

A posteriori *L***∞***(L***∞***)***-error estimates for finite-element approximations to parabolic optimal control problems**

Ram Manohar¹ · Rajen Kumar Sinha[1](http://orcid.org/0000-0002-5910-8943)

Received: 16 December 2019 / Revised: 28 May 2021 / Accepted: 14 October 2021 / Published online: 9 November 2021 © The Author(s), under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2021

Abstract

We derive space–time a posteriori error estimates of finite-element method for the linear parabolic optimal control problems in a convex bounded polyhedral domain. The variational discretization is used to approximate the state and co-state variables with the piecewise linear and continuous functions, while the control variable is computed using the implicit relation between the control and co-state variables. The temporal discretization is based on the backward Euler method. The key feature of this approach is not to discretize the control variable but to implicitly utilize the optimality conditions for the discretization of the control variable. Our error analysis relies on the elliptic reconstruction technique introduced by Makridakis and Nochetto (SIAM J Numer Anal, 41:1585–1594, 2003) in conjunction with heat kernel estimates for linear parabolic problem. The use of elliptic reconstruction technique greatly simplifies the analysis by allowing us to take the advantage of existing elliptic maximum norm error estimate and the heat kernel estimate. We derive a posteriori error estimates for the state, co-state, and control variables in the $L^{\infty}(0, T; L^{\infty}(\Omega))$ -norm. Numerical experiments are conducted to illustrate the performance of the derived estimators.

Keywords Parabolic optimal control problem · Variational discretization · Backward-Euler scheme · Elliptic reconstruction · Maximum norm error estimates · A posteriori error estimates

Mathematics Subject Classification 49J20 · 49M05 · 49M15 · 49M25 · 49M29 · 65N30

Communicated by Frederic Valentin.

 $⊠$ Rajen Kumar Sinha rajen@iitg.ac.in

> Ram Manohar rmanohar267@gmail.com

¹ Department of Mathematics, Indian Institute of Technology, Guwahati, Guwahati 781039, India

1 Introduction

Let Ω be a convex bounded polyhedral domain in \mathbb{R}^d ($d = 2, 3$) with Lipschitz boundary $\partial \Omega$. Set $\Omega_T = \Omega \times (0, T]$, $\Gamma_T = \partial \Omega \times (0, T]$ with $T < \infty$. We consider the following parabolic optimal control problems:

$$
\min_{u \in U_{ad}} J(u, y) = \min_{u \in U_{ad}} \frac{1}{2} \int_0^T \left\{ \|y - y_d\|^2 + \|u\|^2 \right\} ds,
$$
\n(1.1)

subject to the state equation

$$
\begin{cases}\n\frac{\partial y}{\partial t} - \Delta y = f + u \text{ in } \Omega_T, \\
y(x, 0) = y_0(x) \text{ in } \Omega, \\
y = 0 \text{ on } T_T,\n\end{cases}
$$
\n(1.2)

and the control constraints

$$
u_a \le u(x, t) \le u_b \quad \text{a.e. in } \Omega_T,\tag{1.3}
$$

where $y_0 \in L^{\infty}(\Omega)$, $y_d \in L^{\infty}(0, T; L^{\infty}(\Omega))$ and $f \in L^{\infty}(0, T; L^{\infty}(\Omega))$. Here, $y =$ $y(x, t)$ and $u = u(x, t)$ denote the state and the control variables, respectively. The set of admissible controls is defined by

$$
U_{ad} = \left\{ u \in L^{\infty} \left(0, T ; L^{\infty}(\Omega) \right) : u_a \le u \le u_b \text{ a.e. in } \Omega_T \right\}
$$

with $u_a, u_b \in \mathbb{R}$ fulfill $u_a < u_b$.

There have been extensive studies in the literature by numerous researchers on the finiteelement approximations to optimal control problems. Some of recent progress in this area can be found in Barb[u](#page-29-0) [\(1984](#page-29-0)), Becker and Kap[p](#page-29-1) [\(1997\)](#page-29-1), Becker et al[.](#page-29-2) [\(1998](#page-29-2)), Haslinger and Neittaanmak[i](#page-29-3) [\(1989](#page-29-3)), Hinz[e](#page-29-4) [\(2005\)](#page-29-4), Lion[s](#page-29-5) [\(1971\)](#page-29-5), Neittaanmaki and Tib[a](#page-29-6) [\(1994](#page-29-6)), Pironnea[u](#page-29-7) [\(1984](#page-29-7)), Tib[a](#page-30-0) [\(1995](#page-30-0)), and references quoted therein. In Hinz[e](#page-29-4) [\(2005\)](#page-29-4), Hinze has introduced a variational discretization approach for elliptic optimal control problems. The main feature of this discretization is not to discretize the control variable but to implicitly utilize the optimality conditions and the discretization of the state and co-state variables to compute the control variable. The literature concerning a priori error analysis of finite-element methods for parabolic optimal control problems can be found in Knowle[s](#page-29-8) [\(1982](#page-29-8)), Nietzel and Vexle[r](#page-29-9) [\(2012](#page-29-9)), Rösc[h](#page-30-1) [\(2004\)](#page-30-1), Winthe[r](#page-30-2) [\(1978\)](#page-30-2), and references therein. Recently, adaptive finite-element methods for approximating solutions to optimal control problems are the most important means to enhance accuracy and efficiency of the finite-element discretization. The adaptive method ensures a higher density of nodes in certain area of the given domain with the help of a posteriori error estimators where the solution is more difficult to approximate. There is a vast literature on a posteriori error estimates for parabolic optimal control problems using different approaches; for instance, see Langer et al[.](#page-29-10) [\(2016\)](#page-29-10), Liu and Ya[n](#page-29-11) [\(2003\)](#page-29-11), Sun et al[.](#page-30-3) [\(2013](#page-30-3)), Tang and Che[n](#page-30-4) [\(2012a\)](#page-30-4), Tang and Che[n](#page-30-5) [\(2012b\)](#page-30-5), Tang and Hu[a](#page-30-6) [\(2014](#page-30-6)),Xiong and L[i](#page-30-7) [\(2011](#page-30-7)). While residual type a posteriori error estimates of finite-element methods for parabolic optimal control problems are discussed in Liu and Ya[n](#page-29-11) [\(2003](#page-29-11)), the authors of Tang and Che[n](#page-30-4) [\(2012a\)](#page-30-4) have derived a posteriori error bounds in the $L^{\infty}(0, T; L^2(\Omega))$ and $L^2(0, T; H^1(\Omega))$ norms with integral constraint. Tang and

