

′
q (q = 1, 2, . . . , h) be a couple of PFNs; if δ̃q ≤ δ̃

′
q

for all q, then PFAAW Að(δ̃1, δ̃2, . . . , δ̃h) ≤ PFAAW Að(δ̃
′
1, δ̃

′
2, . . . , δ̃

′
h).

Now, we want to present PF Aczel–Alsina ordered weighted averaging (PFAAOWA)
operator.

Definition 11 Let δ̃q = (℘̂q , ζ̂q , �̂q) (q = 1, 2, . . . , h) be several PFNs. A PFAAOWA
operator of dimension h is a mapping PFAAOW A : P̃h → P̃ with the corresponding

vector Φ = (Φ1, Φ2, . . . , Φh)
T including Φq > 0 and

h∑

q=1
Φq = 1, as

PFAAOW AΦ(δ̃1, δ̃2, . . . , δ̃h) =
h⊕

q=1

Φq δ̃	(q)

= Φ1δ̃	(1)

⊕
Φ2δ̃	(2)

⊕
· · ·

⊕
Φh δ̃	(h),

where (	(1),	(2), . . . , 	(h)) are the permutation of (q = 1, 2, . . . , h), in such a way as
δ̃	(q−1) ≥ δ̃	(q) for all q = 1, 2, . . . , h.

The accompanying theory is based on the Aczel–Alsina product operation on PFNs.
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Theorem 6 Assume that δ̃q = (℘̂q , ζ̂q , �̂q) (q = 1, 2, . . . , h) be several PFNs. A PF Aczel–
Alsina ordered weighted average (PFAAOWA) operator of dimension h is a mapping PFAA
OW A : P̃h → P̃ with the associated vector Φ = (Φ1, Φ2, . . . , Φh)

T , so that Φq > 0 and
h∑

q=1
Φq = 1. Then

PFAAOW AΦ(δ̃1, δ̃2, . . . , δ̃h) =
h⊕

q=1

(Φq δ̃	(q))

=
〈

1 − e
−
(

h∑

q=1
Φq

(
−log

(
1−℘̂	(q)

))F
)1/F

, e
−
(

h∑

q=1
Φq

(
−log ζ̂	(q)

)F
)1/F

,

e
−
(

h∑

q=1
Φq

(
−log �̂	(q)

)F
)1/F

〉

, (2)

where (	(1),	(2), . . . , 	(h)) are the permutation of (q = 1, 2, . . . , h), in such a way as
δ̃	(q−1) ≥ δ̃	(q) for any q = 1, 2, . . . , h.

Using the PFAAOWA operator, the following characteristics can be effectively shown.

Theorem 7 (Idempotency) In the event that δ̃q (q = 1, 2, . . . , h) are completely equivalent,
i.e., δ̃q = δ̃ for all q, then PFAAOW AΦ(δ̃1, δ̃2, . . . , δ̃h) = δ̃.

Theorem 8 (Boundedness) Let δ̃q (q = 1, 2, . . . , h) be several PFNs, and δ̃− = min
q

δ̃q ,

δ̃+ = max
q

δ̃q . Then, δ̃− ≤ PFAAOW AΦ(δ̃1, δ̃2, . . . , δ̃h) ≤ δ̃+.

Theorem 9 (Monotonicity) Let δ̃q and δ̃
′
q (q = 1, 2, . . . , h) be a couple of PFNs; if δ̃q ≤ δ̃

′
q

for all q, then PFAAOW AΦ(δ̃1, δ̃2, . . . , δ̃h) ≤ PFAAOW AΦ (δ̃
′
1, δ̃

′
2, . . . , δ̃

′
h).

Theorem 10 (Commutativity) Let δ̃q and δ̃
′
q (q = 1, 2, . . . , h) be a couple of PFNs, and

then, PFAAOW AΦ(δ̃1, δ̃2, . . . , δ̃h) = PFAAOW AΦ(δ̃
′
1, δ̃

′
2, . . . , δ̃

′
h), where δ̃

′
q (q =

1, 2, . . . , h) is any permutation of δ̃q (q = 1, 2, . . . , h).

