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Abstract
We propose a class of composite Newton–Jarratt iterative methods with increasing conver-
gence order for approximating the solutions of systems of nonlinear equations. Novelty of
the methods is that in each step the order of convergence is increased by an amount of two at
the cost of only one additional function evaluation. Moreover, the use of only a single inverse
operator in each iteration makes the algorithms computationally more efficient. Theoretical
results regarding convergence and computational efficiency are verified through numerical
problems, including those that arise from boundary value problems. Byway of comparison, it
is shown that the novel methods are more efficient than their existing counterparts, especially
when applied to solve the large systems of equations.

Keywords Systems of nonlinear equations · Iterative methods · Fast algorithms ·
Computational efficiency

Mathematics Subject Classification 65H10 · 41A25 · 49M15

1 Introduction

Construction of fixed point iterative methods for solving nonlinear equations or systems of
nonlinear equations is an interesting and challenging task in numerical analysis and many
applied scientific branches. The importance of this subject has led to the development ofmany
numerical methods, most frequently of iterative nature (see Ortega and Rheinboldt 1970;
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Argyros 2007). With the advancement of computer hardware and software, the problem of
solving nonlinear equations by numerical methods has gained an additional importance. In
this paper, we consider the problem of approximating a solution t∗ of the equation F(t) = 0,
where F : � ⊂ R

m → R
m , by iterative methods of a high order of convergence. The solution

t∗ can be obtained as a fixed point of some function φ : � ⊂ R
m → R

m by means of fixed
point iteration

tk+1 = φ(tk), k = 0, 1, 2, . . . .

There are a variety of iterative methods for solving nonlinear equations. A basic method
is the well-known quadratically convergent Newton’s method (Argyros 2007)

tk+1 = M (2)
1 (tk) = tk − F′(tk)−1F(tk), (1)

where F′(t)−1 is the inverse of Fréchet derivative F′(t) of the function F(t). This method
converges if the initial approximation t0 is closer to solution t∗ and F′(t)−1 exists in the
neighborhood � of t∗. To achieve the higher order of convergence, a number of modified
Newton’s or Newton-like methods have been proposed in the literature, see, for example
(Cordero and Torregrosa 2006; Babajee et al. 2010; Behl et al. 2017; Homeier 2004; Darvishi
and Barati 2007; Cordero and Torregrosa 2007; Cordero et al. 2010, 2012; Esmaeili and
Ahmadi 2015; Noor and Waseem 2009; Alzahrani et al. 2018; Xiao and Yin 2017, 2018;
Sharma et al. 2016; Lotfi et al. 2015; Choubey et al. 2018) and references therein. Throughout
this paper, we use M (p)

i to denote an i-th iteration method of convergence order p.
The principal goal and motivation in developing iterative methods is to achieve conver-

gence order as high as possible by utilizing number of evaluations as small as possible so that
the methods may possess high efficient character. The most obvious barrier in the develop-
ment of efficient methods is the evaluation of inverse of a matrix since it requires a lengthy
calculation work. Therefore, it will turn out to be judicious if we use minimum number of
such inversions as possible (Argyros and Regmi 2019; Regmi 2021). With these consider-
ations, here we propose multi-step iterative methods with increasing order of convergence.
First, we present a cubically convergent two-step scheme with first step as Jarratt iteration
and second is Newton-like iteration. Then on the basis of this scheme a three-step scheme
of fifth-order convergence is proposed. Furthermore, in quest of more fast convergence the
scheme is generalized to q+1Newton–Jarratt steps with increasing convergence order 2q+1
(q ∈ N). The novel feature is that in each step the order of convergence is increased by an
amount of two at the cost of only one additional function evaluation. Evaluation of the inverse
operator F′(t)−1 remains the same throughout which also points to the name ‘methods with
frozen inverse operator’.

Rest of the paper is structured as follows. Some basic definitions relevant to the present
work are provided in Sect. 2. Section 3 includes development of the third- and fifth-order
methods with their analysis of convergence. Then the generalized version consisting of q+1-
step scheme with convergence order 2q + 1 is presented in Sect. 4. The computational
efficiency is discussed and compared with the existing methods in Sect. 5. In Sect. 6, various
numerical examples are considered to confirm the theoretical results. Concluding remarks
are given in Sect. 7.
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2 Basic definitions

2.1 Order of convergence

Let {tk}k≥0 be a sequence in R
m which converges to t∗. Then convergence is called of order

p, p > 1, if there exists M , M > 0, and k0 such that

‖tk+1 − t∗‖ ≤ M‖tk − t∗‖p for all k ≥ k0

or

‖εk+1‖ ≤ M‖εk‖p for all k ≥ k0,

where εk = tk − t∗. The convergence is called linear if p = 1 and there exists M such that
0 < M < 1.

2.2 Error equation

Let εk = tk − t∗ be the error in the k-th iteration, we call the relation

εk+1 = Lε
p
k + O(ε

p+1
k ),

as the error equation. Here, p is the order of convergence, L is a p -linear function, i.e.

L ∈ L(Rm× p−times· · · · ×R
m, R

m), L denotes the set of bounded linear functions.

2.3 Computational order of convergence

Let t∗ be a zero of the function F and suppose that tn−1, tn , tn+1 and tn+2 are the four
consecutive iterations close to t∗. Then, the computational order of convergence (COC) can
be approximated using the formula (see Weerkoon and Fernando 2000)

COC = log
(‖tk+2 − tk+1‖/‖tk+1 − tk‖

)

log
(‖tk+1 − tk‖/‖tk − tk−1‖

) .

2.4 Computational efficiency

Computational efficiencyof an iterativemethod ismeasured by the efficiency index E = p1/C

or E = log p
C (see Ostrowski 1960), where p is the order of convergence and C is the

computational cost per iteration.

3 Formulation of basic methods

In what follows first we will introduce the basic third- and fifth-order iterative methods.
These are called basic methods since they pave the way for the generalized algorithm to be
presented in next section.
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3.1 Third-order scheme

Our aim is to develop a method which accelerates the convergence rate of Newton method
(1) using minimum number of function evaluations and inverse operators. Thus, it will turn
out to be judicious if we consider the two-step iteration scheme of the type

wk = tk − 2

3
F′(tk)−1F(tk),

tk+1 = wk − (a1 I + a2Qk)F
′(tk)−1F(tk), (2)

where Qk = F′(tk)−1F′(wk), a1 and a2 are arbitrary constants and I is an m × m identity
matrix. Idea of the first step is taken from the well-known Jarratt method (Cordero et al.
2010) whereas the second step is based on Newton-like iteration.

We introduce some known notations and results (Cordero et al. 2010), which are needed
to obtain the convergence order of new method. Let F : � ⊆ R

m → R
m be sufficiently

differentiable in �. The q-th derivative of F at u ∈ R
m , q ≥ 1, is the q-linear function

F(q)(u) : R
m × · · · × R

m → R
m such that F(q)(u)(v1, . . . , vq) ∈ R

m . It is easy to observe
that

(i) F(q)(u)(v1, . . . , vq) ∈ L(Rm),
(ii) F(q)(u)(vσ(1), . . . , vσ(q)) = F(q)(u)(v1, . . . , vq), for all permutation σ of {1, 2, . . . , q}.
From the above properties, we can use the following notation:

(a) F(q)(u)(v1, . . . , vq) = F(q)(u)v1, . . . , vq ,
(b) F(q)(u)vq−1F(p)v p = F(q)(u)F(p)(u)vq+p−1.

On the other hand, for t∗ + h ∈ R
m lying in a neighborhood of a solution t∗ of F(t) = 0,

we can apply Taylor’s expansion and assuming that the Jacobian matrix F′(t∗) is nonsingular,
we have

F(t∗ + h) = F′(t∗)
[
h +

p−1∑

q=2

Kqh
q
]

+ O(h p),

where Kq = 1
q!F

′(t∗)−1F(q)(t∗), q ≥ 2. We observe that Kqhq ∈ R
m since F(q)(t∗) ∈

L(Rm × · · · × R
m, R

m) and F′(t∗)−1 ∈ L(Rm). In addition, we can express F′ as

F′(t∗ + h) = F′(t∗)
[
I +

p−1∑

q=2

qKqh
q−1

]
+ O(h p−1), (3)

where I is the identity matrix. Therefore, qKqhq−1 ∈ L(Rm). From (3), we obtain

F′(t∗ + h)−1 = [
I + X2h + X3h

2 + X4h
3 + · · · ]F′(t∗)−1 + O(h p), (4)

where

X2 = − 2K2,

X3 = 4K 2
2 − 3K3,

X4 = − 8K 3
2 + 6K2K3 + 6K3K2 − 4K4,

... (5)

To analyze the convergence properties of scheme (2), we prove the following theorem:
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Theorem 1 Let the function F : � ⊂ R
m → R

m be sufficiently differentiable in an open
neighborhood � of its zero t∗. Suppose that F′(t) is continuous and nonsingular in t∗. If an
initial approximation t0 is sufficiently close to t∗, then order of convergence of method (2) is
at least 3, provided a1 = 13

12 and a2 = − 3
4 .