Che[n](#page-30-4) [\(2012a](#page-30-4)) have studied a recovery type a posteriori error estimate for fully discrete variational discretization approximations of parabolic optimal control problems. The same authors have discussed a priori and a posteriori error analysis for parabolic control problems with co[n](#page-30-5)trol constraints using variational discretizations in Tang and Chen [\(2012b](#page-30-5)). Subsequently, T[a](#page-30-6)ng and Hua [\(2014\)](#page-30-6) have established upper bounds in $L^{\infty}(0, T; L^2(\Omega))$ −norm for the semi-discrete variational discretization approximations of optimal control problems using elliptic reconstruction. Later, Sun et al[.](#page-30-3) [\(2013\)](#page-30-3) have derived both lower and upper bounds of the errors for parabolic optimal control problems. For functional type a posteriori error estimates for parabolic optimal control problems, one may refer to Langer et al[.](#page-29-10) [\(2016](#page-29-10)).

Most of adaptive finite-element methods are design to control only energy norms of solutions. The pointwise error control is also a natural goal when computing free boundaries. Some recent papers of adaptive finite-element method for controlling pointwise errors in elliptic and parabolic problems are contained in Dari et al[.](#page-29-12) [\(2000\)](#page-29-12), Demlo[w](#page-29-13) [\(2006](#page-29-13), [2007\)](#page-29-14), Nochett[o](#page-29-15) [\(1995\)](#page-29-15), Nochetto et al[.](#page-29-16) [\(2003](#page-29-16), [2005](#page-29-17), [2006](#page-29-18)), Otárola et al[.](#page-29-19) [\(2019](#page-29-19)), Boma[n](#page-29-20) [\(2000\)](#page-29-20), Demlow et al[.](#page-29-21) [\(2009\)](#page-29-21), and Eriksson and Johnso[n](#page-29-22) [\(1995](#page-29-22)), respectively. For stationary optimal control problems, the authors of Otárola et al[.](#page-29-19) [\(2019\)](#page-29-19) have introduced an a posteriori error estimator which yields optimal rate of convergence in the maximum norm. Both reliability and efficiency of the estimators are discussed in Otárola et al[.](#page-29-19) [\(2019](#page-29-19)). In the present work, we address control of the maximum norm error for the variational discretization approximations of the parabolic optimal control problems (1.1) – (1.3) . The state and costate variables are approximated using the piecewise linear and continuous functions, while the control variable is computed using implicit relation between the control and co-state variables. We derive a posteriori error estimates for the state, co-state, and control variables in the $L^{\infty}(0, T; L^{\infty}(\Omega))$ -norm for both the semi-discrete and fully discrete variational discretization approximations. Essential to our error analysis is the elliptic reconstruction techniques and heat kernel estimate for linear parabolic problems. The elliptic reconstruction approach was introduced earlier by Makridakis and Nochett[o](#page-29-23) [\(2003](#page-29-23)) in the context of semi-discrete problems for parabolic equations and subsequently extend to fully discrete problems in Lakkis and Makridaki[s](#page-29-24) [\(2006\)](#page-29-24). The role of elliptic reconstruction operator in a posteriori estimates is quite similar to the role played by elliptic projection introduced by Wheele[r](#page-30-8) [\(1973](#page-30-8)) for recovering optimal order error estimate in the priori error analysis of finite-element Galerkin approximations to parabolic problems. Compared to Otárola et al[.](#page-29-19) [\(2019\)](#page-29-19), our proofs employ only basic estimate for the heat kernel and the elliptic reconstruction error. The elliptic reconstruction technique greatly simplifies our analysis by allowing the straightforward combination of heat kernel estimates with existing elliptic maximum norm error estimates. To the best of authors' knowledge, for the first time, we report the work on $L^{\infty}(0, T; L^{\infty}(\Omega))$ a posteriori estimates for parabolic optimal control problems.

The paper is organized as follows. Section [2](#page-3-0) contains some basic prerequisite materials for future use and optimal control problem. In Sect. [3,](#page-6-0) we discuss semi-discrete variational discretization approximation for optimal control problem (1.1) – (1.3) and derive a posteriori error estimates for semi-discrete problem. Section [4](#page-13-0) is devoted to the fully discrete variational discretization approximations of optimal control problem (1.1) – (1.3) and derive a posteriori error estimates for the fully discrete problem. Numerical results are presented in Sect. [5.](#page-23-0) Finally, we present some concluding remarks in the last section.

2 Preliminaries

This section introduces notation for working function spaces to be used in the subsequent sections. Furthermore, we recall maximum norm a posteriori error estimates for elliptic problems and some properties of a Green's function for the heat equation.

