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Abstract
In this study, a well-balanced and positivity-preserving scheme for the nonconservative two-
layer shallow water equations is developed in the framework of the path-conservative finite
volume method. Special attention is paid to guaranteeing the well-balanced properties even
in the presence of the wet–dry fronts for each layer. To this end, in this study, new numerical
discretization and special local reconstruction are proposed.Moreover, the developed scheme
also allows to stably compute flows in under-resolved meshes. The results of the numerical
experiments illustrate the robustness and good performance of the constructed numerical
scheme.

Keywords Two-layer shallow water equations · Finite volume method · Well-balanced ·
Wetting–drying · Path-conservative approach

Mathematics Subject Classification 76M12, 65M08, 86-08, 35L65

1 Introduction

The two-layer shallow water equations (SWEs) studied in this paper describe the behavior
of two superposed layers of inviscid fluid with different, constant densities flowing over a
bottom topography. They have been widely applied to model the stratified flows that arise
typically in large-scale hydrodynamic system, for example, in lake and ocean, upper layer
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Fig. 1 Schematic: two-layer shallow water model over irregular topography

heated by solar radiation is less dense than deep ocean water. Moreover, such applications
constantly involve the wet–dry interfaces which require that the developed numerical models
are capable to properly solve the governing equations at the wet–dry fronts.

The one-dimensional (1D) two-layer shallowwater system of partial differential equations
may be first introduced in Ovsyannikov (1979). It describes the flows of two superposed
shallow layers of immiscible, incompressible and irrotational fluids. In this study, the system
is written as

(h1)t + (q1)x = 0,

(q1)t +
(
h1u1

2 + g

2
h1

2
)
x

= −gh1
(
h2 + B

)
x ,

(h2)t + (q2)x = 0,

(q2)t +
(
h2u2

2 + g

2
h2

2
)
x

= −gh2Bx − gh2 (rh1)x ,

(1.1)

where the subscripts k = 1 and 2 represent the upper and lower layers, respectively, hk is
the fluid depth, qk = hk · uk is the flow discharge, uk is the depth-averaged flow velocity in
horizontal direction, ρk is the fluid density, r := ρ1/ρ2 is the density ratiowhich is considered
as constant in this study and the regime r ≈ 1 is of particular interest for modeling stratified
flows, g is the gravitational constant, t is the time, x is the horizontal position, and B is the
bed level. The notation for the two-layer shallow water system is illustrated in Fig.1, where
η1 = η2 + h1 is the free surface level of the upper layer fluid which also represents the
free surface level of the entire fluid column above B, and η2 = h2 + B represents the layer
interface.

A special class of the solutions of (1.1) are stationary steady-state solutions at which

(hk)t ≡ 0, (qk)t ≡ 0, qk ≡ 0, k = 1, 2 (1.2)

due to that the flux gradients in (1.1) are exactly balanced by the right-hand-sided (RHS)
source terms. If such balance is realized by the fully discrete form and the steady-state solu-
tions are maintained during the computation, the numerical method is called “well balanced”.
Steady states are of great practical importance since many physically relevant solutions of
(1.1) are, in fact, small perturbations of steady states.

The system (1.1) contains nonconservative products describing momentum exchange
between the layers. The presence of these nonconservative products introduce major dif-
ficulties when theoretically and numerically solving nonlinear hyperbolic system with
discontinuities because these nonconservative products are not well defined in the distri-
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butional framework and the usual concept of weak solution cannot be used. To overcome this
difficulty, following the mathematical theory in Dal Maso et al. (1995), the path-conservative
finite volume schemes have been presented in Castro et al. (2008); Dumbser et al. (2014);
Muñoz-Ruiz and Parés (2011); Parés (2006); Diaz et al. (2019) for various nonconservative
hyperbolic systems.

In Diaz et al. (2019), the nonconservative hyperbolic system is first rewritten into a quasi-
linear form in which the coefficient matrix include both conservative and nonconservative
terms. By introducing a sufficiently smooth path connecting the left and right states at
discontinuities, the coefficient matrix can be integrated on such a smooth path. Finally, a
path-conservative central-upwind (PCCU) method accounting for the contribution of the
jumps of the nonconservative products at the cell interfaces, is developed.

A well-balanced PCCU scheme is applied to a two-layer SWEs system (1.1) in Diaz
et al. (2019). However, the developed scheme in Diaz et al. (2019) did not consider the
well-balanced property and positivity of fluid depth in the presence of wet–dry fronts which
commonly appears in the natural water system. It, thus, limits the application of the PCCU
scheme in Diaz et al. (2019). This motivates this study in which a novel scheme in the
framework of PCCU is designed to obtain the well-balanced property at the wet–dry fronts
for the two-layer SWEs system.

To this end, in this study, the bottom topography is first replaced with its continuous,
piecewise linear approximation. Then, the surface levels and velocities are linearly recon-
structed instead of depths and discharges. Cells are classified based on the fluid mass they
contain. Two auxiliary surface variables in non-dry cells are introduced to help to reconstruct
the layer surfaces in under-resolved cells. Next, a new discretization of the source term is
proposed to exactly preserve the stationary steady states. To guarantee the non-negativity of
the fluid depth for each layer, the local drainage time step technique in Bollermann et al.
(2011) is extended to the current two-layer system by applying local drainage constraints of
fluxes at each cell interfaces for each layer. Accordingly, the discretization of source terms
is correspondingly modified and the resulting fully discrete scheme is presented.

This paper is organized as follows. In Sect. 2, a well-balanced, positivity-preserving path-
conservative finite volume method for two-layer shallow water system is developed and the
well-balanced property of the discrete scheme is theoretically proved. In Sect. 3, several
numerical experiments are conducted to verify the performance of the proposed numerical
schemes. Some concluding remarks complete the study in Sect. 4.

2 Numerical schemes

In this section, a well-balanced path-conservative central-upwind method is designed for
two-layer shallow water system with wet–dry fronts. To this end, we rewrite the governing
system (1.1) in an equivalent form:

(h1)t + (
q1
)
x = 0,

(
q1
)
t +

(
q21
h1

+ g

2
h1

2
)

x

= −gh1(η2)x ,

(η2)t + (
q2
)
x = 0,

(
q2
)
t +

(
q22

η2 − B
+ g

2
(η2 − B)2

)

x

= −g(η2 − B)∂x (rh1) − g(η2 − B)Bx .

(2.1)

123



311 Page 4 of 31 X. Liu, J. He

In the following, the system (2.1) is numerically solved over a computational domain
discretized by finite volume cells I j := [

x j− 1
2
, x j+ 1

2

]
, j = 1, . . . , N of uniform grid size

�x (an extension to a nonuniform grid is straightforward). It is denoted by x j the cell center
and x j = (x j− 1

2
+ x j+ 1

2
)/2.

2.1 Bottom discretization

In this study, the original definition of bottom topography B̂(x) is replacedwith its continuous,
piecewise linear approximation B(x) in which the linear pieces in cells j are connected at
the cell-interface points x j− 1

2
and x j+ 1

2
. Therefore, one can define that

Bj (x) = Bj− 1
2

+
(
Bj+ 1

2
− Bj− 1

2

)
·
x − x j− 1

2

�x
, x j− 1

2
≤ x ≤ x j+ 1

2
, (2.2)

in which the reconstructed bed level at cell interface is

Bj+ 1
2

:=
B̂(x j+ 1

2
+ 0) + B̂(x j+ 1

2
− 0)

2
. (2.3)

Using the piecewise linear bed reconstruction (2.2) and (2.3), one can obtain the point
value of B at the cell center x = x j :

Bj := B(x j ) = 1

�x

∫

I j
B(x) dx =

Bj+ 1
2

+ Bj− 1
2

2
, (2.4)

and the bed slope of cell I j :

(Bx ) j :=
Bj+ 1

2
− Bj− 1

2

�x
. (2.5)

Notice that replacing original bottom function B̂(x)with B(x)will not affect the accuracy
order of the proposed numerical scheme (Kurganov and Petrova 2009) since the piecewise
linear interpolant (2.2) is a second-order approximation of B̂.

If a rapidly variable bed is considered, local grid refinement may be required to accurately
resolve such an irregular bed. The proposed scheme in this paper can be directly applied to
the nonuniform grids by replacing the uniform grid size �x with a cell-dependent size �x j .

