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Abstract
In this paper, an effective iterative technique for analytical solutions of a class of nonlin-
ear singular boundary value problems (SBVPs) occurring in different physical situations is
presented. In constructing the recursive approach for the iterative solution components, a
technique that relies on establishing a corresponding integral representation is used. This
approach provides a highly accurate approximate solution with a few iterations. We also
discussed the convergence of the methodology. Furthermore, we consider some numerical
examples from various physical situations, including real-life problems, to demonstrate the
efficacy of the technique. As seen in the presented numerical tests, our new proposal outper-
forms traditionally existing iterativemethods in the literature. To demonstrate the comparable
efficiency and robustness of the proposed iterative procedure, the numerical results are com-
pared to existing results in the literature. It is apparently, an advanced approach to deal
with various forms of highly nonlinear problems. This approach works well for SBVPs with
nonlinear boundary conditions also as depicted by a numerical example.
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1 Introduction

In the present study, the following class of two-point nonlinear SBVPs is considered

y′′(x) + α

x
y′(x) = f (x, y(x)), (1)

subject to the following boundary conditions

y′(0) = 0, μy(1) + νy′(1) = ψ, α ≥ 1, (2)

or,

y(0) = ω, μy(1) + νy′(1) = ψ, 0 < α < 1, (3)

where finite constants are μ > 0, ν ≥ 0, ψ , and ω. We assume that f (x, y) is continuous
in ([0, 1] × R) and ∂ f (x, y)/∂ y exists and is continuous.

Although one can consider the problem (1) with the following general nonlinear boundary
conditions

y′(0) = 0 or y(0) = ω, g(y(1), y′(1)) = 0. (4)

Problems (1)–(3) frequently occur in different fields of applied science and engineering.
Some of these include chemical reactor, control and optimization, boundary layer theory,
astrophysics theory, isothermal gas sphere, spherical cloud thermal behavior, nuclear physics,
atomic structure, electrohydrodynamics and tumor growthproblem (Vermaet al. 2020b;Rufai
and Ramos 2020, 2021b, a; Ramos and Vigo-Aguiar 2008; Moaaz et al. 2021; Tomar 2021a;
Verma et al. 2020a; Van Gorder and Vajravelu 2008; Singh et al. 2016; Verma et al. 2021b;
Tomar 2021b; Pandey and Tomar 2021; Verma et al. 2021a; Zhao et al. 2021). Therefore, in
physicalmodels, these problems occur naturally, often due to an impulsive sink or source term
and having singularity associated with the independent variable. Such problems also arise
when generalized ordinary differential equations are obtained with spherical or cylindrical
symmetry from partial differential equations. Here, a few special cases of these problems are
listed.

1. Michaelis–Menten uptake kinetics in steady-state oxygen diffusion (Lin 1976; McElwain
1978) when α = 2 and f = − ηy(x)

y(x)+ρ
, η, ρ > 0.

2. The equilibrium of isothermal gas sphere (Keller 1956) when α = 2 and f = y(x)5.
3. The thermal explosions (Khuri and Sayfy 2010; Chambre 1952) when α = 1, 2 and

f = ρey(x), where ρ is a physical parameter.
4. The modeling of the heat source distribution of the human head (Flesch 1975; Duggan

and Goodman 1986) when α = 2 and f = ρe−ηy(x), η, ρ > 0.

For a detailed literature survey one may refer to Verma et al. (2020b) and the refer-
ences therein. In Ford and Pennline (2009), Pandey (1996), Pandey (1997) and Russell and
Shampine (1975) the existence and uniqueness of the problem is studied. Note that the sin-
gularity behavior at x = 0 is the key difficulty in solving such problems.

As stated, at the initial point x = 0, the problem (1) has a singularity, so it adds com-
plexity in terms of obtaining the closed-form solution. Therefore, several researchers have
developed various analytical and numerical methods over the past decades to look for the
numerical and approximate analytical solution to these problems. Some of the well-known
methods in the literature are the Taylor wavelet method (Gümgüm 2020), Cubic splines
(Kanth and Bhattacharya 2006; Chawla et al. 1988), B-splines (Çağlar et al. 2009), finite
difference method (Chawla and Katti 1985), variational iteration method (VIM) (Kanth and
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Aruna 2010), Adomian decompositionmethod (ADM) (Inç and Evans 2003) and its modified
versions (Kumar et al. 2020; Wazwaz 2011), a combination of VIM and homotopy pertur-
bation method (VIMHPM) (Singh and Verma 2016), Optimal homotopy analysis method
(OHAM) (Singh 2018), a reproducing kernel method (Niu et al. 2018), compact finite dif-
ference method (Roul et al. 2019), fixed-point iterative schemes (Tomar 2021a; Assadi et al.
2018) and nonstandard finite difference schemes (Verma and Kayenat 2018). It should be
noted that the existing analytical methods require more iterations in order to obtain a rel-
atively good precise solution, resulting in very high x powers and a high number of terms
in successive approximate solutions. In addition, a large number of steps are demanded by
the numerical technique to get an acceptable numerical solution to the problems. In com-
parison, to get a highly accurate approximate solution, the proposed methodology needs just
a few iterations, resulting in low power of x and fewer terms in the approximate solutions
obtained. Unlike the perturbation approaches, the suggested iterative approach does not pre-
sume any small parameters in the problems. In addition, to deal with nonlinear terms, the
ADM requires the evaluation of Adomian polynomials, which can be time demanding in
some cases. At the same time, the OHAM’s convergence depends on the optimal parameter.
Therefore, an appropriate methodology must be established that overcomes the limitations
mentioned earlier and offers a precise solution to the problems.

