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Abstract
This work is devoted to finding the error estimates of the fictitious domain method for elliptic
problems defined on the simply connected domain. We embed the given domain into a larger
rectangular domain to use the uniform mesh and extend the variational form of the original
problem onto a rectangular domain with a modified H1 penalty approach. We address the
convergence of the new penalized problem for both continuous and discrete cases, and find
the error estimates in H1 and L2 norms with the order of 1/2 and 1, respectively. In addition,
numerical experiments are performed to guarantee the theoretical outcomes, and numerically,
we obtain the optimal order of convergence for the proposed method.

Keywords Finite-element method · Domain embedding method · Penalty method · Curved
boundary · Uniform mesh · Error estimates

Mathematics Subject Classification 65M85 · 65N15 · 76M10

1 Introduction

In recent years, fictitious domain methods have shown an enormous potential to solve partial
differential equations defined on complex domains due to the advantage of using a uniform
mesh on a larger rectangular domain. The ultimate goal of these methods is to obtain a
numerical solution by solving a problem on a rectangle by fast solvers using preconditioned
iterations; Del Pino et al. have given such solver in Del Pino and Pironneau (2003).

First, MA Hyman in Hyman (1952) proposed the idea of embedding a domain into a
rectangle to solve a problem by finite difference scheme. Later, many advances and practical
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applications of these methods came into the picture. Particularly, Peskin used the idea of
immersed boundary method to simulate flow pattern around heart valves, and these methods
came into the limelight (Peskin 2002). Recently, many applications of these methods are
found to solve complicated problems from science and engineering, such as in analyzing
biomedical devices, simulating blood flow through arteries, simulation of the flow due to
suspended particles in a fluid, swimming pattern of bacteria, eels, sperms, etc. (Mittal and
Iaccarino 2005; Peskin 2002). For time-dependent moving boundary value problems, these
methods are most suitable, since there is no need to meshing the given domain and imposing
the boundary conditions at each time step, which would be a very time-consuming and
laborious job. Only the uniform meshing of the larger rectangular domain at the initial time
step is adequate. In Liu (2002), Liu has introduced mesh-free methods, but these methods
have very high computational costs due to the complicated structure of basis functions, and
these methods still do not have mathematical support of error analysis.

Letω be a bounded and simply connected domain inR2 (orR3) having a smooth boundary
Γ . Let σ, c ∈ L∞(ω) and α ∈ L∞(∂ω) be smooth functions, such that σ1 ≥ σ(x) ≥ σ0 >

0, c1 ≥ c(x) ≥ c0 ≥ 0 a.e. in ω, and α1 ≥ α(x) ≥ α0 ≥ 0 a.e. on Γ . Consider the general
second-order elliptic boundary value problem, find u, such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−∇ · (σ∇u) + cu = f in ω

u = 0 on Γd ,
∂u
∂n = 0 on Γn,

σ ∂u
∂n + αu = 0 on Γr ,

(1.1)

where n is the outward pointing normal vector to Γ . Boundary Γ is partitioned into Γd , Γn

and Γr relating to the Dirichlet, Neumann, and Robin boundary condition applied to the
particular parts of the boundary Γ .

To use the idea of the fictitious domain method, Eq. 1.1 is extended to the rectangular
domain R, such that ω ⊂⊂ R, using suitable parameters depending on the boundary condi-
tions. Here, the fascinating fact is that one can implement any periodic boundary condition on
rectangle boundary ∂R (Glowinski et al. 1994). However, we use a homogeneous Dirichlet
boundary condition, since it reduces the degrees of freedom and its mathematical simplicity
for the error analysis. The domain Ω := R\ω is coined as a fictitious domain, and it is par-
titioned as Ω = Ωd ∪ Ωn ∪ Ωr , as shown in Fig. 1. In the fictitious domain formulation for
the Dirichlet part (Ωd ), the penalty parameter (ε−1), and for the Neumann and Robin parts
(Ωn and Ωr ), regularization parameter (ε) is used to take care of the boundary conditions
(Angot 2005; Glowinski et al. 1994; Zhang 2006, 2008; Zhou 2018; Zhou and Saito 2014).
To impose the Dirichlet boundary condition, Girault et al. Girault and Glowinski (1995),
Glowinski et al. Glowinski et al. (1994), Glowinski et al. (1997), Glowinski et al. (1999),
Glowinski et al. (2001), and Yin et al. Yin and Liandrat (2016) used a Lagrange multiplier
(saddle point method), but in this approach, the difficulty is to prove the inf-sup condition.
Moreover, we refer readers to Suito and Kawarada (2004), Zhou and Saito (2015) for an L2

penalty approach and to Burman and Hansbo (2014), Massing et al. (2014) for a Nitsche-
based approach. In Angot (2005), Angot has given the idea of a unified domain embedding
method to take care of all the boundary conditions together; we are modifying his approach to
achieve more precise computational results and theoretical simplicity to do the error analysis.
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Fig. 1 Unified domain embedding method

We write new unified fictitious domain formulation for Eq. 1.1 as
⎧
⎪⎨

⎪⎩

find uε ∈ H1
0 (R)such that

(∇uε,∇v)ω + ε−1(∇uε,∇v)Ωd + ε(∇uε,∇v)R + α(u, v)Γr = ( f̃ , v)R,

∀v ∈ H1
0 (R).

(1.2)

In the modified formulation (1.2), we use both the penalty parameter (ε−1) and regularization
parameter (ε) for the Dirichlet problems. Also, for the Neumann problems, there is no need
to take extra care, since it is already considered by the third term in the formulation (1.2).
For completely Neumann and Robin problems, these methods are simple and convenient to
implement. Glowinski and Pan Glowinski et al. (1994) have given optimal error estimates
for Neumann problems. In Zhang (2008), Zhang has also given optimal error estimates for
Neumann and Robin problems. However, fictitious domain methods with an H1 penalty
do not have any mathematical evidence of the optimal order convergence for the Dirichlet
problems besides the one-dimensional problems (Adjerid and Lin 2009; Lin et al. 2015).
There is a scope of future research to improve the accuracy of these methods for the Dirichlet
problems; Zhang (2008) Zhang and Zhou and Saito (2014) Zhou et al. have obtained error
estimates of order 1/2 and 1 in H1 and L2 norms, respectively, depending on the choice of
parameter ε. Also, Zhang in Zhang (2008) suggests that adjusting themesh near the boundary
significantly improves the convergence rate, but it is still not optimal. Also, X. He et al. He
et al. (2012) accomplished a sub-optimal error estimate of order 1/2 in the H1 norm for the
interface problems. Therefore, to enhance the convergence rate of the method, Tao Lin and
co-authors in Adjerid and Lin (2009), Li et al. (2003), Lin et al. (2015) address the various
penalty methods by considering the different types of basis functions over the simplices near
the interface boundary Γ .