Proof Let εk = tk − t∗ and � = F′(t∗)−1 exist. Developing F(tk) in a neighborhood of t∗,
we have that

F(tk) = F′(t∗)[εk + A2ε
2
k + A3ε

3
k + A4ε

4
k + A5ε

5
k + O(ε6k )], (6)

where Aq = 1
q!�F

(q)(t∗), q = 2, 3, . . ., F(q)(t∗) ∈ L(Rm× q−times· · · · ×R
m, R

m), � ∈
L(Rm, R

m) and Aq(εk)
q = Aq(εk, εk,

q−times· · · · , εk) ∈ R
m with εk ∈ R

m . Also,

F′(tk) = F′(t∗)[ I + 2A2εk + 3A3ε
2
k + 4A4ε

3
k + 5A5ε

4
k + O(ε5k )], (7)

F′(tk)−1 = [ I + B1εk + B2ε
2
k + B3ε

3
k + B4ε

4
k + O(ε5k )]�, (8)

where B1 = −2A2, B2 = 4A2
2 − 3A3, B3 = −(8A3

2 − 6A2A3 − 6A3A2 + 4A4) and
B4 = (16A4

2+9A2
3−12A2

2A3−12A2A3A2−12A3A2
2+8A2A4+8A4A2−5A5).Applying

(6) and (8) in the first step of (2), we have

εwk =wk − t∗

=1

3
εk + 2

3
A2ε

2
k − 4

3
(A2

2 − A3)ε
3
k + 2

3
(4A3

2 − 4A2A3 − 3A3A2 + 3A4)ε
4
k + O(ε5k ).

(9)

Taylor expansions of F(wk) and F′(wk) about t∗ yield

F(wk) = F′(t∗)[εwk + A2ε
2
wk

+ A3ε
3
wk

+ A4ε
4
wk

+ A5ε
5
wk

+ O(ε6wk
)], (10)

and

F′(wk) = F′(t∗)[ I + 2A2εwk + 3A3ε
2
wk

+ 4A4ε
3
wk

+ 5A5ε
4
wk

+ O(ε5wk
)]. (11)

Combining (8) and (11),

Qk = F′(tk)−1F′(wk) =I − 4

3
A2εk + 4

3
(3A2

2 − 2A3)ε
2
k

− 8

27
(36A3

2 − 27A2A3 − 18A3A2 + 13A4)ε
3
k + O(ε4k ). (12)

Then simple calculations yield

a1I + a2Qk = (a1 + a2) I − 4a2
3

A2εk + 4a2
3

(3A2
2 − 2A3)ε

2
k

− 8a2
27

(36A3
2 − 27A2A3 − 18A3A2 + 13A4)ε

3
k + O(ε4k ). (13)

Substituting (6), (8), (9) and (13) in second step of (2), we obtain

εk+1 =
(1
3

− a1 − a2
)
εk + 1

3
(2 + 3a1 + 7a2)A2ε

2
k

− 2

3

(
(2 + 3a1 + 11a2)A

2
2 − (2 + 3a1 + 7a2)A3

)
ε3k

+ O(ε4k ). (14)
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It easy to prove that for the parameters a1 = 13
12 and a2 = − 3

4 , the error equation (14)
produces the maximum order of convergence. For these values of parameters above equation
reduces to

εk+1 = 2A2
2ε

3
k + O(ε4k ). (15)

This proves the third order of convergence. ��
Thus, the proposed Newton–Jarratt third-order method (2) is finally presented as

wk = tk − 2

3
F′(tk)−1F(tk),

xk+1 = M (3)
1 (tk, wk) = wk − 1

12
(13 I − 9Qk)F

′(tk)−1F(tk). (16)

In terms of computational cost this formula uses one function, two derivatives and one matrix
inversion per iteration.

3.2 Fifth-order scheme

Based on the third-order scheme (16), we consider the following three-step Newton–Jarratt
composition:

wk = tk − 2

3
F′(tk)−1F(tk),

yk = M (3)
1 (tk, wk),

tk+1 = yk − (
d1 I + d2Qk

)
F′(tk)−1F(yk), (17)

where d1 and d2 are some parameters to be determined. This new scheme requires one extra
function evaluation in addition to the evaluations of scheme (16). Following theorem proves
convergence properties of (17).

Theorem 2 Let the function F : � ⊂ R
m → R

m be sufficiently differentiable in an open
neighborhood � of its zero t∗. Suppose that F′(t) is continuous and nonsingular in t∗. If an
initial approximation t0 is sufficiently close to t∗, then order of convergence of method (17)
is at least 5, provided that d1 = 5

2 and d2 = − 3
2 .

Proof From (15), error equation of second step of (16) can be written as

εyk = 2A2
2ε

3
k + O(ε4k ). (18)

Let εyk = yk − t∗. Then, the Taylor expansion of F(yk) about t∗ yields

F(yk) = F′(t∗)[εyk + A2ε
2
yk + O(ε3yk )]. (19)

Using Eqs. (8), (12), (18) and (19) in third step of (17), we obtain

εk+1 = −2(d1 + d2 − 1)A2
2ε

3
k + 1

9

(
3(39d1 + 47d2 − 27)A2

2 − 36(d1 + d2 − 1)A2A3

− 27(d1 + d2 − 1)A3A2 − (d1 + d2 − 1)A4

)
ε4k − 2

27

(
9(84d1 + 122d2 − 45)A4

2

− 18(48d1 + 59d2 − 33)A3A
2
2 + (123d1 + 121d2 − 126)A2A4
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+ (d1 + d2 − 1)(81A2
3 + 4A5)

)
ε5k

+ O(ε6k ). (20)

It can be easily shown that for parameters d1 = 5
2 and d2 = − 3

2 , the error equation (20)
produces the maximum order of convergence. For this set of parameters, Eq. (20) reduces to

εk+1 = 2(6A2
2 − A3)A

2
2ε

5
k + O(ε6k ). (21)

Hence the required result follows. ��
Thus, the Newton–Jarratt fifth-order method is expressed as

wk = tk − 2

3
F′(tk)−1F(tk),

yk = M (3)
1 (tk, wk),

tk+1 = M (5)
1 (tk, wk, yk) = yk − 1

2

(
5 I − 3 Qk

)
F′(tk)−1F(yk). (22)

In terms of computational cost this formula requires two functions, two derivatives and one
inverse operator per iteration.

4 Generalizedmethod

The generalized q + 1-step Newton–Jarratt composite scheme, with the base as three-step
scheme (22), can be expressed as follows:

w
(0)
k = tk − 2

3
F′(tk)−1F(tk),

w
(1)
k = wk − 1

12
(13 I − 9Qk)F

′(tk)−1F(tk),

w
(2)
k = w

(1)
k − ϕ(tk, wk)F

′(tk)−1F(w
(1)
k ),

w
(3)
k = w

(2)
k − ϕ(tk, wk)F

′(tk)−1F(w
(2)
k ),

w
(4)
k = w

(3)
k − ϕ(tk, wk)F

′(tk)−1F(w
(3)
k ),

...............................................................

w
(q−1)
k = w

(q−2)
k − ϕ(tk, wk)F

′(tk)−1F(w
(q−2)
k ),

w
(q)
k = tk+1 = w

(q−1)
k − ϕ(tk, wk)F

′(tk)−1F(w
(q−1)
k ), (23)

where q ≥ 2, w(0)
k = wk , Qk = F′(tk)−1F′(wk) and ϕ(tk, wk) = 1

2

(
5 I − 3 Qk

)
.

To analyze the convergence property, we prove the following theorem:

Theorem 3 Let the function F : � ⊂ R
m → R

m be sufficiently differentiable in an open
neighborhood� of its zero t∗. Suppose F′(t) is continuous and nonsingular in t∗. If an initial
approximation t0 is sufficiently close to t∗, the sequence {tk} generated by method (23) for
t0 ∈ � converges to t∗ with order 2q + 1 for q ∈ N.

