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Abstract
The aim of this work is to study solitary water wave interactions between two topographic
obstacles for the forced Korteweg–de Vries equation (fKdV). Focusing on the details of
the interactions, we identify regimes in which solitary wave interactions maintain two well
separated crests and regimes where the number of local maxima varies according to the laws
2 → 1 → 2 → 1 → 2 or 2 → 1 → 2. It shows that the geometric Lax-categorization of
Korteweg–de Vries (KdV) two-soliton interactions still holds for the fKdV equation.

Keywords KdV equation · water wave equation · solitons · collision of solitary waves

Mathematics Subject Classification 76B15 · 76B25 · 35Q53

1 Introduction

The forced Korteweg–de Vries equation (fKdV) has been used as a model to describe atmo-
spheric flows encountering topographic obstacles, flow of water over rocks (Baines 1995),
ship waves and ocean waves generated by storms [when a low pressure region moves on the
surface of the ocean (Johnson 2012)].

Solitary waves have a wide range of applications, for instance, in water waves, opti-
cal fibers, superconductive electronics, elementary-particle physics, quantum physics and
more recent applications in biology and cosmology (Joseph 2016). It is well known that
the Korteweg–de Vries equation (KdV) is used to describe the propagation and interaction
between solitary waves. Studying numerical solutions of the KdV equation, Zabusky and
Kruskal (1965) were the first to observe that solitary waves interact during the collision and

Communicated by Abdellah Hadjadj.

B Roberto Ribeiro-Jr
robertoribeiro@ufpr.br

Marcelo V. Flamarion
marcelo.flamarion@ufrpe.br

1 UFRPE/Rural Federal University of Pernambuco, UACSA/Unidade Acadêmica do Cabo de Santo
Agostinho, BR 101 Sul, 5225, Ponte dos Carvalhos, Cabo de Santo Agostinho, Pernambuco
54503-900, Brazil

2 Departamento de Matemática, Centro Politécnico, UFPR/Federal University of Paraná, Jardim das
Américas, Caixa, Postal 19081, Curitiba, PR 81531-980, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-021-01700-6&domain=pdf
http://orcid.org/0000-0001-5077-3026


312 Page 2 of 9 M.V. Flamarion, R. Ribeiro Jr.

return to its initial form. They named this type of waves as solitons. This study raised interest
to investigate further details of soliton interactions. Since then, many works have been done
on this topic. It is hard to give a comprehensive overview of contributions. For the interested
reader, we mention a few articles which are seminal in this field.

Lax (1968) classified overtaking collisions of two solitons in three categories according
to the number of crests observed during the interaction. More precisely, he proved that the
type of the collision can be classified according to the ratio of the initial amplitude of the
solitons. The categorization given by Lax was verified experimentally by Weidman and
Maxworthy (1978) and numerically by Mirie and Su (1982) for a higher-order model. More
recently, Craig et al. (2006) presented a work in which is given a broad review on solitary
wave interactions. They investigated numerically and experimentally solitary wave collisions
for the Euler equations. Their numerical simulations show that the collisions of two solitary
waves fit into the three geometric categories of the KdV two-soliton solutions defined by Lax.
However, the algebraic classification based on the ratio of the initial amplitudes is within a
different range of the one considered by Lax.

Solitary waves have been also studied in the context of the fKdV model. The literature in
this topic is broad and therefore, it is hard to give a complete overview of it. For the interested
reader we mention a few works that give a general description of the main results. Grimshaw
et al. (1994) used the fKdV equation to investigate the interaction of a solitary wave with an
localized bump on the topography. Their study showed that when a solitary wave passes over
a bump, it can behave as follows: it passes through the bump, the solitary wave is reflected
with a significant amplitude change or it oscillates above the obstacle. A review of solutions
for the fKdV equation with one bump can be found in Ermakov and Stepanyants (2019) and
therein references.

In this paper, we investigate numerically in details the interaction of two solitary wave
solutions of the fKdV. More precisely, differently from the previous works, we analyze the
interaction of these two waves between obstacles. We find that the three geometric categories
described by Lax (1968) are hold for the fKdV two-soliton interaction. However, our exper-
iments indicate that an algebraic categorization similar to the one presented by Lax is not
possible for the fKdV.

This article is organized as follows. In Sect. 2, we present the mathematical formulation of
the non-dimensional fKdV equation. The results are presented in Sect. 3 and the conclusion
in Sect. 4.

