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Abstract

We derive space—time a posteriori error estimates of finite-element method for the linear
parabolic optimal control problems in a convex bounded polyhedral domain. The variational
discretization is used to approximate the state and co-state variables with the piecewise
linear and continuous functions, while the control variable is computed using the implicit
relation between the control and co-state variables. The temporal discretization is based on
the backward Euler method. The key feature of this approach is not to discretize the con-
trol variable but to implicitly utilize the optimality conditions for the discretization of the
control variable. Our error analysis relies on the elliptic reconstruction technique introduced
by Makridakis and Nochetto (SIAM J Numer Anal, 41:1585-1594, 2003) in conjunction
with heat kernel estimates for linear parabolic problem. The use of elliptic reconstruction
technique greatly simplifies the analysis by allowing us to take the advantage of existing
elliptic maximum norm error estimate and the heat kernel estimate. We derive a posteriori
error estimates for the state, co-state, and control variables in the L°°(0, T'; L°°(£2))-norm.
Numerical experiments are conducted to illustrate the performance of the derived estima-
tors.
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1 Introduction

Let £2 be a convex bounded polyhedral domain in R¢ (d = 2, 3) with Lipschitz boundary
082.Set 27 = 2 x (0,T], I'T = 982 x (0, T] with T < oo. We consider the following
parabolic optimal control problems:

1 g 2 2
in J(u,y) = min - - ds, 1.1
min (u, y) urglljl;dZ/O {Ily = yall” + lull*} ds (1.1)

subject to the state equation

9
%—Ay:f—i—u in Qr,

y(x,0) = yo(x) in £2, (1.2)
y=0 on Iy,

and the control constraints

ug <u(x,t) <up ae. in 27, (1.3)

where yg € L*®(£2), yg € L*®(0,T; L®°(£2)) and f € L%(0, T; L*°(£2)). Here, y =
y(x,1) and u = u(x,t) denote the state and the control variables, respectively. The set of
admissible controls is defined by

Uyg = {u e L™ ((), T; LOO(.Q)) g <u=<up a.e. in .QT}

with u,, up € R fulfill u, < up.

There have been extensive studies in the literature by numerous researchers on the finite-
element approximations to optimal control problems. Some of recent progress in this area
can be found in Barbu (1984), Becker and Kapp (1997), Becker et al. (1998), Haslinger and
Neittaanmaki (1989), Hinze (2005), Lions (1971), Neittaanmaki and Tiba (1994), Pironneau
(1984), Tiba (1995), and references quoted therein. In Hinze (2005), Hinze has introduced
a variational discretization approach for elliptic optimal control problems. The main fea-
ture of this discretization is not to discretize the control variable but to implicitly utilize
the optimality conditions and the discretization of the state and co-state variables to com-
pute the control variable. The literature concerning a priori error analysis of finite-element
methods for parabolic optimal control problems can be found in Knowles (1982), Nietzel
and Vexler (2012), Rosch (2004), Winther (1978), and references therein. Recently, adap-
tive finite-element methods for approximating solutions to optimal control problems are the
most important means to enhance accuracy and efficiency of the finite-element discretiza-
tion. The adaptive method ensures a higher density of nodes in certain area of the given
domain with the help of a posteriori error estimators where the solution is more difficult
to approximate. There is a vast literature on a posteriori error estimates for parabolic opti-
mal control problems using different approaches; for instance, see Langer et al. (2016),
Liu and Yan (2003), Sun et al. (2013), Tang and Chen (2012a), Tang and Chen (2012b),
Tang and Hua (2014),Xiong and Li (2011). While residual type a posteriori error estimates
of finite-element methods for parabolic optimal control problems are discussed in Liu and
Yan (2003), the authors of Tang and Chen (2012a) have derived a posteriori error bounds
in the L0, T; L2(£2)) and L%(0, T; H'(£2)) norms with integral constraint. Tang and
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Chen (2012a) have studied a recovery type a posteriori error estimate for fully discrete
variational discretization approximations of parabolic optimal control problems. The same
authors have discussed a priori and a posteriori error analysis for parabolic control problems
with control constraints using variational discretizations in Tang and Chen (2012b). Subse-
quently, Tang and Hua (2014) have established upper bounds in L*°(0, T’; L2(£2))—norm
for the semi-discrete variational discretization approximations of optimal control problems
using elliptic reconstruction. Later, Sun et al. (2013) have derived both lower and upper
bounds of the errors for parabolic optimal control problems. For functional type a posteri-
ori error estimates for parabolic optimal control problems, one may refer to Langer et al.
(2016).

Most of adaptive finite-element methods are design to control only energy norms of solu-
tions. The pointwise error control is also a natural goal when computing free boundaries.
Some recent papers of adaptive finite-element method for controlling pointwise errors in
elliptic and parabolic problems are contained in Dari et al. (2000), Demlow (2006, 2007),
Nochetto (1995), Nochetto et al. (2003, 2005, 2006), Otarola et al. (2019), Boman (2000),
Demlow et al. (2009), and Eriksson and Johnson (1995), respectively. For stationary optimal
control problems, the authors of Otérola et al. (2019) have introduced an a posteriori error
estimator which yields optimal rate of convergence in the maximum norm. Both reliabil-
ity and efficiency of the estimators are discussed in Otdrola et al. (2019). In the present
work, we address control of the maximum norm error for the variational discretization
approximations of the parabolic optimal control problems (1.1)—(1.3). The state and co-
state variables are approximated using the piecewise linear and continuous functions, while
the control variable is computed using implicit relation between the control and co-state
variables. We derive a posteriori error estimates for the state, co-state, and control variables
in the L*°(0, T'; L*°(£2))-norm for both the semi-discrete and fully discrete variational
discretization approximations. Essential to our error analysis is the elliptic reconstruction
techniques and heat kernel estimate for linear parabolic problems. The elliptic reconstruc-
tion approach was introduced earlier by Makridakis and Nochetto (2003) in the context of
semi-discrete problems for parabolic equations and subsequently extend to fully discrete
problems in Lakkis and Makridakis (2006). The role of elliptic reconstruction operator in
a posteriori estimates is quite similar to the role played by elliptic projection introduced
by Wheeler (1973) for recovering optimal order error estimate in the priori error analy-
sis of finite-element Galerkin approximations to parabolic problems. Compared to Otdrola
et al. (2019), our proofs employ only basic estimate for the heat kernel and the elliptic
reconstruction error. The elliptic reconstruction technique greatly simplifies our analysis
by allowing the straightforward combination of heat kernel estimates with existing elliptic
maximum norm error estimates. To the best of authors’ knowledge, for the first time, we
report the work on L°°(0, T'; L°°(§2)) a posteriori estimates for parabolic optimal control
problems.

The paper is organized as follows. Section 2 contains some basic prerequisite materials
for future use and optimal control problem. In Sect. 3, we discuss semi-discrete vari-
ational discretization approximation for optimal control problem (1.1)—(1.3) and derive
a posteriori error estimates for semi-discrete problem. Section 4 is devoted to the fully
discrete variational discretization approximations of optimal control problem (1.1)—(1.3)
and derive a posteriori error estimates for the fully discrete problem. Numerical results
are presented in Sect. 5. Finally, we present some concluding remarks in the last
section.
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2 Preliminaries

This section introduces notation for working function spaces to be used in the subsequent
sections. Furthermore, we recall maximum norm a posteriori error estimates for elliptic
problems and some properties of a Green’s function for the heat equation.

We shall adopt the standard notation WP (§2) for Sobolev spaces on £2 with norm
Il - llm,p,2 and semi-norm | - |, p, 2. When p = 2, we denote WP (£2) = H™(£2) with
norm || - [y, p.2 = Il - I, 2 and semi-norm | - [y .2 = | - [, 2- Let L" (0, T; W™P(£2)) be
the Banach space of all L"-integrable functions from [0, T'] into W""?(£2) with norm

1
lvllLr o, 7:wmr(2)) = </OT vl p.o ds>r , 1=<p<oo,
and the standard modification for p = co. We denote
a(v,w) = /Q VoVwdx VYo, w € Hol(.Q),
where HOl £2)={ve HY($2): v=0o0n 082}. We assume that the bilinear form a(-, -) is
bounded and coercive on HO1 (£2),i.e., 3 ag, a; > 0, such that

la, w)| < apllvllillwl,  Yv,w e Hy(£2),

and
a(u,v) > arvll},  Yve H} ().