In Definition 10, we realize that PFAAWA operator weights would be the most simple
kind of the PFN itself, and in Definition 11, the PFAAOWA operator weights are the specific
type of the arranged positions of the PFNs. In such a manner, the weights, stated in the
operators PFAAWA and PFAAOWA, provide various circumstances that are against each
other. In any case, these perspectives are viewed as the equivalent in a general methodology.
Just to dispose of such inconvenience, in the following, we thusly present PF Aczel–Alsina
hybrid averaging (PFAAHA) operator.

Definition 12 Let δ̃q (q = 1, 2, . . . , h) be a collection of PFNs. A PF Aczel–Alsina hybrid
averaging (PFAAHA) operator of dimension h is a function PFAAH A : P̃h → P̃ , such
that
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PFAAH Að,Φ(δ̃1, δ̃2, . . . , δ̃h) =
h⊕

q=1

(Φq
˙̃
δ	(q))

= Φ1
˙̃
δ	(1)

⊕
Φ2

˙̃
δ	(2)

⊕
· · ·

⊕
Φh

˙̃
δ	(h),

where Φ = (Φ1, Φ2, . . . , Φh)
T is the weighting vector associated with the PFAAHA opera-

tor, with Φq ∈ [0, 1] (q = 1, 2, . . . , h) and
h∑

q=1
Φq = 1; ˙̃

δq = hðq δ̃q , q = 1, 2, . . . , h,

(
˙̃
δ	(1),

˙̃
δ	(2), . . . ,

˙̃
δ	(h)) is any permutation of a group of the weighted PFNs (

˙̃
δ1,

˙̃
δ2,

. . . ,
˙̃
δh), such that

˙̃
δ	(q−1) ≥ ˙̃

δ	(q) (q = 1, 2, . . . , h); ð = (ð1, ð2, . . . , ðh)
T is the weight-

ing vector of δ̃q , with ðq ∈ [0, 1] and
h∑

q=1
ðq = 1, and h is the balancing coefficient.

We can deduce the underlying two theorem based on Aczel–Alsina operations with PFNs.

Theorem 11 Let δ̃q (q = 1, 2, . . . , h) be several PFNs. Their aggregated value by PFAAHA
operator is still a PFN, and

PFAAH Að,Φ(δ̃1, δ̃2, . . . , δ̃h) =
h⊕

q=1

(Φq
˙̃
δ	(q))

=
〈

1 − e
−
(

h∑

q=1
Φq

(
−log

(
1− ˙̂℘	(q)

))F
)1/F

, e
−
(

h∑

q=1
Φq

(
−log ˙̂

ζ	(q)

)F
)1/F

,

e
−
(

h∑

q=1
Φq

(
−log ˙̂�	(q)

)F
)1/F

〉

.

Proof We can easily obtain Theorem 11 in the same way that we do in Theorem 2. ��
Theorem 12 The PFAAWAandPFAAOWAoperators are particular instances of the PFAAHA
operator.

Proof (1) Assume that Φ = (1/h, 1/h, . . . , 1/h)T . Then

PFAAH Að,Φ(δ̃1, δ̃2, . . . , δ̃h) = Φ1
˙̃
δ	(1)

⊕
Φ2

˙̃
δ	(2)

⊕
· · ·

⊕
Φh

˙̃
δ	(h)

= 1

h
(
˙̃
δ	(1)

⊕ ˙̃
δ	(2)

⊕
· · ·

⊕ ˙̃
δ	(h))

= ð1δ̃1
⊕

ð2δ̃2
⊕

· · ·
⊕

ðh δ̃h

= PFAAW Að(δ̃1, δ̃2, . . . , δ̃h).

