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Abstract
Themapped bases or Fake Nodes Approach (FNA), introduced in DeMarchi et al. (J Comput
Appl Math 364:112347, 2020c), allows to change the set of nodes without the need of resam-
pling the function. Such scheme has been successfully applied for mitigating the Runge’s
phenomenon, using the S-Rungemap, or theGibbs phenomenon,with the S-Gibbsmap.How-
ever, the original S-Gibbs suffers of a subtle instability when the interpolant is constructed
at equidistant nodes, due to the Runge’s phenomenon. Here, we propose a novel approach,
termed Gibbs–Runge-Avoiding Stable Polynomial Approximation (GRASPA), where both
Runge’s and Gibbs phenomena are mitigated simultaneously. After providing a theoretical
analysis of theLebesgue constant associatedwith themapped nodes,we test the newapproach
by performing various numerical experiments which confirm the theoretical findings.
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1 Introduction

Despite being long-investigated in the literature, univariate polynomial interpolation still
represents a prolific research topic (for an overview of the most recent results we refer to
Ibrahimoglu 2016; Trefethen 2013).

We start by fixing some notations. Let Ω = [a, b] ⊂ R be a bounded interval and
Xn+1 = {xi }i=0,...,n ⊂ Ω , n ∈ N be a set of n + 1 distinct nodes sorted in increasing order.
We denote by Pn the space of polynomials of degree at most n.

The classical recovering problem consists in finding an (unknown) function, say f :
Ω −→ R, by imposing some conditions at Xn+1. If we look for the polynomial Pn, f ∈ Pn

that satisfies the interpolation conditions

Pn, f (xi ) = fi , i = 0, . . . , n, (1)

where Fn+1 = { fi := f (xi )}i=0,...,n is the set of function values, the recovering problem is
an interpolation problem.

Using the monomial basis Mn = {1, x, . . . , xn} of Pn , the interpolating polynomial takes
the form

Pn, f (x) =
n∑

i=0

ci xi ,

where the vector of coefficients c = (c0, . . . , cn)ᵀ is determined by solving the linear system

V c = f , (2)

where V = V (x0, . . . , xn) ∈ R
n+1 × R

n+1 is the well-known Vandermonde matrix and
f = ( f0, . . . , fn)ᵀ. We remark that the linear system (2) admits a unique solution as long
as the nodes are distinct.

The interpolating polynomial can be also expressed in the Lagrange basis Ln =
{�0, . . . , �n}, so that

Pn, f (x) =
n∑

i=0

fi�i (x), x ∈ Ω,

where

�i (x) :=
n∏

j=0
j �=i

x − x j

xi − x j
, i = 0, . . . , n, x ∈ Ω

is the i-th elementary Lagrange polynomial which depends only on the set of nodes Xn+1.
The conditioning of the interpolation process, as well as its stability, can be measured in

terms of the so-called Lebesgue constant

Λ(Xn+1,Ω) = max
x∈Ω

λ(Xn+1; x),

where λ(Xn+1; x) = ∑n
i=0 |�i (x)|, x ∈ Ω , is the Lebesgue function. Indeed, letting f ∈

C(Ω), we have
max
x∈Ω

| f (x) − Pn, f (x)| ≤ (1 + Λ(Xn+1,Ω))E�
n( f ),

being E�
n( f ) the best polynomial approximation error in the space Pn (cf., e.g., Rivlin 2003).

As well-known the Lebesgue constant in the case of equidistant nodes shows an exponen-
tial growth with n which implies the impossibility to use equispaced points for polynomial
interpolation when n becomes larger and larger (cf. Brutman 1997).
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Therefore, lots of efforts have been put in finding good or optimal sets of nodes, i.e., nodes
whose correspondentLebesgue constant has a controlled growth. Popularwell-behavednodes
are the Chebyshev Tn and Chebyshev–Lobatto points Un+1, i.e.,

Tn =
{
cos

(
(2 j − 1)π

n

)}

j=1,...,n
Un+1 =

{
cos

(
jπ

n

)}

j=0,...,n
,

which have been extensively studied in the literature (see e.g. Rivlin 1974) and retain a
logarithmic growth of the corresponding Lebesgue constant (Brutman 1978; McCabe and
Phillips 1973).