2.2 Semi-discrete path-conservative central-upwind scheme

The system (2.1) can be written in the following vector form:

U t + F(U, B)x = C(U, B)U x + S(U, B), (2.6)
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where the unknown variables U ∈ R
N , the flux F : R

N → R
N , the coefficient matrix

C ∈ R
N×N of the nonconservative products, and the geometric source term S ∈ R

N are:

U =

⎛
⎜⎜⎝
h1
q1
η2
q2

⎞
⎟⎟⎠ , F(U, B) =

⎛
⎜⎜⎜⎜⎜⎜⎝

q1
q21
h1

+ g

2
h12

q2
q22

η2 − B
+ g

2
(η2 − B)2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

C(U, B) =

⎛
⎜⎜⎝

0 0 0 0
0 0 −gh1 0
0 0 0 0

−rg(η2 − B) 0 0 0

⎞
⎟⎟⎠ , S(U, B) =

⎛
⎜⎜⎝

0
0
0

−g(η2 − B)Bx

⎞
⎟⎟⎠ .

(2.7)

The system (2.6) can be rewritten in the following quasilinear form:

U t + A(U, B)U x = S(U, B). (2.8)

with the coefficient matrix

A(U, B) := ∂F(U, B)

∂U
− C(U, B) =

⎛
⎜⎜⎝

0 1 0 0
−u12 + gh1 2u1 gh1 0

0 0 0 1
rg(η2 − B) 0 −u22 + g(η2 − B) 2u2

⎞
⎟⎟⎠ .(2.9)

which contains the flux gradients and the nonconservative products.
Assuming that, at certain time level t , the approximations of the cell averages of the

solution:

U j (t) ≈ 1

�x

∫

I j
U(x, t) dx (2.10)

are available. Notice that, in the following descriptions of the proposed scheme, the time
dependence of all indexed quantities are dropped for brevity.

Then, applying the semi-discrete path-conservative central upwind scheme (Diaz et al.
2019) to the nonconservative system (2.8), one can obtain that

d

dt
U j = − 1

�x

[
F j+ 1

2
− F j− 1

2
− K j −

a+
j− 1

2

a+
j− 1

2
− a−

j− 1
2

C�, j− 1
2

+
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

C�, j+ 1
2

]
,

(2.11)

where the numerical flux F j+ 1
2
is given by the original central-upwind scheme (Kurganov

and Tadmor 2000; Kurganov et al. 2001):

F j+ 1
2

=
a+
j+ 1

2
F(U−

j+ 1
2
) − a−

j+ 1
2
F(U+

j+ 1
2
)

a+
j+ 1

2
− a−

j+ 1
2

+
a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

(
U+

j+ 1
2

− U−
j+ 1

2

)
,(2.12)
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in which a±
j+ 1

2
are the one-sided local speeds; U±

j+ 1
2
are the right/left-sided values at x =

x j+ 1
2
of the piecewise polynomial reconstruction Ũ :

Ũ(x) =
∑
j

P j χ I j (x), P j = (
P(1)
j , . . . , P(N )

j

)�
, (2.13)

where χ is a characteristic function and P(i)
j are polynomials of a certain degree satisfying

the conservation:

1

�x

∫

I j
P j (x)dx = U j (2.14)

and (formal) accuracy requirements. Therefore, one has that

U−
j+ 1

2
= P j (x j+ 1

2
), U+

j+ 1
2

= P j+1(x j+ 1
2
). (2.15)

In (2.11), term K j consists of the nonconservative products and geometric source

K j :=
∫

I j
C(P j (x), B(x))

dP j (x)

dx
+ S j (P j (x), B(x)) dx . (2.16)

The last two RHS terms of (2.11) account for the contribution of the jumps of the non-
conservative products at the cell interfaces. To estimate these terms, one can consider a
sufficiently smooth path � j+ 1

2
(s) := �(s;U−

j+ 1
2
,U+

j+ 1
2
) connecting the states U−

j+ 1
2
and

U+
j+ 1

2
, it is,

� : [0, 1] × R
N × R

N → R
N , �(0;U−

j+ 1
2
,U+

j+ 1
2
) = U−

j+ 1
2
, �(1;U−

j+ 1
2
,U+

j+ 1
2
)

= U+
j+ 1

2
. (2.17)

Accordingly, C� at cell interfaces can be estimated by

C�, j+ 1
2

:=
1∫

0

C
(
� j+ 1

2
(s)
)d� j+ 1

2

ds
ds. (2.18)

For the importance of C�, j+ 1
2
to the two-layer shallow water system with nonconservative

products, the readers are referred to (Diaz et al. 2019) for more details and justifications.
One can find that no simple analytical expression for the eigenstructure of the matrix (2.9)

can be provided. One can obtain approximate expressions for the eigenvalues ofA(U) using
the first-order expansions in u2 − u1 (Long 1956; Schijf and Schönfled 1953),

λ±
ext = um ±√

g(h1 + h2)

λ±
int = uc ±

√
(1 − r)g

h1h2
h1 + h2

[
1 − (u2 − u1)2

(1 − r)g(h1 + h2)

]
,

(2.19)

where

um := q1 + q2
h1 + h2

, uc := h1u2 + h2u1
h1 + h2

. (2.20)
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Accordingly, using only the external eigenvalues λ±
ext in (2.19)–(2.20) in the central-

upwind methods, the one-sided local speeds can be obtained as:

a+
j+ 1

2
=max

{(
um
)+
j+ 1

2
+
√
g
[
(h1)

+
j+ 1

2
+ (η2)

+
j+ 1

2
− Bj+ 1

2

]
,

(
um
)−
j+ 1

2
+
√
g

[
(h1)

−
j+ 1

2
+ (η2)

−
j+ 1

2
− Bj+ 1

2

]
, 10−10

}
,

a−
j+ 1

2
=min

{(
um
)+
j+ 1

2
−
√
g

[
(h1)

+
j+ 1

2
+ (η2)

+
j+ 1

2
− Bj+ 1

2

]
,

(
um
)−
j+ 1

2
−
√
g

[
(h1)

−
j+ 1

2
+ (η2)

−
j+ 1

2
− Bj+ 1

2

]
, −10−10

}
,

(2.21)

where, to avoid division by very small total fluid depth h1 + h2. In the current study, we
extend the desingularization formula in Kurganov and Petrova (2007) to estimate (um

)+
j+ 1

2
at cell interface as

(um
)+
j+ 1

2
=

√
2
[
(q1)

+
j+ 1

2
+ (q2)

+
j+ 1

2

]

√[
(h1)

+
j+ 1

2
+ (h2)

+
j+ 1

2

]2 + max

{[
(h1)

+
j+ 1

2
+ (h2)

+
j+ 1

2

]2
, ξ2

} (2.22)

in which ξ > 0 is a prescribed small and positive fluid depth triggering the desingularization
procedure (2.22). In the current study, we use that ξ = 1 × 10−3. Notice that (um

)−
j+ 1

2
in

(2.21) can be estimated similarly.
The expressions (2.19)–(2.20) indicate that the system (2.1) is only hyperbolic provided

(u1 − u2)
2 < (1 − r)g(h1 + h2). (2.23)

Violation of this condition (2.23) leads to Kelvin–Helmholtz interfacial instability associated
with shear flows (Abgrall and Karni 2009), for which the vertical averaged two-layer shallow
water model (1.1) and (2.1) is not suitable any more. However, as explained in Berthon et al.
(2015), it is agreed that the elliptic region has a repulsive role and the solution approaching
this region is rapidly evacuated to the its boundary. Therefore, the system is expected to be
well posed with strong enough nonlinearity even if condition (2.23) is violated.

Notice that the numerical experiments in this study basically lie in the flow regime with
(2.23).

2.3 Newwell-balanced semi-discrete scheme for the two-layer SWEs with wet–dry
fronts

In this section, to preserve the stationary steady states in the presence of wet–dry fronts for
two-layer SWEs (2.1), the following novel special treatments are designed for completing
the semi-discrete scheme (2.11)–(2.21).

123



311 Page 8 of 31 X. Liu, J. He

2.3.1 Piecewise linear reconstruction of the secondary variables

To obtain the well-balanced property and stably deal with the wetting and drying process,
it is proposed in the currently developed model to reconstruct the secondary variables V =
[η1, u1, η2, u2]� instead of the primary variables U = [h1, q1, η2, q2]� of (2.1).