The weak form of parabolic optimal control problem (1.1)—(1.3) is defined as follows: Find
apair (y,u) € L0, T; L®(£2)) N H(0, T; H~'(£2)) x U,q4, such that

. 1T 2 2
min J(u,y) = min - A {Iy = yall> + lull*} ds, 2.1

ueUyq uelyq 2

subject to

ot
y('9 O) = yo('x)7 x € 8.

Observe that L0, T; L*°(2)) N H(0, T; H~1(2)) c C°([0, T1; L®(£2)).

It is well known Lions (1971) that the convex optimal control problem (2.1)—(2.2) has a
unique solution (y, «) if and only if there exists a co-state variable p, such that the triplet
(v, p, u) satisfies the following optimality conditions for # € [0, T']:

<3—y,v)+a(y, v) = (f +u,v), VveH(}(.Q), 22)

(% v> +a(y,v) = (f +u,v), YveHN(R), (2.3)
y(x,0) = yo(x), x € £2, 24

- (2—‘; v) +alpv) = (6 =y ), Vo e HL(2), 2.5)
p(x,T) =0, xe, (2.6)
(u+p.ii—u) =0, VieUy. 2.7
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Let Iy, 4, be a pointwise projection on the admissible set Ugq, and defined as

H[ua,u;,]()( (x’ t)) = min {Mbv max {uav X(xa t)}} N

Arguing as in Meyer and Rosch (2004), one can easily express the equivalent form of (2.7)
as

w(x, 1) = Mpuyu)(=p(x, 1)). (2.8)
We now introduce the reduced cost functional
jiL®(0,T; L®(2) - R
u = j) = J(u, yu)),

where y(u) is the solution of (2.2). Hence, the optimal control problem (2.1)—(2.2) can be
equivalently reformulated as

min j(u).
uelUyg

2.1 Elliptic a posteriori estimates

For ¢ € L*°(£2),let @ € HO1 (£2) be the solution of

—A® =y in £,
® =0 on 0952,

where 2 C RY(d = 2, 3) is a convex polyhedral domain. We assume that 7;, is a shape
regular simplicial decomposition of §2, and define the finite-dimensional space V), := {v €
C(22): vylg € P, VK € 73}, where P; is the space of polynomials of degree< 1 on K
and set V}? =V, N HO1 (£2). Let ), € V,? be the finite-element approximation to @ defined
by

/Vq)thhdx:/ ¥y dx, VvheV,?.
Q Q

For Ky, K, € 7, let E be the element side or face, such that E = K| N K,. We now
define the jump residual across an element side E as

[VOu]le(x) := lim (V& (x + eng) — V& (x — eng)) - ng,

where ng is a unit normal vector to E at the point x. Let 2 be the diameter of the element
K.Forl < p <ooand j > 0, we define the elementwise error indicator as

N, (K) = h2 |y + Ad W ve
Rp—j(K) =hy " ¥+ nllor k) +hy IvVerlliLr ok »

and the global estimator as

1/p
> ()| . 1=p<oo,
€p—j (@Pn¥) =1 | ke7, (2.9)
Roo— i (K = o0.
max Je, j(K), p =00

We state an elliptic pointwise error estimate from (Nochetto et al. 2006).
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Lemma2.1 Let §2 be a convex bounded polyhedral domain in R? (d = 2, 3), and h =

mijr} hk. Then, the following a posteriori error estimate:
KeT),

=\2
[® — Ppllo(2) < Co (Inh)” € 0(Pp, V),
holds.
To bound some of our fully discrete a posteriori error of finite element of the form @; —
Dy — (Pp, — Py,), where @y, and @, are related to different finite element spaces defined

on meshes at adjacent time steps, we recall the following results from Demlow et al. (2009).
Let V}?l and V,?z be the finite-element spaces associated on different meshes 7, and

Th,. Let &y, € V,?l and @y, € V,?z be the finite-element approximations of ¢ and &,
respectively, and satisfy

—AD =Yy, x€8, and &1 =0, x €9S2,
and
—ADy =1, x€82, and & =0, x €9L2.
For1 < p < ocoand j > 0, we define the elementwise error indicator for K e Thy N Th, by
® 5\ r2+) ajt1+1
Np.—j (K) _hk ”wl —lﬂz-i-A((Dhl _@hz)”LP(k)+hk !

[[V (¢h1 - gzz’hz)]]

3

Lr(zg)

where X r = (Z1Uxh)n K (X1 and X be the collection of all edges of elements 7, and
Th,, respectively) and the global estimator is defined by

1/p
N \\ P
A Z (9117’,]‘ (K)) , 1<p<oo,
€p—j ((phl_@hz’wl_wﬁﬁll’ﬂlz) = KeTy, ATy,
_ max E’Atp,,j (1%), p = o0.
KeTy NTp,

Lemma2.2 Let 2 C R? (d = 2, 3) be a convex bounded polyhedral domain, and let Ty,
and Ty, be compatible triangulations with h = mig min{h (x), ha(x)}, we have
xXe

A2 A
[@1 = @2 = (@1, = Do) | () = Co2 () €0 (Pry = Pi ¥t = V2 iy i)
where Cg depends on the number of refinement steps used to pass from Ty, to Tp,.

As our analysis depends heavily on the properties of the Green’s function for the heat
equations, we cite the necessary results in the following two lemmas. The proof of first
lemma can be found in Luskin and Rannacher (1982), and for the second lemma, we refer
to Aronson (1968), Demlow et al. (2009).

Lemma2.3 WithW € L*(0,T; L*(2)), let ® € L*(0, T; H*(2)NHy(2))NH' (0, T; L*
(82)) be the solution of

& — A® =¥ in Qr, (2.10)
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P (x,0) =Pp in £2, (2.11)
® =0 on IT. (2.12)

Moreover, we have the following a priori estimate:

1@llr20.7:1m22)) = Cr (11l 2 0.7:22¢2)) + 1ol 12¢2)) -

where CRg is the regularity constant.

Lemma2.4 Ler 2 C RY (d = 2, 3) be a convex bounded polyhedral domain. Then, there
exists a Green’s function §(x, t; w, s) for the problem (2.10)—(2.12), i.e., there exists a kernel
T, for (x,t) € 2 x (0, T, the solution ®(x, t) for (2.10)—(2.12) is given by

t
D(x,t) = / Fx, t; w, 0)Do(w) dw —|—f / S, t; w, )V (w,s)dwds. (2.13)
Q 0 Je
Moreover, s < t, § satisfies the bound

15 Cx, 2; ',S)”Ll(_(z) <L (2.14)

3 Error analysis for semi-discrete control problem

This section is devoted to the spatially discrete optimization problem and derive a posteriori
upper bounds for the state, co-state, and control variables in the L°°(0, T'; L°(§2))-norm.
Let 75, be a regular triangulation of §2, such that 2=U KeT,, K,andif K, K> € 7; and
K1 # K>, then either K| N K> = @ or K| N K> share a common edge or a common vertex.
Associated with 7 is a finite-dimensional subspace Vj, of C (£2), such that v|g is the
polynomial of degree less than or equal to 1, for all v € V},. Now, we set V;? =V,N H(} (£2).
The semi-discrete variational discretization approximations of (2.1)—(2.2) are to seek a
pair (y, u) € C(0, T; V) x Uyy, such that

: LT

min J (up, y,) = min f[ {lyn = yall® + llunl?} ds, 3.1)
up€eUpq up€luq 0

subject to

Ayn 0
FTRAL +a(n,vp) = (f +up,vp), Nop €V,

yu(,0) = ypolx), x €,

(3.2)

where y, 0 € V]? is a suitable approximation or projection of yy.