The strength of the work presented is two-fold. First, we construct an integral operator and
derive the variational iteration (VIM) without using the Lagrange multiplier and restricted
variations as required to construct the VIM formula. We then develop an effective algorithm
based on domain decomposition by dividing the interval [0, 1] into uniform division subin-
tervals. The approximate solutions are obtained in each subinterval in terms of unknowns
constants. Then the values of unknown constants are evaluated by assuming the conditions
of continuity of the solution y(x), and its derivative at the end of each subinterval. Then these
imposed continuity conditions produce the system of nonlinear equations. To solve the corre-
sponding nonlinear system of equations, the Newton–Raphson method is then implemented.
The expansion strategy of the Taylor series is used for computational efficiency and to tackle
the strong nonlinear terms such as ey(x). The key advantages of our approach are that it uses
a few iterates to provide a highly precise solution and solves the strong nonlinearity present
in the problem very efficiently. Approximate analytical solutions with minimal polynomials
are generated by the proposed method. Besides, the suggested approach can be easily applied
to large-scale problems as well as parameter-related problems. The method’s convergence is
also discussed in the paper. We consider some numerical test examples to support the appli-
cability and robustness of the method. The numerical findings are compared with existing
approaches to show the efficacy of the procedure. We also illustrate that the scheme applies
to nonlinear singular problems associated with nonlinear boundary conditions.

The draft of this article is structured as follows. The iterative technique for solving the
problems (1)–(3) is derived in Sect. 2. We also discussed the convergence analysis of the
method in Sect. 3. The numerical simulations are provided to explain the work in Sect. 4
and the comparison of the numerical results is tabulated to show the high performance and
superiority of our proposal. Finally, the work is concluded with Sect. 5.

2 The construction of method

In this section, we derive an iterative scheme to solve the considered problem (1) effectively
with boundary conditions (2)–(3).
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For this purpose and simplicity, problem (1) may be written as follows

(xα y′(x))′ = xα f (x, y(x)). (5)

Let us define (5) as follows

	 = (xα y′(x))′ − xα f (x, y(x)) = 0. (6)

Now subtracting and adding (xα y′(x))′ from (6) leads to

(xα y′(x))′ + 	 − (xα y′(x))′ = 0, (7)

and re-write (7) as follows:

(xα y′(x))′ = −	 + (xα y′(x))′. (8)

Now transform (8) into an associated integral representation by integrating (8) from 0 to
x , then we have

y′(x) = 1

xα

∫ x

0
[−	 + (tα y′(t))′]dt . (9)

Integrating (9) from 0 to x again, we get

y(x) = y(0) +
∫ x

0

( 1

tα

∫ t

0
[−	 + (sα y′(s))′]ds

)
dt . (10)

Now we get the following integral form after changing the integration order in (10)

y(x) = y(0) +
∫ x

0

{
K (x, t)

(
(tα y′(t))′ − 	

)}
dt, (11)

where K (x, t) is defined as

K (x, t) =
{

x1−α−t1−α

1−α
, α �= 1,

log( xt ), α = 1.
(12)

Using the following identity
∫ x

0
K (x, t)(tα y′(t))′dt = y(x) − y(0),

after replacing the value of	 from (6), Eq. (11) can be written in the following operator form

y(x) = T [y(x)], (13)

where

T [y(x)] = y(x) −
∫ x

0

{
K (x, t)

(
(tα y′(t))′ − tα f (t, y(t))

)}
dt .

Now Picard’s method for (13) implies

yn+1(x) = T [yn(x)],
or,

yn+1(x) = yn(x) −
∫ x

0

{
K (x, t)

(
(tα y′

n(t))
′ − tα f (t, yn(t))

)}
dt, n ≥ 0. (14)
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Note that, (14) can be written as follows:

yn+1(x) = yn(x) +
∫ x

0

{
K̃ (x, t)

(
y′′
n (t) + α

t
y′
n(t) − f (t, yn(t))

)}
dt, (15)

where

K̃ (x, t) =
{

t−tαx1−α

1−α
, α �= 1,

t log( t
x ), α = 1.