Reconstructing η1 and η2 using (2.24)–(2.29) help to obtain the well-balanced property
since they are equilibrium variables of the stationary steady states. Reconstructing u1 and u2
instead ofq1 andq2 avoid singularitieswhen computing (q1) j+ 1

2
/(h1) j+ 1

2
with (h1) j+ 1

2
→ 0

and (q2) j+ 1
2
/
[
(η2) j+ 1

2
− Bj+ 1

2

]
with (η2) j+ 1

2
→ Bj+ 1

2
with very small layer depths.

Considering only the second-order schemes, the point values of V are given using a linear
function:

V j (x) = V j + (V x ) j (x)(x − x j ), (2.24)

where

(η1) j = (h1) j + (η2) j , (2.25)

and the following desingularization formula (Kurganov and Petrova 2007) is used to avoid
the division by very small layer depth,

(uk) j =
√
2 qk√(

hk
)2 + max

[(
hk
)2

, ξ
] , k = 1, 2 (2.26)

in which

(h2) j = (η2) j − Bj . (2.27)

The piecewise constant slopes (V x ) j in (2.24) are computed in a non-oscillatory manner
using a nonlinear limiter. In the current study, the generalized minmod limiter (see, e.g., Lie
and Noelle 2003; Nessyahu and Tadmor 1990; Sweby 1984; van Leer 1979) is adopted:

(V x ) j = minmod

(
θ
V j+1 −V j

�x
,
V j+1 −V j−1

2�x
, θ

V j −V j−1

�x

)
, (2.28)

with the minmod function

minmod(φ1, φ2, · · · ) :=

⎧⎪⎨
⎪⎩

min(φ1, φ2, · · · ), ifφ j > 0 ∀ j,

max(φ1, φ2, · · · ), ifφ j < 0 ∀ j,

0, otherwise.

(2.29)

The parameter θ ∈ [1, 2] controls the amount of numerical dissipation: the larger the θ , the
smaller the numerical dissipation. In this study, it is set θ = 1.2.

In a dry cell, one can simply set that (V x ) j = 0.

2.3.2 Correction of surface reconstruction for two-layer fluids

It is proposed in §2.3.1 to reconstruct the surface levels η1 and η2 for both upper and
lower layer fluids, respectively; however, such reconstructions may fail to ensure either
well-balanced property or positive point value of depths in the presence of wet–dry fronts.
Typical examples of such fails at the stationary steady states can be illustrated in Fig.2. One
can observe that, in Fig. 2, the piecewise linear reconstructions for fluid surfaces in §2.3.1
lead to the following issues:
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xj−2 xj− 3
2

xj−1 xj− 1
2

xj xj+ 1
2

xj+1 xj+ 3
2

xj+2

η1

η2

B

Fig. 2 The reconstructed surface levels of upper layer fluid (η1: blue dashed line) and lower layer fluid (η2:
red solid line) over bottom topography (B: green solid line) at stationary steady states

(1) At x = x j− 1
2
, the discontinuity (η2)

−
j− 1

2

= (η2)

+
j− 1

2
introduces spurious waves that

disturb the stationary equilibrium.
(2) At x = x j+ 1

2
, (η2)

−
j+ 1

2
< Bj+ 1

2
introduces negative fluid depth of lower layer fluid at

cell interfaces,
(3) Same problems as (1) and (2) also happen at x = x j+ 1

2
and x = x j+ 3

2
for upper layer

fluid in cell I j+1,
(4) Non-physical surface reconstruction in the dry cell I j+2 which introduce artificial waves

and negative fluid depths.

To overcome the above issues without refining the local mesh, it is proposed in the current
study to further correct the piecewise linear reconstruction (2.24)–(2.46). To this end, it is
first defined the following six types of computational cells at a certain time level t , which are

For the lower layer:

Type 1 : Fully flooded cell : (h2) j �x ≥ �x

2

∣∣∣Bj+ 1
2

− Bj− 1
2

∣∣∣ ,

Type 2 : Partially flooded cell : �x

2

∣∣∣Bj+ 1
2

− Bj− 1
2

∣∣∣ > (h j )2 �x > 0,

Type 3 : Dry cell : (h2) j �x = 0,

For the entire fluid column:

Type 4 : Fully flooded cell : [
(h1) j + (h2) j

]
�x ≥ �x

2

∣∣∣Bj+ 1
2

− Bj− 1
2

∣∣∣ ,

Type 5 : Partially flooded cell : �x

2

∣∣∣Bj+ 1
2

− Bj− 1
2

∣∣∣ >
[
(h1) j + (h2) j

]
�x > 0,

Type 6 : Dry cell : [
(h1) j + (h2) j

]
�x = 0,

(2.30)

where h2 �x is the volume of the lower layer fluid stored in a cell,
(
h1 + h2

)
�x is the

total volume of both lower and upper layer fluids stored in a cell, and 1
2

∣∣Bj+ 1
2

− Bj− 1
2

∣∣�x
represents the critical volume distinguishing between fully and partially flooded cells.
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Remark 2.1 It is considered in (2.30) different types of cells for the entire fluid column rather
than the upper layer fluid. Such cell classification avoids more complicated upper+lower
layer fluid combination, and it is one of the key ideas of the currently proposed numerical
scheme.

Remark 2.2 Notice that each computational cell is of two types, i.e., one of the first three
types (Types 1–3) as well as one of the last three types (Types 4–6) due to the presence of
two-layer fluids. For example, the cell j in Fig. 2 is both Type 2 and Type 4.

In the following, it is then corrected the piecewise surface reconstruction (2.24)–(2.46)
in the presence of wet–dry fronts. Such corrections need to satisfy both mass conservation
and positivity of depth in each cell. In this study, the auxiliary variables (̂η1) j and (̂η2) j
representing the actual water surface levels at each cell center are introduced. One can see
that such auxiliary variables only make sense in non-dry cells. In a dry cell (Types 3 or
6), the value of (̂η1) j or (̂η2) j are introduced only for the purpose of generalization and
convenience in programming, they are not used in any computation. Therefore, in dry cells,
they can be defined arbitrarily only if their values are non-greater than the lowest bed level
in cell I j . Accordingly, the cell classification (2.30) can be equivalently rewritten as follows
with respect to (̂η1) j or (̂η2) j :

For the lower layer:

Type 1 : Fully flooded cell : (̂η2) j ≥ max
(
Bj+ 1

2
, Bj− 1

2

)
,

Type 2 : Partially flooded cell : max
(
Bj+ 1

2
, Bj− 1

2

)
> (̂η2) j > min

(
Bj+ 1

2
, Bj− 1

2

)
,

Type 3 : Dry cell : (̂η2) j ≤ min
(
Bj+ 1

2
, Bj− 1

2

)
,

For the entire fluid column:

Type 4 : Fully flooded cell : (̂η1) j ≥ max
(
Bj+ 1

2
, Bj− 1

2

)
,

Type 5 : Partially flooded cell : max
(
Bj+ 1

2
, Bj− 1

2

)
> (̂η1) j > min

(
Bj+ 1

2
, Bj− 1

2

)
,

Type 6 : Dry cell : (̂η1) j ≤ min
(
Bj+ 1

2
, Bj− 1

2

)
,

(2.31)

Notice that the auxiliary water level (̂η1) j or (̂η2) j may be lower than Bj in a partially flooded
cell.

Remark 2.3 The cell classification (2.31) is equivalent to (2.30). The readers are suggested to
define the initial/boundary conditions through (̂η1) j and (̂η2) j since they are more relevant
to the“real-world” physics than the cell-averaged surface levels (η1) j and (η2) j in a non-
well-resolved finite volume discretization, e.g., partially flooded cells. And they are easier to
be defined/measured in field and laboratory applications.