It is well known Lions (1971) that the convex optimal control problem (3.1)—(3.2) has a
unique solution (yy, uy) if and only if there exists a co-state variable p, € C(0, T’; V,?), such
that the triplet (yp, pn, up) satisfies the following optimality conditions for ¢ € [0, T]:

dyn 0
(W’ vh) +a(yp, vp) = (f +up,vp), Yo, €V, (3.3)
i (-, 0) = yno, (34
- (88% vh> +a(pn,v) = (= ya,vn), Yop € V), (3.5)
pn(,T) =0, (3.6)
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(un + pnolip —up) =0, Viy € Ugg. 3.7
Similar to the continuous case, we can express (3.7) equivalently to

Mh(x,[) = H[ua,ub] (_ph(x7t))' (38)

Equation (3.8) reveals that the control variable u, is the projection of a finite-element function
(approximate co-state variable) onto the admissible space Uyg.

Discrete elliptic operator: The discrete elliptic operator associated with the bilinear form
a(-, -) and the finite-element space V,? is the operator —.Ay : HOl (£2) —> V,? + Ly f, such
that for w € H}(£2) and ¢ € (0, T,

(—Apw, vp) = a(w, vy), Yo, € VP,

where £;, be the L>-projection onto the finite-element space Vj,. Therefore, we have the
following pointwise form of (3.3) and (3.5):
dYn
—Apyn = Lnf +up — TR
9 ph
—Anpn = yn = Lnya + =
respectively.

To begin with, we first establish some intermediate error estimates for the state and co-
state variables in the L°°(0, T'; L°°(§2))-norm which will enable us to prove the main results
of this section. This is accomplished by introducing elliptic reconstructions for the state and
co-state variables. For this, we now introduce some auxiliary problems.

For it € Uy, let the pair

(y@). p(@) € L®(0,T; L¥(2)) N H' (0, T; H'(£2)) x L® (0, T; L™(£2))
NH' (0,7; H'(2))

be the solutions of the following equations:

(Bya(tﬁ), v) +a(y@,v) = (f +a,v), Yve Hj($), (3.9)
y@) (-, 0) = yo(x), x €82, (3.10)

- (agiﬁ), v) +a(p@@),v) = v(y@) —ya,v), Yve Hj(2), (3.11)
p@(,T)=0, xc¢€f. (3.12)

Define the errors for the state and co-state variables as follows:
ey :=yp—yup) and &, := pp—p up). (3.13)

From (3.3)—(3.6) and (3.9)—(3.12) with & = uy,, we obtain the following error equations for
1 .
v e H}(82):

96
(g, U) +a (éy, v) = — (Qy, U) + (Vyn, Vv), (3.14)
e .
B (% ”) +a(ép,v) =—(Gp,v) + (Vpu, V) + (éy,v), (3.15)
(AL 5 dpn
wheregy:f-i-uh—y and gp:yh—Yd-f-?.

@ Springer f bMA



A posteriori L% (L°°)-error estimates... Page9of31 298

Fort € (0, T'], we now define the elliptic reconstructions for the state and co-state variables
as follows: for given yj,, pp,seek y € HO1 (£2)and p € HO1 (£2), such that

a(3,v) = (Gy,v), VveH} (), (3.16)
a(p,v) = (Gp,v) + G =y v), Vve Hj(f). (3.17)

Using elliptic reconstructions y, p, we decompose the errors as

~

ey =0 —yp) = —yn) =15 —1

and

~

ep=(p—pun) —(p—rpn) =6p—1
Using (3.14)—(3.17), we obtain

(aft’ v) +a(y,v) = (a% v), Vv € H} (), (3.18)

_ (385; v) +ap.v) =— <8a77tp ) + &0, YveHH(R).  (3.19

As a consequence of elliptic error estimate in Lemma 2.1, we obtain the following bounds
for the elliptic reconstruction errors.

Lemma3.1 Let (3, p) € Hq(2) x H] (82) satisfy (3.16)~(3.17) and let Lemma 2.1 be valid.
Then, for each t € [0, T], the following estimates hold.:

H ﬁy(t)”Loo(_Q) f C.Q (]n }_1)2 GC>C>,0 (yh(t), gy(t)) k]

and
1@ ) = Co (I07) €c0 (pr (1), Gp ) + [5®) | e ) -
‘We next turn our attention to derive the bounds for é‘y and é P

Lemma3.2 Let z?y and §p satisfy (3.18) and (3.19), respectively. Then, for any t € [0, T],
the following estimates hold true:

. . 2 oy 99,
: <z, H k) | , ,
Héy( )HLOO(_Q) = H‘;'y( ) Lo(2) +ei(nk) H °°0< o "ot )| o

and

_ apn G, .
< (k)| e , H @ H ,
HSP()HL“’(Q ¢z (In ) °°0< at ot ) + 5@ Lo(82)

Ll[O,T]

where € o is the L*°-type residual estimator defined in (2.9). The constants c| and c; are
positive and depend on the domain §2.

Proof We know that éy satisfies (3.18). For any (x, r) € £2 x (0, T], use of (2.13) leads to
N ~ ! a1y
&, )= | T, t;w,0) & (w,0)dw + S, t; w, 5) —=(w, s)dw ds.
2 0 Jo a1
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An application of the Holder’s inequality yields

6], =B E0 0@ GO
8ﬁ7
HIFC, 15w, )l ey HT) .
N PAYORE A o))
With an aid of (2.14), we have
A Ay
o] | *] 7
H%( N oo @ = 50 L(2) 3t | 110.: 10

which combine with Lemma 2.1 to obtain

Héy (1) ” < ”éy(o) ”

+ c1 (ln}_z)2 H Es0.0 <3yh 3%)

ar’ ot

Lo(£2) L(£2) Lo

where the constant ¢; depends on £2, and this proves the first inequality. The proof of the
second inequality can be treated in a similar manner using the fact that £,(T) = 0. This
completes the proof of the lemma. O

Let (y, p, u) and (y5, pn, up) be the solutions of (2.3)—(2.7) and (3.3)—(3.7), respectively.
To derive a posteriori error bounds for the state and the co-state variables, we decompose the
errors as follows:

Y= n == ywn)+ W) — yn) =7y — &,
and
p—pn=(p—pwn) + (pun) — pn) :=7p — &,

where 7y = y — y(up), 7p = p — p(up) and é,, ¢, are defined in (3.13). With the help of
(2.3), (2.5), (3.9), and (3.11), we derive the following error equations for each ¢t € (0, T']:

o,
< a’;‘ , v) +aly,v) = (—up.v), Yve H () (3.20)
and o,
_ (% v) —i—a(rp, v) = (ry, v), Yve Hol (£2). (3.21)

In the following lemma, we derive the bounds for 7y, and 7.

Lemma 3.3 Let (y, p, u) and (y(up), p(up)) be the solutions of (2.3)—(2.7) and (3.9)—(3.12),
respectively, with i = uy,. Then, the following estimates hold:

|7y “LOC(O rieqay = CR) lu —unli2o,r;2(02)) -

and

< CR) lu —unllz20.7:1202)) -

where C(R) depends on the regularity constant Cg.
Proof Note that, for any ¢ € [0, T']

Py (1) ”Loo(_Q) = ”fy HL2(O,T;L°°(9))

= |7 HL2(0,T;C(Q))'
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Using the embedding result H2(£2) < C(£2) and Lemma 2.3, we obtain

Fy(1) HLOO(Q) =< |7y HLZ(O,T;H2(.Q)) = C(R)llu —unliz2(0,7:22(02))

where we have used the fact 7,(0) = 0, and this proves the first inequality.
Analogously, the second inequality can easily be proved for 7, using the fact 7,(T) = 0.
This completes the rest of the proof. O

The following lemma presents the a posteriori error estimate for the control variable in
the L2(L%)-norm.

Lemma3.4 Let (y, p,u) and (yn, pn, un) be the solutions of (2.3)—(2.7) and (3.3)—(3.7),
respectively. Assume that (uj, + pr)|x € H'(K) and there exists a positive constant C, and
iy, € Ugg, such that

T
< c/ S el + prl o e — wnl 2y ds. - (3:22)
0

T
‘/ (up + pp, iy —u)ds
0 KeTy

Then, we have

1/2

T
llu _Mh||L2((),T;L2(Q)) = C|: / Z h%(|uh +Ph|?.11(K) ds
0 ke,

+lpn — pun) ||L2((),T;L2(_Q))j| )

where C = max{1, C}, and (y(@r), p(i)) is solution of the system (3.9)—~(3.12) with u = uy,.