Proof Let εk = tk − t∗, ε
w

(q−1)
k

= w
(q−1)
k − t∗. Taylor’s expansion of F(w

(q−1)
k ) about t∗

yields

F(w
(q−1)
k ) = F′(t∗)

[
(w

(q−1)
k − t∗) + A2(w

(q−1)
k − t∗)2 + · · · ]. (24)
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Using (8) and (24), we have that

F′(tk)−1F(w
(q−1)
k ) = [ I + B1εk + B2ε

2
k + B3ε

3
k + B4ε

4
k + O(ε5k )]�

× F′(t∗)
[
(w

(q−1)
k − t∗) + A2(w

(q−1)
k − t∗)2 + · · ·

]

= (w
(q−1)
k − t∗) −

(
2A2εk − (4A2

2 − 3A3)ε
2
k

+ (8A3
2 − 6A2A3 − 6A3A2 + 4A4)ε

3
k + · · ·

)

× (w
(q−1)
k − t∗) + A2(w

(q−1)
k − t∗)2 − 2A2εk A2(w

(q−1)
k − t∗)2 + · · · .

(25)

We write Eq. (13) as

ϕ(tk, wk) = I + 2A2εk − 2(3A2
2 − 2A3)ε

2
k

+4

9
(36A3

2 − 27A2A3 − 18A3A2 + 13A4)ε
3
k + O(ε4k ). (26)

Using Eqs. (25) and (26), we get

ϕ(tk, wk)F
′(tk)−1F(w

(q−1)
k )

= (w
(q−1)
k − t∗) +

(
(−6A2

2 + A3)ε
2
k + 2

9

(
216A3

2 − 108A2A3 − 99A3A2

+ 44A4

)
ε3k + O(ε4k )

)
(w

(q−1)
k − t∗) + · · · . (27)

Then last step of (23) yields

w
(q)
k − t∗ =

[
(6A2

2 − A3)ε
2
k − 2

9

(
216A3

2 − 108A2A3

−99A3A2 + 44A4

)
ε3k + · · ·

]
(w

(q−1)
k − t∗) + · · · .

For q = 3, 4, 5, we obtain the corresponding error equations as

w
(3)
k − t∗ =

[
(6A2

2 − A3)ε
2
k − 2

9

(
216A3

2 − 108A2A3

− 99A3A2 + 44A4

)
ε3k + · · ·

]
(w

(2)
k − t∗) + · · ·

=2(6A2
2 − A3)

2A2
2ε

7
k + O(ε8k ),

w
(4)
k − t∗ =

[
(6A2

2 − A3)ε
2
k − 2

9

(
216A3

2 − 108A2A3

− 99A3A2 + 44A4

)
ε3k + · · ·

]
(w

(3)
k − t∗) + · · ·

=2(6A2
2 − A3)

3A2
2ε

9
k + O(ε10k )
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and

w
(5)
k − t∗ =

[
(6A2

2 − A3)ε
2
k − 2

9

(
216A3

2 − 108A2A3

− 99A3A2 + 44A4

)
ε3k + · · ·

]
(w

(4)
k − t∗) + · · ·

=2(6A2
2 − A3)

4A2
2ε

11
k + O(ε12k ).

Proceeding by induction, we have

εk+1 = w
(q)
k − t∗ = 2(6A2

2 − A3)
q−1A2

2ε
2q+1
k + O(ε

2q+2
k ).

Hence, the result follows. ��
It is clear that the generalized scheme requires the information of q functions, two deriva-

tives and only onematrix inversion per iteration. The single use of inverse operator throughout
the iteration also justifies the name ‘methodwith frozen inverse operator’ of the above scheme

5 Computational efficiency

Ranking of numerical methods, based on their computational efficiency, is in many cases
a difficult task since the quality of an algorithm depends on many parameters. Considering
root-solvers, Brent (1973) said that “...the method with the higher efficiency is not always
the method with the higher order". Sometimes a great accuracy of the sought results is not
a main target whereas in many cases numerical stability of implemented algorithms is the
preferable feature.

Computational efficiency of a root-solver can be defined in various manners, but always
proportional to order of convergence p and inversely proportional to computational cost C
per iteration—the number of function evaluations taking with certain weights. Traub (1964)
introduced coefficient of efficiency by the ratio

ET = p

C
,

whereas Ostrowski (1960) dealt with alternative definitions

EO1 = p1/C and EO2 = log p

C
.

An interesting question arises: Which of these definitions describes computational efficiency
in the best way in practice when iterative methods are implemented on digital computers?
This will be clarified in what follows.

To solve nonlinear equations, assuming that the tested equation has a solution t∗ con-
tained in an interval (n-cube or n-ball in general) of unit diameter. Starting with an initial
approximation t0 to t∗, a stopping criterion is given by

||tk − t∗|| ≤ τ = 10−d ,

where k is the iteration index, τ is the required accuracy, and d is the number of significant
decimal digits of the approximation tk . Assume that ||t0 − t∗|| ≈ 10−1 and let p be the order
of convergence of the applied iterative method. Then the (theoretical) number of iterative
steps, necessary to reach the accuracy τ , can be calculated approximately from the relation
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10−d = 10−pk as k ≈ log d/ log p. Taking into account that the computational efficiency
is proportional to the reciprocal value of the total computational cost kC of the completed
iterative process consisting of k iterative steps, one gets the estimation of computer efficiency,

E = 1

kC
= 1

log d

log p

C
. (28)

For the function F(t) = ( f1(t), f2(t), . . . , fm(t))T, where t = (t1, t2, . . . , tm)T, the com-
putational cost C is computed as

C(μ0, μ1,m, l) = P0(m)μ0 + P1(m)μ1 + P(m, l), (29)

where P0(m) represents the number of evaluations of scalar functions used in the evaluation
of F , P1(m) is the number of evaluations of scalar functions of F ′, i.e. ∂ fi

∂t j
, 1 ≤ i, j ≤ m

and P(m, l) represents the number of products or quotients needed per iteration. To express
the value of C(μ0, μ1,m, l) in terms of products, the ratios μ0 > 0 and μ1 > 0 between
products and evaluations and a ratio l ≥ 1 between products and quotients are required.

It is clear form the abovediscussion that estimating the computational efficiencyof iterative
methods for some fixed accuracy, it is sufficient to compare the values of log p/C . Thismeans
that the second Ostrowski’s formula EO2 = log p/C is preferable in the sense of the best
fitting a real CPU time. Let us note that this formula was used in many manuscripts and
books, see, e.g., Brent (1973) and McNamee (2007).

We shall make use of the Definition (28) for assessing the computational efficiency of
presented methods. To do this we must consider all possible factors which contribute to the
total cost of computation. For example, to compute F in any iterative method we need to
calculate m scalar functions. The number of scalar evaluations is m2 for any new derivative
F ′. To compute an inverse linear operator we solve a linear system, where we have m(m −
1)(2m − 1)/6 products and m(m − 1)/2 quotients in the LU decomposition and m(m − 1)
products and m quotients in the resolution of two triangular linear systems. We must add m2

products for multiplication of a matrix with a vector or of a matrix by a scalar andm products
for multiplication of a vector by a scalar.

To demonstrate the computational efficiency we consider the third, fifth- and seventh-
order methods of the family (23) and compare the efficiency with existing third, fifth- and
seventh-order methods. For example, third-order method M (3)

1 is compared with third-order
methods by Homeier (2004), Cordero and Torregrosa (2007), Noor and Waseem (2009) and
Xiao and Yin (2017); fifth-order method M (5)

1 with fifth-order methods by Cordero et al.

(2010, 2012), Sharma and Gupta (2014) and Xiao and Yin (2018); and seventh-order M (7)
1

with seventh-order method by Xiao and Yin (2015). In addition, the new methods are also
compared with each other. The considered existing methods are expressed as follows.

Third-order Homeier method (Homeier 2004):

yk = tk − 1

2
F′(tk)−1F(tk),

tk+1 = M (3)
2 (tk, yk) = tk − F′(yk)−1F(tk).

Third-order methods by (Cordero and Torregrosa 2007):

yk = tk − F′(tk)−1F(tk),

tk+1 = M (3)
3 (tk, yk) = tk − 6

[
F′(tk) + 4F′

(
tk + yk

2

)
+ F′(yk)

]−1

F(tk)
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and

yk = tk − F′(tk)−1F(tk),

tk+1 = M (3)
4 (tk , yk) = tk − 3

[
2F′

(
3tk + yk

4

)
− F′

(
tk + yk

2

)
+ 2F′

(
tk + 3yk

4

)]−1

F(tk).

Third-order Noor–Waseem method (Noor and Waseem 2009):

yk = tk − F′(tk)−1F(tk),

tk+1 = M (3)
5 (tk, yk) = tk − 4

[
3F′

(
2tk + yk

3

)
+ F′(yk)

]−1

F(tk).

Third-order Xiao–Yin method (Xiao and Yin 2017):

yk = tk − F′(tk)−1F(tk),

tk+1 = M (3)
6 (tk, yk) = tk − 2

3

((
3F′(yk) − F′(tk)

)−1 + F′(tk)−1)F(tk).