Observe that, (15) corresponds to the VIM (Kanth and Aruna 2010; Ramos 2008), which
has been developed here without using the Lagrange multipliers and constrained variations
that are essential in the usual construction of the standard VIM. Notice that, due to strong
nonlinear terms, the successive iterations of (15) lead to the complex integrals, so that the
resulting integrals can not be evaluated effectively and require a high number of iterates to
get a good accuracy.

To overcome the aforementioned limitations, we introduce an effective algorithm to solve
the problem (1) by dividing the interval [0, 1] into N equally spaced subintervals as 0 =
x0 < x1 < · · · < xN−1 < xN = 1, where h = 1/N , xi = ih, 0 ≤ i ≤ N .

Letting y(xi ) = ci and y′(xi ) = c′
i for 0 ≤ i ≤ (N − 1). Now according to (14), we can

construct the following piecewise scheme on the subintervals [xi , xi+1]. Let yi,n be the nth
order approximate solution of (14) on the subinterval [xi , xi+1], 0 ≤ i ≤ (N − 1).

On the subinterval [x0, x1], the iterative scheme is defined for n ≥ 0 as follows:

y0,n+1(x) = y0,n(x) −
∫ x

x0

{
K (x, t)

(
(tα y′

0,n(t))
′ − tα f (t, y0,n(t))

)}
dt, x0 ≤ x ≤ x1.

(16)

Beginwith the initial value y0,0(x) = c0 for boundary conditions (2) and y0,0(x) = ω+c0x
for boundary conditions (3), we can easily get the nth order approximate solution y0,n(x)
using the iterative formula (16) on the subinterval [x0, x1] in terms of the unknown constant
c0 which will be evaluated further.

On the subinterval [xi , xi+1], 1 ≤ i ≤ (N − 1), the iterative scheme is defined for n ≥ 0
as follows:

yi,n+1(x) = yi,n(x) −
∫ x

xi

{
K (x, t)

(
(tα y′

i,n(t))
′ − tα f (t, yi,n(t))

)}
dt, xi ≤ x ≤ xi+1.

(17)

Starting with the initial guess, which is the solution of the corresponding homogenous
equation on the subinterval [xi , xi+1],

yi,0(x) =
{
ci + x1−α−x1−α

i
1−α

c′
i , α �= 1,

ci + log( x
xi

)c′
i , α = 1,

we can easily get the nth order approximate solution yi,n(x) on the subinterval [xi , xi+1] in
terms of unknowns constants ci and c′

i , 1 ≤ i ≤ (N − 1).
Now, we get the approximate solutions yi,n(x) on the subintervals [xi , xi+1], 0 ≤ i ≤

N − 1 in terms of (2N − 1) unknown constants c0, c1, . . . , cN−1 and c′
1, c

′
2, . . . , c

′
N−1.

Then all these approximate solutions matched together to obtain a continuous solution on the
interval [0, 1] by assuming the continuity of the solution and its derivative at the end points
of the subintervals. Hence, we can construct a continuous solution if yi,n(x) and y′

i,n(x) have
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same values at the grid points. Therefore, the approximate solution of (1) over [0, 1] leads to
the solution of the following nonlinear system of (2N − 1) equations

⎧⎪⎨
⎪⎩
yi−1,n(xi ) = yi,n(xi ), 1 ≤ i ≤ N − 1,

y′
i−1,n(xi ) = y′

i,n(xi ), 1 ≤ i ≤ N − 1,

μyN−1,n(1) + νy′
N−1,n(1) = ψ.

(18)

Now solving (18) using the Newton–Raphson method, the (2N − 1) unknowns coefficients
ci and c′

i can be evaluated. Therefore, by evaluation of unknowns constants c0, c1, . . . , cN−1

and c′
1, c

′
2, . . . , c

′
N−1, an approximate solution to the problem (1) on the entire interval [0, 1]

can be achieved using the scheme (17).
Note that, in some cases, the method (17) leads to very complicated integrals because of

strong nonlinearity terms which are impossible to evaluate. To overcome this limitation, we
use the Taylor series approach around ti to approximate the integrals as follows:

yi,n+1(x) = yi,n(x) −
∫ x

xi
K (x, t)Ti,rdt, xi ≤ x ≤ xi+1, (19)

where

(tα y′
i,n(t))

′ − tα f (t, yi,n(t)) = Ti,r + O(t − ti )
r+1.

The accuracy of the solution, however, depends on the number of terms r , and it is noted
that more terms of Taylor series are needed as the iteration proceeds to achieve an expected
accuracy.
Algorithm:Now,we summarize the basic structure of the proposed algorithm in the following
steps.

1. Discretize the interval [0, 1] into equally spaced subintervals [xi , xi+1], 0 ≤ i ≤ (N − 1)
with x0 = 0 and xN = 1.

2. On each subinterval, obtain the approximate solutions of problem (1) using the pro-
posed iterative formula (19) in terms of unknowns constants c0, c1, . . . , cN−1 and
c′
1, c

′
2, . . . , c

′
N−1.