Recently in De Marchi et al. (2021b), the authors introduced the set of (β, γ )-Chebyshev
points of I = [−1, 1], β, γ ∈ R, β, γ > 0, β + γ < 2, which can be considered as a
generalization of classical Chebyshev nodes and are defined as follows

Uβ,γ
n+1 :=

{
cos

(
(2 − β − γ ) jπ

2n
+ γπ

2

)}

j=0,...,n
. (3)

This family of nodes, in fact, includes the sets Tn+1 (β = γ = 1/(n + 1)) and Un+1

(β = γ = 0) as particular instances. Furthermore, Λ(Uβ,γ
n+1, I ) = O(log n) for small values

of the parameters β, γ (De Marchi et al. 2021b). Moreover, by taking the Kosloff Tal-Ezer
(KTE) map (cf. Adcock and Platte 2016)

Mα(x) = sin(απx/2)

sin(απ/2)
, x ∈ I , (4)

and the set of equispaced points in I β,γ = [−1 + β, 1 − γ ], say

Eβ,γ
n+1 =

{
1 − γ − (2 − β − γ ) j

n

}

j=0,...,n
,

then Uβ,γ
n+1 = M1(Eβ,γ

n+1).
In applications, very often, one only disposes of a given set of nodes along with the related

function values, and resampling the unknown underlying function at a different well-behaved
set of nodes, as in Berrut and Elefante (2020), might be unfeasible.

The mapped bases or Fake Nodes Approach (FNA), first introduced in De Marchi et al.
(2020c), allows us to change the set of nodes without the need of resampling the function.
Although here we are interested in the univariate polynomial interpolation case, we point out
that such approach has been also extended to other settings and higher dimensions (Berrut
et al. 2020; De Marchi et al. 2020d, 2021a, c).

We briefly recall the FNA construction. Let S : Ω −→ R be an injective map and
S(Ω) ⊆ Ω̃ . Moreover, let Pn,g : Ω̃ −→ R be the polynomial interpolating the set of
function values Fn+1 at the set of fake nodes S(Xn+1), with g being a function such that

g
S(Xn+1)

= f Xn+1
.

Then, we can define the interpolant RS
n, f ∈ span{(S(x))i , i = 0, . . . , n} as

RS
n, f (x) := Pn,g(S(x)) =

n∑

i=0

cS
i S(x)i , x ∈ Ω,

where the vector of coefficients cS = (cS
0 , . . . , cS

n )ᵀ is determined by solving the linear
system V ScS = f , where V S = V (S(x0), . . . , S(xn)) (cf. (2)). Furthermore, it has been

123



299 Page 4 of 17 S. De Marchi

shown the remarkable equivalence

ΛS(Xn,Ω) = Λ(S(Xn), S(Ω)), (5)

where ΛS(Xn,Ω) = maxx∈Ω λS(Xn+1; x) is the Lebesgue constant built upon the mapped
Lagrange basis LS

n = {�S
0 , . . . , �

S
n }, where

�S
i (x) :=

n∏

j=0
j �=i

S(x) − S(x j )

S(xi ) − S(x j )
, i = 0, . . . , n, x ∈ Ω.

The FNA has been successfully applied, using different maps, in mitigating both Runge’s
(Runge 1901; Turetskii 1940) and Gibbs phenomenon, which arises in many contexts when
the function to be recovered presents jump discontinuities (De Marchi et al. 2017, 2020a;
Gottlieb and Shu 1997). Concerning the former, as we previously pointed out, the set of
equispaced points E0,0

n+1 in I can be mapped into the set of Chebyshev–Lobatto points Un+1

by taking S = M1, which guarantees a stable interpolation process. Dealingwith the latter, by
adopting the S-Gibbs map, the function S is constructed in such a way that it is discontinuous
at the jumps of the underlying function. While this strategy is successful in the treatment
of the Gibbs phenomenon, the resulting set of fake nodes is not well-behaved and thus the
interpolation process is unstable as n gets larger.

In this work, our aim is to ensure stability in the treatment of the Gibbs phenomenon in
the FNA framework. Indeed, we want to show that, under certain assumptions, it is possible
to construct a mapped polynomial basis that enjoys these two properties:

1. the basis functions are discontinuous at some chosen points, therefore the basis is suitable
for preventing the appearance of the Gibbs phenomenon according to the FNA;

2. the interpolation process is stable, i.e., the Lebesgue constant related to the resulting set
of fake nodes has controlled growth.