Proof Note that

T
I = s 7 p20y = / (4 — o — up) ds
e 0

T T
:/ (u, u —up) ds—/ (up,u —up) ds.
0 0

Apply (2.7), and a simple calculation using (3.7) yields
T T
||M - uh"iz(O,T;Lz(Q)) f _A (pv u— l/lh) dS - /0 (uhv u— I/th) dS
T T
=—/ (Mh+Ph,u—ﬂh)dS—/ (un + pn, itn — up) ds
0 0
T T
[ n = p = a5+ [ o)~ pou—w) &
0 0
T T
< / (pn — pup), u —up) ds +/ (p(un) — p,u—up) ds
0 0

T
+/ (up + pn, iy — u)ds
0
=: E1+ E> + E3. (3.23)
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To bound E, we use the Cauchy—Schwarz inequality and the Young’s inequality to have
T
Evs [ = pnliag = mnlagey d
0

1
= ||Ph - P(“h)”iz(O’T;Lz(_Q)) + Z”u —Up ”iz((),T;LZ(Q))' (324)

Setting v = p(uy) — p in (3.20), and integrate the resulting equation from O to 7. Then, an
integration-by-parts formula with 7, (0) = 7,(T) = 0 leads to

T 7, T T
/ (ry, W) ds —/ a (ry, rp) ds = / (u —up, p(up) — p) ds. (3.25)
0 0 0

Again, choose v = y(u;) — y in (3.21) and integrate with respect to time from 0 to 7 to

obtain
T /op T T
/0 (8—:, fy> ds —/0 a (fp, fy) ds = /0 (y — y(up), y(up) — y) ds. (3.26)

Use of (3.25) and (3.26) yields
T T
Ey = fo (u —up, p(up) — p) ds = /0 = y@n), yup) — y) ds

T
= [ 1y =y, ds <0 (327)
0

Finally, assumption (3.22) and an application of the Young’s inequality lead to the bound of
E3,

T
E3 < C/ Z hilun + prlpgyllu — unllp2xy ds
0 KeT,
W

T

1

<c? /0 > hclun+ pulf g s + glu = unlia r 2y 328
KeT),

Altogether, (3.23), (3.24), (3.27), and (3.28) yield the desired estimates. This completes the
proof. O

By collecting Lemmas 3.1-3.4, we finally derive the main results for the state and co-state
variables in the L°°(L°°)-norm.

Theorem 3.5 Let (v, p, u) and (yn, pn, un) be the solutions of (2.3)—(2.7) and (3.3)—(3.7),
respectively. Let f € L0, T; L®(£2)) N W10, T; L>(82)). Then, the following a pos-
teriori error estimates hold for each t € (0, T,

172

T
lu —unliz2o,7;222) < Ci / Z hi | +Ph|§,|(K) ds
KeT,

+ ”éy(o) H + ﬁy(l)”Lw(m + (In fz)z

L%(£2)
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298

3)’h agy 5
[H%o@( o1 " o1 ) o + €oo,0(pn (1), G, (1))

¢ apn 3gp
o0, 0 8t I 81‘ )
L'[0,T]

where C| depends on the domain §2 and the constant C as defined in Lemma 3.4,

N -2
Iy = ynllzeo, ;2002 < llyo — ynollLe) + ¢1 (Inh) [@oo,o(wz (1), Gy (1))

oyn 3g)>

+€00,0(V1,05 Q»(O))-i-H@ooo( 1’ 31

LI[O,T]]
+llu —up ”L2(0,T;L2(_Q))7

L =2 5
P = prllLeo,7:Lo2) < I¥0 — ynollLe2) + ¢2 (Inh) |:€oo,0 (P (), Gp(1))
pn 891,
¢ ,
200 ( ar ot

+€o0,0 (ya (D), gy(t)):| Ml —unlliz200.7:02(2))

+ €o0,0(y1,0. Gy (0))
L10,T]

where the constants ¢| and ¢, depend on the domain 2.

Proof The first inequality follows from Lemmas 3.1, 3.2, and 3.4.
To prove the second inequality, we decompose the error in the state variable as

¥ == = 3+ ) = ) + G =) =5y — (& =)
For any ¢ € (0, T'], we have

16 = W Olx@) = IR Ole@ + |&O] L+ [0 -

L®(2)
An application of Lemma 3.1 yields
[y )] ey < €3 (101)° Eno0(3a(0). Gy ().

Using Lemma 3.2, it now follows that:

< llyo = ynollee(2) + c4 (In 5)2 €o0,0(1,0, Gy (0))

3yh 8g}
¢ ,
000 ( ar " ot

gl

Lo2(£2)

e (InF)’ ‘

L[0,1]

where ¢;, i = 1, 3,4 depend on 2. Altogether, these estimates and Lemma 3.3 lead to the

desired result, where ¢; = max{cy, c3, c4}.
Similarly for the co-state variable, we use the triangle inequality to write

10 = P Olle@) < 17Ol + &0

Lo (z)
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Again, using Lemmas 3.1-3.3 and a similar argument as above, we conclude that

1(pn — POl < es (k) Exo (pi(0), Gp(0)

apn 9Gp
ew’()( ot ot )
e (Inh) €000, Gy (0) + Co (k) Eao 0 (1), Gy (1)
Hllu —up ”Lz((),T;LZ(Q))v

+ 1lyo — yrollL=)
L1[0,]

+co (ln }_1)2

where the constants ¢;, i = 2,4, 5 depend on the domain 2 and ¢; = max{c», c4, ¢5, C}.
This completes the proof. O

Theorem 3.6 Let (v, p, u) and (yn, pn, un) be the solutions of (2.3)—(2.7) and (3.3)—(3.7),
respectively. Assume that all the conditions in Theorem 3.5 are valid. Then, for each t €
(0, T, there exists a positive constant Ca, such that the following error estimate:

~ .
e — upllLoo,1:150(2)) < Cz{ lvo — ynolle() + (Inh) |:€oo,0(yh,07 G,(0))

+C€o0.0(n (1), Gy(1) + Eoo0(pn(t), Gp(1))

dyn Gy dpn 3G,
@ E) — 6 777
+H oo,0< 51 a1 Ll[o.r]+” 00,0( 51 ar ML,
12
r Z 2 2
+ /(; hK|”h+Ph|H|(K)dS }7

KeT),

holds, whgre the constant C‘z depends on the domain 2, the regularity constant Cg, and the
constant Cy as defined in Lemma 3.5.

Proof From (2.8) and (3.8), we obtain

lu —wunliLeo©.1:02) = g1 (—P) — Miugu,) (= Pr)llLo0,1; L% (2))
< llpn — pllL=©,T;L=(2))

where we have used the Lipschitz continuity of 7|, ,,] with Lipschitz constant 1. An appli-
cation of Lemma 3.1 and Theorem 3.5 completes the rest of the proof. O

4 Error analysis for fully discrete control problem

This section describes the fully discrete variational discretization approximations of parabolic
optimal control problem (3.1)-(3.2). Let 0 =t < #; < --- < ty = T, be a partition of
[0, T] with I, = (t,—1,t,] and k, := t, — t,—1. Let 7, :== {K}(0 < n < N) be the
triangulation of 2 at the time level #,. We assume that 7, satisfies the following conditions:

(O If Ky, Ky € T, and K| # K>, then either K1 N K> = ¥ or K| N K7 share a common
edge or a common vertex.

(2) Two simplicial decompositions 7;,_1 and 7, of £2 are said to be compatible if they are
derived from the same macro-triangulation 7 = 7 by an admissible refinement procedure
which preserves the shape regularity (Brenner and Scott 2008) and assures that for any
elements K € 7,1 and K’ € 7, either K NK' =@, K C K/,or K’ C K. There is a
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natural partial ordering on a set of compatible triangulations namely 7,,_; < 7, if 7, is a
refinement of 7,_1. Then, for a given pair of successive compatible triangulations 7, and
T,, we define naturally the finest common coarsening ’f;, = T, NT,_1 with local mesh sizes
are given by ﬁ,, := max{h,_1, h,}. These conditions allow us to bound the elliptic errors
which lie in two adjacent finite-element spaces, see Lakkis and Makridakis (2006).