2 The forced Korteweg–de Vries equation

We consider an inviscid, incompressible, homogeneous fluid on a shallow channel with
variable topography in the presence of a constant current. The flow of the fluid can be
classified by the Froude number (F), which is defined by the ratio of the upstream velocity
and the critical speed of shallow water. When the Froude number is near critical (F ≈ 1),
and the amplitude of the topography is small the weakly nonlinear, weakly dispersive model
given by the dimensionless forced Korteweg–de Vries equation

ζt + f ζx − 3

2
ζ ζx − 1

6
ζxxx = 1

2
hx (x), (1)

is used to describe the flow over the topographic obstacle (Pratt 1984; Wu 1987; Milewski
2004; Grimshaw and Maleewong 2013; Flamarion et al. 2019). Here, ζ(x, t) is the free-
surface displacement over the undisturbed surface and h(x) is the obstacle submerged. The
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parameter f represents a perturbation of the Froude number, i.e, F = 1 + ε f , where ε > 0
is a small parameter.

It is important to point out that the Eq. (1) conserves mass (M(t)), with

dM

dt
= 0, where M(t) =

∫ +∞

−∞
ζ(x, t) dx,

and the rate of change of the momentum (P(t)) is balanced by the topography by the formula

dP

dt
=

∫ +∞

−∞
ζ(x, t)hx (x) dx, (2)

where

P(t) =
∫ +∞

−∞
ζ 2(x, t) dx .

When the bottom is flat (hx = 0), a traveling solitary wave solution for (1) is

ζ(x, t) = A sech2(k(x − ct)), A = 4

3
k2, c = f − 1

2
A. (3)

Notice that when f = A/2, the solution is stationary.
The fKdV equation (1) is solved numerically using a Fourier pseudospectral method with

an integrating factor for the linear part, thus avoiding numerical problems due to the higher-
order dispersive term. We consider the computational domain with an uniform grid. All
derivatives in x are computed spectrally through Fast Fourier Transform (FFT) (Trefethen
2001). The computational domain is taken large enough to prevent effects of the spatial
periodicity. Besides, the time evolution is calculated through the Runge–Kutta fourth-order
method with time step �t = 0.005 in all simulations (Flamarion et al. 2019).

3 Results

We investigate collisions of two solitary waves between two obstacles. For this purpose, we
consider the topography as

h(x) = ε
[
exp

(−(x − β)2
) + exp

(−(x + β)2
)]

,

and the initial condition of (1) is given by a linear sum of two well-separate solitary waves

ζ(x, 0) = S1 sech
2(k1(x − φ)) + S2 sech

2(k2(x + ψ)),

where S1 = 4k21/3, S2 = 4k22/3, and φ,ψ are positive constants. Our focus is to categorize
the collision of two solitary waves according to the number of local maxima during the
interaction.

In the absence of a variable topography (h ≡ 0), Lax (1968) has proved that the collisions
of two solitary waves can be classified into three types:

(A) For any time t , the solution of the KdV has two well-defined and separate crests, and it
happens when S2/S1 < (3 + √

5)/2 ≈ 2.62.
(C) In the interaction the number of local maxima changes as 2 → 1 → 2. Physically, this

means that during the interaction the waves join together to form a single local maximum.
This case occurs for S2/S1 > 3.
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Fig. 1 Top: Collision of two well-separate solitary waves—category (A). Bottom (left): Crest trajectories
(continuous lines) and traces of the left and right wave crests before and after collision (dashed lines). Bottom
(right): The local maxima of the solution as a function of time. Parameters S1 = S2 = 0.6, φ = 16 and
ψ = 12

(B) During the collision, the number of local maxima varies according to 2 → 1 → 2 →
1 → 2. This case incorporates features from (A) and (C) simultaneously. Specifically,
the wave interaction can be split into the following stages: (1) at first there are two
well separate crests; (2) as time elapses, the waves fuse to form one single crest; (3)
then two local maxima appear; (4) these local maxima fuse to form one single crest
again; (5) finally, it is obtained a wave with two local maxima. This case happens when
(3 + √

5)/2 < S2/S1 < 3.

After the collision, the main notable feature is that the waves are phase shifted, i.e., their
crest are slightly shifted from the trajectories of the incoming centers.

Observe that Lax (1968) has described the dynamic of the interaction and also established
an algebraic constraint for each case. With this in mind, two questions arise: Is this geometric
categorization still hold for the fKdV? If so, is there any algebraic restriction in terms of the
ratio of the amplitude?

