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Abstract
In this paper, we investigate strong convergence of the iterative algorithm for solving the
proximal split feasibility problem in real Hilbert spaces. The algorithm is motivated by the
inertial method, the viscosity-type method and the split proximal algorithm with a self-
adaptive stepsize. A strong convergence theorem for the proposed algorithm is established
without requiring firm-nonexpasiveness of the involved operators. An application of our
obtained results is offered. Finally, some numerical experiments are provided for illustration
and comparison.

Keywords Proximal split feasibility problem · Viscosity-type method ·
Non-expansiveness · Strong convergence

Mathematics Subject Classification 47J20 · 49J40 · 35A15 · 47J25

1 Introduction

It is well known that the split feasibility problem (SFP) plays a key role in signal processing
Byrne (2004) and medical image reconstruction Byrne (2002). Therefore, many numerical
algorithms have been developed to solve the SFP; see Byrne (2004, 2002); Censor et al.
(2005); Dong et al. (2020); López et al. (2012); Reich et al. (2020); Sahu et al. (2020) and
the references therein.

The original model of the SFP was considered by Censor and Elfving Censor and Elfv-
ing (1994) for modeling inverse problems, and a classical method for solving the SFP is
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Byrne’s CQ algorithm Byrne (2004, 2002). It is easily shown that the SFP can be got from
the proximal split feasibility problem (SFP) which is a generalization of proximal split
minimization problems in Moudafi and Thakur (2014). For the proximal SFP , there are
numerous iteratively algorithms for the study of its convergence properties; see Abbas et al.
(2018); Moudafi and Thakur (2014); Shehu and Iyiola (2017, ?, 2018); Wang and Xu (2014);
Shehu and Iyiola (2018) and references therein. To be specific, Moudafi and Thakur Moudafi
and Thakur (2014) discussed its weak convergence by introducing a split proximal algorithm
in which the self-adaptive stepsize was not determined by an Armijo-like rule Dong et al.
(2018); Gibali et al. (2018); Qu and Xiu (2005); Shehu and Gibali (2020). This rule often
results in additional computation costs. Based on the inertial idea (which is viewed as a pro-
cedure of speeding up the convergence properties; see Kesornprom and Cholamjiak (2019);
Sahu et al. (2020); Suantai et al. (2018); Shehu et al. (2020); Iyiola et al. (2018)), Shehu et al.
Shehu and Iyiola (2017) used the inertial technique to modify Moudafi et al.’s algotithm and
obtained the weak convergence in real Hilbert spaces. To obtain its strong convergence, var-
ious related algorithms have been proposed in recent years. For instance, Abbas et al. Abbas
et al. (2018) presented two divergent one-step methods; Shehu et al. Shehu and Iyiola (2017,
2018) combined Mann-type, accelerated hybrid viscosity, and steepest-descent methods to
ensure it; Wang and Xu (2014) proposed the proximal gradient method. However, the study
of strong convergence of the algorithm Shehu and Iyiola (2017) with new inertial effects has
yet to be founded. We also observe that Shehu et al.’s algorithm Shehu and Iyiola (2017)
does not require the estimation of the operator norm, but the convergence of their algorithm
requires firm-nonexpasiveness of the involved operators. These observations bring us the
following concern:

Question: Can we prove a strong convergence result for the proximal SFP employing
a new modification of the inertial split proximal algorithm Shehu and Iyiola (2017) under
weaker conditions than firm-nonexpasiveness of the involved operators?

Inspired and motivated by the works in Moudafi (2000); Shehu and Iyiola (2017), in
this paper, we propose an iterative algorithm for solving the proximal SFP . The algo-
rithm consists of the inertial method, the viscosity-type algorithm, and the split proximal
algorithm with a self-adaptive stepsize. The strong convergence of the offered algorithm is
established but without firm-nonexpasiveness of the mappings involved. We also provide an
application of our main results for solving the split feasibility problems in Hilbert spaces.
Finally, three numerical examples are listed for illustrating the effectiveness of the proposed
algorithm.

The paper is arranged as follows. In Sect. 2, some basic concepts and lemmas used in
subsequent sections are proposed. The main results are presented in Sect. 3. Numerical
experiments are provided in Sect. 4. We give some conclusions in the final section.

2 Preliminaries

The symbol ⇀ stands for the weak convergence, the symbol → represents the strong con-
vergence. Let H1 and H2 be real Hilbert spaces. For a proper lower semi-continuous convex
(lsc) function F : H1 →]−∞,∞], its domain is denoted by domF , i.e., domF := {x ∈
H1 : F(x) < ∞}. The proximal operator proxτG : H2 → H2 is defined by

proxτG (x) := argmin
y∈H2

{
G (y) + 1

2τ
‖x − y‖2

}
,
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where τ > 0 and G : H2 → R∪ {+∞} is a proper, convex, and lower semi-continuous (lsc)
function.

In view of Combettes and Hirstoaga (2005), the proximal mapping proxτG is firmly
nonexpansive, that is

‖proxτG(x) − proxτG (y) ‖2 ≤ ‖x − y‖2
− ‖ (

x − proxτG(x)
) − (

y − proxτG(y)
) ‖2, ∀ x, y ∈ H2,

and its fixed point set is the set of minimizers of G. Let C be a nonempty closed and convex
subset of H1, and then, the orthogonal projection of x onto C is defined by

PCx := argmin {‖x − y‖ | y ∈ C} , ∀ x ∈ H1.

Definition 2.1 Let h : H1 → H1 be a mapping, and then

(i) h is called nonexpansive if

‖hx − hy‖ ≤ ‖x − y‖, ∀ x, y ∈ H1.