We shall also need the following notation for future use. For 0 < n < N, let &, := {E}
be the set of all edges of the triangles K € 7,, which do not lie on 952, and X, := Ugcg, E.
Furthermore, we will also use the sets fin =2X,NX,_;and f,‘n =X, UX,_1.

For eachn = 0, ..., N, we consider the finite-element spaces V" corresponding to the
triangulation 7,, as follows:

Vii={xeC(2): xlk ePi(K), VK eT},
where [P (K) is the space of polynomials of degree less than or equal to 1 on K. Set Vjj =

ViNHL($).
For the purpose of fully discrete approximation, we need the following notation:

_ 1 = 1
O = GC ). 89" = (@' —¢") and £] (3g") = — (8"~ Ljo" ).

where L} is the L?-projection from L2(£2) to V™.
Representation of the bilinear form: For a function v € Vjj (0 < n < N), the bilinear
form a(v, w) can be represented as

a(v,w) = Z < —div(Vv), w > + Z < Ji[v], w >E, Yw e Hol(.Q),
KeT, Ee€&,

where J[v] denotes the spatial jump of the field Vv across an element side E € &, defined
as

Jilv]lle(x) := lin%) (Vv (x +eng) — Vv (x —eng)) -ng,

where ng is a unit normal vector to E at the point x.
Let £; and L}, , be the L2-projections onto V" and V¢, such that

(Lhos¥m) = (@, ¥m) VY Yu V" and (L] oo, ¥n) = (&, ¥n) Y ¥n € Vy.
Discrete elliptic operator: The discrete elliptic operator associated with the bilinear form
a(-, -) and the finite element space V/;' is the operator Aj : HO1 (£2) — Vg + L} f", such that
forv e Hol(.Q) and0<n <N,

(—Ajv, wp) =a (v, wp),  Vwy € Vg,

The fully discrete variational discretization approximations of the problem (2.1)—(2.2) are
defined as follows: Find (y;,, u},) € V' x Uqq, for n € [1 : N1, such that

MZEUMI 2

N

1

min 23 [ {1 =3 ace) + I acoy | 0. @)
n=1"%"
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subject to

(yf vn) +a(ypon) = (f" +ul,vn),  Vup € V§,

0 4.2)
Yn = Yh,0,

where yj,  is the suitable approximation or projection of yg in Vé) .
The optimal control problem (4.1)—(4.2) admits a unique solution (y;, u}) if and only if
there exists a co-state pj e Viy', such that the following optimality conditions are satisfied:

Foreachn € [1: N],

vy, vn) +a (o) = (f"+upvn),  Yop eV, 4.3)

Vi = Yho. (44)

—@pj,vn) +a (PZ”, Uh) =y —yj.vn), Vv eV, (4.5)

pi =0, (4.6)

(uh+ ph" ity =) 2 0, Vit € Uua. 4.7)

Given a sequence of discrete values {y;}, n = 0,1,..., N, we associate a continuous

function of time defined by the continuous piecewise linear interpolant Yy (¢), t € I,, as

th —1t t—1—
Ty = =0 ot (=)
2 2

Similarly, we define Py(t), t € I,,, from the set of values {pZ}, n=0,1,...,N as

(tn =0 1 | €= ti1)
Pyp(t) := "k ! 7](" Ph
n n

and
Un(®lg, := uj.

Finally, we define Y,;" = %Yh |1, and P,:‘. = %Ph |1, . Furthermore, we note that the values
of Y}, (¢) and Py (¢) at the nodal pointt =1, n =1, 2, ..., N are coincided with y; and pj,,
respectively.

The weak form of fully discrete schemes (4.3) and (4.5) can be easily transformed into
the pointwise form as

yn _rn yn—l
h h,O h _ Zy;: — E;llfn + Uh!
kn
-1
Ph = LhoPh -
S A = - L
n
This implies that
L n—1 _ n—1
Vi = A = L Uy PO Iy, (“8)
n
yoi pn—l _ pn—l
—P, A =y ey TROTH TR . a1 (4.9)
n
Then, the optimality conditions (4.3)—(4.7) can be stated as follows:
(Y vn) +a (Y vn) = (f" +Un,vn), Vo€ V), (4.10)
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YY) = yno, 4.11)

- (E_)P}:’, vh) +a (P;Z_l, vh) = (Y: -y, vh) , Y, eV, 4.12)
PN =o, (4.13)

(Un+ Pyt = Us) 20, Vi € Usa. (4.14)

Analogous to the continuous case, we reformulate the discrete optimal control problem (4.1)—
(4.2) as

.
min Uy) = J Uy, Y (Up)).
prin Jn (Un) ( Un)

Analogous to the semi-discrete error analysis, we first derive some intermediate error
estimates for the state and co-state variables in the L°°(L°°)-norm. Here, the fully discrete
analogues of elliptic reconstructions for the state and co-state variables are treated as inter-
mediate objects in the error analysis.

For the purpose of error analysis, we shall define the errors for the state and co-state
variables as follows:

ey : =Y, —yUy) and e, := P, — p(Uy).

From (3.9), (3.11), (4.10), and (4.12) with &t = Uy, we have the following error equations
for v € Hj (2):

d
(aet) )—I—a(ev, ): —wgf(v)—i-a(Yh —y;l"v)_,_ (fn —f,v), @.15)

0
< aetp ) +a(ep,v) =w,(v) +a <Ph - L v) + (vh = yWUn).v) + (ya — ¥j. ).
(4.16)

where

n—1 n n—1
Yoo~ Lho¥
w(’y(u) ;:(f”_ Zf",v)—k(hkh’oh,v),
n

n—1 n n—1
P —LhoP
W) = (y§ — Lpyg. v )+(h P ,v>.
n

We now define the elliptic reconstructions at t = t,, n € [1 : N] as follows: For given
Vi pz_l, seek ¥, ﬁz_l € H(} (£2) satisfying

a(5.v) = (95.v). v e HY®), 4.17)
and
(~n 1 )_ (”n ) sno_o.n 1
pn ) = (G5 v)+ (3 —vhv),  YveHy(R), (4.18)
where

g = hyh+f0 ﬁgfo, n=0,
g fn+Uh_Yh’t, n>1,
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and
gr _ | AP+ vd — Ly =0,
Tk it P nzl.
Using a sequence of discrete values {y}/} forn =0, 1,..., N, we set a continuous function
of time defined by piecewise linear interpolant y(r) as
t, —t r—t;—
y() = (”ki)i,’l“ (ki”l)%f, tho1 <t =<ty, n=1,...,N.
n n
Similarly, we define p(r) from the set of values {p}},n =1,..., N as
- (tn — 1) oy (t—ty—1) .
1) == "k oy 1+k7"p;f, et <t <ty, n=1,...,N.
n n

We note that functions y and p satisfy, for each ¢ € [0, T'], the following equations:
a(G—Yp,v) =wy(v), YveH (),
a(p—Pp,v)=—w,v)+ G —Yy,v), VYveH ).

From (4.8) and (4.9), we obtain

yoi yn—l _ yn—l
h,07h h
gy :f"+Uh—Y,f’7t:—AZy,’j—l—f"—[lZf"—k—, n>
n
B Lr pn—l _ pn—l
Gho= g~y P = AT oy -y O T

kn

Using elliptic reconstruction, we decompose the errors as

ey =G —yWUn) =G =Yy =& —ny, and e, = (p — p(Upn)) — (p — Pn) =: &, — np.
Note that

V=== =1) (5’2 - S’Z_l) and p — 132_1 = 1(r) (ﬁz _ ﬁz—l)7

where (1) = t_liiz_l Using (4.17)—(4.18) in (4.15)—(4.16), we obtain

d d
<8iy,v>+a($y,v) = (%,v)—l—(f”—f,v)

+(1 =) (93‘1 -Gy, v) , Yve Hp(2), (419
_ (%” v) +a(gpv) =— (aaitp v) + (ya = ¥4, v) + (57 — y(Un), v)
+(1) (é;; - gt v) , Vuve H (). (4.20)
Now, we state the following lemma for elliptic error bounds in L°°(L°°)-norm.