The paper is organized as follows. In Sect. 2, we analyze the behavior of the Lebesgue
function corresponding to the S-Gibbsmapped basis in the limit case, i.e., when themagnitude
of the shift goes to infinity. The setting of equispaced points is investigated in Sect. 3,
where we provide the construction of a stable mapped basis obtained via the Gibbs–Runge-
Avoiding Stable Polynomial Approximation (GRASPA) approach, which will be introduced
later. In Sect. 4 we perform some numerical tests that confirm the theoretical findings. Finally,
conclusions and future works will be discussed in Sect. 5.

2 On the conditioning related to the S-Gibbsmap in the limit case

2.1 The case of a single discontinuity

Let ξ ∈ Ω̊ be such that the two subsets of Xn+1

X 1 := {xi ∈ Xn+1 | xi ≤ ξ}, X 2 := {xi ∈ Xn+1 | xi > ξ},
satisfy

|X 1| − |X 2| ∈ {−1, 0, 1}. (6)

We also denote Ω1 = [a, ξ ] and Ω2 =]ξ, b].
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Letting κ ∈ R, κ > 0, we consider then the map Sκ : Ω −→ R as

Sκ (x) =
{

x if x ∈ Ω1,

x + κ if x ∈ Ω2,
(7)

which corresponds to a general S-Gibbs map, introduced in De Marchi et al. (2020c), in the
case of one discontinuity. Indeed, in view of (7), we refer to ξ as the discontinuity point.

In the following, we adopt the shortened notations
Λκ(Xn+1,Ω) := ΛSκ (Xn+1,Ω), λκ(Xn+1; ·) := λSκ (Xn+1; ·) and �κ

i := �
Sκ

i , i =
0, . . . , n (cf. Sect. 1).

We are interested in studying the limit

Λ∞(Xn+1,Ω) = lim
κ→∞ Λκ(Xn+1,Ω).

Without loss of generality, being n the polynomial degree, we can restrict our analysis to the
following two cases:

1. The case where |X 1| = |X 2| (i.e. the odd case).
2. The case where |X 1| = |X 2| + 1 (i.e. the even case).

2.1.1 The odd case

Let be η = 	 n
2 
. It is straightforward to observe that if i ≤ η then xi ∈ Ω1, otherwise

xi ∈ Ω2 if i > η.
Let us suppose i ≤ η. Then

�κ
i (x) =

η∏

j=0
j �=i

Sκ (x) − x j

xi − x j

︸ ︷︷ ︸
Ai (x)

n∏

j=η+1

Sκ (x) − x j − κ

xi − x j − κ

︸ ︷︷ ︸
Bi (x)

. (8)

Moreover, in view of (7), we have

Ai (x)
Ω1 =

η∏

j=0
j �=i

x − x j

xi − x j
, Bi (x)

Ω1 =
n∏

j=η+1

x − x j − κ

xi − x j − κ
,

Ai (x)
Ω2 =

η∏

j=0
j �=i

x + κ − x j

xi − x j
, Bi (x)

Ω2 =
n∏

j=η+1

x − x j

xi − x j − κ
.

(9)

Thus, we obtain

�∞
i (x) := lim

κ→∞ �κ
i (x) =

⎧
⎪⎪⎨

⎪⎪⎩

η∏
j=0
j �=i

x−x j
xi −x j

if x ∈ Ω1.

0 if x ∈ Ω2.

Indeed, as κ → ∞, Bi (x)
Ω1 → 1 and Ai (x)

Ω2 · Bi (x)
Ω2 → 0 asymptotically as 1/κ .

Taking now the case i > η, analogous considerations lead us to

�∞
i (x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x ∈ Ω1,
n∏

j=η+1
j �=i

x−x j
xi −x j

if x ∈ Ω2.
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Therefore, we get

λ∞(Xn+1, x) =
{

λ(X 1, x) if x ∈ Ω1,

λ(X 2, x) if x ∈ Ω2,

and, as a consequence,

Λ∞(Xn+1,Ω) = max
{
Λ(X 1,Ω1),Λ(X 2,Ω2)

}
.

2.1.2 The even case

In what follows, our aim is to replicate the analysis carried out in the odd case, eventually
obtaining slightly different results, as we will discuss.

First, let now η = n
2 and let us suppose i ≤ n

2 . The considerations in (8) and (9) still hold
true, thus we proceed taking again the limit κ → ∞. While Bi (x)

Ω1 → 1, here we have

Ai (x) · Bi (x)
Ω2 =

η∏

j=0
j �=i

(x + κ − x j )

η∏

j=0
j �=i

1

xi − x j

n∏

j=η+1

1

xi − x j − κ

n∏

j=η+1

(x − x j ).