Fifth-order methods by (Cordero et al. 2010, 2012):

yk = tk − 2

3
F′(tk)−1F(tk),

zk = tk − 1

2

(
3F′(yk) − F′(tk)

)−1(3F′(yk) + F′(tk)
)
F′(tk)−1F(tk),

tk+1 = M (5)
2 (tk, yk, zk) = zk − (

αF′(yk) + βF′(tk)
)−1F(zk)

and

yk = tk − F′(tk)−1F(tk),

zk = tk − 2
(
F′(yk) + F′(tk)

)−1F(tk),

tk+1 = M (5)
3 (tk, yk, zk) = zk − F′(yk)−1F(zk),

where α = β = 0.5.
Fifth-order Sharma–Gupta method (Sharma and Gupta 2014):

yk = tk − 1

2
F′(tk)−1F(tk),

zk = tk − F′(yk)−1F(tk),

tk+1 = M (5)
4 (tk, yk, zk) = zk − (

2F′(yk)−1 − F′(tk)−1)F(zk).

Fifth-order Xiao–Yin method (Xiao and Yin 2018):

yk = tk − 2

3
F′(tk)−1F(tk),

zk = tk − 1

4

(
3F′(yk)−1 + F′(tk)−1)F(tk),

tk+1 = M (5)
5 (tk, yk, zk) = zk − 1

2

(
3 F′(yk)−1 − F′(tk)−1)F(zk).
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Seventh-order Xiao–Yin method (Xiao and Yin 2015):

yk = tk − 1

2
F′(tk)−1F(tk),

zk = tk − F′(yk)−1F(tk),

xk = zk − (
2F′(yk)−1 − F′(tk)−1)F(zk),

tk+1 = M (7)
2 (tk, yk, zk, xk) = xk − (

2F′(yk)−1 − F′(tk)−1)F(xk).

Denoting the efficiency indices of the methods M (p)
i (p = 3, 5, 7 and i = 1, 2, 3, 4, 5)

by E(p)
i and computational costs by C (p)

i . Then taking into account above considerations, we
obtain

C (3)
1 = mμ0 + 2m2μ1 + m

6
(2m2 + 15m + 7 + 3l(3 + m)) and E(3)

1 = 1

D

log 3

C (3)
1

,

C (3)
2 = mμ0 + 2m2μ1 + m

3
(2m2 + 3m − 2 + 3l(1 + m)) and E(3)

2 = 1

D

log 3

C (3)
2

,

C (3)
3 = mμ0 + 3m2μ1 + m

3
(2m2 + 6m + 1 + 3l(1 + m)) and E(3)

3 = 1

D

log 3

C (3)
3

,

C (3)
4 = mμ0 + 4m2μ1 + m

3
(2m2 + 9m + 13 + 3l(1 + m)) and E(3)

4 = 1

D

log 3

C (3)
4

,

C (3)
5 = mμ0 + 3m2μ1 + m

3
(2m2 + 6m + 4 + 3l(1 + m)) and E(3)

5 = 1

D

log 3

C (3)
5

,

C (3)
6 = mμ0 + 2m2μ1 + m

3
(2m2 + 6m − 2 + 3l(1 + m)) and E(3)

6 = 1

D

log 3

C (3)
6

,

C (5)
1 = 2mμ0 + 2m2μ1 + m

6
(2m2 + 33m + 7 + 3l(7 + m)) and E(5)

1 = 1

D

log 5

C (5)
1

,

C (5)
2 = 2mμ0 + 2m2μ1 + m

2
(2m2 + 7m + 1 + 3l(1 + m)) and E(5)

2 = 1

D

log 5

C (5)
2

,

C (5)
3 = 2mμ0 + 2m2μ1 + m

2
(2m2 + 3m − 3 + 3l(1 + m)) and E(5)

3 = 1

D

log 5

C (5)
3

,

C (5)
4 = 2mμ0 + 2m2μ1 + m

3
(2m2 + 9m − 5 + 3l(3 + m)) and E(5)

4 = 1

D

log 5

C (5)
4

,

C (5)
5 = 2mμ0 + 2m2μ1 + m

3
(2m2 + 9m + 1 + 3l(3 + m)) and E(5)

5 = 1

D

log 5

C (5)
5

,

C (7)
1 = 3mμ0 + 2m2μ1 + m

6
(2m2 + 51m + 7 + 3l(11 + m)) and E(7)

1 = 1

D

log 5

C (7)
1

,

C (7)
2 = 3mμ0 + 2m2μ1 + m

3
(2m2 + 15m − 8 + 3l(5 + m)) and E(7)

2 = 1

D

log 5

C (7)
2

,

wherein D = log d .
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5.1 Comparison between efficiencies

To compare the efficiencies of iterative methods, say M (p)
i against M (q)

j , we consider the
ratio

Rp,q
i, j = E(p)

i

E(q)
j

= C (q)
j log p

C (p)
i log q

.

It is clear that if Rp,q
i, j > 1, the iterative method M (p)

i is more efficient than M (q)
j . Mathemat-

ically this fact will be denoted by M (p)
i � M (q)

j . Taking into account that the border between

two computational efficiencies is given by Rp,q
i, j = 1, this boundary will be given by the

equation μ0 written as a function of μ1, m and l; (μ0, μ1) ∈ (0,+∞) × (0,+∞), m is a
positive integer ≥ 2 and l ≥ 1. In the sequel, we consider the comparison of computational
efficiencies of the methods as expressed above.
M (3)

1 versus M (3)
2 case:

In this case, the ratio

R3,3
1,2 = mμ0 + 2m2μ1 + m

3 (2m2 + 3m − 2 + 3l(1 + m))

mμ0 + 2m2μ1 + m
6 (2m2 + 15m + 7 + 3l(3 + m))

> 1,

for m ≥ 5, which implies that E3
1 > E3

2 and hence M3
1 � M3

2 for all m ≥ 5 and l ≥ 1.

M (3)
1 versus M (3)

3 case:
In this case, the ratio

R3,3
1,3 = mμ0 + 3m2μ1 + m

3 (2m2 + 6m + 1 + 3l(1 + m))

mμ0 + 2m2μ1 + m
6 (2m2 + 15m + 7 + 3l(3 + m))

> 1,

for m ≥ 2, which implies that E3
1 > E3

3 and hence M3
1 � M3

3 for all m ≥ 2 and l ≥ 1.

M (3)
1 versus M (3)

4 case:
For this case, the ratio

R3,3
1,4 = mμ0 + 4m2μ1 + m

3 (2m2 + 9m + 13 + 3l(1 + m))

mμ0 + 2m2μ1 + m
6 (2m2 + 15m + 7 + 3l(3 + m))

> 1.

It is easy to prove that R3,3
1,4 > 1 form ≥ 1.Thus, we conclude that E3

1 > E3
4 and consequently

M3
1 � M3

4 for all m ≥ 2 and l ≥ 1.

M (3)
1 versus M (3)

5 case:
For this case, the ratio

R3,3
1,5 = mμ0 + 3m2μ1 + m

3 (2m2 + 6m + 4 + 3l(1 + m))

mμ0 + 2m2μ1 + m
6 (2m2 + 15m + 7 + 3l(3 + m))

> 1.

We have that R3,3
1,5 > 1 for m ≥ 1, which shows E3

1 > E3
5 and consequently M3

1 � M3
5 for all

m ≥ 2 and l ≥ 1.
M (3)

1 versus M (3)
6 case:

In this case, the ratio

R3,3
1,6 = mμ0 + 2m2μ1 + m

3 (2m2 + 6m − 2 + 3l(1 + m))

mμ0 + 2m2μ1 + m
6 (2m2 + 15m + 7 + 3l(3 + m))

> 1,
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for m ≥ 3, which implies that E3
1 > E3

6 for all m ≥ 3 and l ≥ 1, that is M3
1 � M3

6 .

M (5)
1 versus M (5)

2 case:
In this case, the ratio

R5,5
1,2 = 2mμ0 + 2m2μ1 + m

2 (2m2 + 7m + 1 + 3l(1 + m))

2mμ0 + 2m2μ1 + m
6 (2m2 + 33m + 7 + 3l(7 + m))

> 1,

for m ≥ 3, which implies that E5
1 > E5

2 for all m ≥ 3 and l ≥ 1. Therefore M5
1 � M5

2 .

M (5)
1 versus M (5)

3 case:
In this case, the ratio

R5,5
1,3 = 2mμ0 + 2m2μ1 + m

2 (2m2 + 3m − 3 + 3l(1 + m))

2mμ0 + 2m2μ1 + m
6 (2m2 + 33m + 7 + 3l(7 + m))

> 1,

for m ≥ 6, which implies that E5
1 > E5

3 and M5
1 � M5

3 for all m ≥ 6 and l ≥ 1.