3. The approximate solutions obtained in step 2 matched together to form a continuous
solution on the interval [0, 1], which leads to a system of nonlinear equations.

4. Solve the system of nonlinear equation obtained in step 3 using Newton–Raphson method
and once the unknowns constants computed, one can get an approximate solution to the
considered problem.

3 Convergence of the proposed scheme

Here, the convergence analysis of proposed method with boundary conditions (2)–(3) is
addressed.

To demonstrate that the iterative sequence of approximate solutions yi,n(x) is convergent,
assume that f (x, y(x)) satisfies the following Lipschitz condition

| f (x, yi,n) − f (x, yi,m)| ≤ θi |yi,n − yi,m |,
and

| f (x, yi (x))| ≤ Fi , (x, yi ) ∈ ([xi , xi+1] × R).
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Now, consider the partial sum

yi,n(x) = yi,0(x) + (yi,1(x) − yi,0(x)) + (yi,2(x) − yi,1(x)) + · · · + (yi,n(x) − yi,n−1(x))(20)

of the series

yi,0(x) +
∞∑
j=0

(yi, j (x) − yi, j−1(x)). (21)

3.1 Convergence of the iterative formula (17)

Now, we will show that the partial sum (20) of the series (21) converges a limit yi (x) as n
approaches to infinity, for x ∈ [xi , xi+1]. After integrating by parts of the first terms in the
integrand of (17), we have

yi,n+1(x) = yi,0(x) +
∫ x

xi

{
tαK (x, t) f (t, yi,n(t))

}
dt, xi ≤ x ≤ xi+1, (22)

where K (x, t) is given by (12) and letting
∣∣tαK (x, t)

∣∣ ≤ κi .

For n = 0, (22) implies the following inequality

|yi,1(x) − yi,0(x)| =
∣∣∣
∫ x

xi

{
tαK (x, t) f (t, yi,1(t))

}
dt

∣∣∣,
≤ κi Fi |x − xi |, (23)

and using the fact that f satisfies Lipschitz condition and (23), we have

|yi,2(x) − yi,1(x)| =
∣∣∣
∫ x

xi

{
tαK (x, t)

(
f (t, yi,1(t)) − f (t, yi,0(t))

)}
dt

∣∣∣,

≤
∫ x

xi

{
|tαK (x, t)|

(
θi |yi,1(x) − yi,0(x)|

)}
dt,

≤ Fiθiκ
2
i
|x − xi |2

2! , (24)

and by following the similar process of (24), we can easily get

|yi,3(x) − yi,2(x)| ≤ Fiθ
2
i κ3

i
|x − xi |3

3! . (25)

Now, using (23), (24) and (25), we get the following estimate using a simple induction

|yi, j (x) − yi, j−1(x)| ≤ Fiθ
j−1
i κ

j
i

|x − xi | j
j ! , x ∈ [xi , xi+1],

≤ Fiθ
j−1
i κ

j
i

|xi+1 − xi | j
j ! ,

≤ Fiθ
j−1
i κ

j
i
N− j

j ! . (26)
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In view of (26), it is easy to see that the series (21) is absolutely convergent on the each
subinterval [xi , xi+1]. Hence, the following infinite series

|yi,0(x)| +
∞∑
j=0

|(yi, j (x) − yi, j−1(x))|,

is uniform convergent on each subinterval [xi , xi+1]. Consequently, it follows that the nth
partial sum of the infinite series (22) tends to yi (x) as n approaches to infinity, for each
x ∈ [xi , xi+1]. This completes the proof.

3.2 Convergence of the iterative formula (19)

Now, by following the above analysis, we will show that the partial sum (20) of the series (21)
converges. In a similar way to (22), we can reduce the iterative formula (19) in the following
form

yi,n+1(x) = yi,0(x) +
∫ x

xi
K (x, t)tαTi,rdt, xi ≤ x ≤ xi+1, (27)

where

f (t, yi,n(t)) = Ti,r + O(t − ti )
r+1.

Let us consider r = pn + q , where p and q are known fixed numbers and using the
fact that Ti,r is the approximation of f (t, yi,n(t)), then we have Ti,r ≤ f (t, yi,n(t)) for
xi ≤ x ≤ xi+1.

For n = 0, (27) gives the following estimate

yi,1(x) = yi,0(x) +
∫ x

xi
K (x, t)tαTi,rdt ≤ yi,0(x) +

∫ x

xi
K (x, t)tα f (t, yi,0(t))dt, (28)

and for n = 1, we have

yi,2(x) = yi,0(x) +
∫ x

xi
K (x, t)tαTi,rdt ≤ yi,0(x) +

∫ x

xi
K (x, t)tα f (t, yi,1(t))dt, (29)

and in a similar way, (27) yields

yi,n(x) = yi,0(x) +
∫ x

xi
K (x, t)tαTi,rdt ≤ yi,0(x) +

∫ x

xi
K (x, t)tα f (t, yi,n−1(t))dt . (30)

Now, in view of (23)–(26) and by following the above analysis, from (28)–(30) we have

|yi,1(x) − yi,0(x)| ≤ κi Fi |x − xi |,

|yi,2(x) − yi,1(x)|Fiθiκ2
i
|x − xi |2

2! ,

and

|yi, j (x) − yi, j−1(x)| ≤ Fiθ
j−1
i κ

j
i
N− j

j ! .