Therefore, by defining

ri (x) :=
n∏

j=η+1

(x − x j )

︸ ︷︷ ︸
ωη(x)

η∏

j=0
j �=i

1

xi − x j

︸ ︷︷ ︸
wi

,

as κ → ∞ we get Ai (x) · Bi (x)
Ω2 → (−1)n/2ri (x) and

�∞
i (x) =

⎧
⎪⎪⎨

⎪⎪⎩

η∏
j=0
j �=i

x−x j
xi −x j

if x ∈ Ω1.

(−1)n/2ri (x) if x ∈ Ω2.

Remark 1 We point out that the function ri consists of the nodal polynomial ωη built on
X 2 times the i th barycentric Lagrange weight wi related to X 1. As observed in Ghili and
Iaccarino (2015), as n gets larger, the growth of ri is directly linked to the choice of well-
behaved nodes in Ω1 and Ω2. For instance, if the points of X 2 are distributed according to
the Chebyshev–Lobatto nodes, we have (cf. Salzer 1972)

ωη(x) ≤ 2− n
2 +2.

The case i > η is similar to the odd case. In fact, letting then i > η, we write

�κ
i (x) =

η∏

j=0

Sκ (x) − x j

xi − x j

︸ ︷︷ ︸
Ci (x)

n∏

j=η+1
j �=i

Sκ (x) − x j − κ

xi − x j − κ

︸ ︷︷ ︸
Di (x)

.
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Thus, we have

Ci (x)
Ω1 =

η∏

j=0

x − x j

xi + κ − x j
, Di (x)

Ω1 =
n∏

j=η+1
j �=i

x − x j − κ

xi − x j
,

Ci (x)
Ω2 =

η∏

j=0

x + κ − x j

xi + κ − x j
, Di (x)

Ω2 =
n∏

j=η+1
j �=i

x − x j

xi − x j
.

Therefore, as κ → ∞, Ci (x)
Ω2 → 1 and Ci (x) · Di (x)

Ω1 → 0 asymptotically as 1/κ2,
implying

�∞
i (x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x ∈ Ω1.
n∏

j=η+1
j �=i

x−x j
xi −x j

if x ∈ Ω2.

Finally, we obtain

λ∞(Xn+1, x) =
{

λ(X 1, x) if x ∈ Ω1,
∑η

i=0 |ri (x)| + λ(X 2, x) if x ∈ Ω2

and
Λ∞(Xn+1,Ω) = max

{
Λ(X 1,Ω1), R(X 2,Ω2)

}
,

where

R(X 2,Ω2) := max
x∈Ω2

( η∑

i=0

|ri (x)| + λ(X 2, x)

)
.

The results obtained in this section are summarized in the following theorem.

Theorem 1 Let Ω = [a, b] ⊂ R be a bounded set and let Xn+1 := {xi }i=0,...,n ⊂ Ω , n ∈ N,
be a set of distinct nodes, sorted in increasing order. Let ξ ∈ Ω be such that the two subsets

X 1 = {xi ∈ Xn | xi ≤ ξ}, X 2 = {xi ∈ Xn | xi > ξ},
satisfy one of the following properties.

1. |X 1| = |X 2| (i.e. the odd case);
2. |X 1| = |X 2| + 1 (i.e. the even case).

Moreover, let Ω1 = [a, ξ ], Ω2 =]ξ, b] and let Sκ : Ω −→ R, κ ∈ R, κ > 0, be defined as

Sκ (x) :=
{

x if x ∈ Ω1,

x + κ if x ∈ Ω2.

Furthermore, let Λκ(Xn+1,Ω) be the Lebesgue constant related to the mapped Lagrange
basis Lκ := {�κ

0 , . . . , �
κ
n}, where

�κ
i (x) :=

n∏

j=0
j �=i

Sκ (x) − Sκ (x j )

Sκ (xi ) − Sκ (x j )
, i = 0, . . . , n, x ∈ Ω.
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Then, we have

lim
κ→∞ Λκ(Xn+1,Ω) =

{
max

{
Λ(X 1,Ω1),Λ(X 2,Ω2)

}
in the odd case,

max
{
Λ(X 1,Ω1), R(X 2,Ω2)

}
in the even case,

where

R(X 2,Ω2) = max
x∈Ω2

( n/2∑

i=0

|ri (x)| + λ(X 2, x)

)
,

ri (x) =
n∏

j=n/2+1

(x − x j )

n/2∏

j=0
j �=i

1

xi − x j
,

and Λ, λ are the classical Lebesgue constant and function.