The new modified fictitious domain formulation given in Eq. 1.2 and the idea of con-
structive proof of H1 seminorm estimate make the analysis simpler than that of the existing
analysis in Zhang (2008), Zhou and Saito (2014), with the improvement in the accuracy of
the method in the numerical experiments whenever the penalty parameter ε is compatible
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with the mesh size h . Additionally, we prove the convergence of the new penalized problem
to the original problem in the H2 norm. Moreover, in the case of mesh matching precisely to
the boundary, our analysis suggests an optimal convergence rate in the H1 seminorm, which
is a recent achievement.

The outline of the paper is as per the following. In Sect. 2, we provide notations and some
preliminary results. Proposed method with variational formulation is discussed in Sect. 3.
Section 4 contains the convergence of the penalized problem to the original problem at
the sharp rate of ε. Section 5 depict the error estimates in H1 and L2 norms. Numerical
experiments are performed in Sect. 6, and in Sect. 7, we conclude our discussion.

2 Notations and preliminary results

For a domain Ω̂ , we denote (·, ·)
Ω̂

as the standard inner product on L2(Ω̂). Let m ∈ N,

and α a multi-index notation, there is a general class of Sobolev spaces Wm,p(Ω̂) := {v ∈
L p(Ω̂) : Dαv ∈ L p(Ω̂), |α| ≤ m}, Wm,p

0 (Ω̂) := closure of C∞
0 (Ω̂) in Wm,p(Ω̂). In

particular, for p = 2, the above spaces are Hilbert spaces and we denote them by Hm(Ω̂),
and Hm

0 (Ω̂), respectively (Adams 1975). For v ∈ Hm(Ω̂), we define the seminorm as

|v|m,Ω̂
:= ( ∑

α=m ||Dαv||2
0,Ω̂

)1/2, and norm as ||v||m,Ω̂
:= (||v||2

m−1,Ω̂
+|v|2

m,Ω̂

)1/2. Also,

the space H−m(Ω̂) will be considered as a dual space of Hm
0 (Ω̂), with the respective norm

defined by a duality (Adams 1975). Furthermore, note that C will denote a generic constant
throughout the discussion, with different values at different locations.

Now, let Ω̂ be a polygonal domain, denote Th as a regular and uniform triangulation of
Ω̂ , such that Ω̂ = ∪T∈Th {T }, where regular triangulation means hT → 0 and hT

ρT
≤ c,

for some constant c, hT = diam(T ) and ρT = sup {diam(B) : B is ball contained in T }
(Ciarlet 1977). The finite-element space Vh is given by

Vh = {vh ∈ H1
0 (Ω̂) ∩ C0(Ω̂) : vh |T ∈ P1 ∀ T ∈ Th},

where P1 denotes the polynomial space of degrees ≤ 1. For the space Vh, {ϕi }Ni=1 be the
basis, where N is the dimension of the finite-element space Vh . Let {ai }Ni=1 be the node points
of the grid of the domain Ω̂ , and then

ϕi (a j ) = δi j =
{
1 if i = j,

0 if i �= j,
1 ≤ i, j ≤ N .

For v ∈ C0(Ω̂), define the interpolation operator Ih : C0(Ω̂) → Vh , as

Ih(v) =
N∑

i=1

v(ai )ϕi .

For k > 0, Sobolev embedding theorem implies Hk+1(Ω̂) ⊂⊂ H1(Ω̂), with the interpola-
tion estimate (Adams 1975; Ciarlet 1977; Brenner and Scott 2008)

‖v − Ihv‖1,Ω̂ ≤ Chk |v|k+1,Ω̂ , ∀v ∈ Hk+1(Ω̂) ∩ H1
0 (Ω̂). (2.1)

For a Lipschitz domain Ω̂ in R
2, we have the following Sobolev and Morrey’s inequalities,

which will be used to give the discrete error estimates in the H1 seminorm

‖v‖∞,Ω̂
≤ C ‖v‖2,Ω̂ for v ∈ H2(Ω̂). (2.2)
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‖v‖W 1,p(Ω̂)
≤ C ‖v‖2,Ω̂ for 1 ≤ p < ∞, and v ∈ H2(Ω̂). (2.3)

|v(x) − v(y)| ≤ C ‖v‖W 1,p(Ω̂)
|x − y|β,

for x, y ∈ Ω̂, p > 2, β = 1 − 2

p
, and v ∈ W 1,p(Ω̂). (2.4)

Since we will need to extend the data from domain ω to rectangle R, we provide the
following existence and stability estimate.

Lemma 1 (Lions and Magenes 1972; Küfner et al. 1977) For a smooth bounded domain Ω̂

in R
2, there exists an extension operator Ek(Ω̂) : Hk(Ω̂) → Hk(R2), such that

Ek(Ω̂)v = v a.e. in Ω̂, and
∥
∥
∥Ek(Ω̂)v

∥
∥
∥
1,R2

≤ Ck(Ω̂) ‖v‖1,Ω̂ , for v ∈ Hk(Ω̂), where k is a positive integer.

Lemma 2 Let D be a domain in R2, and then, for a tube γδ = {x ∈ D | dist(x, γ ) ≤ δ} and
v ∈ H1(D), we have

‖v‖0,γδ
≤ C

√
δ ‖v‖1,D . (2.5)

Further, if v ∈ H2(D), we have

‖v‖1,γδ
≤ C

√
δ ‖v‖2,D . (2.6)

Proof The proof follows by the trace theorem. See (Zhang 2008). ��
Lemma 3 (Ciarlet 1977) LetIT be the linear interpolation of v on the vertices of a triangle
T ∈ Th, where Th is the triangulation of a domain D. Then, for v ∈ H2(D), we have

C1

3∑

i, j=1;i �= j

|v(νi ) − v(ν j )| ≤ |IT v|1,T ≤ C2

3∑

i, j=1;i �= j

|v(νi ) − v(ν j )|, (2.7)

where C1 and C2 are constants that depend on the regularity of the triangulation Th and νi ;
i = 1, 2, 3 are the vertices of a triangle T .