In the following, the surface reconstruction for the lower layer fluid is first corrected.
� For the Type 1 cells, in the case of negative reconstructed fluid depth at cell interface,
say (η2) j+ 1

2
< Bj+ 1

2
, as in (Kurganov and Petrova 2007), the surface is then corrected by

setting that

(η2) j+ 1
2

= Bj+ 1
2
, (η2) j− 1

2
= 2(h2) j + Bj− 1

2
. (2.32)

Thus, the (Vx )
(3)
j in (2.24) should be then replaced by

(Vx )
(3)
j (x) = (

(η2)x
)
j (x) =

(η2) j+ 1
2

− (η2) j− 1
2

�x
. (2.33)
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xj− 1
2

xj xj+ 1
2

xj− 1
2

xj x∗
j xj+ 1

2

η1

B

η1

B

(η2)j

Bj

(h2)jΔx

(η̂2)j

Fig. 3 The original (left, red solid line) and corrected (right, red dashed line) surface reconstruction of η2 for
Type 2 cells

One also has (̂η2) j = (η2) j in this type of cells.
� For each Type 2 cell, based on the mass conservation, similar to that in (Bollermann et al.
2013), the surface reconstruction (η2) j (x) is divided into two connecting segments, i.e., one
horizontal segment and one linear “dry bed” segment (see Fig. 3). For the sake of simplicity,
it is assumed that Bj− 1

2
< Bj+ 1

2
in the following description. The case Bj− 1

2
> Bj+ 1

2
is

analogous.
As shown in Fig. 3, for the lower layer fluid, the connecting point at x∗

j splits the partially
flooded cell into awet part under a horizontal surface and a dry part with fluid surface overlaps
the bed.

The level of the horizontal segment is set to be (̂η2) j which can be deemed as the flat
surface of stationary water body in a reservoir bounded below by Bj (x). The volume of the
lower layer fluid, i.e., the area of the red triangle in Fig. 3 should be equal to (h2) j�x based
on the requirement of mass conservation. Thus, the auxiliary surface level (̂η2) j is related to
(η2) j through

(̂η2) j = Bj− 1
2

+
√
2
[
(η2) j − Bj

](
Bj+ 1

2
− Bj− 1

2

)
. (2.34)

Accordingly, the surface reconstruction (2.24) for V (3)
j (x) in the Type 2 cells should be

replaced by

V (3)
j (x) = (η2) j (x) =

{
(̂η2) j , ifx j− 1

2
≤ x ≤ x∗

j ,

Bj (x), ifx∗
j < x ≤ x j+ 1

2
,

(2.35)

and

(Vx )
(3)
j (x) = (

(η2)x
)
j (x) =

{
0, ifx j− 1

2
≤ x ≤ x∗

j ,

(Bx ) j , if x∗
j < x ≤ x j+ 1

2
.

(2.36)

Remark 2.4 Unlike the surface reconstruction proposed in Bollermann et al. (2013),
(η2)

+
j− 1

2
= (η2)

−
j− 1

2
is not forced when the neighboring cell is fully flooded in the cur-

rently proposed method. Using the spatial constant surface level (̂η2) j in the wet part as
shown in Fig. 3 avoids suppressing the small physical gravity waves between the Type 2 cells
and their neighboring flooded cells, and is crucial to guarantee the well-balanced property of
the semi-discrete (2.11) in the currently proposed numerical scheme.
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Remark 2.5 It is noticed that the exact location of x∗
j is not needed to be computed in the

proposed scheme since only the reconstructed values at cell interfaces are needed in the
discrete scheme.

� For the Type 3 cells, it is set

V (3)
j (x) = (η2) j (x) = Bj (x), (2.37)

and

(Vx )
(3)
j (x) = (

(η2)x
)
j (x) = (Bx ) j . (2.38)

Next, the water surface reconstruction for the upper layer fluid is corrected.
�For theType 4 cell, it can be combinedwith any one of the first three types (Types 1–3) cells.
In the case of negative reconstructed fluid depth at cell interface, say (η1) j+ 1

2
< (η2) j+ 1

2
,

the surface is then corrected by setting that

(η1) j+ 1
2

= (η2) j+ 1
2
, (η1) j− 1

2
= 2h1 + (η2) j− 1

2
. (2.39)

Thus, the (Vx )
(1)
j in (2.24) should be replaced by

(Vx )
(1)
j (x) = (

(η1)x
)
j (x) =

(η1) j+ 1
2

− (η1) j− 1
2

�x
. (2.40)

One has that (̂η1) j = (η1) j in this type of cells.
� For the Type 5 cell, it can be combined with either Types 2 or Types 3 cell. Similar to the
surface correction for the Types 2 cells, the surface reconstruction of (η1) j (x) is proposed
to be divided into two connecting pieces, i.e., one horizontal piece and one linear “dry bed”
piece (see Fig. 4). For the sake of simplicity, we assume that Bj− 1

2
< Bj+ 1

2
in the following

description. The case Bj− 1
2

> Bj+ 1
2
is analogous.

The level of the horizontal piece is set to be (̂η1) j which is related to (h1) j and (η2) j
through

(̂η1) j = Bj− 1
2

+
√
2
[
(h1) j + (η2) j − Bj

](
Bj+ 1

2
− Bj− 1

2

)
. (2.41)

based on the mass conservation, i.e., the blue area in Fig. 4 is equal to
[
(h1) j + (h2) j

]
�x .

Therefore, the surface reconstruction (2.24) for V (1)
j (x) in the Type 5 cells should be

replaced by

V (1)
j (x) = (η1) j (x) =

{
(̂η1) j , ifx j− 1

2
≤ x ≤ x∗∗

j ,

Bj (x), ifx∗∗
j < x ≤ x j+ 1

2
.

(2.42)

where x∗∗
j is the location of the connecting point in cell I j .

And the slopes of reconstructed surface (η1) j in [x j− 1
2
, x j+ 1

2
] is estimated by

(Vx )
(1)
j (x) = (

(η1)x
)
j (x) =

{
0, ifx j− 1

2
≤ x ≤ x∗∗

j ,

(Bx ) j , ifx∗∗
j < x ≤ x j+ 1

2
.

(2.43)

� For the Type 6 cells, they can be only combined with Type 3 cells. Therefore, it is set in
this type of cell that

V (1)
j (x) = (η1) j (x) = Bj (x), (2.44)
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xj− 1
2

xj xj+ 1
2

xj− 1
2

xj x∗∗
j xj+ 1

2

η2

B

η2

B

(η1)j

Bj

[
(h1)j + (h2)j

]
Δx

(η̂1)j

Fig. 4 The original (left, blue dashed line) and corrected (right, blue solid line) surface reconstruction of η1
for Type 5 cells

xj−2 xj− 3
2

xj−1 xj− 1
2

xj xj+ 1
2

xj+1 xj+ 3
2

xj+2

η1

η2

B

Fig. 5 The corrected reconstructions of the surface levels of upper layer fluid (η1: blue) and lower layer fluid
(η2: red) over bottom topography (B:green solid line) at stationary steady states

and

(Vx )
(1)
j (x) = (

(η1)x
)
j (x) = (Bx ) j . (2.45)

Finally, applying above corrections of surface reconstruction to Types 1–6 cells, the orig-
inal piecewise linear reconstructions (2.24)–(2.46) for fluid surfaces demonstrated in Fig. 2
are corrected as in Fig. 5 in the stationary equilibrium. One can see that the above surface
corrections guarantee that the lower and upper layer fluid depths at cell interfaces are equal
under the stationary equilibrium and nonnegative. These features avoid the spurious waves
generated by the second term of (2.12) at stationary steady states.
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Consequently, the polynomial pieces in (2.13) are given as:

P j (x) =

⎛
⎜⎜⎜⎜⎜⎝

V (1)
j (x) − V (3)

j (x)

V (2)
j (x)

[
V (1)
j (x) − V (3)

j (x)
]

V (3)
j (x)

V (4)
j (x)

[
V (3)
j (x) − B j (x)

]

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

(η1) j (x) − (η2) j (x)

(u1) j (x)
[
(η1) j (x) − (η2) j (x)

]

(η2) j (x)

(u2) j (x)
[
(η2) j (x) − B j (x)

]
.