(2) Assume that ð = (1/h, 1/h, . . . , 1/h)T . Then, ˙̃
δq = δ̃q (q = 1, 2, . . . , h) and

PFAAH Að,Φ(δ̃1, δ̃2, . . . , δ̃h) = Φ1
˙̃
δ	(1)

⊕
Φ2

˙̃
δ	(2)

⊕
· · ·

⊕
Φh

˙̃
δ	(h)

= Φ1δ̃	(1)

⊕
Φ2δ̃	(2)

⊕
· · ·

⊕
Φh δ̃	(h)

= PFAAOW AΦ(δ̃1, δ̃2, . . . , δ̃h),

which completes the proof. ��
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5 Model for MADM using PF information

For the purposes of applying this, we may recommend an MADM strategy handling PF
aggregation operators, where attribute values are PFNs and attribute weights, are real num-
bers. Let � = {�1,�2, . . . ,�g} and � = {�1, �2, . . . , �h} be the set of choices and
attributes, respectively. Let ð = (ð1, ð2, . . . , ðh) function as weight vector of the attribute ðq

(q = 1, 2, . . . , h) is completely perceived to such an expand that ðq > 0 and
h∑

q=1
ðq = 1.We

explicit the evaluation values of the choice �w (w = 1, 2, . . . , g) regarding the criterion �q

(q = 1, 2, . . . , h) by ξgh = (℘̂gh, ζ̂gh, �̂gh). Assume that R = (
ξgh

)

g×h be the PF decision

matrix, in which ℘̂gh represents the positive membership degree with the property that choice
�q fulfills the attribute �q that has been supplied by the deciders, ζ̂gh imply the neutral mem-
bership degree in a way that choice �w does not fulfill the attribute �q , and �̂gh presented the
degree that the choice �w does not address the attribute �q which was specified by decider,
where ℘̂gh ⊂ [0, 1], ζ̂gh ⊂ [0, 1] and �̂gh ⊂ [0, 1] allowing 0 ≤ ℘̂gh + ζ̂gh + �̂gh ≤ 1,
(w = 1, 2, . . . , g).

In the accompanying algorithm, we endeavor to take care of the MADM issue with the
PF information by utilizing the PFAAWA operator.

Step 1. Change decision matrix R = (
ξgh

)

g×h into the normalization matrix R =
(
ξ gh

)

g×h

ξ gh =
{

ξgh for benefit attribute �q

(ξgh)
c for cost attribute �q ,

where (ξgh)
c is the complement of ξgh , so that (ξgh)c = (�̂gh, ζ̂gh, ℘̂gh).

Step 2. We handle the selected data expressed in matrix R, and the operator PFAAWA

ξw = PFAAW A(ξt1, ξt2, . . . , ξtn) =
h⊕

q=1
(ðqξgh)

=
〈

1 − e
−
(

h∑

q=1
ðq (− log(1−℘̂q ))F

)1/F

, e
−
(

h∑

q=1
ðq (− log ζ̂q )F

)1/F

,

e
−
(

h∑

q=1
ðq (− log �̂q )F

)1/F
〉

(3)

to achieve the standard desire values ξw (w = 1, 2, . . . , g) of the choices �w.
Step 3.We compute the score function Ŷ (ξw) (w = 1, 2, . . . , g) predicted on general PF

information ξw (w = 1, 2, . . . , g) to list all the choice �w (w = 1, 2, . . . , g) to select the
best choice �w . If there is no variation among score functions Ŷ (ξw) and Ŷ (ξq), at that point,
we continue to figure accuracy degrees of K̂ (ξw) and K̂ (ξq) predicted on standard PF data
of ξw and ξq , and we rank the choices �w with regards to the accuracy degrees of K̂ (ξw) and
K̂ (ξq).

Step 4.We rank all the choices �w (w = 1, 2, . . . , g) to achieve the best possible one(s)
according to Ŷ (ξw) (w = 1, 2, . . . , g).

Step 5. End.
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Table 1 Picture fuzzy decision matrix

�1 �2 �3 �4 �5

�1 (0.72, 0.18, 0.10) (0.15, 0.15, 0.65) (0.44, 0.46, 0.10) (0.70, 0.10, 0.20) (0.43, 0.34, 0.23)

�2 (0.08, 0.82, 0.07) (0.67, 0.21, 0.09) (0.35, 0.35, 0.20) (0.74, 0.16, 0.10) (0.78, 0.13, 0.08)

�3 (0.40, 0.37, 0.19) (0.12, 0.72, 0.15) (0.25, 0.40, 0.35) (0.67, 0.25, 0.07) (0.09, 0.85, 0.05)