Lemma 4 (Lions andMagenes 1972) Let Ω̂ be a bounded domain inR2, and ∂Ω̂ = (∂Ω̂)1∪
(∂Ω̂)2, with (∂Ω̂)1 ∩ (∂Ω̂)2 = φ. Let v ∈ H1(Ω̂) be the unique solution of the problem

Δv = f1 in Ω̂, v = g1 on (∂Ω̂)1,
∂v

∂n
= g2 on (∂Ω̂)2,

for f1 ∈ L2(Ω̂), g1 ∈ H
1
2 ((∂Ω̂)1) and g2 ∈ L2((∂Ω̂)2). Then if g1 ∈ H

3
2 ((∂Ω̂)1) and

g2 ∈ H
1
2 ((∂Ω̂)2), we have v ∈ H2(Ω̂) and

‖v‖2,Ω̂ ≤ C
(

‖ f1‖0,Ω̂ + ‖g1‖
H

3
2 ((∂Ω̂)1)

+ ‖g2‖
H

1
2 ((∂Ω̂)2)

)
.

3 Problem formulation

To simplify our analysis, we consider Poisson’s problem with the Dirichlet boundary condi-
tion on a smooth curved domain ω in R

2. For a given f ∈ L2(ω), find u, such that
{

−Δu = f in ω,

u = 0 on ∂ω.
(3.1)
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The variational formulation for Eq. 3.1 is given by
{
find u ∈ H1

0 (ω) such that

(∇u,∇v)ω = ( f , v)ω, ∀v ∈ H1
0 (ω).

(3.2)

To impose the idea of the domain embedding method, we embed ω into a rectangular domain
R, such that ω ⊂⊂ R (Hyman 1952; Glowinski and Pan 1991). Define the H1 penalized
problem of Eq. 3.2 as

{
find uε ∈ H1

0 (R) such that

(∇uε,∇v)ω + ε−1(∇uε,∇v)Ω + ε(∇uε,∇v)R = ( f̃ , v)R, ∀v ∈ H1
0 (R),

(3.3)

where f̃ is the zero extension of f in the fictitious domainΩ , and ε−1 is a penalty parameter,
with 0 < ε → 0. Note that we can take any extension f̃ of f in Ω , such that || f̃ || ≤ C || f ||,
but the zero extension is more suitable to implement.We see that Eq. 3.3 has a unique solution
by applying the Lax–Milgram lemma.

We solve Eq. 3.3 instead of Eq. 3.2 by a finite-element method using linear simplices. Let
Th be the uniform triangulation of the domain R, Vh(R) be the finite-dimensional subspace
of H1

0 (R) consisting of linear polynomials corresponding to the meshing Th . Therefore, the
finite-element formulation of Eq. 3.3 is

{
find uε

h ∈ Vh(R) such that

(∇uε
h,∇vh)ω + ε−1(∇uε

h,∇vh)Ω + ε(∇uε
h,∇vh)R = ( f̃ , vh)R, ∀vh ∈ Vh(R).

(3.4)

In the next section, we prove the convergence of uε a solution of the modified penalized Eq.
3.3 to the solution u of the original Eq. 3.2, as ε → 0, in the H1 norm as a sharp error estimate
of O(ε). In Sect. 5, we give an error estimate between uε

h , a solution of the discrete Eq. 3.4
and uε , a solution of the continuous Eq. 3.3, in both the H1 and L2 norms as O(

√
ε + √

h)

and O(ε + h + √
εh), respectively. Therefore, finally, we have

∥
∥u − uε

h

∥
∥
1,ω = O(

√
h) and

∥
∥u − uε

h

∥
∥
0,ω = O(h) when the parameter ε is chosen as O(h).

Remark 1 Note that if we have the non-homogeneous boundary condition in Eq. 3.1, we
employ the splittingmethod to transform the non-homogeneous admissible space into H1

0 (ω),
or approximate the Dirichlet boundary condition by the Robin boundary condition.

4 convergence of a continuous problem

In this section, we prove uε converges to the original solution u at the sharp rate of ε. In
Lemma 1, let ϕ ∈ C∞

0 (R), 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 in Ω1, with Ω ⊂ Ω1 ⊂ R; define the
operator E1

0(Ω)v = (ϕE1(Ω))v for v ∈ H1(Ω); so that

E1
0(Ω)v = v a.e. in Ω,

∥
∥E1

0(Ω)v
∥
∥
1,R ≤ C(Ω) ‖v‖1,Ω , for v ∈ H1(Ω).

Lemma 5 Let uε ∈ H1
0 (R) be a solution of Eq. 3.3 and f ∈ L2(ω); then

∥
∥uε

∥
∥
1,R ≤ ‖ f ‖0,ω , (4.1)
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and ∥
∥uε

∥
∥
1,Ω ≤ Cε ‖ f ‖0,ω . (4.2)

Proof Using Poincare’s inequality and Eq. 3.3, we obtain
∥
∥uε

∥
∥2
1,R ≤ |uε |21,R

= (∇uε,∇uε)ω + (∇uε,∇uε)Ω

≤ (∇uε,∇uε)ω + ε−1(∇uε,∇uε)Ω + ε(∇uε,∇uε)R

≤
∥
∥
∥ f̃

∥
∥
∥
0,R

∥
∥uε

∥
∥
1,R .

∴
∥
∥uε

∥
∥
1,R ≤ ‖ f ‖0,ω .

Substituting v = E1
0(Ω) in Eq. 3.3, and using Poincare’s inequality, we get

ε−1
∥
∥uε

∥
∥2
1,Ω ≤ ε−1|uε |21,Ω ≤

∥
∥
∥ f̃

∥
∥
∥
0,R

∥
∥E1

0(Ω)uε
∥
∥
0,R + ε

∥
∥uε

∥
∥
1,R

∥
∥E1

0(Ω)uε
∥
∥
1,R

≤ C
( ‖ f ‖0,ω

∥
∥uε

∥
∥
1,Ω + ε ‖ f ‖0,ω

∥
∥uε

∥
∥
1,Ω

)

≤ C ‖ f ‖0,ω
∥
∥uε

∥
∥
1,Ω .

∴
∥
∥uε

∥
∥
1,Ω ≤ Cε ‖ f ‖0,ω .

Proposition 1 Let f ∈ L2(ω), and uε ∈ H1
0 (R) be the solution of Eq. 3.3; then, uε |ω ∈

H2(ω) and uε |Ω ∈ H2(Ω), with the following estimates:
∥
∥uε

∥
∥
2,ω ≤ C ‖ f ‖0,ω and

∥
∥uε

∥
∥
2,Ω ≤ Cε ‖ f ‖0,ω .