In the following simulations, we seek answers for these questions. For this purpose, we
use the parameters β = 20, ε = 0.01 and f = 0.34. Besides, to avoid radiation from the
topography, we sum a term r(x) to the initial condition, where r is the steady solution of the
uniform flow.
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Fig. 2 Continuation of Fig. 1 (top). Parameters S1 = S2 = 0.6, φ = 16 and ψ = 12

We start considering the collision of two well-separated solitary waves that initially have
the same amplitude. Details of the wave profile are given in Fig. 1 (top). Initially, two soli-
tary waves propagate downstream. When the right wave reaches the obstacle its amplitude
increases and the wave reflects back upstream. Then, the waves collide mimicking a counter-
propagating collision. As the right wave approaches the wave with smaller crest, the larger
wave begins to shrink and the smaller one begins to grow until the two waves interchange
their roles (see Fig. 1 (bottom-right)). Throughout the interaction there are two well-defined
and separate crests as shown in Fig. 1 (bottom-left). This behavior is similar to case (A) of
Lax classification. Figure2 displays the continuation of Fig. 1(top). After a series of colli-
sions, both waves escape out. We point out that the numerical method conserves mass and
the relative error is:

max
0≤t≤104

|M(t) − M(0)|
|M(0)| = O(10−16).

Besides, we verify that

max
0≤t≤104

|V (t) − V (0)|
|V (0)| = O(10−9),

where

V (t) = P(t) −
∫ t

0

∫ +∞

−∞
ζ(x, s)hx (x) dx ds,

which shows that the numerical method satisfies the momentum balance equation (2).

123



312 Page 6 of 9 M.V. Flamarion, R. Ribeiro Jr.

5 10 15 20
150

200

250

300

0 100 200 300 400

0.2

0.4

0.6

0.8

Fig. 3 Top: Collision of two well-separate solitary waves—category (C). Bottom (left): Crest trajec-
tory(continuous lines) and traces of the left and right wave crests before and after collision (dashed lines).
Bottom (right): The local maxima of the solution as a function of time. Parameters S1 = 0.6, S2 = 0.2,
φ = 16 and ψ = 45

Figure3 (top) displays the collision of two well-separate solitary waves that initially have
different amplitudes. Differently from the previous case, there is a period of time in the
interaction that only one crest exists. The interaction is characterized by an absorption of the
smaller wave and its reemission later, along with a phase lag in the trajectories of the crest,
see Fig. 3 (bottom).

Lastly, we show a collision that presents features similar to the cases (A) and (B) simulta-
neously, see Fig. 4. The smaller wave is first swallowed, then expelled by the larger one. This
dynamic is very similar to the description given previously in case (C). However, during the
collision there is a central region consisting of two crests. This behavior is described in great
details in a series of snapshots depicted in Fig. 5.

For the KdV equation, the transition between two categories is determined by the ratio of
the amplitudes of the two separated solitary waves given initially. However, for the fKdV is
not possible to estimate a similar condition regarding the ratio of the amplitudes as shown
in Table 1. Nevertheless, the fKdV equation still holds the geometric features of the Lax
categorization.

123



Solitary water wave interactions for... Page 7 of 9 312

5 10 15
220

240

260

280

300

0 100 200 300 400

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 4 Top: Collision of two well-separate solitary waves—category (B). Bottom (left): Crest trajectory (con-
tinuous lines) and traces of the left and right wave crests before and after collision (dashed lines). Bottom
(right): The local maxima of the solution as a function of time. Parameters S1 = 0.6, S2 = 0.27, φ = 16 and
ψ = 45

4 Conclusion

In this paper, we have investigated solitary wave collisions for the fKdV equation. Through a
pseudospectral numerical method, we showed that the geometric Lax characterization for the
KdV two-soliton interaction still holds for the fKdV, i.e., solitary wave interactions maintain
two well-separated crests in regime (A), the larger solitary wave absorbs the smaller one and
the number of local maxima varies according to the law 2 → 1 → 2 → 1 → 2 in regime
(B) or the number of local maxima changes as 2 → 1 → 2, case (C). Although there are a
number of theoretical and numerical works on collisions for the KdV equation, as far as we
know there are no articles focused on collision details for the fKdV equation.
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Fig. 5 Snapshots of the interaction of the two well-separate solitary waves of Fig. 4 during the collision—
category (B)

Table 1 Classification of the
collision for different values of
S1 and S2

S1 S2 max {S1, S2}/min{S1, S2} Category

0.60 0.30 2.00 A

0.60 0.29 2.06 A

0.60 0.28 2.14 B

0.60 0.27 2.22 B

0.60 0.26 2.30 B

0.60 0.25 2.40 B

0.60 0.24 2.50 C

0.60 0.20 3.00 C

0.55 0.26 2.06 B

0.55 0.27 2.00 B

0.55 0.37 1.50 A
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