�4 (0.52, 0.32, 0.11) (0.84, 0.09, 0.06) (0.30, 0.20, 0.50) (0.12, 0.75, 0.12) (0.91, 0.02, 0.07)

6 Numerical example

So as to show the use of the created technique, we will consider a good example where there
is a financing organization, which needs to put a whole of cash in the best choice (reorganized
from Herrera and Herrera-Viedma (2000)). There is a board with five potential choices to
put away the cash: �1 is an automobile organization; �2 is a nourishment organization; �3

is a laptop organization; �4 is a weapon organization; �5 is a television organization. The
financing organization must take a choice as indicated by the accompanying four attributes:

�1 : Hazard investigation
�2 : Growth investigation
�3 : Social-political effect investigation
�4 : Environmental effect investigation.

The attributeweight is allotted by decider asð = (0.20, 0.10, 0.30, 0.40)T . The five available
choices �w (w = 1, 2, . . . , 5) can be assessed utilizing the PF data by the decider under the
above-mentioned four attributes, as listed in the consequent matrix:

To be able to determine probably the most beneficial organization �w (w = 1, 2, . . . , 5),
we employ PFAAWA operator to accumulate an MADM technique with PF information,
which may be calculated like this:

Step 1. It is assumed that F = 1. We take advantage of the PFAAWA operator
to determine the standard desire values ξw of the organizations �w, ξ̃1 =
(0.508241, 0.327308, 0.12153), ξ̃2 = (0.599384, 0.202459, 0.132463), ξ̃3 =
(0.321599, 0.30760, 0.297106), ξ̃4 = (0.53198, 0.308900, 0.111022), ξ̃5 =
(0.715012, 0.130896, 0.081355).

Step 2. By utilizing Definition 6, we calculate score values Ŷ (ξw) (w = 1, 2, . . . , 5) of the
PFNs ξw (w = 1, 2, . . . , 5) as Ŷ (̃ξ1) = 0.686467, Ŷ (̃ξ2) = 0.754821, Ŷ (̃ξ3) =
0.572297, Ŷ (̃ξ4) = 0.704018, Ŷ (̃ξ5) = 0.834253.

Step 3. Rank all the organizations �w (w = 1, 2, . . . , 5) according with the score values
Ŷ (̃ξw) (w = 1, 2, . . . , 5) of the general PFNs as �5  �2  �4  �1  �3.

Step 4. �5 is chosen as the best preferable alternative.

So as to review the impact of the working parameter on the preference order of alternatives
in the PFAAWA operator, those are demonstrated in Table 2.

7 Investigation of the impact of working parameter F upon
decision-making outcomes

To spell out the impact of the working parameters F on MADM outcomes, we will utilize
various estimations of F in accordance with rank the choices. The consequences of ordering
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Table 2 Order of preference for different values of the working parameters in the aggregation procedure

F Ŷ (ξ1) Ŷ (ξ2) Ŷ (ξ3) Ŷ (ξ4) Ŷ (ξ5) Ranking order

1 0.686467 0.748210 0.572297 0.704018 0.834253 �5  �2  �4  �1  �3

2 0.706880 0.810392 0.593997 0.750424 0.883578 �5  �2  �4  �1  �3

3 0.721957 0.834984 0.612967 0.773253 0.903340 �5  �2  �4  �1  �3

4 0.734344 0.848360 0.628389 0.786621 0.913611 �5  �2  �4  �1  �3

5 0.744731 0.856855 0.640603 0.795642 0.919850 �5  �2  �4  �1  �3

6 0.753426 0.862795 0.650264 0.802294 0.924032 �5  �2  �4  �1  �3

7 0.760685 0.867210 0.657969 0.807479 0.927033 �5  �2  �4  �1  �3

8 0.766753 0.870631 0.664184 0.811671 0.929293 �5  �2  �4  �1  �3

9 0.771849 0.873361 0.669261 0.815152 0.931060 �5  �2  �4  �1  �3

10 0.776159 0.87559 0.673459 0.818104 0.932482 �5  �2  �4  �1  �3

50 0.81318 0.892473 0.705374 0.847222 0.943607 �5  �2  �4  �1  �3

100 0.818296 0.894582 0.709363 0.851965 0.945150 �5  �2  �4  �1  �3

F = 1 F = 3 F = 6 F = 10 F = 100
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Fig. 1 Score values of the alternatives for different values F by PFAAWA operator

the choices �w (w = 1, 2, . . . , 5) in view of the PFAAWA operator based on score values
are shown in Table 2 and graphically illustrated in Fig. 1.