Proof Applying Green’s theorem to Eq. 3.3, we have

(−Δuε, v)ω +
(∂uε

∂n1
, v

)

Γ
+ ε−1(−Δuε, v)Ω + ε−1

(∂uε

∂n2
, v

)

Γ

+ε(−Δuε, v)R + ε
(∂uε

∂n
, v

)

∂R
= ( f̃ , v)R for uε, v ∈ H1

0 (R), (4.3)

where n1 and n2 are unit normal vectors to Γ , as a boundary of ω and Ω , respectively, and
also, n is outer pointing unit normal to ∂R. Comparing both sides of Eq. 4.3, we arrive at

− Δuε = 1

1 + ε
f in ω, (4.4)

Δuε = 0 in Ω (4.5)

and

∂uε

∂n1
= −ε−1 ∂uε

∂n2
on Γ . (4.6)

∴ By the elliptic regularity (Grisvard 1985; Lions and Magenes 1972), we have ‖uε‖2,ω ≤
C

∥
∥
∥ 1
1+ε

f
∥
∥
∥
0,ω

≤ C ‖ f ‖0,ω. Using Lemma 4, Eq. 4.5, Eq. 4.6, and trace theorem (Adams

1975), we obtain

∥
∥uε

∥
∥
2,Ω ≤ C

∥
∥
∥
∥
∂uε

∂n2

∥
∥
∥
∥ 1

2 ,Γ

= C

∥
∥
∥
∥−ε

∂uε

∂n1

∥
∥
∥
∥ 1

2 ,Γ

≤ Cε
∥
∥uε

∥
∥
2,ω ≤ Cε ‖ f ‖0,ω .

��
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From Proposition 1, we also deduce ‖uε‖2,R ≤ C ‖ f ‖0,ω.
Theorem 1 Let u and uε be the solutions of Eq. 3.2 and Eq. 3.3, respectively, and then, uε

converges to u as ε → 0 with the estimate
∥
∥uε − u

∥
∥
1,ω ≤ Cε ‖ f ‖0,ω .

Proof Let us define the trace mappings of the domains ω and Ω , on common boundary
Γ as, γ (ω, Γ ) : H1(ω) → H1/2(Γ ) and γ (Ω, Γ ) : H1(Ω) → H1/2(Γ ). Here, uε ∈
H1(R), so that γ (ω, Γ )uε = γ (Ω, Γ )uε ∈ H1/2(Γ ). Since u = 0 on boundary Γ , we find
γ (ω, Γ )(u − uε) = −γ (ω, Γ )uε = −γ (Ω, Γ )uε . Letting w = u − uε |ω and using trace
theorem, we obtain

‖γ (ω, Γ )w‖ 1
2 ,Γ = ∥

∥γ (Ω, Γ )uε
∥
∥ 1

2 ,Γ
≤ C

∥
∥uε

∥
∥
1,Ω ≤ Cε ‖ f ‖0,ω .

We define the operator A : H1(ω) → H−1(ω) as

〈A u, v〉 = 〈∇u,∇v〉ω, ∀v ∈ H1
0 (ω).

Using Eqs. 3.2 and 3.3, we have

〈A w, v〉 = (∇u,∇v)ω − (∇uε,∇ṽ)ω

= ( f , v)ω + ε−1(∇uε,∇ṽ)Ω + ε(∇uε,∇ṽ)R − ( f̃ , ṽ)R

= ε(∇uε,∇v)ω.

Therefore,
|〈A w, v〉|

‖v‖1,ω ≤ ε
∥
∥uε

∥
∥
1,ω , ∀v ∈ H1

0 (ω). Hence, we arrive at

sup
v∈H1

0 (ω)

|〈A w, v〉|
‖v‖1,ω ≤ ε

∥
∥uε

∥
∥
1,ω .

Since the mapping w → {A w, γ (ω, Γ )w} is an isomorphic map of H1(ω) → H−1(ω) ×
H1/2(Γ ), so that

‖w‖1,ω ≤ C
( ‖A w‖−1,ω + ‖γ (ω, Γ )w‖ 1

2 ,Γ

)

= C
(

sup
v∈H1

0 (ω)

|〈A w, v〉|
‖v‖1,ω + ‖γ (ω, Γ )w‖ 1

2 ,Γ

)

≤ Cε ‖ f ‖0,ω .

It gives us the desired convergence estimate. ��

Corollary 1 Let u and uε be the solutions of Eq. 3.2 and Eq. 3.3, respectively, then uε con-
verges to u as ε → 0 with the estimate

∥
∥uε − u

∥
∥
2,ω ≤ Cε ‖ f ‖0,ω .

Proof Subtracting Eq. 4.4 from Eq. 3.1, we obtain −Δ(u − uε) = ε
1+ε

f in ω. So that,
|u − uε |2,ω ≤ Cε ‖ f ‖0,ω. Together with Theorem 1, we complete the proof. ��
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5 Error analysis

In this section, we derive error estimates between the solution uε of Eq. 3.3 and solution uε
h

of Eq. 3.4 in the H1 seminorm, L2 norm, and H1 norm. Here, Vh(R) ⊂ H1
0 (R); subtracting

Eq.3.4 from Eq. 3.3, we arrive at the orthogonality relation

(∇(uε − uε
h),∇vh)ω + ε−1(∇(uε − uε

h),∇vh)Ω

+ ε(∇(uε − uε
h),∇vh)R = 0, ∀vh ∈ Vh(R). (5.1)

Lemma 6 Let uε and uε
h be solutions of Eq. 3.3 and Eq. 3.4, respectively, then

|uε − uε
h |1,ω + 1√

ε
|uε − uε

h |1,Ω + √
ε|uε − uε

h |1,R

≤ C inf
vh∈Vh(R)

( ∥
∥uε − vh

∥
∥
1,ω + 1√

ε

∥
∥uε − vh

∥
∥
1,Ω + √

ε
∥
∥uε − vh

∥
∥
1,R

)
.

(5.2)

Proof Using Eq. 5.1 twice, we get

|uε − uε
h |21,ω + ε−1|uε − uε

h |21,Ω + ε|uε − uε
h |21,R

= (∇(uε − uε
h),∇(uε − vh))ω + ε−1(∇(uε − uε

h),∇(uε − vh))Ω

+ ε(∇(uε − uε
h),∇(uε − vh))R

≤ |uε − uε
h |1,ω|uε − vh |1,ω + ε−1|uε − uε

h |1,Ω |uε − vh |1,Ω
+ ε|uε − uε

h |1,R|uε − vh |1,R
≤ C{∥∥uε − vh

∥
∥2
1,ω + ε−1

∥
∥uε − vh

∥
∥2
1,Ω + ε

∥
∥uε − vh

∥
∥2
1,R}.