Consequently, from the above analysis, the series (21) is absolutely convergent.
Next, let us define ỹ is the solution obtain by the iterative formula (19), then

ỹi,n+1(x) = yi,0(x) +
∫ x

xi
K (x, t)tαTi,rdt, xi ≤ x ≤ xi+1, (31)
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where

f (t, ỹi,n(t)) = Ti,r + O(t − ti )
r+1.

Now, from (22) and (31), we have

yi,n+1(x) − ỹi,n+1(x) =
∫ x

xi
tαK (x, t)( f (t, yi,1(t)) − Ti,r )dt . (32)

It is easy to see that, as n → ∞, then r → ∞ and consequently Ti,r ≈ f (t, yi,1(t)).
Hence, ỹ ≈ y and this completes the proof.

3.3 Error analysis

Using (22), we obtain

yi,n+1(x) − yi,n(x) =
∫ x

xi

{
tαK (x, t) f (t, yi,n(t)) − f (t, yi,n−1(t))

}
dt . (33)

From the mean-value theorem, we have

f (t, yi,n(t)) − f (t, yi,n−1(t)) = (yi,n − yi,n−1) fyi (ξ), (34)

where ξ lies between yi,n and yi,n−1. Now, letting | fyi (yi (x))| ≤ F̃i and by combining (33)
and (34) yields

|yi,n+1(x) − yi,n(x)| =
∣∣∣
∫ x

xi

{
tαK (x, t)(yi,n − yi,n−1) fyi (ξ)

}
dt

∣∣∣, xi ≤ x ≤ xi+1

≤ κi F̃i |xi+1 − xi ||yi,n − yi,n−1|,
and hence

|yi,n+1 − yi,n | ≤ ψ |yi,n − yi,n−1|, (35)

where ψ = κi F̃i N−1. This shows that there is a linear convergence and a simple induction
yields that

|yi,n+1(x) − yi,n(x)| ≤ ψ |yi,n − yi,n−1| ≤ ψ2|yi,n−1 − yi,n−2| ≤ · · · ≤ ψn |yi,1 − yi,0|.

4 Numerical results

We consider some numerical test cases in this section to demonstrate the applicability of the
proposed methodology. To demonstrate the efficiency of the proposed approach to SBVPs
with nonlinear boundary conditions, we present one numerical example. Maple 18 software
package is used to evaluate the numerical results in this paper.

We define the absolute error

ei,n+1(x) = |yi,n+1(x) − y(x)|, x ∈ [xi , xi+1],
and the maximum absolute error

En+1 = max
i

|yi,n+1(x) − y(x)|, x ∈ [xi , xi+1],
to compare the method’s accuracy, where yn denotes the nth approximate iterative solution
and y is the closed form solution.
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Table 1 Maximum absolute
residual errors of Example 1

Proposed method Maximum absolute error

n = 1, N = 5 4.0 × 10−04

n = 1, N = 10 1.1 × 10−01

n = 2, N = 5 7.4 × 10−07

n = 2, N = 10 5.5 × 10−08

n = 3, N = 5 6.7 × 10−10

n = 3, N = 10 1.2 × 10−11

Example 1 Consider the linear SBVP Tomar (2021a)

(xy′(x))′ = x
(

− y(x) + 5

4
+ x2

16

)
, y′(0) = 0, y(1) = 17

16
. (36)

This problem has the true solution y(x) = 1+ x2
16 . First, we successfully apply the proposed

scheme (17) to get the approximate iterative solution of (36) and the maximum absolute
errors for different iterations are presented in Table 1. From, Table 1, it is clear that as the
number of iterations increases, the absolute error decreases. Also, it is clear that as the value
of N increases for an iterative step, the absolute error decreases.

Next, we solve (36) using the present method (19) with two terms of Taylor’s series and
get the following successive approximation for n = 0 and N = 5:

On the interval [0, 0.2],
y0,1(x) = 1.000000000 + 0.0625000000x2.

On the interval [0.2, 0.4],
y1,1(x) = 1.000000000 + 0.0625000000x2.

On the interval [0.4, 0.6],
y2,1(x) = 1.000000000 + 0.0625000000x2.

On the interval [0.6, 0.8],
y3,1(x) = 1.000000000 + 0.0625000000x2.

On the interval [0.8, 1.0],
y4,1(x) = 1.000000000 + 0.0625000000x2.