It is apparent that as the magnitude of F for the IFAAWA operator increases, the score
values for the alternatives gradually increase, but the relating ranking remains constant,
�5  �2  �4  �1  �3, indicating that the optimization approaches have the prop-
erty of isotonicity, and the deciders can choose the appropriate value as indicated by their
inclinations.

Furthermore, we can see from Fig. 1 that even when the values of F in the example are
different, the ranking results of the alternatives are the same, demonstrating the uniformity
of the suggested PFAAWA operators.
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Table 3 Comparative studies with a few of the currently exist techniques

Techniques Ŷ (ξ1) Ŷ (ξ2) Ŷ (ξ3) Ŷ (ξ4) Ŷ (ξ5) Order of preference

Wei (2017) 0.686467 0.754821 0.572297 0.704018 0.834253 �5  �2  �4  �1  �3

Khan et al. (2019) 0.680836 0.735775 0.567717 0.688794 0.816971 �5  �2  �4  �1  �3

Proposed techniques 0.776159 0.875590 0.673459 0.818104 0.932482 �5  �2  �4  �1  �3

Fig. 2 Comparison analysis with
some of the currently exist
techniques

Table 4 Comparison of attributes within a few currently exist techniques

Techniques Whether explain fuzzy informa-
tion more easily

Whether make data aggregation more
adaptable through a parameter

Wei (2017) Yes No

Khan et al. (2019) Yes No

Proposed technique Yes Yes

8 Comparative studies

In this section, we contrast our suggested techniques with current techniques as well as
PF weighted averaging (PFWA) operator (Wei 2017), and PF Einstein weighted averaging
(PFW Aε) operator (Khan et al. 2019). Tables 3 and 4 give the comparison findings, which
are visually illustrated in Fig. 2. Tables 2 and 3 show that the PFWA operator is a special
instance of our suggested PFAAWA operator, and it acquires when F = 1.

For this reason, our recommended techniques are likely to become more comprehensive
and more adaptable than a few existing techniques to control PF MADM challenges.

9 Conclusions

In the present study, we have expanded the Aczel–Alsina t-norm and t-conorm in accordance
with PF situations, defined a few novel working rules with regard to PFNs, and examined
their properties and relationships. At that point, centered on such novel working rules, a few
new aggregation operators, in particular, the PFAAWA operator, PFAAOWA operator, and
PFAAHAoperator, have now been constructed to fit the cases where in fact the given conflicts
are PFNs. Different alluring features and some particular instances of those operators have
now been examined in further detail, as well as the linkages between those operators. The
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suggested operators, along with PF data, were placed on MADM problems, and a mathe-
matical formulation was presented to show the decision-making mechanism. The effect of
parameter F on decision-making outcomes has been examined.

The most favorable alternative can be acquired with PFAAWA operators by appropriately
setting the parameter F. As a result, the suggested aggregation operators provide decision-
makers with a new flexible method for reducing PF MADM difficulties. In other words, by
providing a parameter, we can simply represent fuzzy information and make the informa-
tion aggregation system more transparent than certain other current techniques. The existing
aggregation operators (Wei 2017; Khan et al. 2019), on the other hand, do not make data
aggregation more flexible. As a result, our proposed aggregation operators are more sophis-
ticated and trustworthy in PF data decision-making.

We will apply the above operators and techniques to some realistic applications over
time, such as hierarchical clustering, risk evaluation, behavioral economics, information
processing, computer vision, and many domains in ambiguous contexts (Saha et al. 2021;
Dey et al. 2020; Jana et al. 2019; Senapati and Yager 2019a, b, 2020; Senapati et al. 2021b).
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