M (5)
1 versus M (5)

4 case:
In this case, the ratio

R5,5
1,4 = 2mμ0 + 2m2μ1 + m

3 (2m2 + 9m − 5 + 3l(3 + m))

2mμ0 + 2m2μ1 + m
6 (2m2 + 33m + 7 + 3l(7 + m))

> 1,

for m ≥ 8, which implies that E5
1 > E5

4 and M5
1 � M5

4 for all m ≥ 8 and l ≥ 1.

M (5)
1 versus M (5)

5 case:
In this case, the ratio

R5,5
1,5 = 2mμ0 + 2m2μ1 + m

3 (2m2 + 9m + 1 + 3l(3 + m))

2mμ0 + 2m2μ1 + m
6 (2m2 + 33m + 7 + 3l(7 + m))

> 1,

for m ≥ 7, which implies that E5
1 > E5

5 and M5
1 � M5

5 for all m ≥ 7 and l ≥ 1.

M (7)
1 versus M (7)

2 case:
In this case, the ratio

R7,7
1,2 = 3mμ0 + 2m2μ1 + m

3 (2m2 + 15m − 8 + 3l(5 + m))

3mμ0 + 2m2μ1 + m
6 (2m2 + 51m + 7 + 3l(11 + m))

> 1,

for m ≥ 11, which implies that E7
1 > E7

2 and M7
1 � M7

2 for all m ≥ 11 and l ≥ 1.

M (3)
1 versus M (5)

1 case:

For this case, it is judicious to consider the boundary R3,5
1,1 = 1, which is given by

μ0 = −(14 + 18m + m2)r + (8 + 9m + m2)s + 6m(s − r)μ1

6r − 3s
,

where r = log 3 and s = log 5. The comparison of efficiencies E3
1 and E5

1 is shown in the
(μ1, μ0)-plane by drawing some particular boundaries corresponding tom = 2, 5, 10 and 20
taking l = 1, where E3

1 > E5
1 (that is M3

1 � M5
1 ) on the left (above) and E5

1 > E3
1 (that is,

M5
1 � M3

1 ) on the right (below) of each line (see Fig. 1).

M (3)
1 versus M (7)

1 case:

Like the previous case we consider the boundary R3,7
1,1 = 1, which yields

μ0 = −20r − 27mr − m2r + 8t + 9mt + m2t − 6mrμ1 + 6mtμ1

3(3r − t)
,
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Fig. 1 Boundary lines in (μ1, μ0) - plane for M
3
1 versus M5

1

Fig. 2 Boundary lines in (μ1, μ0) - plane for M
3
1 versus M7

1

where r = log 3 and t = log 7. To compare the efficiencies E3
1 and E7

1 in the (μ1, μ0)-plane,
we draw some particular boundaries corresponding to m = 2, 5, 10 and 20 taking l = 1.
These boundaries are shown in Fig. 2, wherein E3

1 > E7
1 (that is M

3
1 �M7

1 ) on the left (above)
and E7

1 > E3
1 (that is M7

1 � M3
1 ) on the right (below) of each line.

M (5)
1 versus M (7)

1 case:

The boundary R5,7
1,1 = 1 is given by

μ0 = −20s − 27ms − m2s + 14t + 18mt + m2t − 6msμ1 + 6mtμ1

3(3s − 2t)
,

where s = log 5 and t = log 7. As before we draw boundary lines in (μ1, μ0)-plane corre-
sponding to casesm = 2, 5, 10 and 20 taking l = 1. Boundaries are shown in Fig. 3, wherein
E5
1 > E7

1 (that is M5
1 � M7

1 ) on the left (above) and E7
1 > E5

1 (that is M7
1 � M5

1 ) on the right
(below) of each line.

We summarize the preceding results in following theorem:
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Fig. 3 Boundary lines in (μ1, μ0) - plane for M
5
1 versus M7

1

Theorem 4 (a) For all μ0, μ1 > 0 and l ≥ 1 we have that:

(i)E3
1 > E3

2 ⇐⇒ M3
1 � M3

2 ∀ m ≥ 5.

(ii) {E3
1 > E3

3 , E3
1 > E3

4 , E3
1 > E3

5 } ⇐⇒ {M3
1 � M3

3 , M3
1 � M3

4 , M3
1 � M3

5 } ∀ m ≥ 2.

(iii)E3
1 > E3

6 ⇐⇒ M3
1 � M3

6 ∀ m ≥ 3.

(iv)E5
1 > E5

2 ⇐⇒ M5
1 � M5

2 ∀ m ≥ 3 and E5
1 > E5

3 ⇐⇒ M5
1 � M5

3 ∀ m ≥ 6.

(v)E5
1 > E5

4 ⇐⇒ M5
1 � M5

4 ∀ m ≥ 8 and E5
1 > E5

5 ⇐⇒ M5
1 � M5

5 ∀ m ≥ 7.

(vi)E7
1 > E7

2 ⇐⇒ M7
1 � M7

2 ∀ m ≥ 11.

Otherwise, the comparison depends on μ0, μ1 and l.
(b) For all m ≥ 2 we have:

(i)E3
1 > E5

1 ⇐⇒ M3
1 � M5

1 ∀ μ0 > β1 and E5
1 > E3

1 ⇐⇒ M5
1 � M3

1 ∀ μ0 < β1,

(ii)E3
1 > E7

1 ⇐⇒ M3
1 � M7

1 ∀ μ0 > β2 and E7
1 > E3

1 ⇐⇒ M7
1 � M3

1 ∀ μ0 < β2,

(iii)E5
1 > E7

1 ⇐⇒ M5
1 � M7

1 ∀ μ0 > β3 and E7
1 > E5

1 ⇐⇒ M7
1 � M5

1 ∀ μ0 < β3,

where β1 = −(14+18m+m2)r+(8+9m+m2)s+6m(s−r)μ1
3(2r−s) ,

β2 = −(20+27m+m2)r+(8+9m+m2)t+6m(t−r)μ1
3(3r−t) and

β3 = −(20+27m+m2)s+(14+18m+m2)t+6m(t−s)μ1
3(3s−2t) .

6 Numerical results

To illustrate the convergence behavior and computational efficiency of the proposed methods
M (3)

1 , M (5)
1 and M (7)

1 , we consider some numerical examples and compare the performance

with M (3)
2 , M (3)

3 , M (3)
4 , M (3)

5 , M (3)
6 , M (5)

2 , M (5)
3 , M (5)

4 , M (5)
5 and M (7)

2 . All computations
are performed in the programming package Mathematica (Wolfram 2003) in a PC with
Intel(R) Pentium(R) CPUB960@ 2.20 GHz, 2.20 GHz (32-bit Operating System)Microsoft
Windows 7 Professional and 4 GB RAM. For every method, we analyze the number of
iterations (k) needed to converge to the solution such that ‖tk+1 − tk‖ + ‖F(tk)‖ < 10−100.
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Table 1 CPU time and estimation of computational cost of the elementary functions, where x = √
3− 1 and

y = √
5

Functions x ∗ y x/y
√
x ex ln(x) sin(x) cos(x) cos−1(x) tan−1(x)

CPU-time 0.0733 0.1793 0.0718 3.2448 3.0514 3.4039 3.7284 6.4943 6.5193

Cost 1 2.4461 0.9795 44.2674 41.6289 46.4379 50.8649 88.5989 88.9400

To verify the theoretical order of convergence (p), we calculate the computational order of
convergence COC by using the formula given in Definition 2.3. In numerical results, we also
include CPU time (e-time) utilized in the execution of program which is computed by the
Mathematica command TimeUsed[ ]. To calculate E p

i for all methods in numerical examples
we take D = 10−5 and A(±m) denotes A × 10±m .

The results of theorem 4 are also verified through numerical experiments. To do this, we
need an estimation of the factorsμ0 andμ1. To claim this estimation,we express the cost of the
evaluation of the elementary functions in terms of products, which depends on the computer,
the software and the arithmetics used (Fousse et al. 2007). In Table 1, an estimation of the
cost of the elementary functions in product unit is shown, where the running time of the one
product is measured in milliseconds (ms). It is evident from Table 1 that the computational
cost of the quotient with respect to product is, l ≈ 2.4.

For numerical tests we consider the following examples:

Example 1 Consider a system of 2 equations (Sharma and Arora 2016a):

e−t21 + 8 t1 sin t2 = 0,

t1 + t2 − 1 = 0.

With the initial approximations t0 = { 4
10 ,− 4

10 }T, we obtain the solution t∗ = {1.0407 . . . ,

−0.0407 . . .}T. The concrete values of parameters (m, μ0, μ1), obtained with the help of
estimates of elementary functions displayed in Table 1, are (2, 46.8527, 36.6426). These
values are used to calculate computational costs and efficiency indices of the methods shown
in previous section.