We shall adopt the standard notation $W^{m,p}(\Omega)$ for Sobolev spaces on Ω with norm $\| \cdot \|_{m,p,\Omega}$ and semi-norm $| \cdot |_{m,p,\Omega}$. When *p* = 2, we denote *W^{m, p}*(Ω) = *H^m*(Ω) with norm $\|\cdot\|_{m,p,\Omega} = \|\cdot\|_{m,\Omega}$ and semi-norm $|\cdot|_{m,p,\Omega} = |\cdot|_{m,\Omega}$. Let $L^r(0,T; W^{m,p}(\Omega))$ be the Banach space of all L^{*r*}-integrable functions from [0, T] into $W^{m,p}(\Omega)$ with norm

$$
||v||_{L^r(0,T;W^{m,p}(\Omega))} = \left(\int_0^T ||v||_{m,p,\Omega}^r ds\right)^{\frac{1}{r}}, \quad 1 \le p < \infty,
$$

and the standard modification for $p = \infty$. We denote

$$
a(v, w) = \int_{\Omega} \nabla v \nabla w \, dx \quad \forall v, w \in H_0^1(\Omega),
$$

where $H_0^1(\Omega) = \{v \in H^1(\Omega) : v = 0 \text{ on } \partial\Omega\}$. We assume that the bilinear form $a(\cdot, \cdot)$ is bounded and coercive on $H_0^1(\Omega)$, i.e., $\exists \alpha_0, \alpha_1 > 0$, such that

$$
|a(v, w)| \le \alpha_0 \|v\|_1 \|w\|_1, \quad \forall v, w \in H_0^1(\Omega),
$$

and

$$
a(v, v) \ge \alpha_1 ||v||_1^2, \quad \forall v \in H_0^1(\Omega).
$$

The weak form of parabolic optimal control problem (1.1) – (1.3) is defined as follows: Find a pair $(y, u) \in L^{\infty}(0, T; L^{\infty}(\Omega)) \cap H^1(0, T; H^{-1}(\Omega)) \times U_{ad}$, such that

$$
\min_{u \in U_{ad}} J(u, y) = \min_{u \in U_{ad}} \frac{1}{2} \int_0^T \left\{ \|y - y_d\|^2 + \|u\|^2 \right\} ds,
$$
\n(2.1)

subject to

$$
\begin{cases} \left(\frac{\partial y}{\partial t}, v\right) + a(y, v) = (f + u, v), & \forall v \in H_0^1(\Omega), \\ y(\cdot, 0) = y_0(x), & x \in \Omega. \end{cases}
$$
\n(2.2)

Observe that $L^{\infty}(0, T; L^{\infty}(\Omega)) \cap H^1(0, T; H^{-1}(\Omega)) \subset C^0([0, T]; L^{\infty}(\Omega)).$

It i[s](#page-29-5) well known Lions (1971) (1971) that the convex optimal control problem (2.1) – (2.2) has a unique solution (y, u) if and only if there exists a co-state variable p, such that the triplet (y, p, u) satisfies the following optimality conditions for $t \in [0, T]$:

$$
\left(\frac{\partial y}{\partial t}, v\right) + a(y, v) = (f + u, v), \quad \forall v \in H_0^1(\Omega), \tag{2.3}
$$

$$
y(x, 0) = y_0(x), \quad x \in \Omega,
$$
 (2.4)

$$
-\left(\frac{\partial p}{\partial t}, v\right) + a(p, v) = (y - y_d, v), \quad \forall v \in H_0^1(\Omega),
$$
\n(2.5)

$$
p(x,T) = 0, \quad x \in \Omega,
$$
\n^(2.6)

$$
(u+p,\hat{u}-u) \ge 0, \quad \forall \hat{u} \in U_{ad}.
$$
 (2.7)

2 Springer JDM

$$
\Pi_{[u_a, u_b]}(\chi(x, t)) := \min \{u_b, \, \max \{u_a, \chi(x, t)\}\}.
$$

Arguing as in Meyer and Rösc[h](#page-29-25) [\(2004\)](#page-29-25), one can easily express the equivalent form of [\(2.7\)](#page-3-3) as

$$
u(x, t) = \Pi_{[u_a, u_b]}(-p(x, t)).
$$
\n(2.8)

We now introduce the reduced cost functional

$$
j: L^{\infty}(0, T; L^{\infty}(\Omega)) \to \mathbb{R}
$$

$$
u \mapsto j(u) := J(u, y(u)),
$$

where $y(u)$ is the solution of [\(2.2\)](#page-3-2). Hence, the optimal control problem [\(2.1\)](#page-3-1)–(2.2) can be equivalently reformulated as

$$
\min_{u\in U_{ad}} j(u).
$$

2.1 Elliptic a posteriori estimates

For $\psi \in L^{\infty}(\Omega)$, let $\Phi \in H_0^1(\Omega)$ be the solution of

$$
-\Delta \Phi = \psi \quad \text{in} \quad \Omega,
$$

$$
\Phi = 0 \quad \text{on} \quad \partial \Omega,
$$

where $\Omega \subset \mathbb{R}^d$ (*d* = 2, 3) is a convex polyhedral domain. We assume that \mathcal{T}_h is a shape regular simplicial decomposition of Ω , and define the finite-dimensional space $V_h := \{v_h \in$ $C(\overline{\Omega})$: $v_h|_K \in \mathbb{P}_1$, $\forall K \in \mathcal{T}_h$, where \mathbb{P}_1 is the space of polynomials of degree ≤ 1 on *K* and set $V_h^0 := V_h \cap H_0^1(\Omega)$. Let $\Phi_h \in V_h^0$ be the finite-element approximation to Φ defined by

$$
\int_{\Omega} \nabla \Phi_h \nabla v_h \, \mathrm{d}x = \int_{\Omega} \psi \, v_h \, \mathrm{d}x, \quad \forall \, v_h \in V_h^0.
$$