(ii) h is said to be firmly nonexpansive if

〈hx − hy, x − y〉 ≥ ‖hx − hy‖2, ∀ x, y ∈ H1.

(iii) Let D ⊂ H1 be a set and let h : D → R∪{+∞} be named weak lower semi-continuity
if xn⇀x , the following statement holds:

lim inf
n→∞ h(xn) ≥ h(x).

Lemma 2.1 Let ν ∈ ]0, 1[, for all x, y, z ∈ H1, and then

(i) ‖νx + (1 − ν)y‖2 = ν‖x‖2 + (1 − ν)‖y‖2 − ν(1 − ν)‖x − y‖2;
(ii) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉;
(iii) 〈x − y, x − z〉 = 1

2‖x − y‖2 + 1
2‖x − z‖2 − 1

2‖y − z‖2.

Lemma 2.2 Goebel and Reich (1984) Let C ⊂ H1 be a nonempty closed convex set and let
PC be the metric projection from H1 to C. Then, the following statements hold:

(i) 〈x − PCx, y − PCx〉 ≤ 0 f or all x ∈ H1 and y ∈ C;
(ii) ‖PCx − PC y‖ ≤ ‖x − y‖ f or all x, y ∈ H1.

Lemma 2.3 Saejung and Yotkaew (2012) Suppose that {sn}∞n=1 is a sequence of nonnegative
real numbers, such that

sn+1 ≤ (1 − αn)sn + αnδn, ∀ n ≥ 1,

where

(i) {αn}∞n=1 ⊂ ]0, 1[ and
∞∑
n=1

αn = ∞,

(ii) if lim sup
k→∞

δnk ≤ 0 for every subsequence {snk } of {sn} fulfilling lim inf
k→∞ ‖snk+1−snk‖ ≥ 0.

Then, lim
n→∞ sn = 0.
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3 Strong convergence

In this section, we first let H1 and H2 be real Hilbert spaces and A : H1 → H2 be a bounded
linear operator with its adjoint A∗, F : H1 → R ∪ {+∞} and G : H2 → R ∪ {+∞} be
proper, convex, and lower semi-continuous (lsc) functions. Now, we consider the following
proximal SFP:

Find a solution z∗ ∈ H1 such that min {F(x) + Gτ (Ax) : x ∈ H1} ,

where τ > 0 and Gτ (x) := min
y∈H2

{
G (y) + 1

2τ ‖y − x‖2} can be regarded as the Moreau–

Yosida approximate of the function G of parameter τ . If such point exists, then its solutions
set is denoted by Γ . Similar as in Abbas et al. (2018); Shehu and Iyiola (2017), we also offer
the following definitions used for the rest of the paper.

Given any τ > 0 and x ∈ H1, we define

E(x) = 1
2‖(I − proxτG)Ax‖2;

L(x) = 1
2‖(I − proxτ F )x‖2 and

θ(x) = √‖∇E(x) + ∇L(x)‖2.
Then, the Lipschitz gradients ∇E and ∇L of E and L , respectively, are

∇E(x) = A∗(I − proxτG)Ax and
∇L(x) = (I − proxτ F )x,

whose Lipschitz constants are ‖A‖2 and 1, respectively. Before describing our algorithm, the
following conditions are required in convergence analysis.

(A1) The solution set of the proximal SFP is nonempty, that is, Γ �= ∅.

(A2) Let {τ̃n} ⊂ [0, θ̃ [ with θ̃ > 0 be a positive sequence, such that τ̃n = o(γn), i.e.,

lim
n→∞

τ̃n
γn

= 0 where the sequence {γn} ⊂ ]0, 1[ fulfills
∞∑
n=1

γn = ∞ and lim
n→∞ γn = 0.

(A3) The mapping f : H1 → H1 is ρ̃- contractive with constant ρ̃ ∈ [0, 1[ .
(A4) inf κn(2 − κn) > 0.

Below, our iterative scheme is stated in Algorithm 1.

Algorithm 1
Step 0. Take x0, x1 ∈ H1 and 0 < κn < 2. Choose a sequence {σn} ⊂ [0, σ [ ⊂ [0, 1[ and 0 < γn < 1.
Step 1. Given xn−1, xn (n ≥ 1) and compute

wn = xn + σn
(
xn − xn−1

)
, yn = wn − λn(∇E(wn) + ∇L(wn)),

xn+1 = γn f (xn) + (1 − γn)yn ,
(3.1)

where the stepsize λn is updated via

λn = κn
E(wn) + L(wn)

θ(wn)2
, (3.2)

where θ(wn) =
√

‖∇E(wn) + ∇L(wn)‖2.
Step 2. If ∇E(wn) = ∇L(wn) = 0 and wn = xn , then stop, xn is a solution of the proximal SFP .

Otherwise, set n := n + 1 and return to Step 1.
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Remark 3.1 In Algorithm 1, if Γ �= ∅ and ∇E(wn) = ∇L(wn) = 0 and wn = xn , then
xn ∈ Γ .

Proof Since if A∗(I − proxτG)Awn = (I − proxτ F )wn = 0, then this shows that wn ∈ Γ .

Additionally, A∗(I − proxτG)Awn = (I − proxτ F )wn = 0 yields from (3.1) of Algorithm
1 that yn = wn . This, together with wn = xn , implies that yn = xn ∈ Γ . Thus, xn ∈ Γ . ��

Remark 3.2 In Algorithm 1, the inertial parameter σn is chosen as

σn =
{
min

{
τ̃n‖xn−xn−1‖ , σ

}
if xn �= xn−1,

σ, otherwise.
(3.3)

In what follows, the proof of the following lemma and main theorem does not involve firm-
nonexpasiveness of the operator I − proxτ(·).