Proof See the discussion in Sects. 2.1.1 and 2.1.2. ��

Remark 2 The assumption in (6) is crucial to provide a bounded Lebesgue constant
Λ∞(Xn+1,Ω). Moreover, the role played by X1 and X2 may be switched in the even case,
yielding to analogous results.

2.2 Dealing withmultiple discontinuities

Inwhat follows,we extend the analysis carried out in the previous subsection to the casewhere
multiple discontinuities occur on Ω . While presenting strong similarities when compared to
the single discontinuity setting, here some limitations arise and some adjustments are needed.

Theorem 2 Let Ω = [a, b] ⊂ R be a bounded set and let Xn+1 := {xi }i=0,...,n ⊂ Ω , n ∈ N,
be a set of distinct nodes, sorted in increasing order. Let ξ1 < · · · < ξd ∈ Ω \ {a, b}, d ∈ N,
d ≥ 2 and let

D := {Ω1, . . . ,Ωd+1}
be a collection of subsets of Ω such that Ω1 = [a, ξ1], Ωd+1 =]ξd , b] and Ω i =]ξi−1, ξi ]
for i = 2, . . . , d.

Assume that
|X ν | − |X τ | ∈ {−1, 0, 1},

where X ν = Xn+1
Ων

, ν, τ = 1, . . . , d + 1.
In view of (7), consider the map defined as

Sκ (x)
Ωτ

:= x + (τ − 1)κ,

where τ = 1, . . . , d + 1. Introducing then the notation �κ
i,μ to denote the i-th Lagrange

polynomial where xi ∈ Xμ, we have that

|�∞
i,μ(x)|

Ωμ
=

∏

x j ∈Xμ

j �=i

∣∣∣∣
x − x j

xi − x j

∣∣∣∣.
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On the other hand, if τ �= μ we obtain

|�∞
i,μ(x)|

Ωτ
=

⎧
⎪⎨

⎪⎩

0 as κ−1 if |X τ | = |Xμ|,
0 as κ−2 if |X τ | = |Xμ| + 1,

|ri,μ,τ (x)|Cμ,τ if |X τ | = |Xμ| − 1,

where

Cμ,τ =
d+1∏

ν=1
ν �=μ,τ

∣∣∣∣
τ − ν

μ − ν

∣∣∣∣
|X ν |

(10)

and

ri,μ,τ (x) :=
∏

x j ∈X τ

(x − x j )
∏

x j ∈Xμ

j �=i

1

xi − x j
.

Proof We can write
�κ

i,μ(x)
Ωτ

= p1(x) p2(x)

where

p1(x) :=
d+1∏

ν=1
ν �=μ,τ

∏

x j ∈X ν

x − x j + (τ − ν)κ

xi − x j + (μ − ν)κ
,

p2(x) :=
∏

x j ∈Xμ

j �=i

x − x j + (τ − ν)κ

xi − x j

∏

x j ∈X τ

x − x j

xi − x j + (μ − ν)κ
.

Then, we take the limit as κ → ∞. If τ = μ, then

lim
κ→∞ |p1(x)| = 1, lim

κ→∞ |p2(x)| =
∏

x j ∈Xμ

j �=i

∣∣∣∣
x − x j

xi − x j

∣∣∣∣,

which implies

|�∞
i,μ(x)|

Ωμ
=

∏

x j ∈Xμ

j �=i

∣∣∣∣
x − x j

xi − x j

∣∣∣∣.

If τ �= μ, we get immediately

lim
κ→∞ |p1(x)| =

d+1∏

ν=1
ν �=μ,τ

∣∣∣∣
τ − ν

μ − ν

∣∣∣∣
|X ν |

:= Cμ,τ .

Moreover, by defining

ri,μ,τ (x) :=
∏

x j ∈X τ

(x − x j )
∏

x j ∈Xμ

j �=i

1

xi − x j
,

we have

lim
κ→∞ |p2(x)| =

⎧
⎪⎨

⎪⎩

0 as κ−1 if |X τ | = |Xμ|,
0 as κ−2 if |X τ | = |Xμ| + 1,

|ri,μ,τ (x)| if |X τ | = |Xμ| − 1.
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As a consequence,

|�∞
i,μ(x)|

Ωτ
=

⎧
⎪⎨

⎪⎩

0 as κ−1 if |X τ | = |Xμ|,
0 as κ−2 if |X τ | = |Xμ| + 1,

|ri,μ,τ (x)|Cμ,τ if |X τ | = |Xμ| − 1.