Lemma4.1 Let (37, oy~ ") € H} (2) x H} (2) satisfy (4.17)~(4.18). Then, 0 < n < N, we
have

57 = 31l gy = € (1n ;ln)z ewo(01.2).
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Moreover, forn € [1 : N, we have

where C(82) is a positive constant depend on S2.

~n—1 n—1

A \2 - 3
Bl < @) (nhn) Eo(Pi.G0) + 157 = i e

|

In the following lemma, we derive the bounds for &y and &,.

Lemma 4.2 Let &, and &, satisfy (4.19) and (4.20), respectively. Then, forany 1 <m < N

with hm = min min hg, the following estimates hold:
1<n<m KeT,

—1

Iy )l < 16, Ol + s () 3 esooo(yh .G

n=1

m
—g" T, T) + Zf 1" = fllzeee) ds
n=1 In

n n—1 n

Kn _gr , 421

19T 79 e (4.21)
and

. pn l_p
I8yl < e7 (0 ) Zk esoo()("knh Gy -Gyt T, 1,7)

+1
—l—Zf |ya — yd”Loo(_Q)-i- G” HLOO(Q)-FIISy(tm)lle(m-

n=1

4.22)

In the above, the constants ce¢ and c7 are positive and depend on the domain S2.

Proof Note that £, satisfies (4.19), forany #,, € [0, T'], a fix point x,, € £2, and an application
of (2.13) leads to

|§y(xmstm)| S/Q|8:(xm,tm;w,0)5y(w70)|dw

Im any
+ Sty w, 8) ——(w, )
0 Q at

A0 [ 18 ts w5 (77 = )] dues

n=1 In /52

+Z/I /Q]s(xm,zm; w.$) (1= 1)@ = )
n=1"%""

using the Holder’s inequality and (2.14) with &) (xy, t)| = [I&y (tm) | Lo (2)(since x;y is
fixed), we obtain

dwds

dw ds;

Z IIf” — fliL=(2)ds

n=1

an
16y Gl Lo (2) < 115y (O) ooy + “y
O 1l L1 (0,4 1: 220 (2))

n -1
5|9 9

y L®(2) '
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Use of Lemma 2.2 leads to

n n—1

m
I8y tlzc@) < 16Ol + e () PRELS (7

-Gy m) /”fn_f”LOO(.Q)dS
n=1 In

n—1 _ ~n
< I

and this completes the proof of (4.21).
To prove (4.22), we first note that £, satisfies (4.20). For any #,, € [0, 7] and fix point
Xm € £2, a similar argument as before leads to

1€p (s )] f/;2|g(xmvtm;w» T)‘i:p(wsT)|dw

)

+Z/I /Q |§ st w, 8) (ya — ) dw] ds
+Z/ / |§Coms s w, ) () — y(Un))| dw ds

. sn sn+1
+’;/In/9\s<xm,rm,w,s)l<s)(g,,—g,, )| dwas.

An application of the Holder’s inequality and (2.14) with [£,(xp, )] = 1Ep ()l Lo (2)
yields

Rl
Ly W, S) %(w,s) dwds

an
I ()l z(2y < 1Ep (Tl L) + HW

" Z/ 1ya = ¥ liocnds

LY, TEL®(R2)) =1

sn_ An+l
g -Gt

Lo@)

m
ky
S 57— (U)o d —‘
+n—l/1" 1y, — y(WUnllLoe(s2yds + 5

An application of Lemma 2.2 and &, (T') = 0 imply

-1
~ P p ~
10 Gl < 7 ()’ Zk esooo( n—Ph gn— g;;“;Tnl,Tn)

#3° [ s =il

n=1

o
Gy =G5 ) T M)l

which completes the rest of the proof. O
Let (y, p,u) and (Y, Py, Up) be the solutions of (2.3)—(2.7) and (4.10)—(4.14), respec-

tively. To derive a posteriori error bounds for the state and co-state variables, we decompose
the errors as follows:
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Y=Yy =G —yWUn) + WUp) —Yn) =11y —ey,
p—Ppn=(p—pWUp)+ (WU — Pp) =11p —ep.
From (2.3), (2.5), (3.9), and (3.11) with &t = U}, we derive the following error equations:

<88Lt v) +a(ry,v) = u—Uy,v), Yve H} (), (4.23)
- <88Lz u) +a(rp,v) = (ry,v), Yve Hj (). 4.24)

The following lemma provides the bounds for ry, and 7.

Lemma4.3 Let (y, p,u) and (y(i), p(i)) be the solutions of (2.3)~(2.7) and (3.9)—(3.12)
with i = Uy, respectively. Then, for any 1 < m < N, we have

Iy )l o2y < Iy Ol o) + 1t = Unll 272222 (4.25)
and
lrp G llLoo2) < lrp(DllLee2y + Iryllrzo,7:02(2y) < Cllu — Unll 20,7 12(2))(4-26)

Proof Following the lines of argument of Lemma 3.3, the proof of inequalities (4.25) and
(4.26) can easily be obtained. The details are thus omitted. O

In the following lemma, we derive the a posteriori error estimate for the control variable
in the L2(L?)-norm.

Lemma4.4 Let (y, p,u) and (Yy, Py, Up) be the solutions of (2.3)—(2.7) and (4.10)—(4.14),
respectively. Assume that (Uj, + P}'fl)lK € HY(K) and it), € U,y, and there exists a positive
constant C, such that

T
/ (U + P ! ﬁh—u) ds
0

Then, we have

<cC ZhK‘U;,—i—Ph" !
0 KeT,

1K) lu — Unllz2(k) ds.

1/2

2
lu = Unllz20,7:02(2)) = C3|: / Z h% ‘Uh'i‘ P~ 1’H1(K) ds
KeT,

Pn—l _ U H i
+H h pUn) L(0,T;L%(£2))

where C3 = max({1, C}, and (y(it), p(i)) is defined by the system (3.9)~(3.11) with it = Uj,.
Proof From (2.7), we have

(u,u —Up) = —(p,u—Up);
using the above inequality, it follows that

T
lu = Upli% 5 7. =/ ( — Up,u— Up) ds
L2(O,T,L2(.Q)) 0

T
5/0 (= (st — Up) — (Up.u — Up)) ds
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T T
:_/0 (Pr="+ Unou—iin) ds—/o (Un+ Bt = Us) ds

T | T
+/ (P;'f* — pUp),u— Uh) ds +/ (p(Up) — p,u—Uy) ds.
0 0

An use of (4.14) yields

T T
||M—Uh||2L2(0’T;L2(Q)) = A (Uh"_Phn_lsﬁh _M) d5+‘/0' (P/;l_l _P(Uh)’“_Uh) ds

T
+f0 (p(Up) — pou— Up) ds
= El + E2 + E3.

Following the idea of Lemma 3.4, it is easy to bound the term Ei, i = 1,2, 3. Therefore,
we omit the details. This completes the proof. O

By collecting Lemmas 4.1-4.4, we finally derive the main results of this paper.

Theorem 4.5 Let (y, p, u) and (Yy,, Py, Up) be the solutions of (2.3)—(2.7) and (4.10)—(4.14),
respectively. Then, there exists constants ¢3, ca(depend on $2), for each t € (0, T1, and any
1 <m < N withh,, = min min hg, the following estimates
1<n<m KeT,
172
||M_U’1||L2(0,T;L2(Q)) =< é4|: / Z hKlU +P: llH'(K)
KeT,

+I&pllLoc0,1;L0(2)) + ||7]p||L°°(0,T;L°°(Q))j|v 4.27)

where the constant Cy4 depends on the domain $2 and the constant C; as defined in Lemma
4.4,

< \2
Iy = YullLeco,1;00002)) =< llyo — )’h,0||L°°(Q) +3 (111 hm) [(‘foo,o(yh,o, Q(y))

+£Eoo,0(y;§",g§’) Zk Goo()(yh I Qf, Q;l;ﬂ—l,Tz)}

+ Z/ 1/ = fllzee) ds gyt -gy oy T Unllizoriz2e),
n=1
(4.28)
n 1 _ pn
Ip — PullLooo.7: (@) < Ea(lnfy)? |:Qfoo o(py, gm)+Zk Eoo o(kih,
n= 1 n

m
Gn— Gt Tt T) + €0 () G;”)] - Zfl Iya = Yillzee(2)ds
n=1

+ Enlléz = G0 @) + 1€y lLe .oy + 1t = Unll 20,102y (429)

hold.
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Proof The first inequality (4.27) follows from Lemma 4.4. Next, to prove error estimate for
the state variable, we write