For K_1 , $K_2 \in \mathcal{T}_h$, let *E* be the element side or face, such that $E = K_1 \cap K_2$. We now define the jump residual across an element side *E* as

$$
[[\nabla \Phi_h]]_E(x) := \lim_{\epsilon \to 0} (\nabla \Phi_h(x + \epsilon \mathbf{n}_E) - \nabla \Phi_h(x - \epsilon \mathbf{n}_E)) \cdot \mathbf{n}_E,
$$

where \mathbf{n}_E is a unit normal vector to *E* at the point *x*. Let h_K be the diameter of the element *K*. For $1 \le p \le \infty$ and $j \ge 0$, we define the elementwise error indicator as

$$
\Re_{p,-j}(K) = h_K^{2+j} \|\psi + \Delta \Phi_h\|_{L^p(K)} + h_K^{j+1+\frac{1}{p}} \|\[\nabla \Phi_h]\]\|_{L^p(\partial K)},
$$

and the global estimator as

$$
\mathfrak{E}_{p,-j}(\Phi_h, \psi) = \begin{cases} \left[\sum_{K \in \mathcal{T}_h} (\Re_{p,-j}(K))^p \right]^{1/p}, & 1 \le p < \infty, \\ \max_{K \in \mathcal{T}_h} \Re_{\infty,-j}(K), & p = \infty. \end{cases}
$$
(2.9)

We state an elliptic pointwise error estimate from (Nochetto et al[.](#page-29-18) [2006](#page-29-18)).

Lemma 2.1 *Let* Ω *be a convex bounded polyhedral domain in* \mathbb{R}^d (*d* = 2, 3), *and* \bar{h} = min *hK . Then, the following a posteriori error estimate: K*∈*T^h*

$$
\|\Phi-\Phi_h\|_{L^{\infty}(\Omega)} \leq C_{\Omega} \left(\ln \bar{h}\right)^2 \mathfrak{E}_{\infty,0}(\Phi_h, \psi),
$$

holds.

To bound some of our fully discrete a posteriori error of finite element of the form Φ_1 – $\Phi_2 - (\Phi_{h_1} - \Phi_{h_2})$, where Φ_{h_1} and Φ_{h_2} are related to different finite element spaces defined on meshes at adjacent time steps, we recall the following results from Demlow et al[.](#page-29-21) [\(2009\)](#page-29-21).

Let $V_{h_1}^0$ and $V_{h_2}^0$ be the finite-element spaces associated on different meshes \mathcal{T}_{h_1} and \mathcal{T}_{h_2} . Let $\Phi_{h_1} \in V_{h_1}^0$ and $\Phi_{h_2} \in V_{h_2}^0$ be the finite-element approximations of Φ_1 and Φ_2 , respectively, and satisfy

$$
-\Delta \Phi_1 = \psi_1, \quad x \in \Omega, \text{ and } \Phi_1 = 0, \quad x \in \partial \Omega,
$$

and

$$
-\Delta \Phi_2 = \psi_2, \quad x \in \Omega, \text{ and } \Phi_2 = 0, \quad x \in \partial \Omega.
$$

For $1 \le p \le \infty$ and $j \ge 0$, we define the elementwise error indicator for $\hat{K} \in \mathcal{T}_{h_1} \wedge \mathcal{T}_{h_2}$ by

$$
\hat{\mathfrak{R}}_{p,-j}(\hat{K}) = \hat{h}_{\hat{K}}^{2+j} ||\psi_1 - \psi_2 + \Delta (\Phi_{h_1} - \Phi_{h_2})||_{L^p(\hat{K})} + \hat{h}_{\hat{K}}^{j+1+\frac{1}{p}} ||
$$

$$
[[\nabla (\Phi_{h_1} - \Phi_{h_2})]] ||_{L^p(\Sigma_{\hat{K}})},
$$

where $\Sigma_{\hat{K}} = (\Sigma_1 \cup \Sigma_2) \cap \hat{K}$ (Σ_1 and Σ_2 be the collection of all edges of elements \mathcal{T}_{h_1} and \mathcal{T}_{h_2} , *respectively*) and the global estimator is defined by

$$
\hat{\mathfrak{E}}_{p,-j}(\Phi_{h_1}-\Phi_{h_2},\psi_1-\psi_2;\mathcal{T}_{h_1},\mathcal{T}_{h_2})=\left\{\begin{bmatrix}\sum_{\hat{K}\in\mathcal{T}_{h_1}\wedge\mathcal{T}_{h_2}}\left(\hat{\Re}_{p,-j}\left(\hat{K}\right)\right)^p\right]^{1/p},&1\leq p<\infty,\\\max_{\hat{K}\in\mathcal{T}_{h_1}\wedge\mathcal{T}_{h_2}}\hat{\Re}_{p,-j}\left(\hat{K}\right),&p=\infty.\end{bmatrix}\right.
$$

Lemma 2.2 *Let* $\Omega \subset \mathbb{R}^d$ (*d* = 2, 3) *be a convex bounded polyhedral domain, and let* \mathcal{T}_{h_1} *and* T_{h_2} *be compatible triangulations with* $h = \min_{x \in \Omega} \min\{h_1(x), h_2(x)\}$ *, we have*

$$
\left\|\varPhi_1-\varPhi_2-\left(\varPhi_{h_1}-\varPhi_{h_2}\right)\right\|_{L^{\infty}(\Omega)}\leq C_{\Omega}\left(\ln\hat{h}\right)^2\hat{\mathfrak{E}}_{\infty,0}\left(\varPhi_{h_1}-\varPhi_{h_2},\psi_1-\psi_2;\mathcal{T}_{h_1},\mathcal{T}_{h_2}\right),
$$

where C_{Ω} *depends on the number of refinement steps used to pass from* T_{h_1} *to* T_{h_2} *.*

As our analysis depends heavily on the properties of the Green's function for the heat equations, we cite the necessary results in the following two lemmas. The proof of first lemma can be found in Luskin and Rannache[r](#page-29-26) [\(1982\)](#page-29-26), and for the second lemma, we refer to Aronso[n](#page-29-27) [\(1968\)](#page-29-27), Demlow et al[.](#page-29-21) [\(2009](#page-29-21)).