��
Therefore, in the multiple discontinuities framework with d ≥ 2, we observe that the factor
Cμ,τ in (10) might be exponentially increasing (or decreasing) as n gets larger, and thus it
might determine a possible fast asymptotic growth of the Lebesgue constant Λ∞(Xn+1,Ω)

(cf. Theorem 1). For example, in the case d = 2 we have

C1,2 = 2−|X 3|, C3,2 = 2−|X 1|, C2,1 = 2|X 3|, C2,3 = 2|X 1|, C1,3 = C3,1 = 1. (11)

In the following, we highlight the case where the nodes are equally distributed among the
sets in D.

Corollary 1 In the hypotheses of Theorem 2, if we restrict to the case

|X ν | = |X τ |
for every ν, τ = 1, . . . , d + 1, then

lim
κ→∞ Λκ(Xn,Ω) = max

{
Λ(X 1,Ω1), . . . , Λ(X d+1,Ωd+1)

}
.

Proof The thesis directly follows from the results of Theorem 2. ��

3 Working with equispaced nodes

From now, we assume to sample our underlying function at the set of equispaced points

Xn+1 =
{

− a + (b − a) j

n

}

j=0,...,n
. (12)

Let d ≥ 1 and let ξ1 < · · · < ξd , D = {Ω1, . . . , Ωd+1}, X 1, . . . ,X d+1 be defined as
in Theorem 2. Recalling what introduced in Sect. 1, it is easy to observe that for every
i = 1, . . . , d + 1, by setting ξ0 = a and ξd+1 = b, there exists the affine map onto the
interval I = [−1, 1], Fi : Ω i −→ I ,

Fi (x) := 2(x − ξi−1)

ξi − ξi−1
− 1, i = 1, . . . , d + 1, (13)

and parameters βi , γi ∈ R, βi , γi > 0, βi + γi < 2, such that

Fi (X i ) = Eβi ,γi

|X i | , i = 1, . . . , d + 1,

which, composed with the KTE map (4) with α = 1, gives

(M1 ◦ Fi )
(
X i ) = Uβi ,γi

|X i | , i = 1, . . . , d + 1. (14)

Then, by denoting the inverse of Fi as Gi , i.e.,

Gi (x) := (ξi − ξi−1)(x + 1)

2
+ ξi−1, i = 1, . . . , d + 1,
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we can define the Multiple KTE (MKTE) map on Ω with respect to the set D as

MΩ,D
α (x) :=

d+1∑

i=1

χ i (x) · (
Gi ◦ Mα ◦ Fi )(x), x ∈ Ω, (15)

where χ i (x) is the characteristic function related to the set Ω i . MΩ,D
α maps Ω into itself

and it is a continuous and monotonically increasing function.
Therefore, when α = 1,

Λ(MΩ,D
1 (Xn+1) ∩ Ω i ,Ω i ) = Λ(Uβi ,γi

|X i | , I ), i = 1, . . . , d + 1. (16)

In other words, if we apply the mapping MΩ,D
1 to the set of equispaced nodes Xn+1, then

on every subset Ω i the Lebesgue constant corresponding to the mapped nodes that belong to
Ω i can be fully understood in the framework of (β, γ )-Chebyshev nodes, i = 1, . . . , d + 1.

Then, considering the map

QΩ,D
κ := (

Sκ ◦ MΩ,D
1

)
, (17)

the resulting mapped basis

QΩ,D
κ,n = {1, QΩ,D

κ , . . . ,
(
QΩ,D

κ

)n}, (18)

represents an effective choice for the interpolation atXn+1 of a function having jump discon-
tinuities at ξ1, . . . , ξd in Ω , as long as βi , γi are small enough and κ → ∞. Indeed, QΩ,D∞
provides the reduction of the Gibbs effect by virtue of S∞, and mitigates possible local
Runge’s effects thanks to the composition with MΩ,D

1 , by constructing local well-behaved
distributed nodes. We refer to this limit case as Gibbs–Runge-Avoiding Stable Polynomial
Approximation (GRASPA) approach, to QΩ,D∞ and QΩ,D∞,n as the GRASPA map and basis,
respectively.