Yy=Yi=0—=yU))+ WU =) +G =Y =ry,— (& —ny).
For afix x,,, € 2 and 1,,, € (0, T], we have
Iy = Y) )Ly < llryt) L2y + 16y En) L2y + I1ny tm) Lo (2)-

Using Lemma 4.1, the last term of the right hand side is bounded as

~ \2
Iy )l = s (nhn)” €0 (3. G0

By Lemma 4.2, we have

N2
&y ) lLe2) < Ilyo — ynollLe(2) +c4 (ln hm) E0,0(¥1,0, 93)

" _
+e6 (mﬁ,,,)2 > koo <y"_yhl gy -Gy 717)
n=1 , k” ’ '

- kﬂ -1 n
+ Z/I 17" = fllzecy ds + 1 = GYli(@).
n=1"%""

Since ry(0) = 0, apply Lemma 4.3 to obtain

lry Em) L2y < llu — Uh”LZ(o,T;LZ(Q))s

where ¢;, i = 4,6, 8 depend on 2. Combining these above estimates and setting ¢3 =
max{ca, cg, cg}, we accomplish (4.28).

Next, we estimate the error for the co-state variable. By the triangle inequality, for any
tm € (0, T], we have

I(p — Pr)(tm) L2y < Irptm) L) + I1Ep ) lLe2) + 11mp () | Lo (2)-
We apply Lemmas 4.1-4.3 with £,,(T) = 0 and r,(T) = 0 to arrive at

1(p = P ()l (2) < Ea(Iniiy)? [@oo,o (pf, 5;’) + ) kn€oo
n=1

n—1 n
p — P 5 5
(H,gg —gg“;fn_l,z)

ko
m
#n (1.00) [+ 2 [ 1= 50w 0
n=1%""
e -] L lelisa e +lnlonise
2 190 =90 | gy T8 Lm0 1iL@) + lInylli=o. =),

where the constants ¢; |;—7,9 depend on the domain £2. Setting ¢4 = max{c7, ¢y}, we complete
the rest of the proof. O

Theorem 4.6 Let (y, p, u) and (Yy,, Py, Up) be the solutions of (2.3)—(2.7) and (4.10)—(4.14),
respectively. Assume that all the~ conditions in Theorem 4.5 are valid. For each t € (0, T],
there exists a positive constant Cs, such that the following error estimate

lu — UpllLe0,1;0(2))
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<Cs [Ilyo — ynollze(e) + (nhy)? {@oo,o(yh,o, G9) + Cooo(¥i GV

m n n—1
~ Yy, — Y _ ~
+> koo (f‘kh Gl -Gl T, T) + € 0(p . G))

n=1 n

n

m n—1
Py — P k _
+Zk GOO 0 <hkh gn gn+l —1, T)} + %Hgf 1 — g:ly”Loo(Q)

n=1

k B B m
+ 1G5 = G o) + Zf 1" = flize) ds
n=1 In

172

+Z[ 13a = Y2l e(yds + f S WU + PP P, s

n=1 KeT,

holds, where the constant Cs depends on the domain S2, the regularity constant Cg, and the
constant Cy as defined in Lemma 4.5.

Proof Use of pointwise projection of u and Uy, leads to
lu = Unllireo,m;002) = 1Hug,up1(—P) = Hiuguy1(— Pl 0,750 (2))
< Py — pliLee0,7:(2))-

In the above, we have used the Lipschitz continuity of [Ty, ,,; with Lipschitz constant 1.
Inviting Theorem 4.5, we complete the rest of the proof. O

5 Numerical experiments
This section performs two numerical experiments to illustrate the theoretical results of the

previous section. For the purpose of adaptive refinement, we need the following error esti-
mators:

initial data estimator (n1) = ||yo — Ya,0llL>*(2),

e spatial estimator for the state (12) = (In l;m)zéfoo,o(y;l", g;”),

e temporal error estimator for the state (113) = Y, [; 1" — fllL=(2)) ds + & gyt —
GylliL=2).

e spatial estimator for the co-state (14) = (In ﬁm)zeoo o(py, Q"’)

e temporal error estimator for the co-state (n5) = ), fl lya — ¥ llLoe(2)ds + ||g"
G @)
112 1/2
e a control error estimator (1g) = (fo ZKET hK|Uh + P |H,(K) ds) , and

e L°°-type error estimators

n—1

n
n7 = (111]1 ) kn GOOO <kyh, g;l _g;_1;7;1—]»7;1> ,

n

. R .
ms = (infhn)” kewo<w,g;—gg+l;ﬂ_l,%).
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The effective index of the a posteriori error estimator is defined as n/E, where the total
estimated error () and the total error (E) are given by n(y, p, u) := Z?‘:] n; and

E(y, p,u) =y — YullLe,1;202) + |p — PrllLe©,1:002)) + lu — UnllLo©,1;2(2)),

respectively. The numerical simulation is carried out with the help of the software FreeFem++
Hetch (2012) and all the constants involved in the estimators are taken to be 1. We use the
following loop:

SOLVE — ESTIMATE — MARK — REFINE
to achieve a refinement from the initializing triangulation.

Space-time adaptive algorithm: Given tolerances Epqce, Erime and the parameters §; €
0,1), 8 > 1, A1 € (0,1), A2 € (0, 11). Suppose that (yz_l, Dps uz_l) is computed on
the mesh 7, at time level #,_; with time step-size k,,_1 using the variational discretization
algorithm (see Tang and Chen 2012b).

Step 1.set 7, :=T,—1, kn :=kn_1, th :=th—1+ky
compute (yj, pZ_l, u},) on 7, using data (yZ_l, Py uZ_l)
from the discrete problem
compute the estimators nj, j=1,...,80on7,

Step 2. while (Zj€{3,5} 77]) > )Vl : gtime do

kn = (Slknfl, In == 1p—1 +kn
compute (y;, p), -1 uj) on 7, by solving the discrete problem
compute the estimators nj, j=1,...,80n7,
end while
Step 3. while (3= ;¢(12.4.6,7.8) 1) > Espace dO

refine mesh 7,, generate a modified mesh (say) Z,h"
compute (y;, p), -1 uj) on ’Z}lh" by solving the discrete problem

compute the estimators nj, j=1,...,8 on ’Zlh"
while (Zje{3,5} ’Ij) > A1 - Eime dO

k= S1kn—1, tn:=tn_1 +k,.

compute (y;, PZ_] , uf) on 7;; h;, by solving the discrete problem.

compute the estimators n; j =1,...,8 on Tnhz/
end while
end while

Step 4. if (Zje{3,5} nj) < A2 - Eime do

setk, :=8okn_1, =11 +k,

end if
The role of Step 2 is to reduce the time step-size to keep the time error estimator below the
tolerance & While keeping the space mesh unchanged. In Step 3, the refinement procedure
is carried out until the time and space error estimators satisfy the desired tolerances. In the
last step, if the time error estimator is much less than the prescribe time tolerance &y, then
we increase the time step size by multiplying a factor é;. For marking and refinement of
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the elements K € 7,, we follow the strategy of Morin, Nochetto, and Siebert, see (Morin
et al. 2000). For both the test example problems, we choose tolerances for time and space as
5time = g:pace = 0.001.

Example 5.1 We consider the spatial domain £2 = [0, 1]x[0, 1] and the time interval [0, T] =
[0, 1]. We shall use the following data for the optimal control problem (1.1)—(1.3):

tsin2mrxy)sin(2mwxy),  x14+x2 <1,

yx, 1) = {

2tsin(2mwxy) sin(2wxp),  x1+xp > 1,

(t — 1)sin(2mxy) sin(2w x3), X1 +x <1,
plx. 1) =

2(t — 1)sin(2rxq) sin(2wxz), x1 +x2 > 1,
with u, = —0.125, and up = +0.125.