Therefore, in particular

|uε − uε
h |1,ω ≤ C{∥∥uε − vh

∥
∥
1,ω + 1√

ε

∥
∥uε − vh

∥
∥
1,Ω + √

ε
∥
∥uε − vh

∥
∥
1,R}, (5.3)

1√
ε
|uε − uε

h |1,Ω ≤ C{∥∥uε − vh
∥
∥
1,ω + 1√

ε

∥
∥uε − vh

∥
∥
1,Ω + √

ε
∥
∥uε − vh

∥
∥
1,R}, (5.4)

|uε − uε
h |1,R ≤ C{∥∥uε − vh

∥
∥
1,ω + 1√

ε

∥
∥uε − vh

∥
∥
1,Ω + √

ε
∥
∥uε − vh

∥
∥
1,R}. (5.5)

Adding Eq. 5.3, Eq. 5.4, and Eq. 5.5, and taking infimum over all vh in Vh(R) on the RHS,
we get the desired result. ��

To find H1 seminorm estimate, we define Tω = {T ∈ Th : T ⊂ ω} set of the simplices
T which lie completely inside the domain ω. TΓ = {T ∈ Th : T ∩ Γ �= φ} set of the
simplices T through which the boundary Γ passes. V (T ) = {ϑi }3i=1 set of the vertices of a
simplex T . Vω = {ϑi : ϑi ∈ V (T ), T ∈ Tω}, set of the vertices of the simplices which lie
completely inside the domain ω, and VΓ = {ϑi : ϑi ∈ V (T ), T ∈ TΓ }, set of the vertices of
the simplices through which the boundary Γ passes. Observe that Vω ∩ VΓ �= φ. We choose
suitable vh which will give us the desired estimate in a simple way, as

vh(ϑ) =
{
uε(ϑ) for ϑ ∈ Vω,

0 otherwise.
(5.6)

Theorem 2 Let uε and uε
h be solutions of Eqs. 3.3 and 3.4, respectively, and then

|uε − uε
h |1,ω ≤ C(

√
h + √

ε) ‖ f ‖0,ω . (5.7)
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Proof The proof is based on individual bounds of all the three terms in RHS of Eq. 5.3
∥
∥uε − vh

∥
∥
1,ω ≤ ∥

∥uε − vh
∥
∥
1,Tω

+ ∥
∥uε − vh

∥
∥
1,TΓ

. (5.8)

Since Tω is a polygonal domain
∥
∥uε − vh

∥
∥
1,Tω

≤ h
∥
∥uε

∥
∥
2,Tω

≤ h
∥
∥uε

∥
∥
2,R

∴
∥
∥uε − vh

∥
∥
1,Tω

≤ Ch ‖ f ‖0,ω . (5.9)

Also ∥
∥uε − vh

∥
∥
1,TΓ

≤ ∥
∥uε − I uε

∥
∥
1,TΓ

+ ∥
∥I uε − vh

∥
∥
1,TΓ

. (5.10)

Now
∥
∥uε − I uε

∥
∥2
1,TΓ

=
∑

T∈TΓ

∥
∥uε − I uε

∥
∥2
1,T

≤
∑

T∈TΓ

h2
∥
∥uε

∥
∥2
2,T

≤ h2
∥
∥uε

∥
∥2
2,R .

Therefore, we have ∥
∥uε − I uε

∥
∥
1,TΓ

≤ Ch ‖ f ‖0,ω . (5.11)

For T ∈ TΓ , we have
∥
∥I uε − vh

∥
∥
1,T = ∥

∥I uε − vh
∥
∥
0,T + |I uε − vh |1,T .

To estimate ‖I uε − vh‖0,T
∥
∥I uε − vh

∥
∥
0,T ≤ ∥

∥I uε − uε
∥
∥
0,T + ∥

∥uε − vh
∥
∥
0,T

≤ h
∥
∥uε

∥
∥
1,T + ∥

∥uε
∥
∥
0,T + ‖vh‖0,T .

(5.12)

Now, for all the vertices ϑi ∈ V (T ), we have the following two cases.
Case-I: ∀ ϑi ∈ V (T ), uε(ϑi ) have the same sign, and then

|vh(x)|2 ≤ |I uε |2
∴ ‖vh‖0,T ≤ ∥

∥I uε
∥
∥
0,T .

Case-II: For one of the ϑi , uε(ϑi ) do not have the same sign as at the remaining two vertices.
We can assume that ‖uε‖∞,T = |uε(ϑ3)|, uε(ϑ2)uε(ϑ3) ≥ 0 and uε(ϑ1) ≤ 0. Furthermore,
the directional derivative ∇(I uε).ϑ1ϑ3 = uε(ϑ3) − uε(ϑ1). Also, since uε(ϑ1) ≤ 0, we
have |uε(ϑ3)| ≤ |uε(ϑ3) − uε(ϑ1)| ≤ |∇I uε ||ϑ1ϑ3|. As, |ϑ1ϑ3| is the length of the side of
the triangle T , which is ≤ h. Therefore, we have

|uε(ϑ3)| ≤ h|∇(I uε)|. (5.13)

Therefore, by Cauchy–Schwartz’s inequality and definition of vh given in Eq. 5.6, we have

‖vh‖0,T ≤ (diam(T ))
1
2
∥
∥uε

∥
∥∞,T

≤ (diam(T ))
1
2 h|∇(I uε)|

≤ h
∥
∥∇(I uε)

∥
∥
0,T

≤ h
∥
∥I uε

∥
∥
1,T .
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Fig. 2 Partition of the simplices T ∈ TΓ , as type-1 and type-2

From Case-I and Case-II, we obtain

‖vh‖0,T ≤ ∥
∥I uε

∥
∥
1,T ≤ ∥

∥I uε − uε
∥
∥
1,T + ∥

∥uε
∥
∥
1,T .