Example 2 Consider a system of 3 equations (Sharma and Arora 2016c):

10 t1 + sin(t1 + t2) − 1 = 0,

8 t2 − cos2(t3 − t2) − 1 = 0

12 t3 + sin(t3) − 1 = 0.

The initial approximation t0 = {0, 1, 0}T is chosen to find the solution

t∗ = {0.0690 . . . , 0.2464 . . . , 0.0769 . . .}T.

Corresponding calculated values of the parameters (m, μ0, μ1) are (3, 49.2469, 22.3370).

Example 3 Let us consider the Van der Pol equation (see Burden and Faires 2001), which is
defined as follows:

t ′′ − μ(t2 − 1)t ′ + t = 0, μ > 0, (30)
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which governs the flow of current in a vacuum tube, with the boundary conditions t(0) = 0,
t(2) = 1. Further, we consider the partition of the given interval [0, 2], which is given by

y0 = 0 < y1 < y2 < · · · < yn−1 < yn, where yi = y0 + ih, h = 2

n
.

Moreover, we assume that

t0 = t(y0) = 0, t1 = t(y1), . . . , tn−1 = t(yn−1), tn = t(yn) = 1.

If we discretize the problem (30) using the second-order divided difference for the first and
second derivatives, which are given by

t ′k = tk+1 − tk−1

2h
, t ′′k = tk−1 − 2tk + tk+1

h2
, (k = 1, 2, 3, . . . , n − 1),

then we obtain a system of (n − 1) nonlinear equations

2h2tk − hμ(t2k − 1)(tk+1 − tk−1) + 2(tk−1 + tk+1 − 2tk) = 0, (k = 1, 2, 3, . . . , n − 1).

Let us considerμ = 1
2 and initial approximation t0 = ( 12 ,

1
2 , . . . ,

1
2 )

T. In particular, we solve
this problem for n = 6 so we obtain a system of 5 nonlinear equations. The solution of this
problem is

t∗ = {0.4393 . . . , 0.7775 . . . , 1.0105 . . . , 1.1319 . . . , 1.1302 . . .}T

and parametric values are (m, μ0, μ1) = (5, 6.9784, 1.3157).

Example 4 Next, consider a system of 10 equations (Xiao and Yin 2016):

tan−1(ti ) + 1 − 2
10∑

j=1, j �=i

t2j , 1 ≤ i ≤ 10.

The solution t∗ = {0.2644 . . . , 0.2644 . . . ,
10· · ·, 0.2644 . . .}T is obtained by assuming the ini-

tial approximations t0 = { 7
10 ,

7
10

10· · ·, 7
10 }T. Computed values of the parameters (m, μ0, μ1)

are (10, 90.9400, 0.4446).

Example 5 The boundary value problem (see Ortega and Rheinboldt 1970):

t ′′ + a2(t ′)2 + 1 = 0, t(0) = 0, t(1) = 0

is studied. Consider the following partitioning of the interval [0,1]:

y0 = 0 < y1 < y2 < · · · < yn−1 < yn = 1, y j+1 = y j + h, h = 1/n.

Let us define t0 = t(y0) = 0, t1 = t(y1), . . . , tn−1 = t(yn−1), tn = t(yn) = 1. If we
discretize the problem by using the numerical formulae for first and second derivatives

t ′k = tk+1 − tk−1

2h
, t ′′k = tk−1 − 2tk + tk+1

h2
, (k = 1, 2, 3, . . . , n − 1),

we obtain a system of n − 1 nonlinear equations in n − 1 variables:

tk−1 − 2tk + tk+1 + a2

4
(tk+1 − tk−1)

2 + h2 = 0, (k = 1, 2, 3, . . . , n − 1).
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In particular,we solve this problem forn = 51 so that k = 50 by selecting t0 = (2, 2,
50· · ·, 2)T

as the initial value and a = 2. Solution of this problem is

t∗ =
{
0.9584 . . . , 0.9719 . . . , 0.9843 . . . , 0.9958 . . . , 1.0063 . . . ,

1.0161 . . . , 1.0252 . . . , 1.0335 . . . ,

1.0412 . . . , 1.0483 . . . , 1.0549 . . . , 1.0609 . . . , 1.0664 . . . , 1.0714 . . . ,

1.0759 . . . , 1.0799 . . . , 1.0835 . . . ,

1.0867 . . . , 1.0895 . . . , 1.0918 . . . , 1.0938 . . . , 1.0953 . . . , 1.0965 . . . ,

1.0972 . . . , 1.0976 . . . , 1.0976 . . . ,

1.0972 . . . , 1.0965 . . . , 1.0953 . . . , 1.0938 . . . , 1.0918 . . . , 1.0895 . . . ,

1.0867 . . . , 1.0835 . . . , 1.0799 . . . ,

1.0759 . . . , 1.0714 . . . , 1.0664 . . . , 1.0609 . . . , 1.0549 . . . , 1.0483 . . . ,

1.0412 . . . , 1.0335 . . . , 1.0252 . . . ,

1.0161 . . . , 1.0063 . . . , 0.9958 . . . , 0.9843 . . . , 0.9719 . . . , 0.9584 . . .

}T

and (m, μ0, μ1) = (50, 3, 0.0392).

Example 6 Consider the following Burger’s equation (see Sauer 2012):

∂2 f

∂u2
+ f

∂ f

∂u
− ∂ f

∂v
+ g(u, v) = 0, (u, v) ∈ [0, 1]2,

where g(u, v) = −10e−2v[ev(2− u + u2) + 10u(1− 3u + 2u2)] and function f = f (u, v)

satisfies the boundary conditions

f (0, v) = f (1, v) = 0, f (u, 0) = 10u(u − 1) and f (u, 1) = 10u(u − 1)/e.

Assuming the following partitioning of the domain [0, 1]2 :
0 = u0 < u1 < u2 < · · · < un−1 < un = 1, uk+1 = uk + h,

0 = v0 < v1 < v2 < · · · < vn−1 < vn = 1, vl+1 = vl + h, h = 1/n.

Let us define fk,l = f (uk, vl) and gk,l = g(uk, vl) for k, l = 0, 1, 2, . . . , n. Then
the boundary conditions will be f0,l = f (u0, vl) = 0, fn,l = f (un, vl) = 0, fk,0 =
f (uk, v0) = 10uk(uk − 1) and fk,n = f (uk, vn) = 10uk(uk − 1)/e. If we discretize
Burger’s equation by using the numerical formulae for the partial derivatives, we obtain the
following system of (n − 1)2 nonlinear equations in (n − 1)2 variables:

fi−1, j (2 − h fi, j ) + h( fi, j−1 − fi, j+1) − fi, j (4 − h fi+1, j ) + 2 fi+1, j + 2h2gi, j = 0,(31)

where i, j = 1, 2, . . . , n − 1. In particular, we solve the nonlinear system (31) for n = 11
so that m = 100 by selecting fi, j = − 5

2 (for i, j = 1, 2, . . . , 10) as the initial value towards
the required solution t∗ given by

{
− 0.7546 . . . ,−0.6892 . . . ,−0.6290 . . . ,−0.5750 . . . ,−0.5235 . . . ,

− 0.4817 . . . ,−0.4306 . . . , −0.4213 . . . ,

− 0.2583 . . . ,−0.3068 . . . , −1.3583 . . . ,−1.2405 . . . ,−1.1322 . . . ,
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− 1.0351 . . . ,−0.9422 . . . , −0.8675 . . . ,

− 0.7741 . . . ,−0.7598 . . . , −0.4358 . . . ,−0.5505 . . . ,−1.8111 . . . ,

− 1.6541 . . . ,−1.5096 . . . ,−1.3803 . . . ,

− 1.2559 . . . ,−1.1573 . . . ,−1.0309 . . . ,−1.0110 . . . ,−0.6951 . . . ,

− 0.7356 . . . ,−2.1130 . . . , −1.9298 . . . ,

− 1.7611 . . . ,−1.6106 . . . ,−1.4649 . . . ,−1.3511 . . . ,−1.2014 . . . ,

− 1.1768 . . . ,−0.8755 . . . ,−0.8605 . . . ,

− 2.2639 . . . ,−2.0678 . . . , −1.8869 . . . ,−1.7258 . . . ,−1.5690 . . . ,

− 1.4485 . . . ,−1.2860 . . . ,−1.2582 . . . ,

− 0.9783 . . . ,−0.9244 . . . , −2.2639 . . . ,−2.0678 . . . ,−1.8868 . . . ,

− 1.7261 . . . ,−1.5686 . . . ,−1.4494 . . . ,

− 1.2850 . . . , −1.2558 . . . ,−1.0040 . . . ,−0.9268 . . . ,−2.1129 . . . ,

− 1.9300 . . . , −1.7609 . . . ,−1.6112 . . . ,

− 1.4637 . . . ,−1.3534 . . . ,−1.1987 . . . , −1.1700 . . . ,−0.9534 . . . ,

− 0.8672 . . . ,−1.8111 . . . , −1.6544 . . . ,

− 1.5093 . . . ,−1.3812 . . . ,−1.2544 . . . , −1.1604 . . . ,−1.0272 . . . ,

− 1.0010 . . . , −0.8270 . . . ,−0.7454 . . . ,

− 1.3583 . . . ,−1.2408 . . . ,−1.1320 . . . , −1.0359 . . . ,−0.9407 . . . ,

− 0.8704 . . . ,−0.7706 . . . , −0.7492 . . . ,

− 0.6255 . . . ,−0.5609 . . . , −0.7546 . . . ,−0.6893 . . . ,−0.6289 . . . ,

− 0.5755 . . . ,−0.5227 . . . , −0.4834 . . . ,

− 0.4285 . . . ,−0.4152 . . . , −0.3496 . . . , −0.3128 . . .