Theorem 3.1 Suppose that Conditions (A1) − (A4) hold. The sequence {xn} generated by
Algorithm 1 converges strongly to a point z ∈ Γ , where z = PΓ of (z).

Proof Let z ∈ Γ . Since proxτ(·) is nonexpansive, z solves the proximal SFP due to mini-
mizers of any function are exactly fixed points of its proximal mapping, and furthermore, by
Lemma 2.1 (iii), we derive

〈wn − z,−∇E(wn)〉
= 〈wn − z, A∗(proxτG − I )Awn〉
= 〈Awn − Az, (proxτG − I )Awn〉
= 〈Awn − proxτG Awn + proxτG Awn − Az, (proxτG − I )Awn〉
= 〈proxτG Awn − Az, proxτG Awn − Awn〉 − ‖proxτG Awn − Awn‖2

= 1

2

(‖proxτG Awn − Az‖2 + ‖proxτG Awn − Awn‖2 − ‖Awn − Az‖2)
−‖proxτG Awn − Awn‖2

≤ −1

2
‖proxτG Awn − Awn‖2

= −E(wn),

and

〈wn − z,−∇L(wn)〉 = 〈wn − z, (proxτ F − I )wn〉
= 〈wn − proxτ Fwn + proxτ Fwn − z, (proxτ F − I )wn〉
= 〈proxτ Fwn − z, proxτ Fwn − wn〉 − ‖proxτ Fwn − wn‖2

= 1

2

(‖proxτ Fwn − z‖2 + ‖proxτ Fwn − wn‖2 − ‖wn − z‖2)
−‖proxτ Fwn − wn‖2

≤ −1

2
‖proxτ Fwn − wn‖2

= −L(wn);
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combining with (3.1) and (3.2) yields that

‖yn − z‖2 = ‖wn − λn (∇E(wn) + ∇L(wn)) − z‖2
= ‖wn − z‖2 + λ2n‖∇E(wn) + ∇L(wn)‖2

+2λn〈wn − z,−(∇E(wn) + ∇L(wn))〉
= ‖wn − z‖2 + λ2n‖∇E(wn) + ∇L(wn)‖2

+2λn〈wn − z,−∇E(wn)〉 + 2λn〈wn − z,−∇L(wn)〉
≤ ‖wn − z‖2 + λ2n‖∇E(wn) + ∇L(wn)‖2 − 2λn(E(wn) + L(wn))

= ‖wn − z‖2 + κ2
n

(E(wn) + L(wn))
2

‖∇E(wn) + ∇L(wn)‖4 (‖∇E(wn) + ∇L(wn)‖2)

−2κn
(E(wn) + L(wn))

2

‖∇E(wn) + ∇L(wn)‖2

= ‖wn − z‖2 + κn(κn − 2)
(E(wn) + L(wn))

2

‖∇E(wn) + ∇L(wn)‖2 . (3.4)

After arrangement, we have

‖yn − z‖2 ≤ ‖wn − z‖2 + κn(κn − 2)
(E(wn) + L(wn))

2

‖∇E(wn) + ∇L(wn)‖2 . (3.5)

From (A4) and (3.5), we have

‖yn − z‖ ≤ ‖wn − z‖. (3.6)

By the definition of wn , we get

‖wn − z‖ = ‖xn + σn(xn − xn−1) − z‖
≤ ‖xn − z‖ + σn‖xn − xn−1‖
= ‖xn − z‖ + γn · σn

γn
‖xn − xn−1‖. (3.7)

According to (3.3), we have σn‖xn − xn−1‖ ≤ τ̃n ∀n ≥ 1, which, together with lim
n→∞

τ̃n
γn

= 0,

yields that

lim
n→∞

σn

γn
‖xn − xn−1‖ ≤ lim

n→∞
τ̃n

γn
= 0.

Therefore, there is a constant M1 > 0, such that

σn

γn
‖xn − xn−1‖ ≤ M1, ∀n ≥ 1,

which, along with (3.6) and (3.7), yields that

‖yn − z‖ ≤ ‖wn − z‖ ≤ ‖xn − z‖ + γnM1. (3.8)
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From (3.1) and (3.8), it follows that:

‖xn+1 − z‖ = ‖γn f (xn) + (1 − γn)yn − z‖
= ‖γn( f (xn) − z) + (1 − γn)(yn − z)‖
≤ γn‖ f (xn) − z‖ + (1 − γn)‖yn − z‖
= γn‖ f (xn) − f (z) + f (z) − z‖ + (1 − γn)‖yn − z‖
≤ γn ρ̃‖xn − z‖ + γn‖ f (z) − z‖ + (1 − γn)‖yn − z‖
≤ γn ρ̃‖xn − z‖ + (1 − γn)(‖xn − z‖ + γnM1‖) + γn‖ f (z) − z‖
≤ (1 − γn (1 − ρ̃)) ‖xn − z‖ + γn(1 − ρ̃)

‖ f (z) − z‖ + M1

1 − ρ̃

≤ max

{
‖xn − z‖, M1 + ‖ f (z) − z‖

1 − ρ̃

}

≤ · · · ≤ max

{
‖x1 − z‖, M1 + ‖ f (z) − z‖

1 − ρ̃

}
.