Lemma 2.3 *With* $\Psi \in L^2(0, T; L^2(\Omega))$ *, let* $\Phi \in L^2(0, T; H^2(\Omega) \cap H^1_0(\Omega)) \cap H^1(0, T; L^2)$ (Ω)) *be the solution of*

$$
\Phi_t - \Delta \Phi = \Psi \text{ in } \Omega_T,\tag{2.10}
$$

$$
\Phi(x,0) = \Phi_0 \text{ in } \Omega, \tag{2.11}
$$

 $\Phi = 0$ on Γ_T . (2.12)

Moreover, we have the following a priori estimate:

$$
\|\Phi\|_{L^2(0,T;H^2(\Omega))}\leq C_R\left(\|\Psi\|_{L^2(0,T;L^2(\Omega))}+\|\Phi_0\|_{L^2(\Omega)}\right),
$$

where CR is the regularity constant.

Lemma 2.4 *Let* $\Omega \subset \mathbb{R}^d$ (*d* = 2, 3) *be a convex bounded polyhedral domain. Then, there* e *xists a Green's function* $\mathfrak{F}(x, t; w, s)$ *for the problem* (2.10) – (2.12) *, i.e., there exists a kernel* $\mathfrak{F},$ for $(x, t) \in \Omega \times (0, T]$, the solution $\Phi(x, t)$ for (2.10) – (2.12) is given by

$$
\Phi(x,t) = \int_{\Omega} \mathfrak{F}(x,t;w,0)\Phi_0(w) dw + \int_0^t \int_{\Omega} \mathfrak{F}(x,t;w,s)\Psi(w,s) dw ds. (2.13)
$$

Moreover, s < t, \mathfrak{F} *satisfies the bound*

$$
\|\mathfrak{F}(x,t;\cdot,s)\|_{L^1(\Omega)} \le 1. \tag{2.14}
$$

3 Error analysis for semi-discrete control problem

This section is devoted to the spatially discrete optimization problem and derive a posteriori upper bounds for the state, co-state, and control variables in the $L^{\infty}(0, T; L^{\infty}(\Omega))$ -norm.

Let \mathcal{T}_h be a regular triangulation of Ω , such that $\overline{\Omega} = \bigcup_{K \in \mathcal{T}_h} \overline{K}$, and if $K_1, K_2 \in \mathcal{T}_h$ and $K_1 \neq K_2$, then either $K_1 \cap K_2 = \emptyset$ or $K_1 \cap K_2$ share a common edge or a common vertex.

Associated with \mathcal{T}_h is a finite-dimensional subspace V_h of $C(\bar{\Omega})$, such that $v|_K$ is the polynomial of degree less than or equal to 1, for all $v \in V_h$. Now, we set $V_h^0 = V_h \cap H_0^1(\Omega)$.

The semi-discrete variational discretization approximations of (2.1) – (2.2) are to seek a pair $(y_h, u_h) \in C(0, T; V_h^0) \times U_{ad}$, such that

$$
\min_{u_h \in U_{ad}} J\left(u_h, y_h\right) = \min_{u_h \in U_{ad}} \frac{1}{2} \int_0^T \left\{ \|y_h - y_d\|^2 + \|u_h\|^2 \right\} ds, \tag{3.1}
$$

subject to

$$
\begin{cases}\n\left(\frac{\partial y_h}{\partial t}, v_h\right) + a\left(y_h, v_h\right) = \left(f + u_h, v_h\right), & \forall v_h \in V_h^0, \\
y_h(\cdot, 0) = y_{h,0}(x), & x \in \Omega,\n\end{cases}
$$
\n(3.2)

where $y_{h,0} \in V_h^0$ is a suitable approximation or projection of y_0 .

It i[s](#page-29-5) well known Lions [\(1971](#page-29-5)) that the convex optimal control problem (3.1) – (3.2) has a unique solution (y_h, u_h) if and only if there exists a co-state variable $p_h \in C(0, T; V_h^0)$, such that the triplet (y_h, p_h, u_h) satisfies the following optimality conditions for $t \in [0, T]$:

$$
\left(\frac{\partial y_h}{\partial t}, v_h\right) + a(y_h, v_h) = (f + u_h, v_h), \quad \forall v_h \in V_h^0,
$$
\n(3.3)

$$
y_h(\cdot,0) = y_{h,0},\tag{3.4}
$$

$$
-\left(\frac{\partial p_h}{\partial t}, v_h\right) + a(p_h, v_h) = (y_h - y_d, v_h), \quad \forall v_h \in V_h^0,
$$
\n(3.5)

$$
p_h(\cdot, T) = 0,\t\t(3.6)
$$

2 Springer JDMW

$$
(u_h + p_h, \hat{u}_h - u_h) \ge 0, \quad \forall \hat{u}_h \in U_{ad}.
$$
\n
$$
(3.7)
$$

Similar to the continuous case, we can express (3.7) equivalently to

$$
u_h(x,t) = \Pi_{[u_a, u_b]}(-p_h(x,t)).
$$
\n(3.8)

Equation [\(3.8\)](#page-7-0) reveals that the control variable u_h is the projection of a finite-element function (approximate co-state variable) onto the admissible space U_{ad} .