Observe that, the approximate solutions yi,1(x), 0 ≤ i ≤ 4 are the analytical solution
y(x) = 1+ 0.0625x2 of the problem. While the maximum absolute error of the VIM Kanth
and Aruna (2010) for y4(x) is 2.0 × 10−08 with 10th degree polynomial. Clearly, we may
say that the present approach is effective. In case, we solve (36) using the present method
(19) with three terms of Taylor’s series and then the maximum absolute error is 4.1× 10−04

for n = 0 and N = 5, however for the next iteration i.e. n = 1 and N = 5, we achieved the
the analytical solution yi,2(x) = 1 + 0.0625x2, 0 ≤ i ≤ 4.

Example 2 Consider the following linear problem Tomar (2021a)

(xα y′(x))′ = γ xα+γ−2y(x)(γ xγ + α + γ − 1), y(0) = 1, y(1) = exp(1). (37)

The analytical solution of this problem is y(x) = exp(xγ ).
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Table 2 Comparison of the maximum absolute errors of Example 2 for proposed method with N = 10 for
α = 0.5 and γ = 4

Proposed method Method in Tomar (2021a) Method in Roul and Warbhe (2016)

n MAEa n MAE n MAE

1 7.0 × 10−05 12 4.9 × 10−04 12 4.8 × 10−03

2 2.5 × 10−07 16 4.1 × 10−05 16 9.3 × 10−04

3 6.4 × 10−10 18 1.1 × 10−05 18 4.1 × 10−04

aMaximum absolute error

Table 3 Comparison of the maximum absolute errors of Example 2 for proposed method with n = 3 for
α = 0.5 and γ = 4

Proposed method Method in Chawla and Katti (1982) Method in Kumar and Aziz (2004)

N MAEa N MAE N MAE

5 6.9 × 10−08 16 1.2 × 10−02 16 2.1 × 10−02

10 6.4 × 10−10 32 3.0 × 10−03 32 5.2 × 10−03

15 3.4 × 10−11 64 7.3 × 10−04 64 1.3 × 10−04

20 4.2 × 10−12 128 1.8 × 10−04 128 3.3 × 10−04

aMaximum absolute error

(a) Forα = 0.5 and γ = 4 (b) Forα = 0.5 and γ = 5

Fig. 1 Graph of absolute error of Example 2 for n = 3 and N = 10

We successfully apply the proposed scheme (17) to get the approximate iterative solution
of (37). Comparisons between the maximum absolute error for α = 0.5 and γ = 4 obtained
by our method and the existing methods Tomar (2021a); Roul and Warbhe (2016); Chawla
and Katti (1982); Kumar and Aziz (2004) are tabulated in Tables 2 and 3. It is clear from
tables that the proposed method with a fewer number of iterations and mesh sizes produces
a better solution than the existing methods. Moreover, for α = 2 and γ = 5, the maximum
absolute error for the proposed method is 2.3×10−04 for n = 1 and N = 10 using 20 degree
polynomials. Clearly, we may say that the obtained results are sufficiently accurate. Further,
we plot absolute errors of (37) obtained using the presented method with various values of α

and γ for n = 3 and N = 10 in Figs. 1 and 2, which confirm the effectiveness of the method.
It is clear that as the number of iterations progresses the absolute error decreases rapidly.
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(a) Forα = 2 and γ = 2 (b) Forα = 2 and γ = 3

Fig. 2 Graph of the absolute errors of Example 2 for n = 3 and N = 10

Table 4 Comparison of absolute maximum errors for example 3

Scheme Maximum absolute error

Present scheme 8.1 × 10−12

Scheme in Ramos and Singh (2021) 3.0 × 10−11

Scheme in Gümgüm (2020) 6.5 × 10−06

Scheme in Kumar et al. (2020) 1.6 × 10−05

Scheme in Singh and Verma (2016) 1.2 × 10−04

Scheme in Kanth and Aruna (2010) 3.9 × 10−04

Example 3 Consider the following nonlinear SBVP Gümgüm (2020), which arises in the
field of equilibrium of isothermal gas sphere

(x2y′(x))′ + x2y5(x) = 0, y′(0) = 0, y(1) =
√
3

4
. (38)

This problem has analytical solution y(x) =
√

3
3+x2

. Using the proposed approach (19) for

n = 3, N = 8 and r = (n + 6) with 11th degree polynomial, we solved the problem (38)
and the maximum absolute error obtained by our method is presented in Table 4 along with
those obtained by existing methods such as an optimised global hybrid block method Ramos
and Singh (2021) with M = 8, Taylor wavelet method Gümgüm (2020) using M = 9 and
8th order polynomial, VIMHPM Singh and Verma (2016) with 14 iterations and 28th degree
polynomial, and 15th degree polynomial, VIMKanth and Aruna (2010) with 4 iterations and
42nd degree polynomial and the ADMKumar et al. (2020) with 16 terms. From Table 4, it is
clear that the present approach provides far better results than the preexisting methods using
a few iterations. Note that, using a lower degree polynomial, the proposed method provides
an accurate approximate solution, and hence we may say that the proposed method is an
effective and highly promising. In addition, in Fig. 3, the graphs of the absolute error and
the obtained solution for n = 3 and N = 10 are represented. Further, the maximum absolute
error and computation run times in seconds are tabulated in Table 5 for the proposed method
using n = 3 along with other existing methods. Numerical results given in Tables 4 and 5,
display a good performance of the proposed scheme.
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(a) absolute error (b) approximate solution