This means that the sequence {xn} is bounded. Hence, the sequences {yn}, { f (xn)} and {wn}
are also bounded.
By (3.1) and the convexity of ‖ · ‖2, we get that

‖xn+1 − z‖2 = ‖γn f (xn) + (1 − γn)yn − z‖2
= ‖γn( f (xn) − z) + (1 − γn)(yn − z)‖2
≤ γn‖ f (xn) − z‖2 + (1 − γn)‖yn − z‖2
≤ γn(‖ f (xn) − f (z)‖ + ‖ f (z) − z‖)2 + (1 − γn)‖yn − z‖2
≤ γn(ρ̃‖xn − z‖ + ‖ f (z) − z‖)2 + (1 − γn)‖yn − z‖2
≤ γn(‖xn − z‖ + ‖ f (z) − z‖)2 + (1 − γn)‖yn − z‖2
= γn‖xn − z‖2 + γn

(‖ f (z) − z‖2 + 2‖xn − z‖‖ f (z) − z‖)
+(1 − γn)‖yn − z‖2

≤ γn‖xn − z‖2 + (1 − γn)‖yn − z‖2 + γnM2;
for some M2 > 0. Combining with (3.5), we derive that

‖xn+1 − z‖2 ≤ γn‖xn − z‖2 + (1 − γn)‖wn − z‖2

+(1 − γn)κn(κn − 2)
(E(wn) + L(wn))

2

‖∇E(wn) + ∇L(wn)‖2 + γnM2. (3.9)

Substituting (3.8) into (3.9), then there exists M3 > 0, such that

‖xn+1 − z‖2 ≤ γn‖xn − z‖2 + (1 − γn)(‖xn − z‖ + γnM1)
2

+(1 − γn)κn(κn − 2)
(E(wn) + L(wn))

2

‖∇E(wn) + ∇L(wn)‖2 + γnM2

= γn‖xn − z‖2 + (1 − γn)‖xn − z‖2 + (1 − γn)(γnM1)
2

+2(1 − γn)γnM1‖xn − z‖ + (1 − γn)κn(κn − 2)

× (E(wn) + L(wn))
2

‖∇E(wn) + ∇L(wn)‖2 + γnM2

≤ ‖xn − z‖2 + (1 − γn)κn(κn − 2)
(E(wn) + L(wn))

2

‖∇E(wn) + ∇L(wn)‖2 + γnM3.
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That is

(1 − γn)κn(2 − κn)
(E(wn) + L(wn))

2

‖∇E(wn) + ∇L(wn)‖2 ≤ ‖xn − z‖2 − ‖xn+1 − z‖2 + γnM3.

(3.10)

By Lemma 2.1 (i, ii) and (3.8), we derive that

‖xn+1 − z‖2 = ‖γn f (xn) + (1 − γn)yn − z‖2
= ‖γn( f (xn) − f (z)) + (1 − γn)(yn − z) + γn( f (z) − z)‖2
≤ ‖γn( f (xn) − f (z)) + (1 − γn)(yn − z)‖2 + 2γn〈 f (z) − z, xn+1 − z〉
≤ γn‖ f (xn) − f (z)‖2 + (1 − γn)‖yn − z‖2 + 2γn〈 f (z) − z, xn+1 − z〉
≤ γn ρ̃

2‖xn − z‖2 + (1 − γn)‖yn − z‖2 + 2γn〈 f (z) − z, xn+1 − z〉
≤ γn ρ̃‖xn − z‖2 + (1 − γn)‖wn − z‖2 + 2γn〈 f (z) − z, xn+1 − z〉. (3.11)

From the definition of wn , it follows that:

‖wn − z‖2 = ‖xn + σn(xn − xn−1) − z‖2
= ‖xn − z‖2 + σ 2

n ‖xn − xn−1‖2 + 2σn〈xn − z, xn − xn−1〉
≤ ‖xn − z‖2 + σ 2

n ‖xn − xn−1‖2 + 2σn‖xn − z‖‖xn − xn−1‖. (3.12)

Let M = sup
n≥1

{σ‖xn − xn−1‖, 2‖xn − z‖}. Combining (3.11) and (3.12), we obtain that

‖xn+1 − z‖2 ≤ (1 − γn (1 − ρ̃)) ‖xn − z‖2 + σ 2
n ‖xn − xn−1‖2

+2γn〈 f (z) − z, xn+1 − z〉 + 2σn‖xn − z‖‖xn − xn−1‖
= (1 − γn (1 − ρ̃)) ‖xn − z‖2 + (1 − ρ̃) 2

1−ρ̃
γn〈 f (z) − z, xn+1 − z〉

+σn‖xn − xn−1‖(σn‖xn − xn−1‖ + 2‖xn − z‖)
≤ (1 − γn(1 − ρ̃))‖xn − z‖2 + (1 − ρ̃) 2

1−ρ̃
γn〈 f (z) − z, xn+1 − z〉

+2Mσn‖xn − xn−1‖
= (1 − γn(1 − ρ̃))‖xn − z‖2

+(1 − ρ̃)γn

(
2

1−ρ̃
〈 f (z) − z, xn+1 − z〉 + 2Mσn

(1−ρ̃)γn
‖xn − xn−1‖

)
.

After arrangement, there exists M > 0, such that

‖xn+1 − z‖2 ≤ (1 − (1 − ρ̃)γn)‖xn − z‖2
+ (1 − ρ̃)γn

(
2

1−ρ̃
〈 f (z) − z, xn+1 − z〉 + 2Mσn

(1−ρ̃)γn
‖xn − xn−1‖

)
.

(3.13)

Next, we let

sn = ‖xn − z‖2,
αn = (1 − ρ̃)γn,

δn = 2
1−ρ̃

〈 f (z) − z, xn+1 − z〉 + 2Mσn
(1−ρ̃)γn

‖xn − xn−1‖.
Then, (3.13) reduces to the following inequality:

sn+1 ≤ (1 − αn)sn + αnδn, ∀ n ≥ 1.