Thus
‖vh‖0,T ≤ h

∥
∥uε

∥
∥
2,T + ∥

∥uε
∥
∥
1,T . (5.14)

Using Eq. 5.14 in Eq. 5.12, we arrive at
∥
∥I uε − vh

∥
∥
0,T ≤ h

∥
∥uε

∥
∥
1,T + ∥

∥uε
∥
∥
0,T + h

∥
∥uε

∥
∥
2,T + ∥

∥uε
∥
∥
1,T

≤ C
(
h

∥
∥uε

∥
∥
2,T + ∥

∥uε
∥
∥
1,T

)

∴
∥
∥I uε − vh

∥
∥2
0,TΓ

=
∑

T∈TΓ

∥
∥I uε − vh

∥
∥2
0,T

≤ C
∑

T∈TΓ

(
h

∥
∥uε

∥
∥
2,T + ∥

∥uε
∥
∥
1,T

)2

≤ C
(
h

∥
∥uε

∥
∥2
2,R + ∥

∥uε
∥
∥2
1,TΓ

)

≤ Ch
∥
∥uε

∥
∥2
2,R .

The last step follows due to Lemma 2, with tube size δ = h. Thus
∥
∥I uε − vh

∥
∥
0,TΓ

≤ C
√
h ‖ f ‖0,ω . (5.15)

To estimate |I uε − vh |1,TΓ , we refer Fig. 2. For T ∈ TΓ , there are two types depending
on the number of vertices of T lying outside the domain ω. If only one vertex (say ϑ1) of the
simplex T lies outside the domain ω, consider such simplices of type-1. If two vertices of
the simplex T lie outside the domain ω (say ϑ1, ϑ2), then consider such simplices of type-2.
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Case-A: In this case, we have (I uε −vh)(ϑ1) = uε(ϑ1), and (I uε −vh)(ϑi ) = 0, for i =
2, 3. Using Lemma 3, we get

|I uε − vh |1,T ≤ C |uε(ϑ1)| ≤ C
(|uε(ϑ1) − uε(γp)| + |uε(γp)|

)
,

where γp ∈ Γ ∩ T . Using Eq. 2.4 with p = 4, and Eqs. 2.3 and 2.2, we obtain

|I uε − vh |1,T ≤ C
( ∥
∥uε

∥
∥
W 1,4(Ω∩T )

|ϑ1 − γp| 12 + ∥
∥uε

∥
∥∞,(Ω∩T )

)

≤ C
( ∥
∥uε

∥
∥
2,(Ω∩T )

|ϑ1 − γp| 12 + ∥
∥uε

∥
∥
2,(Ω∩T )

)

≤ C
(√

h
∥
∥uε

∥
∥
2,(Ω∩T )

+ ∥
∥uε

∥
∥
2,(Ω∩T )

)
.

Case-B: Similar to the Case-A, we have (I uε − vh)(ϑi ) = uε(ϑi ), for i = 1, 2 and (I uε −
vh)(ϑ3) = 0. Using the same results used in the Case-A, we have

|I uε − vh |1,T ≤
∑

i=1,2

|uε(ϑi ) − uε(γp)| + 2|uε(γp)|

≤ C
( ∑

i=1,2

∥
∥uε

∥
∥
W 1,4(Ω∩T )

|ϑi − γp| 12 + ∥
∥uε

∥
∥
2,(Ω∩T )

)

≤ C
(√

h
∥
∥uε

∥
∥
2,(Ω∩T )

+ ∥
∥uε

∥
∥
2,(Ω∩T )

)
.

From Case-A and Case-B, we derive

|I uε − vh |1,T ≤ C
(√

h
∥
∥uε

∥
∥
2,(Ω∩T )

+ ∥
∥uε

∥
∥
2,(Ω∩T )

)
, ∀T ∈ TΓ .

∴ |I uε − vh |21,TΓ
=

∑

T∈TΓ

|I uε − vh |21,T

≤C
∑

T∈TΓ

(
h

∥
∥uε

∥
∥2
2,(Ω∩T )

+ ∥
∥uε

∥
∥2
2,(Ω∩T )

)

≤C
(
h

∥
∥uε

∥
∥2
2,Ω + ∥

∥uε
∥
∥2
2,Ω

)

∴ |I uε − vh |1,TΓ ≤C(
√
h

∥
∥uε

∥
∥
2,Ω + ∥

∥uε
∥
∥
2,Ω)

Thus
|I uε − vh |1,TΓ ≤ C{(ε√h + ε) ‖ f ‖0,ω}. (5.16)

From Eqs. 5.15 and 5.16, we obtain
∥
∥I uε − vh

∥
∥
1,TΓ

≤ C(
√
h + ε) ‖ f ‖0,ω . (5.17)

Thus, from Eqs. 5.10, 5.11, and 5.17, we get
∥
∥uε − vh

∥
∥
1,TΓ

≤ C(
√
h + ε) ‖ f ‖0,ω , (5.18)

which was very challenging to obtain due to the non-uniform intersection of the boundary
Γ through the simplices T . Using Eqs. 5.8, 5.9, and 5.18, we find the estimate

∥
∥uε − vh

∥
∥
1,ω ≤ C(

√
h + ε) ‖ f ‖0,ω . (5.19)

Now
∥
∥uε − vh

∥
∥
1,Ω ≤ ∥

∥uε
∥
∥
1,Ω + ‖vh‖1,Ω ≤ ∥

∥uε
∥
∥
2,Ω + 0

∴
∥
∥uε − vh

∥
∥
1,Ω ≤ Cε ‖ f ‖0,ω . (5.20)
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Since R is a polygonal domain, we obtain
∥
∥uε − vh

∥
∥
1,R ≤ Ch

∥
∥uε

∥
∥
2,R ≤ Ch ‖ f ‖0,ω . (5.21)

Thus, Eqs. 5.3, 5.19, 5.20, 5.21 complete the proof. ��
Remark 2 Note that whenever the grid T matches precisely with the boundary Γ , TΓ

becomes an empty set. Then, in the estimation of the H1 seminorm error, there is no contri-
bution in error by the term ‖uε − vh‖1,TΓ

, which used to reduce the order of convergence
of the method. Consequently, Eq. 5.8 implies ‖uε − vh‖1,ω = ‖uε − vh‖1,Tω

. Thus, we will
get the order of convergence as 1 in the H1 seminorm, which is optimal.

Proposition 2 Let uε and uε
h be solutions of Eqs. 3.3 and 3.4, respectively, and then

|uε − uε
h |1,Ω ≤ C(

√
εh + ε) ‖ f ‖0,ω . (5.22)

Proof Proof follows from Eqs. 5.4, 5.19, 5.20, 5.21. ��
Proposition 3 Let uε and uε

h be solutions of Eqs. 3.3 and 3.4, respectively, and then
∥
∥uε − uε

h

∥
∥
0,ω ≤ C(h + ε + √

εh) ‖ f ‖0,ω .