Discrete elliptic operator: The discrete elliptic operator associated with the bilinear form *a*(·,·) and the finite-element space V_h^0 is the operator $-A_h$: $H_0^1(\Omega) \rightarrow V_h^0 + \mathcal{L}_h f$, such that for $w \in H_0^1(\Omega)$ and $t \in (0, T]$,

$$
(-A_h w, v_h) = a(w, v_h), \quad \forall v_h \in V_h^0,
$$

where \mathcal{L}_h be the L^2 -projection onto the finite-element space V_h . Therefore, we have the following pointwise form of (3.3) and (3.5) :

$$
-\mathcal{A}_h y_h = \mathcal{L}_h f + u_h - \frac{\partial y_h}{\partial t},
$$

$$
-\mathcal{A}_h p_h = y_h - \mathcal{L}_h y_d + \frac{\partial p_h}{\partial t},
$$

respectively.

To begin with, we first establish some intermediate error estimates for the state and costate variables in the $L^{\infty}(0, T; L^{\infty}(\Omega))$ -norm which will enable us to prove the main results of this section. This is accomplished by introducing elliptic reconstructions for the state and co-state variables. For this, we now introduce some auxiliary problems.

For $\hat{u} \in U_{ad}$, let the pair

$$
\begin{aligned} \left(y(\hat{u}), p(\hat{u})\right) \ \in L^{\infty}\left(0, T; L^{\infty}(\Omega)\right) \cap H^{1}\left(0, T; H^{-1}(\Omega)\right) \times L^{\infty}\left(0, T; L^{\infty}(\Omega)\right) \\ \cap H^{1}\left(0, T; H^{-1}(\Omega)\right) \end{aligned}
$$

be the solutions of the following equations:

$$
\left(\frac{\partial y(\hat{u})}{\partial t}, v\right) + a(y(\hat{u}), v) = \left(f + \hat{u}, v\right), \quad \forall v \in H_0^1(\Omega), \tag{3.9}
$$

$$
y(\hat{u})(\cdot, 0) = y_0(x), \quad x \in \Omega,
$$
 (3.10)

$$
-\left(\frac{\partial p(\hat{u})}{\partial t}, v\right) + a\left(p(\hat{u}), v\right) = v\left(y(\hat{u}) - y_d, v\right), \quad \forall v \in H_0^1(\Omega), \tag{3.11}
$$

$$
p(\hat{u})(\cdot, T) = 0, \quad x \in \Omega.
$$
\n
$$
(3.12)
$$

Define the errors for the state and co-state variables as follows:

$$
\hat{e}_y := y_h - y(u_h) \text{ and } \hat{e}_p := p_h - p(u_h).
$$
 (3.13)

From (3.3) – (3.6) and (3.9) – (3.12) with $\hat{u} = u_h$, we obtain the following error equations for $v \in H_0^1(\Omega)$:

$$
\left(\frac{\partial \hat{e}_y}{\partial t}, v\right) + a\left(\hat{e}_y, v\right) = -\left(\mathcal{G}_y, v\right) + \left(\nabla y_h, \nabla v\right),\tag{3.14}
$$

$$
-\left(\frac{\partial \hat{e}_p}{\partial t}, v\right) + a\left(\hat{e}_p, v\right) = -\left(\tilde{\mathcal{G}}_p, v\right) + \left(\nabla p_h, \nabla v\right) + \left(\hat{e}_y, v\right),\tag{3.15}
$$

where $G_y = f + u_h - \frac{\partial y_h}{\partial t}$ and $\tilde{G}_p = y_h - y_d + \frac{\partial p_h}{\partial t}$.

2 Springer JDMX

For $t \in (0, T]$, we now define the elliptic reconstructions for the state and co-state variables as follows: for given *y_h*, *p_h*, seek $\tilde{y} \in H_0^1(\Omega)$ and $\tilde{p} \in H_0^1(\Omega)$, such that

$$
a(\tilde{y}, v) = (\mathcal{G}_y, v), \quad \forall v \in H_0^1(\Omega), \tag{3.16}
$$

$$
a\left(\tilde{p},v\right) = \left(\tilde{\mathcal{G}}_p,v\right) + \left(\tilde{y} - y_h,v\right), \quad \forall v \in H_0^1(\Omega). \tag{3.17}
$$

Using elliptic reconstructions \tilde{y} , \tilde{p} , we decompose the errors as

$$
\hat{e}_y = (\tilde{y} - y(u_h)) - (\tilde{y} - y_h) =: \hat{\xi}_y - \hat{\eta}_y,
$$

and

$$
\hat{e}_p = (\tilde{p} - p(u_h)) - (\tilde{p} - p_h) =: \hat{\xi}_p - \hat{\eta}_p.
$$

Using (3.14) – (3.17) , we obtain

$$
\left(\frac{\partial \hat{\xi}_y}{\partial t}, v\right) + a(\hat{\xi}_y, v) = \left(\frac{\partial \hat{\eta}_y}{\partial t}, v\right), \quad \forall v \in H_0^1(\Omega), \tag{3.18}
$$

$$
-\left(\frac{\partial \hat{\xi}_p}{\partial t}, v\right) + a(\hat{\xi}_p, v) = -\left(\frac{\partial \hat{\eta}_p}{\partial t}, v\right) + (\hat{\xi}_y, v), \quad \forall v \in H_0^1(\Omega). \tag{3.19}
$$

As a consequence of elliptic error estimate in Lemma [2.1,](#page-5-1) we obtain the following bounds for the elliptic reconstruction errors.