⎞
⎟⎟⎟⎟⎠

. (2.46)

2.3.3 Numerical discretization of Kj in (2.16)

To guarantee the RHS of formula (2.11) vanish in stationary equilibrium, the cell integral
K j must exactly balance the numerical fluxes H j+ 1

2
and H j− 1

2
. To this end, it is proposed

in the current study to estimate the terms K j in a special form. It is first written that

K j : =
∫

I j
C(P j (x), B(x))

dP j (x)

dx
+ S j (P j (x), B(x)) dx

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0∫

I j

( g
2
h21

)
x
dx −

∫

I j
gh1

(
h1 + η2

)
x dx

0∫

I j

[ g
2

(η2 − B)2
]
x
dx −

∫

I j
g
(
η2 − B

)[
r
(
h1 + η2

)
x + (1 − r)(η2)x

]
dx

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(2.47)

Next, applying divergence theorem and trapezoidal rule to the first and second integrals
in (2.47) in each component of K j , respectively, one obtains that

K (2)
j = g

2

{[
(h1)

−
j+ 1

2

]2 −
[
(h1)

+
j− 1

2

]2}− g

2
�x

{
(h1)

+
j− 1

2

[(
h1 + η2

)
x

]+
j− 1

2

+ (h1)
−
j+ 1

2

[(
h1 + η2

)
x

]−
j+ 1

2

}
,

(2.48)

and

K (4)
j = g

2

{[
(η2)

−
j+ 1

2
− Bj+ 1

2

]2 −
[
(η2)

+
j− 1

2
− Bj− 1

2

]2}− g

2
�x

{[
(η2)

+
j− 1

2
− Bj− 1

2

]

[
r
((
h1 + η2

)
x

)+
j− 1

2

+ (1 − r)
(
(η2)x

)+
j− 1

2

]
+
[
(η2)

−
j+ 1

2
− Bj+ 1

2

]

[
r
[(
h1 + η2

)
x

]−
j+ 1

2

+ (1 − r) ((η2)x )
−
j+ 1

2

]}
. (2.49)

To further compute K (2)
j (2.48) and K (4)

j (2.49), it is crucial to estimate in (2.48) and
(2.49) the derivatives which represent the slopes of fluid surfaces at both ends of cell I j . To
guarantee the well-balanced property, according to the surface corrections in Sect. 2.3.2, we
propose in the current study to estimate them by

[(
h1 + η2

)
x

]−
j+ 1

2

= [
(η1)x

]−
j+ 1

2
,
[(
h1 + η2

)
x

]+
j− 1

2

= [
(η1)x

]+
j− 1

2
, (2.50)
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where
[
(η1)x

]−
j+ 1

2
and

[
(η1)x

]+
j− 1

2
are computed using that (2.40), (2.43) and (2.45). More-

over, the surface slopes of the lower layer fluid
[
(η2)x

]−
j+ 1

2
and

[
(η2)x

]+
j− 1

2
are estimated by

(2.33), (2.36) and (2.38).

2.3.4 Numerical discretization of C9,j+ 1
2
in (2.18)

As demonstrated in §2.2, C�, j+ 1
2
and C�, j− 1

2
in (2.11) account for the contribution of the

jump of the nonconservative products at cell interfaces. Therefore, they should vanish in the
stationary equilibrium. In this study, a simplest linear segment path is chosen

� j+ 1
2
(s) = U−

j+ 1
2

+ s
(
U+

j+ 1
2

− U−
j+ 1

2

)
, (2.51)

which leads to the following discretization of the integral in (2.18), that is

C�, j+ 1
2

:=

⎛
⎜⎜⎜⎜⎝

0

−g

2

[
(h1)

+
j+ 1

2
+ (h1)

−
j+ 1

2

][
(η2)

+
j+ 1

2
− (η2)

−
j+ 1

2

]

0

−gr

2

[
(η2)

+
j+ 1

2
+ (η2)

−
j+ 1

2
− 2Bj+ 1

2

][
(h1)

+
j+ 1

2
− (h1)

−
j+ 1

2

]

⎞
⎟⎟⎟⎟⎠

, (2.52)

and C�, j− 1
2
can be computed analogously.

It is noticed that C�, j+ 1
2
and C�, j− 1

2
should vanish at the stationary steady states since

no jump of nonconservative products exist in this case. Thanks to the reformulation (2.1) of
the governing system, reconstructing η2 can guarantee these two terms vanish when bottom
topography is fully submerged in the lower layer fluid. However, in the presence of the wet–
dry interfaces, one needs to use the proposed surface corrections in §2.3.2 to ensure that these
two terms vanish at the stationary steady states.

2.4 Fully discrete numerical scheme for (2.11)

In this section, the numerical approximation of the time dependent derivatives is presented
to obtain the fully discrete numerical scheme for (2.11). To avoid the numerical instabilities,
the global time step size �t can be estimated by a CFL like condition:

�t = μ
�x

max
j

( ∣∣a+
j+ 1

2

∣∣, ∣∣a−
j+ 1

2

∣∣
) , (2.53)

where a relatively small CFL number μ = 0.3 is used in the current study to help to mitigate
the potential layer-interfacial instability.

To obtain the second order accuracy, the strong-stability-preserving two-staged Runge–
Kutta method (SSP-RK2) from (Gottlieb et al. 2001) is used in this study for time evolution.
The SSP-RK2 is briefly described in (2.54), it reads

U∗ = Un + �t L(Un)

Un+1 = 1

2
Un + 1

2

[
U∗ + �t L(U∗)

]
,

(2.54)

where L(U) is the spatial discretization of the forcing terms, i.e., all the right-hand-sided
(RHS) terms of the semi-discrete scheme (2.11), the superscript n and n + 1 represent time
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level t = tn and t = tn+1 = tn + �t , respectively, U∗ represents the intermediate values of
variables obtained from the first stage of SSP-RK2.

It is noticed that for the adopted two-staged Runge–Kutta methods, the global time step
�t is only estimated in the first stage.

2.4.1 Positivity-preserving time evolution

One desired feature of a robust numerical model is preserving the positivity of fluid depth
for each layer, that is

(h1)
n+1
j = (h1)

n
j − �t

�x

[
F (1)

j+ 1
2

− F (1)
j− 1

2

]
≥ 0, (η2)

n+1
j = (η2)

n
j

− �t

�x

[
F (3)

j+ 1
2

− F (3)
j− 1

2

]
≥ Bj ,

(2.55)

providing that (h1) nj ≥ 0 and (h2) nj ≥ 0 at t = tn .
However, the global time step�t estimated by stability constraint (2.53) can not guarantee

(2.55) are satisfied. Therefore, in the presence of wet–dry fronts, one has to use very small
global time step�t to enforce the positivity of fluid depth for each layer. This could in turn lead
to very expensive computational cost. To overcome such numerical difficulty and guarantee
the positivity of layer depth, the “draining” time-step strategy proposed in (Bollermann et al.
2011) is extended to the currently study. Instead of using a global time step �t for all cell
interfaces, such strategy defines time step size �t j+ 1

2
for each cell interface based on �t and

the local draining time step size �t drainj , ∀ j .
The basic idea of such a method is to cut off the outgoing fluxes as soon as the fluid

originally contained in the cell has completely left the cell via the outgoing fluxes during a
certain global time step �t . To apply this idea, one can first introduce the local draining time
step for each layer in a cell, i.e.,

(�t1)
drain
j = (h1) nj �x

max
(
0,F (1),n

j+ 1
2

)+ max
(
0,−F (1),n

j− 1
2

) , (2.56)

(�t2)
drain
j = (h2) nj �x

max
(
0,F (3),n

j+ 1
2

)+ max
(
0,−F (3),n

j− 1
2

) , (2.57)

which represent the time for completely draining the water originally stored in a cell I j via
out-going flow though cell interfaces at t = tn for the upper and lower layers, respectively.

Next, based on (�t1)drainj and (�t2)drainj , and the upwind direction of the fluxes F (1),n
j+ 1

2

and F (3),n
j+ 1

2
, the interfacial draining time step (�tk) j+ 1

2
, k = 1, 2 for each cell interface can

be estimated by

(�t1) j+ 1
2

=

⎧⎪⎨
⎪⎩

min
[
�t, (�t1)

drain
j

]
, ifF (1),n

j+ 1
2

≥ 0,

min
[
�t, (�t1)

drain
j+1

]
, ifF (1),n

j+ 1
2

< 0,

(�t2) j+ 1
2

=

⎧⎪⎨
⎪⎩

min
[
�t, (�t2)

drain
j

]
, ifF (3),n

j+ 1
2

≥ 0,

min
[
�t, (�t2)

drain
j+1

]
, ifF (3),n

j+ 1
2

< 0,

(2.58)
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respectively.
Notice that (2.58) should be updated in each Runge–Kutta stage (2.54).
Finally, one can accordingly modify the discretization L(U) in (2.54) to guarantee the

positivity-preserving and well-balanced properties. The modified L(U) is given by

L(1)(U) = − 1

�x

[
(�t1) j+ 1

2

�t
F (1)

j+ 1
2

−
(�t1) j− 1

2

�t
F (1)

j− 1
2

]
, (2.59)

L(2)(U) = − 1

�x

{ (�t1) j+ 1
2

�t
F (2)

j+ 1
2

−
(�t1) j− 1

2

�t
F (2)

j− 1
2

− g

2

[ (�t1) j+ 1
2

�t

(
(h1)