Fig. 3 Graphs of Example 3 for n = 3 and N = 10

Table 5 Comparison for Example 3

Present scheme Scheme
Kanth and Aruna
(2010)

Scheme
Singh and Verma
(2016)

N = 4 N = 8 N = 16 n = 5 n = 17

MAEa 5.3 × 10−10 8.1 × 10−12 4.4 × 10−14 3.7 × 10−07 4.0 × 10−06

CPU time 1.28 1.92 3.69 171.23 10.93

aMaximum absolute error

Table 6 Comparison of absolute maximum errors for example 4

Scheme Maximum absolute error

Present scheme 4.0 × 10−10

Scheme in Çağlar et al. (2009) 1.5 × 10−06

Scheme in Khuri and Sayfy (2010) 2.0 × 10−06

Scheme in Singh and Verma (2016) 7.0 × 10−05

Example 4 Consider the following nonlinear SBVP Tomar (2021a), which arises in the field
of thermal explosion in cylindrical vessel

(xy′(x))′ + xey(x) = 0, y′(0) = 0, y(1) = 0. (39)

The problem (39) has analytical solution y(x) = 2 ln
(

v+1
vx2+1

)
, where v = 3 − 2

√
2. The

maximum absolute error for n = 2, N = 10 and r = 2n produced by our scheme is tabulated
in Table 6 along with the maximum absolute errors obtained by preexisting methods such
as B-spline method Çağlar et al. (2009) with N = 20 mesh size and VIMHPM Singh and
Verma (2016) with 8 iterations, which confirms the accuracy and superiority of the present
approach over the existing methods. The absolute error and the obtained solution are also
plotted in Fig. 4.

Example 5 Consider the following nonlinear SBVPSingh andVerma (2016),which describes
the thermal distribution profile in the human head

(x2y′(x))′ + x2 exp(−y(x)) = 0, y′(0) = 0, μy(1) + νy′(1) = 0. (40)
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(a) absolute error (b) approximate solution

Fig. 4 Graphs of Example 4 for n = 2 and N = 10

Table 7 Comparison of the approximate solutions of Example 5 for μ = 0.1, ν = 1

x Present method Method in Roul et al. (2019) Method in Kumar et al. (2020)

0 1.14703901932 1.1470390226 1.147039013

0.1 1.14650964240 1.1465096273 1.1465096423

0.2 1.14492050208 1.1449204869 1.1449205020

0.3 1.14226856356 1.1422685484 1.1422685635

0.4 1.13854874836 1.1385487331 1.1385487483

0.5 1.13375390332 1.1337538881 1.1337539033

0.6 1.12787475670 1.1278747414 1.1278747566

0.7 1.12089986072 1.1208998454 1.1208998607

0.8 1.11281551986 1.1128155045 1.1128155198

0.9 1.10360570399 1.1036056885 1.1036057039

1.0 1.09325194510 1.0932519296 1.0932519450

The analytical solution to this problem is unknown. We successfully solve (40) using the
proposed method with n = 3, N = 10 and r = 4n, to obtain the approximate iterative
solution of (40) for various values of μ and ν. The numerical results obtained using our
method are tabulated in Table 7 for μ = 0.1, ν = 1 along with compact finite difference
method (CFDM) Roul et al. (2019) with mesh size 20 and ADMKumar et al. (2020) with 14
terms. From tables, note that the obtained results of our method are matching with the results
of the existing methods. Since the closed-form solution of the problem (40) is not known,
then we consider the residual error

Rn+1(x) = (x2y′
n+1(x))

′ + x2 exp(−yn+1(x)),

to reveal the efficiency of the method. In Figs. 5 and 6, we depicted the approximate solutions
for different values of μ and ν to exhibit the accuracy of the method. From these figures, it
is clear that for a fixed ν, the solution profile is decreasing if μ is increasing, and for a fixed
μ, the solution profile is increasing if ν is increasing. Moreover, the solution profile remains
unchanged if μ and ν simultaneously decreasing or increasing. Therefore, the proposed
method is capable of proper study of the behavior of the problem. It is worth to point out that
the proposed approach solves the problem efficiently for different values of μ and ν as the
maximum absolute residual error demonstrated in Table 8 while VIMHPM Singh and Verma
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(a) Forμ = 0.01, ν = 1 (b) Forμ = 0.1, ν = 1