Thanks to Corollary 1 and Theorem 3 in De Marchi et al. (2021b), the following holds.

Proposition 1 Let Ω = [a, b] ⊂ R be a bounded set and let Xn+1 be as in (12). Let
ξ1 < · · · < ξd ∈ Ω \ {a, b}, d ∈ N, d ≥ 2 be the discontinuity points and let

D := {Ω1, . . . ,Ωd+1}
be a collection of subsets of Ω such that Ω1 = [a, ξ1], Ωd+1 =]ξd , b] and Ω i =]ξi−1, ξi ]
for i = 2, . . . , d. Moreover,

|X ν | = |X τ |
for every ν, τ = 1, . . . , d + 1. Then if the mapped points (14) Uβi ,γi

|X i | , are such that δ :=
maxi, j {βi , γ j } is bounded as

δ <
4

π N 2(2 + π log(N + 1))
,

with N = maxτ |X τ |, then

lim
κ→∞ Λκ(Xn,Ω) = O (log N ) .

Remark 3 In this section, we focused on the case where the nodes are equispaced in Ω .
However, we point out that the above approach may be applied to a general interpolation
nodes set by mapping it to a set of equispaced nodes beforehand.
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4 Numerics

Throughout this section, we consider Ω = [−1, 1], the corresponding set of equispaced
nodes Xn+1 and, as an approximation of the limit case, κ = 10,000. We point out that any
interval Ω = [a, b] might be considered, by taking the corresponding set of equispaced
nodes. Indeed, the Lebesgue constant is invariant under invertible affine mapping of the
domain (see e.g. Ibrahimoglu 2016, Section 2.1).

The tests make a comparison between our GRASPA approach, classical interpolation and
S-Gibbs algorithm. A Python implementation for the mapped bases approach is available
at De Marchi et al. (2020b).

4.1 Test with one discontinuity

Let us consider the function

f1(x) =
{

1
25(2x+1)2+1

− 1
2 if x ≤ 0,

sin(2x) cos(3x) + 1
2 if x > 0,

x ∈ Ω,

which is discontinuous at ξ = 0. Therefore,D = {Ω1,Ω2}withΩ1 = [−1, ξ ],Ω2 =]ξ, 1].

4.1.1 Case n odd

In this case, |X 1| = |X 2| = (n + 1)/2, MΩ,D
1 (X 1) and MΩ,D

1 (X 2) are distributed

in Ω1 and Ω2 according to U0,γ1
(n+1)/2 and Uβ2,0

(n+1)/2, with γ1 = β2 = 2/(n + 1), with

the Lebesgue constants Λ(U0,γ1
(n+1)/2,Ω) and Λ(Uβ2,0

(n+1)/2,Ω) growing logarithmically (cf.
De Marchi et al. 2021b). Therefore, we expect a logarithmic growth also of the Lebesgue

constant ΛQΩ,D
κ (Xn+1,Ω) constructed upon the mapped basis QΩ,D

κ,n .
The results are shown in Figs. 1 and 2. In particular, letting Ξ = {x̃i = −1 + 2 i

99 : i =
0, . . . , 99} and ti := |�QΩ,D

κ

i |, in Fig. 2 (right) we display the matrix L , with Li, j = ti (x̃ j ).
In Fig. 3 we show some interpolation results concerning f1 with the above discussed

approaches, whereas in Fig. 4 we display the Relative Maximum Absolute Error (RMAE)
computed on a grid of 332 equispaced evaluation points.

As we can notice, the S-Gibbs map resolves the Gibbs phenomenon by splitting the
interpolation problem in the two subintervals. However, if the Runge’s phenomenon takes
place, the interpolating function diverges, but bymeans of theGRASPAmapwe could prevent
the appearance of both.