}T

.

The approximate solution found is also plotted in Fig. 4. The concrete values of parameters
for this system are (m, μ0, μ1) = (100, 10.0503, 0.0492).

Example 7 Next, the methods are applied to solve the Poisson equation (Cordero et al. 2015)

uxx + uyy = u2, (x, y) ∈ [0, 1] × [0, 1], (32)

with boundary conditions

u(x, 0) = 2x2 − x + 1, u(x, 1) = 2,

u(0, y) = 2y2 − y + 1, u(1, y) = 2. (33)

The solution can be found using finite difference discretization. Let u = u(x, y) be the
exact solution of this Poisson equation. Let wi, j = u(xi , y j ) be its approximate solution
at the grid points of the mesh. Let M and N be the number of steps in x and y directions,
and h and k be the respective step size (h = 1

M , k = 1
N ). If we discretize the problem

by using the central divided differences, i.e., uxx (xi , y j ) = (wi+1, j − 2wi, j + wi−1, j )/h2

and uyy(xi , y j ) = (wi, j+1 − 2wi, j + wi, j−1)/k2, we get the following system of nonlinear
equations:
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Fig. 4 Approximate solution of Burger equation

wi+1, j − 4wi, j + wi−1, j+wi, j+1 + wi, j−1 − h2w2
i, j = 0,

i = 1, . . . , M − 1, j = 1, . . . , N − 1. (34)

We consider M = 15 and N = 15 and thereby solve the resulting nonlinear system of
196 equations in 196 unknowns. The approximate solution

{
0.9306 . . . , 0.9209 . . . , 0.9193 . . . , 0.9289 . . . , 0.9513 . . . , 0.9873 . . . ,

1.0377 . . . , 1.1030 . . . , 1.1834 . . . ,

1.2793 . . . , 1.3909 . . . , 1.5185 . . . , 1.6623 . . . , 1.8226 . . . , 0.9209 . . . , 0.9351 . . . ,

0.9513 . . . , 0.9734 . . . ,

1.0039 . . . , 1.0446 . . . , 1.0965 . . . , 1.1606 . . . , 1.2375 . . . ,

1.3279 . . . , 1.4322 . . . , 1.5510 . . . , 1.6847 . . . ,

1.8341 . . . , 0.9193 . . . , 0.9513 . . . , 0.9815 . . . , 1.0137 . . . ,

1.0510 . . . , 1.0954 . . . , 1.1484 . . . , 1.2113 . . . ,

1.2851 . . . , 1.3704 . . . , 1.4682 . . . , 1.5791 . . . , 1.7041 . . . ,

1.8439 . . . , 0.9289 . . . , 0.9734 . . . , 1.0137 . . . ,

1.0535 . . . , 1.0958 . . . , 1.1429 . . . , 1.1964 . . . , 1.2578 . . . ,

1.3283 . . . , 1.4089 . . . , 1.5006 . . . , 1.6044 . . . ,

1.7214 . . . , 1.8528 . . . , 0.9513 . . . , 1.0039 . . . , 1.0510 . . . ,

1.0958 . . . , 1.1413 . . . , 1.1897 . . . , 1.2428 . . . ,

1.3022 . . . , 1.3692 . . . , 1.4451 . . . , 1.5310 . . . , 1.6280 . . . ,

1.7375 . . . , 1.8609 . . . , 0.9873 . . . , 1.0446 . . . ,

1.0954 . . . , 1.1429 . . . , 1.1897 . . . , 1.2380 . . . , 1.2897 . . . ,
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1.3465 . . . , 1.4097 . . . , 1.4806 . . . , 1.5606 . . . ,

1.6509 . . . , 1.7531 . . . , 1.8688 . . . , 1.0377 . . . , 1.0965 . . . ,

1.1484 . . . , 1.1964 . . . , 1.2428 . . . , 1.2897 . . . ,

1.3391 . . . , 1.3924 . . . , 1.4512 . . . , 1.5168 . . . , 1.5906 . . . ,

1.6741 . . . , 1.7689 . . . , 1.8768 . . . , 1.1030 . . . ,

1.1606 . . . , 1.2113 . . . , 1.2578 . . . , 1.3022 . . . , 1.3465 . . . ,

1.3924 . . . , 1.4415 . . . , 1.4952 . . . , 1.5550 . . . ,

1.6222 . . . , 1.6984 . . . , 1.7854 . . . , 1.8852 . . . , 1.1834 . . . ,

1.2375 . . . , 1.2851 . . . , 1.3283 . . . , 1.3692 . . . ,

1.4097 . . . , 1.4512 . . . , 1.4952 . . . , 1.5432 . . . , 1.5965 . . . ,

1.6565 . . . , 1.7248 . . . , 1.8034 . . . , 1.8943 . . . ,

1.2793 . . . , 1.3279 . . . , 1.3704 . . . , 1.4089 . . . , 1.4451 . . . ,

1.4806 . . . , 1.5167 . . . , 1.5550 . . . , 1.5965 . . . ,

1.6425 . . . , 1.6946 . . . , 1.7543 . . . , 1.8234 . . . , 1.9044 . . . ,

1.3909 . . . , 1.4322 . . . , 1.4682 . . . , 1.5006 . . . ,

1.5310 . . . , 1.5606 . . . , 1.5906 . . . , 1.6222 . . . , 1.6565 . . . ,

1.6946 . . . , 1.7379 . . . , 1.7879 . . . , 1.8465 . . . ,

1.9162 . . . , 1.5185 . . . , 1.5510 . . . , 1.5791 . . . , 1.6044 . . . ,

1.6280 . . . , 1.6509 . . . , 1.6741 . . . , 1.6984 . . . ,

1.7248 . . . , 1.7543 . . . , 1.7879 . . . , 1.8270 . . . , 1.8736 . . . ,

1.9301 . . . , 1.6623 . . . , 1.6847 . . . , 1.7041 . . . ,

1.7214 . . . , 1.7375 . . . , 1.7531 . . . , 1.7689 . . . , 1.7854 . . . ,

1.8034 . . . , 1.8234 . . . , 1.8465 . . . , 1.8736 . . . ,

1.9064 . . . , 1.9472 . . . , 1.8226 . . . , 1.8341 . . . , 1.8439 . . . ,

1.8528 . . . , 1.8609 . . . , 1.8688 . . . , 1.8768 . . . ,

1.8852 . . . , 1.8943 . . . , 1.9044 . . . , 1.9162 . . . , 1.9301 . . . , 1.9472 . . . , 1.9693 . . .

}T

is evaluated with the initial vectorwi, j = {2, 2, 196· · · ·, 2}T (i, j = 1, 2, . . . , 14). The approx-
imate solution found has also been displayed in Fig. 5. For this problem the concrete values
of parameters are (m, μ0, μ1) = (196, 3, 0.005102).

Example 8 Consider a system of 200 nonlinear equations (see Sharma and Arora 2016b)

200∑

j=1, j �=i

t j − e−ti = 0, 1 ≤ i ≤ 200,

with initial value t0 = ( 32 ,
3
2 ,

m· · ·, 3
2 )

T towards the required solution t∗ = (0.0050 . . . ,
200· · ·

, 0.0050 . . .)T. The concrete values of parameters are (m, μ0, μ1) = (200, 44.2674, 0.2213).