Proof To find an L2 estimate, we define the adjoint problem of Eq. 3.3 as
{
for given f ∈ L2(ω), find uε

f ∈ H1
0 (R), such that

(∇v,∇uε
f )ω + ε−1(∇v,∇uε

f )Ω + ε(∇v,∇uε
f )R = ( f̃ , v)R, ∀v ∈ H1

0 (R).
(5.23)

The regularity estimates and H1 seminorm estimates can be derived to Eq. 5.23 as same as
that of Eq. 3.3. Here

∥
∥uε − uε

h

∥
∥
0,ω = sup

f ∈L2(ω)

∣
∣( f , uε − uε

h)ω
∣
∣

‖ f ‖0,ω
= sup

f ∈L2(ω)

∣
∣( f̃ , uε − uε

h)R
∣
∣

‖ f ‖0,ω
.

Since uε − uε
h ∈ H1

0 (R), we substitute v = uε − uε
h in Eq. 5.23. Therefore

∥
∥uε − uε

h

∥
∥
0,ω = sup

f ∈L2(ω)

{∣
∣
(∇(uε − uε

h),∇uε
f

)

ω
+ ε−1(∇(uε − uε

h),∇uε
f

)

Ω

+ε
(∇(uε − uε

h),∇uε
f

)

R

∣
∣
/

‖ f ‖0,ω
}
.

Using orthogonality relation and RHS of the above equation becomes

sup
f ∈L2(ω)

{(∣
∣
(∇(uε − uε

h),∇(uε
f − vh)

)

ω
+ ε−1(∇(uε − uε

h),∇(uε
f − vh)

)

Ω

+ε
(∇(uε − uε

h),∇(uε
f − vh)

)

R

∣
∣
)/

‖ f ‖0,ω
}

≤ sup
f ∈L2(ω)

{(
|uε − uε

h |1,ω|uε
f − vh |1,ω + ε−1|uε − uε

h |1,Ω |uε
f − vh |1,Ω

+ε|uε − uε
h |1,R|uε

f − vh |1,R
)/

‖ f ‖0,ω
}

≤ C sup
f ∈L2(ω)

(
(
√
h + √

ε)(
√
h + ε) + ε−1(

√
hε + ε)(ε) + ε(h)(h)

)
‖ f ‖20,ω

‖ f ‖0,ω
.
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Fig. 3 Plot for the computed solution uε
h (h = 0.01, ε = h2) of Example 1

Thus, we obtain ∥
∥uε − uε

h

∥
∥
0,ω ≤ C(h + ε + √

εh) ‖ f ‖0,ω . (5.24)

��
If the parameter ε = O(h), order of convergence is 1 in the L2 norm. Next, we propose an
H1 norm error estimate.

Corollary 2 Let uε and uε
h be solutions of Eqs. 3.3 and 3.4, respectively, and then
∥
∥uε − uε

h

∥
∥
1,ω ≤ C(

√
ε + √

h) ‖ f ‖0,ω . (5.25)

Proof Result follows from Eqs. 5.24 and 5.7. ��
If the parameter ε = O(h), order of convergence is 1/2 in the H1 norm.

6 Numerical experiments

We consider Poisson’s problem with homogeneous Dirichlet boundary conditions on two
domains types (i.e., circle/ellipse, and L-shape). In the first type, we consider the non-
matching case of the boundary with the mesh. In the second type, we consider boundary
matching precisely with the mesh. To estimate the integrals over the domain ω, we need to
approximate ω as the union of some of the simplices T ∈ Th . Rather than just considering
simplices T which lie completely inside ω, we consider all those simplices whose center of
gravity lies inside the domain ω. No ambiguity regarding the simplices that lie completely
inside or outside the domain ω, but it is there for the simplices T ∈ TΓ . For reference,
in Fig.2, the green-colored simplices are considered as a part of ω, while the red colored
simplices are considered in the outer part of the domain ω.
Example: 1 Let ω = {

(x, y) ∈ R
2
∣
∣(x − 0.5)2 + (y − 0.5)2 < 1

16

}
, and u = 0.0625− (x −

0.5)2−(y−0.5)2 be the exact solution of Eq. 3.1.We embed the circleω into a unit rectangle
(0, 1) × (0, 1) and solve the finite-element penalized Eq. 3.4 for f = 4. For different values
of ε and mesh sizes h, we compute the approximate solution uε

h at each node point. We
also determine the error between the exact solution u and the computed solution uε

h , and the
convergence rate in the H1(ω) and L2(ω) norms. The computed solution uε

h is depicted in
Fig. 3. Also, the error plots and convergence rate of the proposed method are displayed in
Fig. 4 and Table 1, respectively.
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Fig. 4 Error vs mesh size plots of Example 1, for different values of ε

Example: 2 Let ω = {
(x, y) ∈ R

2
∣
∣(x − 0.5)2 + 2(y − 0.5)2 < 1

8

}
, and u = 0.0625 −

0.5(x − 0.5)2 − (y − 0.5)2 be the exact solution of Eq. 3.1. We embed the ellipse ω into a
unit rectangle (0, 1) × (0, 1) and solve the finite-element penalized Eq. 3.4 for f = 3. For
different values of ε and mesh sizes h, we compute the approximate solution uε

h at each node
point. We also determine the error between the exact solution u and the computed solution
uε
h and the convergence rate in the H1(ω) and L2(ω) norms. The computed solution uε

h is
depicted in Fig. 5. Also, the error plots and convergence rate of the proposed method are
displayed in Fig. 6 and Table 2, respectively.
Example: 3 For an L shape domain ω = (0.2, 0.8)2\(0.5, 0.8)2 ⊂ R

2, u = (x − 0.2)(x −
0.8)(x − 0.5)(y − 0.2)(y − 0.8)(y − 0.5) be the exact solution of Eq. 3.1. We embed
ω into a unit rectangle (0, 1) × (0, 1) and solve the finite-element penalized Eq. 3.4 for
f = (3 − 6x)(y3 − 1.5y2 + 0.66y − 0.08) + (3 − 6y)(x3 − 1.5x2 + 0.66x − 0.08). For
different values of ε and boundary fitting mesh sizes h, we compute the approximate solution
uε
h at each node point. We also determine the error between the exact solution u and the

computed solution uε
h and the convergence rate in the H1 and L2 norms. By Remark 2, we

expect an optimal convergence rate, 1 in the H1 norm if we choose ε at least of O(h), and
2 in the L2 norm if we choose ε as at least of O(h2). We can observe this from Table 3 and
Fig. 8. Also, computed solution uε

h is depicted in Fig. 7.