−
j+ 1

2

)2

−
(�t1) j− 1

2

�t

(
(h1)

+
j− 1

2

)2]+ g�x

2

[
(h1)

+
j− 1

2

(
(h1 + η2)x

)+
j− 1

2

+ (h1)
−
j+ 1

2

(
(h1 + η2)x

)−
j+ 1

2

]

−
(�t1) j− 1

2

�t

a+
j− 1

2

a+
j− 1

2
− a−

j− 1
2

C (2)
�, j− 1

2
+

(�t1) j+ 1
2

�t

a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

C (2)
�, j+ 1

2

}
, (2.60)

L(3)(U) = − 1

�x

[
(�t2) j+ 1

2

�t
F (3)

j+ 1
2

−
(�t2) j− 1

2

�t
F (3)

j− 1
2

]
, (2.61)

L(4)(U) = − 1

�x

{
(�t2) j+ 1

2

�t
F (4)

j+ 1
2

−
(�t2) j− 1

2

�t
F (4)

j− 1
2

− g

2

[ (�t2) j+ 1
2

�t

(
(η2)

−
j+ 1

2
− Bj+ 1

2

)2

−
(�t2) j− 1

2

�t

(
(η2)

+
j− 1

2
− Bj− 1

2

)2]+ g�x

2

[(
(η2)

+
j− 1

2
− Bj− 1

2

)(
r
(
(h1 + η2)x

)+
j− 1

2

+ (1 − r)
(
(η2)x

)+
j− 1

2

)
+
(
(η2)

−
j+ 1

2
− Bj+ 1

2

)(
r
(
(h1 + η2)x

)−
j+ 1

2

+(1 − r)
(
(η2)x

)−
j+ 1

2

)]

−
(�t2) j− 1

2

�t

a+
j− 1

2

a+
j− 1

2
− a−

j− 1
2

C (4)
�, j− 1

2
+

(�t2) j+ 1
2

�t

a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

C (4)
�, j+ 1

2

⎫
⎬
⎭ , (2.62)

where C (i=1,4)
�, j− 1

2
and C (i=1,4)

�, j+ 1
2
are computed by (2.52).

Thus, a fully discrete numerical scheme can be obtained using (2.54) and (2.59)–(2.62)
with (2.12) and (2.52).

2.5 Well-balanced property of the proposed scheme

In this section, the well-balanced property of the proposed numerical scheme is proved.
In the presence ofwet–dry fronts, the stationary steady-state solutions for two-layer system

can be defined by

(q1) ≡ (q2) ≡ 0, η1 := h1 + η2 ≡ max (Const1, η2) , η2 ≡ max (Const2, B) .(2.63)

The proposed fully discrete scheme ((2.54) and (2.59)–(2.62)) is well balanced if the
forcing terms L(Un) vanish provided (2.63) at t = tn , and one obtains Un+1 ≡ Un .

For the sake of brevity, we only prove the well-balanced property for the first stage in an
SSP-RK2 evolution in the following. However, the proof for the second stage is analogous.

123



311 Page 18 of 31 X. Liu, J. He

The stationary steady-state solutions (2.63) is first substituted into (2.21), one obtains that

a+
j+ 1

2
= max

{√
g
[
(h1)

+
j+ 1

2
+ (η2)

+
j+ 1

2
− Bj+ 1

2

]
,

√
g
[
(h1)

−
j+ 1

2
+ (η2)

−
j+ 1

2
− Bj+ 1

2

]
, 10−10

}
,

a−
j+ 1

2
= min

{
−
√
g
[
(h1)

+
j+ 1

2
+ (η2)

+
j+ 1

2
− Bj+ 1

2

]
,

−
√
g
[
(h1)

−
j+ 1

2
+ (η2)

−
j+ 1

2
− Bj+ 1

2

]
, −10−10

}
. (2.64)

Thanks to the piecewise linear reconstruction of the secondary variables V in §2.3.1 and the
surface corrections in §2.3.2, one, thus, obtains that

(η2)
+
j+ 1

2
= (η2)

−
j+ 1

2
, (h1)

+
j+ 1

2
= (h1)

−
j+ 1

2
, (2.65)

through (2.46).
Substituting (2.65) into (2.64) and (2.52), it leads to

a+
j+ 1

2
= −a−

j+ 1
2

≥ 0, and C�, j+ 1
2

= [
0, 0, 0, 0

]�
, ∀ j . (2.66)

Then, (2.63) and (2.66) are substituted into the forcing terms L(U) (2.59)–(2.62) with
(2.12) and (2.52) at the first stage of the proposed fully discrete numerical scheme (2.54),
one obtains that

L(1)(U j ) = − 1

�x

{ (�t1) j+ 1
2

�t

a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

[
(h1)

+
j+ 1

2
− (h1)

−
j+ 1

2

]

−
(�t1) j− 1

2

�t

a+
j− 1

2
a−
j− 1

2

a+
j− 1

2
− a−

j− 1
2

[
(h1)

+
j− 1

2
− (h1)

−
j− 1

2

]}

L(2)(U j ) = − 1

�x

{ (�t1) j+ 1
2

�t

g

4

[(
(h1)

−
j+ 1

2

)2

+
(

(h1)
+
j+ 1

2

)2 ]
−

(�t1) j− 1
2

�t

g

4

[(
(h1)

−
j− 1

2

)2

+
(

(h1)
+
j− 1

2

)2 ]
− g

2

[ (�t1) j+ 1
2

�t

(
(h1)

−
j+ 1

2

)2 −
(�t1) j− 1

2

�t

(
(h1)

+
j− 1

2

)2]

+ g�x

2

[
(h1)

+
j− 1

2

(
(h1 + η2)x

)+
j− 1

2

+ (h1)
−
j+ 1

2

(
(h1 + η2)x

)−
j+ 1

2

]

−
(�t1) j− 1

2

�t

1

2
C (2)

�, j− 1
2

−
(�t1) j+ 1

2

�t

1

2
C (2)

�, j+ 1
2

}

L(3)(U j ) = − 1

�x

⎡
⎣ (�t2) j+ 1

2

�t

a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

(
(η2)

+
j+ 1

2
− (η2)

−
j+ 1

2

)

−
(�t2) j− 1

2

�t

a+
j− 1

2
a−
j− 1

2

a+
j− 1

2
− a−

j− 1
2

(
(η2)

+
j− 1

2
− (η2)

−
j− 1

2

)⎤
⎦

L(4)(U j ) = − 1

�x

{
(�t2) j+ 1

2

�t

g

4

[(
(η2)

−
j+ 1

2
− Bj+ 1

2

)2

+
(

(η2)
+
j+ 1

2
− Bj+ 1

2

)2
]
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−
(�t2) j− 1

2

�t

g

4

[(
(η2)

−
j− 1

2
− Bj− 1

2

)2

+
(

(η2)
+
j− 1

2
− Bj− 1

2

)2
]

− g

2

[ (�t2) j+ 1
2

�t

(
(η2)

−
j+ 1

2
− Bj+ 1

2

)2

−
(�t2) j− 1

2

�t

(
(η2)

+
j− 1

2
− Bj− 1

2

)2 ]

+ g�x

2

[(
(η2)

+
j− 1

2
− Bj− 1

2

)(
r
(
(h1 + η2)x

)+
j− 1

2

+ (1 − r)
(
(η2)x

)+
j− 1

2

)

+
(
(η2)

−
j+ 1

2
− Bj+ 1

2

)(
r
(
(h1 + η2)x

)−
j+ 1

2

+ (1 − r)
(
(η2)x

)−
j+ 1

2

)]

−
(�t2) j− 1

2

�t

1

2
C (4)

�, j− 1
2

−
(�t2) j+ 1

2

�t

1

2
C (4)

�, j+ 1
2

}
. (2.67)

Using (2.65), one can easily prove that L(1)(U j ) = L(3)(U j ) = 0, and the first two RHS
rows of L(2)(U j ), as well as the first three RHS rows of L(4)(U j ) are canceled in (2.67).