(c) For μ = 1, ν = 1 (d) For μ = 2, ν = 1

Fig. 5 Graph of the approximate solutions of Example 5 n = 3 and N = 10

(a) For μ = 1, ν = 0.01 (b) For μ = 1, ν = 5

(c) For μ = 0.1, ν = 0.1 (d) For μ = 10, ν = 10

Fig. 6 Graph of the approximate solutions of Example 5 n = 3 and N = 10

(2016) failed for μ = 0.1 and ν = 1 because the obtained maximum absolute residual error
of Singh and Verma (2016) is 1.1 × 108.
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Table 8 Maximum absolute
residual errors of Example 5
n = 3 and N = 10

Proposed method Maximum absolute residual error

μ = 0.01, ν = 1.0 4.4 × 10−14

μ = 0.1, ν = 1.0 1.5 × 10−11

μ = 1.0, ν = 1.0 4.5 × 10−10

μ = 2.0, ν = 1.0 6.9 × 10−10

μ = 1.0, ν = 0.01 1.1 × 10−09

μ = 1.0, ν = 5.0 5.9 × 10−11

Table 9 Comparison of the
approximate solutions for
Example 6

x Present method Method in
Kanth and Aruna
(2010)

Method in
Singh and Verma
(2016)

0 0.9541353070 0.9521484320 0.954135

0.1 0.9545887287 0.9526317299 0.954589

0.2 0.9559496450 0.9540810481 0.95595

0.3 0.9582200047 0.9564946588 0.95822

0.4 0.9614030361 0.9598696779 0.961403

0.5 0.9655032192 0.9642020584 0.965503

0.6 0.9705262457 0.9694865814 0.970526

0.7 0.9764789698 0.9757168446 0.976479

0.8 0.9833693488 0.9828852488 0.983369

0.9 0.9912063751 0.9909829814 0.991206

1.0 1.0000000000 1.0000000000 1.000000

Example 6 Consider the following nonlinear SBVP Singh and Verma (2016) that arises from
a rotationally symmetrical, shallow membrane cap study

(x3y′(x))′ + x3
( 1

8y2(x)
− 1

2

)
= 0, y′(0) = 0, y(1) = 1. (41)

The true solution to this problem is unknown. To obtain the approximate solution of (41), we
successfully implemented the scheme for n = 3, N = 10 and r = 3n. The numerical results
obtained using our scheme are tabulated in Table 9 along with preexisting methods such
as VIM Kanth and Aruna (2010) with 3 iterations and VIMHPM Singh and Verma (2016)
with 6 iterations. Since the closed-form solution of the problem (41) is not known, then we
consider the residual error

Rn+1(x) = (x3y′
n+1(x))

′ + x3
( 1

8y2n+1(x)
− 1

2

)
,

to check the efficiency of the method. The approximate solution for n = 3 and N = 10
is plotted in Fig. 7 and the obtained maximum absolute residual error is 4.5 × 10−16, that
confirms the method’s effectiveness.
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Fig. 7 Graph of the approximate solution for Example 6

Fig. 8 Graph of the approximate solution for Example 7

Example 7 Consider the following singular diffusion problem with nonlinear boundary con-
dition given in Garner and Shivaji (1990)

(x2y′(x))′ = βx2y(x)

y(x) + k
, β, k > 0,

y′(0) = 0, y(1) = 1 − y′(1)
β2

+ β0

β2(1 + k0)
− β1y(1)

β2(y(1) + k1)
, (42)

where β, k > 0 and this problem models the oxygen diffusion in a spherical cell with
Michaelis–Menten oxygen uptake.

The analytical solution to this problem is unknown. We solve problem (42) using the
proposed iterative scheme for n = 3, N = 10 and r = 3n with β = β0 = β1 = k = k0 =
k1 = β2 = 2. Since the closed-form solution of the problem (42) is not known, then we
consider the residual error

Rn+1(x) = (x2y′
n+1(x))

′ − βx2yn+1(x)

yn+1(x) + k
.

The graph of the approximate solution is depicted in Fig. 8 and the obtained maximum
absolute residual error is 7.4× 10−15, which confirms the efficiency and effectiveness of the
method.
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5 Conclusion

In this work, we introduced an effective technique for solving linear and nonlinear singular
boundary value problems with two types of boundary conditions arising in many scientific
phenomena. In the proposed algorithm, we first discretize the domain [0, 1] into a finite
number of equally spaced subintervals and then implement the introduced iterative formula
to solve the problems in each subinterval. The proposed technique produces a highly accurate
and very reliable solution to the problems in a few iterates, as demonstrated by numerical
results. The method produces an accurate approximate solution of highly nonlinear problems
and the numerical results showa good performance of the proposedmethod. The effectiveness
and robustness have been justified by seven numerical examples, and the obtained results have
been compared with the pre-existing methods to demonstrate the superiority of the method.
It is clear from numerical simulations that the technique is very useful to study the behavior
of problems with parameters and fast convergence of the iterative solutions can be observed
as iteration proceeds. Therefore, the present method is a highly promising tool for solving
different types of singular problems with strong nonlinearity. Further, the proposed technique
has the capability to solve the nonlinear problems with nonlinear boundary conditions which
has been illustrated by a numerical example.
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