Example 9 Lastly, consider a system of 500 equations (see Sharma and Arora 2016b)
{
t2i ti+1 − 1 = 0, 1 ≤ i ≤ 499,
t2i t1 − 1 = 0, i = 500.
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Fig. 5 Approximate solution of Poisson equation

To obtain the required solution t∗ = {1, 1, 500· · · ·, 1}T of the system, the initial value

chosen is t0 = ( 1810 ,
18
10 ,

500· · · ·, 18
10 )

T. Computed values of the parameters (m, μ0, μ1) are
(500, 2, 0.006).

The numerical results of the performance of various methods, applied to solve the above
mentioned problems, are displayed in Tables 2 and 3. Here the values like A(±m) denote A×
10±m . The numerical results clearly indicate the stable convergence behavior of the methods.
Also observe that in each method the computational order of convergence overwhelmingly
supports the theoretical order of convergence. The elapsed CPU time (e-time in seconds) used
in the execution of program shows the efficient nature of proposed methods as compared to
other methods. In fact speaking of the efficient nature of an iterative method we mean that
the method with high efficiency uses less computing time than that of the method with low
efficiency. Similar numerical experimentations, carried out for a number of problems of
different type, confirmed the above conclusions to a large extent.

7 Conclusions

In the foregoing study, we have considered the problem of solving systems of nonlinear
equations and developed two- and three-step composite Newton–Jarratt iterative methods
of convergence order three and five, respectively. Furthermore, in quest of fast algorithms a
generalized q + 1-step scheme with increasing convergence order 2q + 1 is proposed and
analyzed. Novelty of the q + 1-step algorithm is that in each step order of convergence
is increased by an amount of two at the cost of only one additional function evaluation.
Moreover, evaluation of inverse operator remains the same throughout the iteration which
makes the algorithm more attractive and computationally efficient.

Computational efficiency of the methods is discussed in its general form. Then a compar-
ison of efficiencies of the new schemes with existing schemes is shown. It is observed that
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Table 2 Comparison of performance between third-order methods

Methods M(3)
1 M(3)

2 M(3)
3 M(3)

4 M(3)
5 M(3)

6

Ex. 1

k 5 5 5 5 5 6

COC 3.000 3.000 3.000 3.000 3.000 3.000

e-time 0.999 1.154 1.420 1.592 1.342 1.342

E(p)
i 2.655(2) 2.684(2) 1.955(2) 1.525(2) 1.949(2) 2.658(2)

Ex. 2

k 4 5 4 4 4 5

COC 3.000 3.000 3.000 3.000 3.000 3.000

e-time 1.514 2.028 2.090 2.512 2.043 1.950

E(p)
i 1.812(2) 1.820(2) 1.345(2) 1.058(2) 1.340(2) 1.793(2)

Ex. 3

k 5 5 5 5 5 5

COC 3.000 2.994 2.996 2.996 2.996 3.004

e-time 0.234 0.390 0.390 0.358 0.374 0.328

E(p)
i 4.247(2) 3.956(2) 3.226(2) 2.625(2) 3.179(2) 3.630(2)

Ex. 4

k 6 6 6 6 6 6

COC 3.000 3.000 3.000 3.000 3.000 3.000

e-time 5.257 7.098 7.192 7.145 7.114 7.082

E(p)
i 6.280(1) 5.432(1) 5.047(1) 4.653(1) 5.024(1) 5.176(1)

Ex. 5

k 6 6 6 6 6 6

COC 3.000 3.000 3.000 3.000 3.000 3.000

e-time 5.772 10.686 10.654 10.718 10.701 10.421

E(p)
i 2.133 1.191 1.157 1.124 1.157 1.159

Ex. 6

k 5 5 5 5 5 5

COC 3.005 3.002 3.002 3.002 3.002 3.004

e-time 22.183 32.745 33.072 36.067 32.604 32.012

E(p)
i 2.947(−1) 1.563(−1) 1.540(−1) 1.517(−1) 1.540(−1) 1.541(−1)

Ex. 7

k 4 4 4 4 4 4

COC 3.000 3.000 3.000 3.000 3.000 3.000

e-time 27.472 50.446 50.202 50.326 49.967 50.326

E(p)
i 4.140(−2) 2.133(−2) 2.117(−2) 2.101(−2) 2.117(−2) 2.117(−2)
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Table 2 continued

Methods M(3)
1 M(3)

2 M(3)
3 M(3)

4 M(3)
5 M(3)

6

Ex. 8

k 4 4 4 4 4 4

COC 3.000 3.000 3.000 3.000 3.000 3.000

e-time 594.11 1138.32 1143.36 1154.00 1142.13 1148.75

E(p)
i 3.865(−2) 1.999(−2) 1.981(−2) 1.964(−2) 1.981(−2) 1.984(−2)

Ex. 9

k 6 6 6 6 6 6

COC 3.000 3.000 3.000 3.000 3.000 3.000

e-time 41.718 73.929 77.563 77.673 75.287 75.847

E(p)
i 2.579(−3) 1.305(−3) 1.301(−3) 1.297(−3) 1.301(−3) 1.301(−3)

Table 3 Comparison of performance between fifth- and seventh-order methods

Methods M(5)
1 M(5)

2 M(5)
3 M(5)

4 M(5)
5 M(7)

1 M(7)
2

Ex. 1

k 4 4 4 4 4 4 4

COC 5.000 5.000 5.000 5.000 5.000 7.000 7.000

e-time 0.936 1.107 1.139 1.154 1.217 0.920 1.342

E(p)
i 3.042(2) 2.601(2) 3.136(2) 3.104(2) 3.080(2) 3.019(2) 3.099(2)

Ex. 2

k 3 3 3 4 3 3 3

COC 5.000 5.001 4.981 5.001 5.000 7.000 7.003

e-time 1.357 1.404 1.575 1.918 1.576 1.311 1.701

E(p)
i 2.023(2) 1.697(2) 2.072(2) 2.061(2) 2.046(2) 1.976(2) 2.031(2)

Ex. 3

k 3 3 3 3 3 3 3

COC 5.005 5.013 5.001 4.996 4.990 7.011 6.995

e-time 0.187 0.359 0.375 0.280 0.281 0.188 0.297

E(p)
i 4.100(2) 3.262(2) 4.038(2) 4.218(2) 4.110(2) 3.696(2) 4.008(2)

Ex. 4

k 4 4 4 4 4 4 4

COC 5.000 5.000 5.000 5.000 5.000 7.000 7.000

e-time 4.961 6.052 6.646 7.035 6.973 5.741 8.736

E(p)
i 5.353(1) 3.523(1) 4.680(1) 5.078(1) 5.046(1) 4.563(1) 4.507(1)
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Table 3 continued

Methods M(5)
1 M(5)

2 M(5)
3 M(5)

4 M(5)
5 M(7)

1 M(7)
2

Ex. 5

k 4 4 4 4 4 4 4

COC 5.000 5.000 5.000 5.000 5.000 7.000 7.000

e-time 4.352 10.093 10.577 7.800 7.753 3.791 6.599

E(p)
i 2.710 1.121 1.163 1.649 1.647 2.892 1.890

Ex. 6

k 3 3 3 3 3 3 3

COC 5.024 5.032 5.024 5.035 5.024 7.013 7.016

e-time 22.744 40.046 40.950 31.543 22.744 17.004 25.568

E(p)
i 3.981(−1) 1.497(−1) 1.527(−1) 2.222(−1) 2.222(−1) 4.465(−1) 2.610(−1)

Ex. 7

k 3 3 3 3 3 3 3

COC 5.000 5.000 5.000 5.000 5.000 7.000 7.000

e-time 24.929 59.920 59.733 43.353 43.227 27.362 45.460

E(p)
i 5.809(−2) 2.062(−2) 2.083(−2) 3.077(−2) 3.077(−2) 6.739(−2) 3.666(−2)

Ex. 8

k 3 3 3 3 3 3 3

COC 5.000 5.000 5.000 5.000 5.000 7.000 7.000

e-time 486.10 1365.21 1356.99 1034.63 921.34 484.68 934.38

E(p)
i 5.415(−2) 1.932(−2) 1.953(−2) 2.881(−2) 2.881(−2) 6.273(−2) 3.429(−2)

Ex. 9

k 4 4 4 4 4 4 4

COC 5.000 5.000 5.000 5.000 5.000 7.000 7.000

e-time 33.510 80.387 76.659 54.750 55.598 37.081 58.921

E(p)
i 3.713(−3) 1.269(−3) 1.274(−3) 1.900(−3) 1.900(−3) 4.412(−3) 2.284(−3)

the presented methods are more efficient than similar existing methods in general. Numerical
examples are presented and the performance is compared with existing methods. Theoreti-
cal order of convergence is verified in the examples by calculating computational order of
convergence. Comparison of the elapsed CPU time shows that, in general, the method with
large efficiency uses less computing time than the method with small efficiency. This shows
that the efficiency results are in agreement with the CPU time utilized in the execution of
program.
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