Table 1 Error analysis of
Example 1 (ε = h2)

Rate of convergence in

h H1-Error L2-Error H1 norm L2 norm

1/10 0.0380 0.0015 - -

1/20 0.0188 3.4038e-04 1.0152 2.1397

1/40 0.0092 8.2360e-05 1.0231 2.0934

1/60 0.0061 3.6269e-05 1.0209 2.0774

1/80 0.0045 2.0291e-05 1.0260 2.0693

1/100 0.0036 1.2953e-05 1.0234 2.0637
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Fig. 5 Plot for the computed solution uε
h (h = 0.01, ε = h2) of Example 2

Fig. 6 Error vs mesh size plots of Example 2, for different values of ε

Table 2 Error analysis of
Example 2 (ε = h2)

Rate of convergence in

h H1-Error L2-Error H1 norm L2 norm

1/10 0.0349 0.0013 – –

1/20 0.0173 3.0053e−04 1.0124 2.1129

1/40 0.0086 7.3376e−05 1.0104 2.0735

1/60 0.0057 3.2348e−05 1.0113 2.0614

1/80 0.0043 1.8119e−05 1.0069 2.0549

1/100 0.0034 1.1585e−05 1.0113 2.0500

7 Conclusion

The fictitious domain method with the modified H1 penalty approach for the homogeneous
Dirichlet problems is proposed. The H1 and L2 estimates are derived, and the sub-optimal
order of convergences are achieved, i.e., 1/2 and 1 in the H1 and L2 norms, respectively, with
the parameter ε = O(h). If we choose the mesh that exactly fits the domain’s boundary, we
attain the optimal order of convergence. However, we get the optimal order of convergence,
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Table 3 Error analysis of
Example 3 (ε = h2)

Rate of convergence in

h H1-Error L2-Error H1 norm L2 norm

1/10 2.4215e−04 8.0205e−06 – –

1/20 1.2681e−04 2.2830e−06 0.9332 1.8127

1/40 6.3874e−05 5.9050e−07 0.9613 1.8818

1/60 4.2582e−05 2.6413e−07 0.9700 1.9050

1/80 3.1921e−05 1.4891e−07 0.9744 1.9170

1/100 2.5526e−05 9.5402e−08 0.9771 1.9246

Fig. 7 Plot for the computed solution uε
h (h = 0.01, ε = h2) of Example 3

Fig. 8 Error vs mesh size plots of Example 3, for different values of ε

i.e., 1 in the H1 norm, and 2 in the L2 norm, during the numerical experiments. In addition,
we find the rate of convergence as 2 in the sup norm during the numerical experiments which
can be seen from Fig.12. Also, Figs.4, 6, and 8 depict the dependency of the accuracy over
the penalty parameter ε, and we observe that whenever ε is compatible with the mesh size
h, we get the least error. Also, from Table 4, Table 5, and Table 6, with Figs.9, 10, and 11,
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Table 4 Comparison of the errors in different norms of the proposed method with the H1 penalty method
(Zhou and Saito 2014) for Example 1 with ε = h

Modified H1 penalty method H1 Penalty Method

h H1-Error L2-Error L∞-Error H1-Error L2-Error L∞-Error

1/10 0.0435 0.0012 0.0064 0.0532 0.0020 0.0104

1/20 0.0316 9.0173e−04 0.0042 0.0364 0.0016 0.0051

1/40 0.0219 5.8509e−04 0.0022 0.0241 9.2139e−04 0.0025

1/60 0.0178 4.2460e−04 0.0015 0.0192 6.4649e−04 0.0017

1/80 0.0154 3.3151e−04 0.0012 0.0163 4.9645e−04 0.0012

1/100 0.0138 2.7192e−04 9.4375e−04 0.0145 4.0315e−04 9.8873e−04

Table 5 Comparison of the error in different norms of the proposed method with the H1 penalty method
(Zhou and Saito 2014) for Example 2, with ε = h

Modified H1 Penalty Method H1 Penalty Method

h H1-Error L2-Error L∞-Error H1-Error L2-Error L∞-Error

1/10 0.0393 9.3950e−04 0.0050 0.0494 0.0021 0.0092

1/20 0.0285 8.2680e−04 0.0038 0.0340 0.0016 0.0047

1/40 0.0200 5.5266e−04 0.0022 0.0223 9.4876e−04 0.0024

1/60 0.0163 3.9970e−04 0.0015 0.0177 6.5984e−04 0.0016

1/80 0.0141 3.1071e−04 0.0012 0.0151 5.0505e−04 0.0012

1/100 0.0126 2.5593e−04 9.4214e−04 0.0133 4.0999e−04 9.7907e−04

Table 6 Comparison of the error in different norms of the proposed method with the H1 penalty method
(Zhou and Saito 2014) for Example 3, with ε = h

Modified H1 Penalty Method H1 Penalty Method

h H1-Error L2-Error L∞-Error H1-Error L2-Error L∞-Error

1/10 2.3772e−04 8.0079e−06 2.0446e−05 2.3489e−04 7.6940e−06 1.9787e−05

1/20 1.2870e−04 3.4306e−06 1.1219e−05 1.2726e−04 3.6060e−06 1.2087e−05

1/40 6.6349e−05 1.7036e−06 6.5443e−06 6.5726e−05 1.9598e−06 6.8561e−06

1/60 4.4625e−05 1.1606e−06 4.6457e−06 4.4235e−05 1.3690e−06 4.7839e−06

1/80 3.3608e−05 8.8414e−07 3.5996e−06 3.3325e−05 1.0538e−06 3.6756e−06

1/100 2.6951e−05 7.1499e−07 2.9375e−06 2.6729e−05 8.5690e−07 2.9846e−06

we see that the proposed method is more accurate with the obvious implementation of the
Neumann and Robin boundary conditions.
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Fig. 9 Modified H1 penalty method vs H1 penalty method for Example 1, with ε = h

Fig. 10 Modified H1 penalty method vs H1 penalty method for Example 2, with ε = h

Fig. 11 Modified H1 penalty method vs H1 penalty method for Example 3, with ε = h

Fig. 12 Rate of convergence in the L∞ norm, with ε = h2
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