Clearly, Lemma 2.3 (i) is satisfied. Now, it needs to verify that Lemma 2.3 (ii) is also satisfied.
Suppose that {‖xnk −z‖} is the subsequence of {‖xn −z‖} and satisfies lim infk→∞(‖xnk+1−
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z‖ − ‖xnk − z‖) ≥ 0. Then

lim inf
k→∞ (‖xnk+1 − z‖2 − ‖xnk − z‖2)

= lim inf
k→∞

((‖xnk+1 − z‖ − ‖xnk − z‖) (‖xnk+1 − z‖ + ‖xnk − z‖)) ≥ 0.

(3.14)

By lim
k→∞γnk = 0, (3.10) and (3.14), one has

lim sup
k→∞

(1 − γnk )κnk (2 − κnk )
(E(wnk )+L(wnk ))2

‖∇E(wnk )+∇L(wnk )‖2
≤ lim sup

k→∞
(‖xnk+1 − z‖2 − ‖xnk − z‖2 + γnk M3)

≤ lim sup
k→∞

(‖xnk+1 − z‖2 − ‖xnk − z‖2) + lim sup
k→∞

γnk M3

= −lim inf
k→∞ (‖xnk+1 − z‖2 − ‖xnk − z‖2) ≤ 0.

Now, we have

lim
k→∞

(
κnk (2 − κnk )

(E(wnk ) + L(wnk ))
2

‖∇E(wnk ) + ∇L(wnk )‖2
)

= 0.

Thus, we get

lim
k→∞

(E(wnk ) + L(wnk ))
2

‖∇E(wnk ) + ∇L(wnk )‖2
= 0.

As a result, we have

lim
k→∞(E(wnk ) + L(wnk )) = 0 ⇔ lim

k→∞E(wnk ) = 0 and lim
k→∞L(wnk ) = 0. (3.15)

Since θ2nk = ‖∇E(wnk ) + ∇L(wnk )‖2 is bounded. This follows from the fact that ∇E is
Lipschitz continuous with constant ‖A‖2, ∇L is nonexpansive and {wnk } is bounded. More
precisely, for any z∗ which solves the proximal SFP , we have

‖∇E(wnk )‖ = ‖∇E(wnk ) − ∇E(z∗)‖ ≤ ‖A‖2‖wnk − z∗‖
and

‖∇L(wnk )‖ = ‖∇L(wnk ) − ∇L(z∗)‖ ≤ ‖wnk − z∗‖.
By (3.1) and (3.2), we get

‖ynk − wnk‖2 = ‖λnk (∇E(wnk ) + ∇L(wnk ))‖2

= κ2
nk (E(wnk ) + L(wnk ))

2

‖∇E(wnk ) + ∇L(wnk )‖2
≤ 4(E(wnk ) + L(wnk ))

2

‖∇E(wnk ) + ∇L(wnk )‖2→ 0, as k → ∞.

This shows that

lim
k→∞‖ynk − wnk‖ = 0. (3.16)
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From lim
k→∞γnk = 0 and (3.1), it follows that:

‖xnk − wnk‖ = σnk‖xnk − xnk−1‖ = γnk
σnk

γnk
‖xnk − xnk−1‖ → 0, as k → ∞. (3.17)

Using (3.16) and (3.17), we have

lim
k→∞‖ynk − xnk‖ = 0. (3.18)

By (3.1) and lim
k→∞γnk = 0, we have

‖xnk+1 − ynk‖ = γnk‖ f (xnk ) − ynk‖ → 0, as k → ∞.

This deduces that∥∥xnk+1 − xnk
∥∥ ≤ ‖xnk+1 − ynk‖ + ‖ynk − xnk‖ → 0, as k → ∞. (3.19)

Since the sequence {xnk } is bounded, then there exists a subsequence
{
xnki

}
of {xnk } con-

verging weakly to a point z∗ ∈ H1, such that

lim sup
k→∞

〈
f (z) − z, xnk − z

〉 = lim
i→∞

〈
f (z) − z, xnki − z

〉
= 〈 f (z) − z, z∗ − z〉.

Thanks to (3.17), we have

wnki
⇀z∗, as i → ∞.

By the weak lower semi-continuity of E , we arrive at

0 ≤ E(z∗) ≤ lim inf
i→∞ E

(
wnki

)
= lim

k→∞E
(
wnk

) = 0.

This means that E(z∗) = 1
2‖(I −proxτG)Az∗‖2 = 0, that is, Az∗ is a fixed point of the prox-

imal mapping of G or equivalently 0 ∈ ∂G(Az∗). In other words, Az∗ is a minimizer of G.

Similarly, by the weak lower semi-continuity of L , we have 0 ≤ L(z∗) ≤ lim inf
i→∞ L

(
wnki

)
=

lim
k→∞L

(
wnk

) = 0. This means that L(z∗) = 1
2‖(I − proxλnτ F )z∗‖2 = 0, that is, z∗ is a

fixed point of the proximal mapping of F or equivalently 0 ∈ ∂F(z∗). In other words, z∗ is
a minimizer of F . Therefore, z∗ ∈ Γ . From the definition of z = PΓ of (z), it yields that

lim sup
k→∞

〈 f (z) − z, xnk − z〉 = lim
i→∞

〈
f (z) − z, xnki − z

〉
= 〈 f (z) − z, z∗ − z〉 ≤ 0,

which together with (3.19) implies that

lim sup
k→∞

〈 f (z) − z, xnk+1 − z〉
≤ lim sup

k→∞
〈 f (z) − z, xnk+1 − xnk 〉 + lim sup

k→∞
〈 f (z) − z, xnk − z〉

≤ 0.

Hence

lim sup
k→∞

δnk = lim sup
k→∞

{
2

1 − ρ̃
〈 f (z) − z, xnk+1 − z〉 + 2Mσnk

(1 − ρ̃)γnk
‖xnk − xnk−1‖

}
≤ 0.