Note that functions f, y; and u are easily determined from the control problem (1.1)—(1.3)
as

Fo 4 (5.1)
== — —u, .
ar
ap
Yd=§+AP+yy (5.2)
u = min {up, max{u,, —p}}. (5.3)

We approximate the time derivative by the backward Euler method. We partition the time
interval [0, 1] with the step-size Ar &~ 5.56 x 1073, such that t, = nAt, n =1,2,..N
with the initial mesh N = T/ At(= 180). In the variational discretization, we use piecewise
linear and continuous functions for approximations of the state (y) and co-state (p) variables,
whereas the control variable («#) is computed using implicit relation between u and p. The
variational discretization algorithm is used to solve the fully discrete optimal control problem
(4.1)—(4.2). The adaptive meshes are generated via the error estimators ;, i = 1, 2, ..., 8.
We present some computational results by setting tolerances 0.001 and the time step-size
At =5.56x 1073, In Figs. 2 and 3, the plots of approximate solutions of y and u are depicted
on uniform mesh, adaptive mesh step-(I), and adaptive mesh step-(I), respectively, at final
time 7' = 1.0. Table 1 presents mesh information and errors for the state, co-state, and control
variables in the L°°(L°°)-norm. This table also reveals that the number of nodes required for
adaptive mesh is much less in comparison to the uniform mesh. It is clear from Fig. 1 that
the mesh adapts very well in the neighbourhood of the discontinuous line x; + x, = 1. The
higher densities of the node points are distributed along the line x| +x, = 1 enable us to save
convincing computational work in comparison to uniform mesh. In Table 2, we present the
effective index of the total estimators. It is further observed that the total estimated error (1)
and the total error (E) are decreasing with the increase of number of degrees of freedom (#
Dof). The effective index of the a posteriori estimator almost remains constant which exhibits
the potential quality of our estimators. The plots for the estimated error verses # Dof, the
total error verses # Dof (left), and effective indexes verses # Dof (right) are shown in Fig. 4.

The following example considers a three-dimensional data for the control problem (1.1)—
(1.3).

Example 5.2 In this example, we consider the domain £2 = [0, 1] x [0, 1] x [0, 1] with time
interval [0, T'] = [0, 1] for the control problem (1.1)—(1.3) and use the following data:

y(x,t) = tsin(wxy) sin(wxy) sin(wxz), (x,t) € 27,
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Table 1 Comparison of data on uniform mesh, adaptive mesh step-(I), and adaptive mesh step-(II) for the
initial mesh N = 180

On uniform mesh On adaptive mesh-(I) On adaptive mesh-(II)

Amin 0.00666 3.5126e-04 3.0408e-04
Mesh hmax 0.00666 3.0645e-01 1.9218e-01
Information # nodes 17715 8879 7047

# elements 31835 15929 12549

y—Y, 2.0341e-02 2.1958e-02 2.8827e-03
L°°(L®%)-Error p— Py 1.6870e-02 3.3837e-03 1.2073e-03

u—Up 3.0998e-03 3.0750e-03 2.1170e-04

(@) uniform mesh (b) Adaptive

wns ous omo
«

mesh step-(1) (¢) Adaptive mesh step-(1I)

Fig. 1 Uniform mesh, adaptive mesh step-(I), and adaptive mesh step-(II)

a8 L

(a) On uniform (b) On adaptive mesh step-(I) (¢) On adaptive mesh step-(11)

Fig.2 Plots of discrete solution on uniform mesh, adaptive mesh step-(I), and adaptive mesh step-(I), respec-
tively

Yvyy

(a) On uniform (b) On adaptive mesh step-(I) (¢) On adaptive mesh step-(1I)

Fig. 3 Approximate controls corresponding to uniform mesh, adaptive mesh step-(I), and adaptive mesh
step-(II), respectively
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Table 2 The number of elements, # Dof, total estimated error, and total error and effective index

# Elements # Dof (N) n(y, p,u) E(y, p,u) Eff. Index (n/E)
7819 4967 7.8513e-01 5.6374e-01 1.3927
9069 5057 7.6432e-01 5.6269¢-01 1.3583
11209 6228 5.6360e-02 4.9394e-02 1.1410
12666 7099 5.5251e-02 4.8513e-02 1.1389
13073 7257 5.9859¢-03 5.6261e-03 1.0639
14214 7783 5.6266e-03 5.2250e-03 1.0769
15147 8114 5.5263e-03 5.2057e-03 1.0616
15929 8883 5.8607e-04 5.6230e-04 1.0423
i 2

—H—uly,p.u) _“‘_"’E

——E(y.pu) 15

et
©

bed
o

n(y,p,u) & E(y,p,u)
=
Effective Index

0.2 05
0
0
4000 6000 8000 10000 4000 6000 8000 10000
#Dof #Dof

Fig.4 Estimated and total errors (left); effective index (right)

p(x,t) = (1 —t)sin(wxy) sin(wxy) sin(wxz), (x,t) € 27,

with x = (x1, x2, x3), ugs = —0.075 and u;, = 0.075. Note that the functions f, y; and u
are computed from (5.1)-(5.3).

Similar to the previous example, we compute errors for the state, co-state, and control
variables in the L°°(L°°)-norm. The errors for the state, co-state, and control variables on
the uniform mesh as well as on the adaptive mesh are presented in Table 3. We notice that the
number of nodes in the adaptive mesh is much less with comparison to the uniform mesh.
Table 4 contains the information on the number of elements, # Dof, total estimated error, the
total error, and the effective index. It is observed that the total estimated error (1) and the
total error (E) are decreasing with the increase of # Dof. Furthermore, the effective index
remains almost constant in the computation. Finally, in Fig. 5, the estimated error, total error
verses # Dof (left), and the effective indexes verses # Dof (right) are presented.

6 Concluding remarks

In this article, we have derived a posteriori error estimates in the L% (L°)-norm for vari-
ational discretization approximations of the parabolic optimal control problems. We have
used the variational discretization approximations where the state and co-state variables are
approximated using the piecewise linear and continuous functions, and the control variable is
computed using the implicit relation between control and co-state variables (see, (2.8)). The
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Table 3 Comparison of data on uniform mesh, adaptive mesh step-(I), and adaptive mesh step-(1I) for the
initial mesh N = 30

On uniform mesh On adaptive mesh-(I) On adaptive mesh-(II)

Mesh # nodes 30752 11088 5776

Inf. # elements 163800 61304 33404
y—1Y 5.5379e-02 1.1738e-03 1.1344e-03

L°°(L®°)-Error p—Py 3.5604e-02 5.5326e-03 5.4649¢-03
u—Up 2.2772e-02 4.4337e-03 4.3064e-04

Table 4 The number of elements, # Dof, total estimated error, and total error and effective index

# Elements # Dof (NV) n(y, p,u) E(y, p,u) Eff. Index (n/E)
7128 1560 3.5092e-01 1.5494e-01 2.2649
12870 2688 1.5212e-01 6.9913e-02 2.1758
20250 4096 1.2466e-01 6.7695e-02 1.8415
29376 5814 2.3365e-02 1.4951e-02 1.5628
43092 8360 1.4526e-02 1.0821e-02 1.3424
60858 11616 1.5990e-03 1.2071e-03 1.3247
82800 15600 1.4125e-03 1.1917e-03 1.1853
102344 18225 1.3627¢-03 1.1584e-03 1.1764
1 25
E} —+—nlypu)
a 0.8 ——E(y.p,u) 5 2
= = b=
w 06 =
i (17 Y =
3 ; 1
202 \\ =
2 i 0.5
= 0 R . —
0
0.5 1 15 2 05 1 15 2
#Dof <104 #Dof %104

Fig.5 Estimated and total errors (left); effective index (right)

elliptic reconstruction technique in conjunction with Green’s function for the heat kernel are
key ingredients in deriving the a posteriori error bounds. Interestingly, the constants involved
in Theorems 4.5 and 4.6 are independent of time, but may depend on the domain (£2). In
fact, some of the constants are stemming from the use of elliptic a posteriori error estimates.
The proposed method does not require the discretization of the admissible control set but to
implicitly utilize the optimality conditions for the discretization of the control variable. Our
theoretical analysis is supported by numerical experiments which reveals that the adaptive
scheme is able to save the substantial computational work.
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