Lemma 3.1 *Let* $(\tilde{y}, \tilde{p}) \in H_0^1(Ω) \times H_0^1(Ω)$ *satisfy* [\(3.16\)](#page-8-0)–[\(3.17\)](#page-8-0) *and let Lemma* [2.1](#page-5-1) *be valid. Then, for each t* \in [0, *T*]*, the following estimates hold:*

$$
\left\|\hat{\eta}_y(t)\right\|_{L^{\infty}(\Omega)} \leq C_{\Omega} \left(\ln \bar{h}\right)^2 \mathfrak{E}_{\infty,0} \left(y_h(t), \mathcal{G}_y(t)\right),
$$

and

$$
\left\|\hat{\eta}_p(t)\right\|_{L^{\infty}(\Omega)} \leq C_{\Omega} \left(\ln \bar{h}\right)^2 \mathfrak{E}_{\infty,0} \left(p_h(t), \tilde{\mathcal{G}}_p(t)\right) + \left\|\hat{\eta}_y(t)\right\|_{L^{\infty}(\Omega)}.
$$

We next turn our attention to derive the bounds for $\hat{\xi}_y$ and $\hat{\xi}_p$.

Lemma 3.2 *Let* $\hat{\xi}_y$ *and* $\hat{\xi}_p$ *satisfy* [\(3.18\)](#page-8-1) *and* [\(3.19\)](#page-8-1)*, respectively. Then, for any* $t \in [0, T]$ *, the following estimates hold true:*

$$
\left\|\hat{\xi}_y(t)\right\|_{L^{\infty}(\Omega)} \le \left\|\hat{\xi}_y(0)\right\|_{L^{\infty}(\Omega)} + c_1 \left(\ln \bar{h}\right)^2 \left\| \mathfrak{E}_{\infty,0}\left(\frac{\partial y_h}{\partial t}, \frac{\partial \mathcal{G}_y}{\partial t}\right)\right\|_{L^1[0,T]},
$$

and

$$
\left\|\hat{\xi}_p(t)\right\|_{L^{\infty}(\Omega)} \leq c_2 \left(\ln \bar{h}\right)^2 \left\| \mathfrak{E}_{\infty,0}\left(\frac{\partial p_h}{\partial t},\frac{\partial \tilde{\mathcal{G}}_p}{\partial t}\right)\right\|_{L^1[0,T]} + \left\|\hat{\xi}_y(t)\right\|_{L^{\infty}(\Omega)},
$$

where $\mathfrak{E}_{\infty,0}$ *is the* L^{∞} *-type residual estimator defined in [\(2.9\)](#page-4-0). The constants c₁ and c₂ are positive and depend on the domain* Ω*.*

Proof We know that $\hat{\xi}_y$ satisfies [\(3.18\)](#page-8-1). For any $(x, t) \in \Omega \times (0, T]$, use of [\(2.13\)](#page-6-4) leads to

$$
\hat{\xi}_y(x,t) = \int_{\Omega} \mathfrak{F}(x,t; w,0) \hat{\xi}_y(w,0) dw + \int_0^t \int_{\Omega} \mathfrak{F}(x,t; w, s) \frac{\partial \hat{\eta}_y}{\partial t}(w, s) dw ds.
$$

2 Springer JDMW

,

An application of the Hölder's inequality yields

$$
\begin{aligned} \left\| \hat{\xi}_y(t) \right\|_{L^{\infty}(\Omega)} &\leq \left\| \mathfrak{F}(x,t;w,0) \right\|_{L^1(\Omega)} \left\| \hat{\xi}_y(0) \right\|_{L^{\infty}(\Omega)} \\ &+ \left\| \mathfrak{F}(x,t;w,s) \right\|_{L^1(\Omega)} \left\| \frac{\partial \hat{\eta}_y}{\partial t} \right\|_{L^1(0,t;L^{\infty}(\Omega))} . \end{aligned}
$$

With an aid of (2.14) , we have

$$
\left\|\hat{\xi}_y(t)\right\|_{L^{\infty}(\Omega)} \le \left\|\hat{\xi}_y(0)\right\|_{L^{\infty}(\Omega)} + \left\|\frac{\partial \hat{\eta}_y}{\partial t}\right\|_{L^1(0,t;L^{\infty}(\Omega))},
$$

which combine with Lemma [2.1](#page-5-1) to obtain

$$
\left\|\hat{\xi}_y(t)\right\|_{L^{\infty}(\Omega)} \le \left\|\hat{\xi}_y(0)\right\|_{L^{\infty}(\Omega)} + c_1 \left(\ln \bar{h}\right)^2 \left\| \mathfrak{E}_{\infty,0}\left(\frac{\partial y_h}{\partial t}, \frac{\partial \mathcal{G}_y}{\partial t}\right) \right\|_{L^1[0,t]}
$$

where the constant c_1 depends on Ω , and this proves the first inequality. The proof of the second inequality can be treated in a similar manner using the fact that $\hat{\xi}_p(T) = 0$. This completes the proof of the lemma. completes the proof of the lemma.

Let (y, p, u) and (y_h, p_h, u_h) be the solutions of (2.3) – (2.7) and (3.3) – (3.7) , respectively. To derive a posteriori error bounds for the state and the co-state variables, we decompose the errors as follows:

$$
y - y_h = (y - y(u_h)) + (y(u_h) - y_h) := \hat{r}_y - \hat{e}_y,
$$

and

$$
p - p_h = (p - p(u_h)) + (p(u_h) - p_h) := \hat{r}_p - \hat{e}_p,
$$

where $\hat{r}_y = y - y(u_h)$, $\hat{r}_p = p - p(u_h)$ and \hat{e}_y , \hat{e}_p are defined in [\(3.13\)](#page-7-3). With the help of $(2.3), (2.5), (3.9),$ $(2.3), (2.5), (3.9),$ $(2.3), (2.5), (3.9),$ $(2.3), (2.5), (3.9),$ $(2.3), (2.5), (3.9),$ $(2.3), (2.5), (3.9),$ and (3.11) , we derive the following error equations for each $t \in (0, T]$:

$$
\left(\frac{\partial \hat{r}_y}{\partial t}, v\right) + a(\hat{r}_y, v) = (u - u_h, v), \quad \forall v \in H_0^1(\Omega),\tag{3.20}
$$

and

$$
-\left(\frac{\partial \hat{r}_p}{\partial t}, v\right) + a(\hat{r}_p, v) = (\hat{r}_y, v), \quad \forall v \in H_0^1(\Omega). \tag{3.21}
$$

In the following lemma, we derive the bounds for \hat{r}_y and \hat{r}_p .