With (2.66), L(2)(U j ) and L(4)(U j ) in (2.67) can be further simplified to

L(2)(U j ) = −g

2

[
(h1)

+
j− 1

2

(
(h1 + η2)x

)+
j− 1

2

+ (h1)
−
j+ 1

2

(
(h1 + η2)x

)−
j+ 1

2

]
, (2.68)

L(4)(U j ) = −g

2

{(
(η2)

+
j− 1

2
− Bj− 1

2

)[
r
(
(h1 + η2)x

)+
j− 1

2

+ (1 − r)
(
(η2)x

)+
j− 1

2

]

+
(
(η2)

−
j+ 1

2
− Bj+ 1

2

)[
r
(
(h1 + η2)x

)−
j+ 1

2

+ (1 − r)
(
(η2)x

)−
j+ 1

2

]}
. (2.69)

Remark 2.6 Above cancellations and simplifications are valid for any type of cells (see Sect.
2.3.2), provided the stationary steady-state solutions (2.63).

We then prove that the RHS terms of (2.69) vanish for any one of the Types 1–3 cells (see
Sect. 2.3.2) provided the stationary steady-state solutions (2.63).

For a Types 1 cell, it can only be combined with a Types 4 cell. Therefore, providing
stationary steady-state solutions (2.63), one obtains that

(
(η2)x

)+
j− 1

2

=
(
(η2)x

)−
j+ 1

2

= 0,
(
(h1 + η2)x

)+
j− 1

2

=
(
(h1 + η2)x

)−
j+ 1

2

= 0,

(2.70)

which lead to L(4)(U j ) = 0.
For a Types 2 cell, assuming Bj− 1

2
< Bj+ 1

2
, using that (2.36), one has that

(
(η2)x

)+
j− 1

2

= 0,
(
(η2)

−
j+ 1

2
− Bj+ 1

2

)
= 0. (2.71)

Moreover, for either a Types 4 or Types 5 cell combined with a Types 2 cell, one always has
that

(
(h1 + η2)x

)+
j− 1

2

= 0. (2.72)

Thus, (2.71) and (2.72) lead to L(4)(U j ) = 0.

123



311 Page 20 of 31 X. Liu, J. He

For a Types 3 cell, it obviously yields that
(
(η2)

+
j− 1

2
− Bj− 1

2

)
=
(
(η2)

−
j+ 1

2
− Bj+ 1

2

)
= 0, (2.73)

which lead to L(4)(U j ) = 0.
Next, one can prove that the RHS terms of (2.68) vanish for any one of Types 4–6 cells

(see Sect. 2.3.2) providing the stationary steady state solutions (2.63).
For a Types 4 cell, no matter which type of cell (Types 1–3) it is combined with, providing

stationary steady state solutions (2.63), one has that

(
(h1 + η2)x

)+
j− 1

2

=
(
(h1 + η2)x

)−
j+ 1

2

= 0, (2.74)

which lead to L(2)(U j ) = 0.
For a Types 5 cell, assuming Bj− 1

2
< Bj+ 1

2
, no matter which one of Types 2–3 cells it is

combined with, one has that
(
(h1 + η2)x

)+
j− 1

2

= 0, (h1)
−
j+ 1

2
= 0, (2.75)

which lead to L(2)(U j ) = 0.
For a Types 6 cell, obviously, it yields that

(h1)
+
j− 1

2
= 0, (h1)

−
j+ 1

2
= 0, (2.76)

which lead to L(2)(U j ) = 0.
Thus, for any type of cell classified in a two-layer shallow water system, the proposed

numerical schemes guarantee the forcing terms L(U) vanish at the stationary steady states
(2.63).

Accordingly, one can conclude that the proposed numerical schemes guarantee the well-
balanced property in the presence of wet–dry fronts.

3 Numerical experiments

In this section, the currently proposed numerical scheme is tested on a number of numerical
examples. In the following experiments, r = 0.9 is set unless otherwise specified, and
g = 9.81 is used for all the tests. The L1- and L∞-norm of errors in this section are computed
by

L1-error = 1

N

N∑
1

|Uj −U ref
j |, L∞-error = max

j
|Uj −U ref

j |,

where U ref represents the reference or exact solution.

3.1 Experiment 1—Numerical accuracy order

In this test, the accuracy of the proposed numerical scheme is first investigated by computing
the L1-error and experimental order of convergence (EOC) of the variables. As given in
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Table 1 Experiment 1: L1-errors and experimental order of convergence (EOC)

N h1 η2 q1 q2

L1-error EOC L1-error EOC L1-error EOC L1-error EOC

100 2.10e-03 – 2.08e-03 – 2.71e-03 – 2.30e-03 –

200 3.31e-04 2.66 3.24e-04 2.68 5.58e-04 2.28 4.88e-04 2.23

400 8.09e-05 2.03 7.74e-05 2.06 1.07e-04 2.37 9.46e-05 2.36

800 1.57e-05 2.36 1.48e-05 2.38 1.93e-05 2.48 1.68e-05 2.49

1600 3.07e-06 2.35 2.82e-06 2.38 3.87e-06 2.31 3.20e-06 2.39

3200 6.15e-07 2.32 5.54e-07 2.35 8.24e-07 2.23 6.34e-07 2.33

Kurganov and Petrova (2009), the initial conditions are

η̂1(x, 0) = 10, η̂2(x, 0) = 5 − ecos(2πx),

q1(x, 0) ≡ q2(x, 0) ≡ 0, B(x) = sin2(πx), x ∈ [ 0, 1 ]. (3.1)

The periodic boundary conditions are applied on both boundaries. It is computed up to t = 0.1
over the computational domain [ 0, 1 ]. The reference solution is obtained with N = 32000
grids. The L1-errors and the experimental order of convergence of variables U are shown in
Table 1. One can find that the proposed numerical model is second order accurate as expected.

3.2 Experiment 2—Stationary steady-state solutions

In this numerical experiment, we test the well-balanced property by computing the stationary
steady states over the computational domain [ 0, 10 ]. The bottom topography with a 0.8 high
hump is defined by

B(x) =
{
0.8 − 0.2(x − 5)2, if 3 ≤ x ≤ 7,

0, otherwise.
(3.2)

Due to the presence of two layers, the proposed numerical schemes are tested based on
the following three steady-state cases:

(a) Upper layer: Wholly flooded; Lower layer: Wholly flooded,

η̂1(x, 0) = 1.2, η̂2(x, 0) = 1, q1(x, 0) ≡ q2(x, 0) ≡ 0, (3.3)

(b) Upper layer: Wholly flooded; Lower layer: Partly flooded,

η̂1(x, 0) = 1.0, η̂2(x, 0) = max
[
0.6, B(x)

]
, q1(x, 0) ≡ q2(x, 0) ≡ 0, (3.4)

(c) Upper layer: Partly flooded; Lower layer: Partly flooded,

η̂1(x, 0) = 0.6, η̂2(x, 0) = 0.3, q1(x, 0) ≡ q2(x, 0) ≡ 0, (3.5)

The steady-state solutions are computed up to t = 10 over a relatively coarse mesh with
�x = 0.5, 0.1 and 0.01, respectively, for above three different cases. The simulated water
surfaces and discharges with �x = 0.1 at t = 10 are shown in Fig. 6. In the left column
of Fig. 6, one can observe that the computed surface of each layer remains constant during
the simulation even in the presence of wet–dry fronts. In the right column of Fig. 6, it can
be seen that the computed two-layer fluids remain stationary in different above-described
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Fig. 6 Experiment 2: Computed surface levels (left) and discharges (right) of both fluid layers for case a (first
row), b (second row), and c (third row), respectively, with �x = 0.1 at t = 10

cases, the observed small disturbations are only of the same magnitude as machine error.
The errors of different cases with different grid sizes are further shown in Table 2 which
confirms that the proposed numerical schemes guarantee the well-balanced property in
the presence of wet–dry fronts as expected.

3.3 Experiment 3—Small perturbation of a stationary steady-state solutions

In this test, the ability of accurately capturing small perturbations of the stationary steady-
state solutions is verified using the proposed numerical schemes. To this end, the numerical
test in (Kurganov and Petrova 2009) is modified in this study.
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Fig. 7 Experiment 3: Initial conditions of case a (left) and case b (right)

The bottom topography is defined by

B(x) =
{
0.25

[
cos(10π(x − 0.5)) + 1

]− 2, if0.1 < x < 0.2,

− 2, otherwise,
(3.6)

over the computational domain [ 0, 1 ]
It is considered in this experiment two sets of initial conditions, i.e., case (a) (see Fig. 7,

left):
(
η̂1(x, 0), η̂2(x, 0), q1(x, 0), q2(x, 0)

)

=
{ (

0.00001, −1, 0, 0
)
, if0.1 < x < 0.2,(

0, −1, 0, 0
)
, otherwise,

(3.7)

and case (b) (see Fig. 7, right):
(
η̂1(x, 0), η̂2(x, 0), q1(x, 0), q2(x, 0)

)

=
{ (

0.00001, −1.6, 0, 0
)
, if0.1 < x < 0.2,(

0, −1.6, 0, 0
)
, otherwise.