Employing Lemma 2.3, we conclude that lim
n→∞‖xn − z‖ = 0. ��
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If F ≡ δC [defined as δC (x) = 0 if x ∈ C and +∞ otherwise] and G ≡ δQ , the indicator
functions of the nonempty, closed, and convex sets C ⊂ H1 and Q ⊂ H2, respectively, then
the proximal SFP reduces to the following SFP:

Find z∗ ∈ C such that Az∗ ∈ Q.

Furthermore, we derive the following strongly convergent corollary from Theorem 3.1.

Corollary 3.1 Let H1, H2, C, Q, A, A∗, and Γ be the same as above description. Suppose
that Γ �= ∅, {σn} ⊂ [0, σ [⊂ [0, 1[ and Conditions (A1)–(A4) hold. Let x0, x1 ∈ H1 and
{xn} be a sequence generated by{

wn = xn + σn(xn − xn−1), yn = wn − λn(∇E(wn) + ∇L(wn)),

xn+1 = γn f (xn) + (1 − γn)yn,

where σn is defined in (3.3) and the stepsize λn can be computed via

λn = κn
E(wn) + L(wn)

θ(wn)2
,

where 0 < κn < 2, L(wn) = 1
2‖(I − PC )wn‖2, E(wn) = 1

2‖(I − PQ)Awn‖2 and θ(wn) =√‖∇E(wn) + ∇L(wn)‖2.
Then, the iterative sequence {xn} produced above strongly converges to z ∈ Γ , where z =
PΓ of (z).

Remark 3.3 Theorem 3.1 improves the result of [ Shehu and Iyiola (2017), Theorem
3.2 ], because strong convergence of our method is obtained without assuming firm-
nonexpasiveness of the operator I − proxτ(·).

4 Numerical experiments

In this section, we provide numerical experiments relative to the proximal SFP . For the first
example, we compare Alg. 1 with Abbas et al.’s Algorithms 3.1-3.2 (shortly, AMMOAlg.
3.1-3.2) Abbas et al. (2018), Shehu et al.’s Algorithm 3.1 (SIAlg. 3.1) Shehu and Iyiola
(2017), and Shehu et al.’s Algorithm (AHVSDM) Shehu and Iyiola (2018). All the programs
are implemented in MATLAB R2017a on a PC Desktop Intel(R) Core(TM) i7-6700 CPU@
3.40 GHZ computer with RAM 8.00 GB.

In the first example,we study the proximal SFP in the case argmin F∩A−1(argminG) �=
∅, or in other words: in finding a minimizer z∗ of F , such that Az∗ minimizes G, that is

Find z∗ ∈ H1 such that z
∗ ∈ argmin

x∈H1
F(x) and Az∗ ∈ argmin

y∈H2
G(y), (4.1)

where F : H1 → R and G : H2 → R are proper and lower semi-continuous convex (lsc)
functions, argmin F = {z∗ ∈ H1 : F(z∗) ≤ F(x) ∀x ∈ H1} and argmin G = {y∗ ∈ H2 :
G(y∗) ≤ G(x) ∀x ∈ H2}, the solution set is denoted by Γ .

Example 4.1 Kesornprom and Cholamjiak (2019) Let H1 = H2 = R
N and F(x) = 1

2d
2
C (x),

where C ⊂ R
N is a unit ball and G(x) = 1

2‖x‖2. Set Ax = x , x ∈ R
N . Observe that

0 ∈ Γ and Γ �= ∅. For AMOOAlg. 3.1-3.2 and SIAlg. 3.1, we take κn = 1.9, γn = 1
n+1

and αn = 1
104(n+1)

. For AHVSDM, we set λn = 10−4, γn = 1.99
n+1 , μ = 1, F̃ = I (which
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Table 1 Results for Example 4.1

N ε AMOOAlg. 3.1 AMOOAlg. 3.2 SIAlg. 3.1 AHVSDM Alg. 1

Iter. Time Iter. Time Iter. Time Iter. Time Iter. Time

6000 10−5 167 0.0074 15 9.6778e-04 44 0.0022 111 0.0034 7 6.2313e-04

10−7 264 0.0123 17 0.0012 2831 0.1568 1113 0.0320 7 7.1777e-04

8000 10−5 169 0.0104 15 0.0015 49 0.0032 119 0.0043 5 6.4476e-04

10−7 266 0.0189 17 0.0480 3265 0.2216 1192 0.0460 7 9.8156e-04

is a contraction mapping in Shehu and Iyiola (2018) and I is an identity mapping on H1)
and βn = 0.001

(n+1)2
. For Alg. 1, we adopt κn = 1.9, γn = 1

n2
, σ = 0.3 and τ̃n = 1

n3
. For all

tests, we use the condition ‖xn − proxτ,F (xn)‖ + ‖Axn − proxτ,G(Axn)‖ < ε to terminate
all the algorithms and choose x0 = [0, 0, 0, · · · , 0] and x1 = [1, · · · , 1] ∈ R

N and τ = 5.
To ensure that all algorithms have a common convergence point in this experiment, we set
f (x) = 0. The results are summarized in Table 1.

Remark 4.1 The numerical results of Example 4.1 are described in Table 1, the observations
we obtain are the following:

(1) The iterative rule proposed in this note implements efficiently and readily. More signifi-
cantly, it converges fast.

(2) Our proposed algorithm converges faster than some existing algorithms in terms of the
number of iterations and execution time under different dimensions of the problem.

For the SFP , we list the following numerical examples and compare Alg. 1 with Gibali et
al.’s Algorithm 3.1 (shortly, GMVAlg. 3.1) Gibali et al. (2019) and Suantai et al.’s Algorithm
3.1(SKC Alg. 3.1) Suantai et al. (2018).