Fig. 1 The Lebesgue functions with n = 23. From left to right: classical approach, S-Gibbs interpolant and
the GRASPA interpolant
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Fig. 2 Left: the Lebesgue constant. Classical approach in dots, S-Gibbs in dashed, GRASPA in solid line.
Right: the matrix L for n = 51

Fig. 3 The function f1 in dashed red and the interpolant with n = 23 in black. From left to right: classical,
S-Gibbs and GRASPA approach, respectively

Fig. 4 The RMAE: classical approach in dots, S-Gibbs in dashed, GRASPA in solid line

4.1.2 Case n even

Here, MΩ,D
1 (X 1) and MΩ,D

1 (X 2) are distributed inΩ1 andΩ2 according toU0,0
n/2+1 andU

β2,0
n/2

respectively, with β2 = 4/n. In this case, we have a logarithmic growth of Λ(U0,0
n/2+1,Ω)

and a linear growth of Λ(Uβ2,0
n/2 ,Ω). Therefore, ΛQΩ,D

κ (Xn+1,Ω) is linearly growing.
To recover the logarithmic growth of the Lebesgue constant, we consider a further con-

tinuous map Vn on Ω

Vn(x) =

⎧
⎪⎨

⎪⎩

x if − 1 ≤ x ≤ ξ,
nx

2(n−1) if ξ < x ≤ 2/n,
nx

n−1 − 1
n−1 if 2/n ≤ x ≤ 1,

123



299 Page 14 of 17 S. De Marchi

Fig. 5 The matrix L for n = 51. Left: without the usage of the map Vn . Right: taking the mapping QΩ,D
κ ◦ Vn

Fig. 6 The Lebesgue constant (left) and the RMAE (right). Classical approach in dots, S-Gibbs in dashed,
GRASPA in solid line (with the additional mapping Vn )

with the purpose of moving the equispaced nodes X 2 closer to ξ . Indeed, by applying Vn the
spacing between ξ and the first point is half the spacing between the others. Furthermore,
we remark that (MΩ,D

1 ◦ Vn)(X 2) is distributed in Ω2 according to Uβ2,0
n/2 , with β2 = 2/n.

Therefore, the map QΩ,D
κ ◦ Vn yields to a logarithmic growth of the corresponding Lebesgue

constant (see Fig. 5). As in the odd case, we achieve stability in interpolation of f1 as shown
in Fig. 6.

4.2 Test with three discontinuities

Let us consider the function

f2(x) =

⎧
⎪⎨

⎪⎩

1
25(4x+3)2+1

− 1
2 if x ≤ − 1

2 ,

|4x − 1| if 0 < x ≤ 1
2 ,

sin(2x) cos(3x) + 1
2 otherwise,

, x ∈ Ω,

which is discontinuous at ξ1 = −1/2, ξ2 = 0 and ξ3 = 1/2.

As analyzed in Sect. 4.1.2, the usage of the GRASPA approach might lead to (β, γ )-
Chebyshev points that do not present a logarithmic growth of the Lebesgue constant, being
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Fig. 7 The Lebesgue functions with n = 29. From left to right: classical approach, S-Gibbs interpolant and
the GRASPA interpolant

Fig. 8 The function f2 in dashed red and the interpolant with n = 29 in black. From left to right: classical,
S-Gibbs and GRASPA approach, respectively

Fig. 9 Left: the Lebesgue constant, classical approach in dots, S-Gibbs in dashed, GRASPA in solid line.
Right: the matrix L for n = 50

β or γ too large. In this test, we choose n = 4 j + 1, j = 0, 1, . . . , so that there is no
need of additional mappings for achieving a logarithmic growth of the Lebesgue constant
(cf. Sect. 4.1.2).

In Figs. 7, 8, 9 and 10 , we display the obtained results.

InFig. 11,we show the divergingbehavior of theLebesgue constant related to theGRASPA
approach for very high values of n. This is due to the fact that, being κ fixed, at a certain
point the growth with n of Cμ,τ overtakes the decreasing to zero of the term p2 when κ gets
larger and larger (see Theorem 2).
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Fig. 10 TheRMAE concerning the interpolation of f2. Classical approach is in dots, the dashed line is S-Gibbs
interpolant and the solid line is the GRASPA approach

Fig. 11 Left: the Lebesgue constant of the interpolant related the GRASPA approach. Right: the matrix L for
n = 89

5 Conclusions

In this paper, we presented a new mapped polynomial basis approach that substantially
mitigates both Runge’s and Gibbs phenomena. This technique, named the Gibbs–Runge-
Avoiding Stable Polynomial Approximation (GRASPA) approach, is built combining the
limit case of the S-Gibbs Fake Nodes Approach (cf. Sect. 2) and the Kosloff–Tal-Ezer map
(4). As a result, the so-constructed mapped polynomial basis turns out to be a stable and an
effective choice for the interpolation of functions presenting jump discontinuities. Motivated
by the promising results of the new approach, we are working on the extension to higher
dimensions.
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