(3.8)

The transport of the small perturbation is then simulated (3.7) and (3.8), respectively, up
to t = 0.15 on different grid sizes, i.e., �x = 1/100, �x = 1/200, and �x = 1/1600.
Notice that the solution with �x = 1/1600 can serve as a reference solution. The results are
presented in Figs. 8 and 9, respectively. One can see that the proposed numerical model is
capable to accurately capture small physical perturbations and no numerical oscillations are
produced thanks to the well-balanced property.

3.4 Experiment 4—Dam break flows with wetting–drying

This experiment is designed to verify the ability of the currently proposed scheme to preserve
the positivity of the fluid depth during thewetting and drying process. The bottom topography
is defined by

B(x) =

⎧⎪⎨
⎪⎩

0.5 − 0.5(x − 1.5)2, if 0.5 ≤ x ≤ 02.5,

0.225 − 0.4(x − 3.75)2, if 3 ≤ x ≤ 4.5,

0, otherwise.
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Fig. 8 Experiment 3 (case (a)): Computed surface perturbations of the upper layer (left) and bottom layer
(right) with different grid sizes at t = 0.15
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Fig. 9 Experiment 3 (case (b)): Computed surface perturbations of the upper layer (left) and bottom layer
(right) with different grid sizes at t = 0.15

over the computational domain [ 0, 5 ] discretized by 500 uniform grids.
The following three different cases are considered. Case (a) considers the wetting–drying

process only for the upper layer fluid, it demonstrates a dam-break flow of the upper layer
fluid over an initially flat fluid interface. Thus, the initial conditions (Fig. 10, first row) are
defined by

Case (a):
(
η̂1(x, 0), η̂2(x, 0), q1(x, 0), q2(x, 0)

)

=
{ (

1.1, 0.6, 0, 0
)
, ifx ≤ 3,(

0.6, 0.6, 0, 0
)
, otherwise.

(3.9)

The computed results at different times of case (a) are shown in Fig. 10. One can observe
that no negative fluid depth or non-physically high flow rate is generated for the upper layer
fluid during the simulation.

In case (b), the wetting–drying process is considered only for the bottom layer fluid over
irregular bottom, its initial conditions (Fig. 11, first row) are given by

Case (b):
(
η̂1(x, 0), η̂2(x, 0), q1(x, 0), q2(x, 0)

)

=
{ (

1.5, 0.5, 0, 0
)
, ifx ≤ 2.5,(

1.5, 0, 0, 0
)
, otherwise.

(3.10)
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Fig. 10 Experiment 4 (case (a)): Computed surface levels, discharges and fluid depths at different times

The computed results at different times of case (b) are presented in Fig. 11. One can see that
no negative fluid depth or non-physically high flow rate is produced for the lower layer fluid
near the wet–dry fronts. A quasi steady state is obtained at the end of simulation.

In the case (c), the wetting–drying process is considered for the entire two-layer fluid body
over an irregular bed. It demonstrates a dam-break flow over an initially dry bed. The initial
conditions (Fig. 12, first row) are defined by

Case (c):
(
η̂1(x, 0), η̂2(x, 0), q1(x, 0), q2(x, 0)

)

=
{ (

0.5, 0.3, 0, 0
)
, ifx ≤ 3.2,(

0, 0, 0, 0
)
, otherwise.

(3.11)

Figure12 shows the computed results of case (c) at different times. One can see that the
fluid depth of each layer remains non-negative during the computation, and no oscillation is
generated near thewet–dry fronts. A quasi steady state is obtained at the end of the simulation.
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Fig. 11 Experiment 4 (case (b)): Computed surface levels, discharges and fluid depths at different times

3.5 Experiment 5—Barotropic tidal flow

In this experiment, the test in (Diaz et al. 2019) is repeated. It mimics a tidal wave by imposing
a barotropic periodic perturbation as the inflow boundary condition.

The initial conditions with a internal shock are defined by
(
h1(x, 0), q1(x, 0), h2(x, 0), q2(x, 0)

)
=
(

(h1)R , (q1)R , (h2)R , (q2)R
)

= (
0.37002, −0.18684, 1.5931, 0.17416

)
, ifx > 0,

(3.12)

and (
h1(x, 0), q1(x, 0), h2(x, 0), q2(x, 0)

)
=
(

(h1)L , (q1)L , (h2)L , (q2)L
)

= (
0.69914, −0.21977, 1.26932, 0.20656

)
, ifx ≤ 0,

(3.13)

to construct the Hugoniot curve.
Following (Diaz et al. 2019), a flat bed is considered in this test by defining

B(x) ≡ Bref = −1

2

(
(h1)R + (h2)R + (h1)L + (h2)L

)
. (3.14)
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Fig. 12 Experiment 4 (case (c)): Computed surface levels, discharges and fluid depths at different times

The simulation is conducted over the computational domain [−10, 10 ] discretized by
1000 uniform cells. The density ratio is set to be r = 0.98 in this test. The open boundary
condition is applied to the boundary at x = 10, and the periodic boundary condition is
imposed on the left boundary at x = −10 for components h1 and h2 by

h1(−10, t) = (h1)L + (h1)L
0.03

|Bref | sin
(

π t

50

)
,

h2(−10, t) = (h2)L + (h1)L
0.03

|Bref | sin
(

π t

50

)
.

(3.15)

The components q1 and q2 on the left boundary at x = −10 are obtained using a zero-order
extrapolation.

This test is computed until t = 64. In Fig. 13, the results simulated by the currently
proposed schemes are compared with the PCCU scheme developed by Castro Díaz et al.
(Diaz et al. 2019) and the original central-upwind method for two-layer system developed by
Kurganov and Petrova (Kurganov and Petrova 2009). One can observe that, as expected, the
proposed new scheme with the novel well-balanced design Sect. 2.3 yields almost the same
results as the PCCU scheme developed in (Diaz et al. 2019) as expected. Moreover, as stated
in Diaz et al. (2019), the original central-upwind method in Kurganov and Petrova (2009)
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Fig. 13 Experiment 5: Computed surface levels η1 (left column) and η2 (right column) using different
numerical schemes at different times
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Fig. 14 Experiment 6:
Schematic: two adjacent partially
flooded cells with upper (red) and
lower (blue) layer fluids
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Fig. 15 Experiment 6: Computed
surface levels at different times
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begins to develop some spurious oscillations and eventually becomes unstable at larger times.
This verifies the importance of the path-conservative method.

3.6 Experiment 6—Subgrid-scale fluctuation

In this test, we design a challenging numerical experiment modeling the fluctuation that is
not well resolved by the discretized grids.

The test is conducted over the computational domain [−1, 1 ], which is divided into only
two cells. Both cells are partially flooded cells given the initial condition that

(
η̂1(x, 0), η̂2(x, 0), q1(x, 0), q2(x, 0)

)
=
{ (

0.4, 0.23, 0, 0
)
, in cell 1,(

0.24, 0.15, 0, 0
)
, in cell 2,

(3.16)

and the bottom topography that

B 1
2

= 0.5, B 3
2

= 0, B 5
2

= 0.5, (3.17)

as illustrated in Fig. 14.
As the computation starts, a dam-break wave is generated at the cell interfaces and then

fluctuate between two partially flooded cells. Figure15 shows the computed surface levels
of two layers in both cells at different times.

One can observe that the proposed numerical scheme allows for subgrid-scale modeling
of small fluctuation in a stable manner.

4 Conclusion

In this paper, a well-balanced and positivity-preserving path-conservative finite volume
method has been successfully developed for the two-layer shallow water equations. The
well-balanced property has been achieved in the presence of the wet–dry fronts thanks to
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(i) the special surface reconstruction for each layer (see Sect. 2.3.2), (ii) the new numerical
discretization of the cell integral of source terms (2.47). The positivity of each layer has been
guaranteed by applying the local draining constraints of outgoing fluxes. Finally, a special
fully discrete scheme has been developed. The numerical experiments have proved that the
proposed numerical scheme is capable to guarantee the non-negative water depths for each
fluid layer, and well-balanced property even in the presence of wet–dry fronts.
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