Example 4.2 Kesornprom and Cholamjiak (2019) Let H1 = H2 = L2([0, 1]) with norm

‖x‖L2 =
(∫ 1

0 x(t)2dt
) 1

2
and inner product 〈x, y〉 = ∫ 1

0 x(t)y(t)dt, x, y ∈ L2([0, 1]). Let
C = {x ∈ L2([0, 1]) : ‖x‖L2 ≤ 1} and Q = {x ∈ L2([0, 1]) : 〈x, t〉 = 0}. Set Ax(t) = x(t)

2 .
Observe that 0 ∈ Γ , and so, Γ �= ∅. For SKC Alg. 3.1 and GMV Alg. 3.1, we fix σ = 0.3,
τ̃n = 1

n2
, γn = 1

104n
, κn = 1.6, f (x) = 0.01x , βn = 0.7 and σn = max(0, σn − 0.1). For

Alg. 1, we choose κn = 1.6, σ = 0.3, f (x) = 0.01x , γn = 1
104n

,τ̃n = 1
n2
. For López Alg.

5.1, we adopt κn = 9 × 10−5 and γn = 10−5

n . For all algorithms, we regard the condition
‖xn+1 − xn‖L2 < ε as a stopping criterion. We choose two types of starting points:

Case 1: x0 = t4, x1 = t + 1;
Case 2: x0 = et , x1 = 3et .
Before conducting our numerical experiments, we first recall that the projections on sets

C and Q have respective formulas, that is

PC (x) =
{

x
‖x‖L2 , if ‖x‖L2 > 1,

x, if ‖x‖L2 ≤ 1.
and PQ(x) = x − 〈t, x〉

‖t‖L2
t .

The numerical results are shown in Table 2.
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Table 2 Results for Example 4.2

(x0, x1) ε GMV Alg.3.1 SKC Alg.3.1 Alg.1 López Alg. 5.1

Iter. Time Iter. Time Iter. Time Iter. Time

Case 1 10−2 7 0.2846 11 0.4040 3 0.0745 7 0.1754

10−4 88 2.8905 51 1.7017 3 0.2806 14 0.3000

Case 2 10−2 13 0.3332 6 0.1545 3 0.0603 9 0.1758

10−4 17 2.3068 19 1.7090 3 0.0983 16 2.2206

Remark 4.2 According to Table 2, it shows that Alg. 1 behaves better than the compared
algorithms with respect to the number of iterations and execution time under various cases
of the problem.

Example 4.3 LASSO problem Sahu et al. (2020)
In this subsection, we employ SFP to model a real problem which is the recovery of

a sparse signal. We take advantage of the well-known LASSO problem whose form is the
following:

min

{
1

2
‖Ax − b‖2 : x ∈ R

N , ‖x‖1 ≤ κ

}
, (4.2)

where A ∈ R
M×N , M < N , b ∈ R

M and κ > 0. This problem is devoted to finding a sparse
solution of SFP . The system A is generated from a standard normal distribution with mean
zero and unit variance. We generate the true sparse signal z∗ from uniformly distribution in
the interval [−2, 2] with random k position nonzero, while the rest is kept zero. The sample
data b = Az∗.

Under certain conditions on matrix A, the solution of the minimization problem (4.2) is
equivalent to the �0− norm solution of the underdetermined linear system. For the SFP ,
we define C = {z|‖z‖1 ≤ κ}, κ = k, and Q = {b}, since the projection onto the closed
convex set C does not have a closed form solution. Therefore, we employ the subgradient
projection. Thus, we define a convex function c(z) = ‖z‖1 − κ and denote Cn by

Cn = {z : c(wn) + 〈εn, z − wn〉 ≤ 0},
where εn ∈ ∂c(wn). Also, the orthogonal projection of a point z ∈ R

N onto Cn can be
computed via

PCn (z) =
{
z, if c(wn) + 〈εn, z − wn〉 ≤ 0,

z − c(wn)+〈εn ,z−wn〉
‖εn‖2 εn, otherwise.

The subdifferential ∂c at wn is

∂c(wn) =

⎧⎪⎨
⎪⎩
1, if wn > 0,

[−1, 1], if wn = 0,

−1, if wn < 0.

To implement our method in this example, we initialize the algorithms at the original and
define

En = ‖xn − z∗‖
max{1, ‖xn‖} .
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Table 3 Results for Example 4.3

(M , N , k) GMV Alg. 3.1 SKC Alg. 3.1 Alg. 1 López Alg. 5.1

En Time En Time En Time En Time

(240,1024,30) 1.7991e-07 1.5225 4.0650e-06 1.0378 7.5263e-10 0.5413 5.3074e-10 1.1068

(480,2048,60) 1.1657e-07 7.1483 2.5370e-06 4.8965 4.8233e-10 2.5933 6.6102e-10 5.9596

(720,3072,90) 1.2757e-07 39.9267 2.8926e-06 26.7934 5.3908e-10 13.5964 9.7823e-10 14.8142

(960,4096,120) 1.3295e-07 75.8669 2.9951e-06 50.8525 5.5842e-10 25.7045 7.2942e-10 54.7798

(1200,5120,150) 1.4871e-07 122.6915 3.3246e-06 82.4403 6.1196e-10 41.4269 7.1270e-10 87.1176

Table 4 Results of Algorithm 1 with different values of κn for Example 4.3

(M , N , k) κn = 1 κn = 1.5 κn = 1.99

En Time En Time En Time

(240,1024,30) 1.5381e-09 1.1908 1.7594e-09 0.5842 5.5169e-10 0.5813

(480,2048,60) 2.1818e-09 3.4727 1.5719e-09 3.2670 1.4225e-09 3.3791

(720,3072,90) 1.9466e-09 14.0904 1.1367e-09 14.2298 1.0098e-09 14.0690

(960,4096,120) 1.8093e-09 26.6045 1.5169e-09 26.6880 9.9406e-10 26.6288

(1200,5120,150) 2.3998e-09 42.5273 1.2371e-09 42.8870 9.4754e-10 42.5650

We test the numerical behavior of all algorithms with the same iteration error En in different
M, N and k and limit the number of iterations to 8000 and report En in Table 3. The second
problem is the recovery of the signal z∗ whenM = 1440, N = 6144, k = 180,M×N matrix
A is randomly obtained with independent samples of standard Gaussian distribution. More
details, the original signal z∗ contains 180 randomly placed ±1 spikes. The iterative process
is started with x0 = 0, the following method of mean square error is used for measuring the
recovery accuracy:

MSE = 1

N
‖xn − z∗‖2.

For all algorithms, we fix f (x) = 0.0005x , σ = 0.9, τ̃n = 1
n5

and γn = 1
105n

. For SKC Alg.
3.1, we take κn = 0.02. For GMV Alg. 3.1, we adopt κn = 1.9 and βn = 0.7. For Alg. 1, we

set κn = 1.9. For López Alg. 5.1, we choose κn = 1.9 and γn = 10−7

n .

Remark 4.3 It can be observed from Tables 3–4 that the proposed algorithm implements
efficiently. Moreover, our method requires less CPU time than some strongly convergent
algorithms in the literature to obtain more smaller value of error accuracy En in different
cases. We also find that when the value of the parameter κn is 1.99, our proposed algorithm
performs better.

The recovery results of all algorithms are shown in Fig. 1, which stands for the original
signal, the mean-squared error (MSE) of the restored signal, and the computing time required
for the iterative process.

Remark 4.4 As can be observed from Fig. 1, the signal z∗ is estimated with fair degree
of accuracy by Algorithm 1. Under the same number of iterations, the execution time of
Algorithm 1 is less but a little bigger mean-squared error.
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0 1000 2000 3000 4000 5000 6000
-1

0

1
Original signal (N= 6144, number of nonzeros = 180)

0 1000 2000 3000 4000 5000 6000
-1

0

1
Alg.1(Iter=8e+03, CPU= 62.3, MSE=2.71e-20)

0 1000 2000 3000 4000 5000 6000
-1

0

1
SKC Alg.3.1 (Iter=8e+03, CPU=  122, MSE=2.82e-13)

0 1000 2000 3000 4000 5000 6000
-1

0

1
GMV Alg.3.1 (Iter=8e+03, CPU=  182, MSE=5.41e-16)

0 1000 2000 3000 4000 5000 6000
-1

0

1
Lopez Alg. 5.1 (Iter=8e+03, CPU=  241, MSE=1.67e-20)

Fig. 1 Comparison of signal processing

Example 4.4 Image deblurring problem Saejung and Yotkaew (2012) We consider the prob-
lem here is an image deblurring problem. Fixed a convolution matrix A ∈ Rm×n and an
unknown image z ∈ Rn , we derive b ∈ Rm , which can be viewed as the known degreaded
observation. Also, the unknown additive random noise ν ∈ Rm is included, and furthermore,
we obtain the image recovery problem as follows:

Az = b + ν. (4.3)

This problem obviously is suitable for the setting of SFP with C = Rn ; if no noise is
added to the observed image b, then Q = {b} is a singleton and otherwise Q = {x ∈
Rm |‖x − (b + ν)‖ ≤ ε} for small enough ε > 0. In this example, we compare Algorithm 1
with LopezAlg. 5.1. The test imagewas corrupted as inHe et al. (2016).More precisely, every
image was degraded by a 9×9 Gaussian random blur and standard deviation 4, and corrupted
by undertaking an additive zero-mean white Gaussian noise with standard deviation 10−3. To
measure the quality of the obtained recovered image, we define the following signal-to-noise
ratio:

SNR = 20 log10
‖z‖

‖z̄ − z‖ ,

where z is an original image and z̄ is a obtained image. Obviously, when the SNR value
is higher, the image is recovered better. For Alg. 1, we take κn = 1.6, σ = 0.3, f (x) =
0.01x , γn = 21

100n ,τ̃n = 1
n2
. For López Alg. 5.1, we adopt κn = 5 × 10−4 and γn = 21

100n .
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Table 5 Results of all algorithms
for Example 4.4

Alg. 1 López Alg. 5.1

SNR Time SNR Time

25.25 9.08 24.76 8.86

(a) Original image (b) Observed image

Fig. 2 Original image (a) and observed image (b) for Example 4.4

(a) Alg. 1 (b) López Alg. 5.1

Fig. 3 Recovered images by Alg. 1 and López Alg. 5.1 in Example 4.4

For all algorithms, we limit the number of iterations to 100 and report numerical results in
Table 5 and Figs. 2-3.

Remark 4.5 As shown in Table 5 and Figs. 2-3, we observe that these two methods require
the same iterations to recovery images. Concretely, Alg. 1 obtains higher SNR than López
Alg. 5.1, but a little longer execution time.
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5 Conclusions

In this paper, we obtain a strong convergence result for the proximal split feasibility problems
with nonexpansive mappings. We modify the algorithm Shehu and Iyiola (2017) with the
viscosity-type algorithmMoudafi (2000), the inertialmethod and the split proximal algorithm
with a self-adaptive stepsize. As practical applications, we consider signal recovery and
image deblurring problems. Preliminary numerical experiments confirm the effectiveness of
the proposed algorithm in practice.

Funding The second author was supported by National Natural Science Foundation of China (Grant No.
11801430).
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