Lemma 3.3 *Let* (y, p, u) *and* $(y(u_h), p(u_h))$ *be the solutions of* $(2.3)–(2.7)$ $(2.3)–(2.7)$ $(2.3)–(2.7)$ *and* $(3.9)–(3.12)$ $(3.9)–(3.12)$ $(3.9)–(3.12)$ *, respectively, with* $\hat{u} = u_h$ *. Then, the following estimates hold:*

$$
\|\hat{r}_y\|_{L^{\infty}(0,T;L^{\infty}(\Omega))}\leq C(R)\,\|u-u_h\|_{L^2(0,T;L^2(\Omega))}\,,
$$

and

$$
\|\hat{r}_p\|_{L^{\infty}(0,T;L^{\infty}(\Omega))}\leq C(R)\,\|u-u_h\|_{L^2(0,T;L^2(\Omega))}\,,
$$

where $C(R)$ *depends on the regularity constant* C_R *.*

Proof Note that, for any $t \in [0, T]$

$$
\|\hat{r}_y(t)\|_{L^{\infty}(\Omega)} \leq \|\hat{r}_y\|_{L^2(0,T;L^{\infty}(\Omega))}
$$

$$
\leq \|\hat{r}_y\|_{L^2(0,T;C(\bar{\Omega}))}.
$$

2 Springer JDMX

Using the embedding result $H^2(\Omega) \hookrightarrow C(\overline{\Omega})$ and Lemma [2.3,](#page-5-2) we obtain

$$
\|\hat{r}_y(t)\|_{L^{\infty}(\Omega)} \leq \|\hat{r}_y\|_{L^2(0,T;H^2(\Omega))} \leq C(R)\|u-u_h\|_{L^2(0,T;L^2(\Omega))},
$$

where we have used the fact $\hat{r}_y(0) = 0$, and this proves the first inequality.

Analogously, the second inequality can easily be proved for \hat{r}_p using the fact $\hat{r}_p(T) = 0$.
is completes the rest of the proof. This completes the rest of the proof.

The following lemma presents the a posteriori error estimate for the control variable in the $L^2(L^2)$ -norm.

Lemma 3.4 *Let* (y, p, u) *and* (y_h, p_h, u_h) *be the solutions of* $(2.3)–(2.7)$ $(2.3)–(2.7)$ $(2.3)–(2.7)$ *and* $(3.3)–(3.7)$ $(3.3)–(3.7)$ $(3.3)–(3.7)$ *, respectively. Assume that* $(u_h + p_h)|_K \in H^1(K)$ *and there exists a positive constant C, and* $\tilde{u}_h \in U_{ad}$, such that

$$
\left| \int_0^T (u_h + p_h, \tilde{u}_h - u) \, ds \right| \le C \int_0^T \sum_{K \in \mathcal{T}_h} h_K |u_h + p_h|_{H^1(K)} \|u - u_h\|_{L^2(K)} \, ds. \tag{3.22}
$$

Then, we have

$$
||u - u_h||_{L^2(0,T;L^2(\Omega))} \leq \tilde{C} \bigg[\left(\int_0^T \sum_{K \in \mathcal{T}_h} h_K^2 |u_h + p_h|_{H^1(K)}^2 ds \right)^{1/2} + ||p_h - p(u_h)||_{L^2(0,T;L^2(\Omega))} \bigg],
$$

where \tilde{C} = max{1, C}, and $(y(\hat{u}), p(\hat{u}))$ *is solution of the system* [\(3.9\)](#page-7-1)–[\(3.12\)](#page-7-1) *with* $\hat{u} = u_h$.

Proof Note that

$$
||u - u_h||_{L^2(0,T;L^2(\Omega))}^2 = \int_0^T (u - u_h, u - u_h) ds
$$

=
$$
\int_0^T (u, u - u_h) ds - \int_0^T (u_h, u - u_h) ds.
$$

Apply (2.7) , and a simple calculation using (3.7) yields

$$
\|u - u_h\|_{L^2(0,T;L^2(\Omega))}^2 \le -\int_0^T (p, u - u_h) \, ds - \int_0^T (u_h, u - u_h) \, ds
$$

= $-\int_0^T (u_h + p_h, u - \tilde{u}_h) \, ds - \int_0^T (u_h + p_h, \tilde{u}_h - u_h) \, ds$
+ $\int_0^T (p_h - p(u_h), u - u_h) \, ds + \int_0^T (p(u_h) - p, u - u_h) \, ds$
 $\le \int_0^T (p_h - p(u_h), u - u_h) \, ds + \int_0^T (p(u_h) - p, u - u_h) \, ds$
+ $\int_0^T (u_h + p_h, \tilde{u}_h - u) \, ds$
=: $E_1 + E_2 + E_3$. (3.23)

² Springer JDM

$$
E_1 \le \int_0^T \|p_h - p(u_h)\|_{L^2(\Omega)} \|u - u_h\|_{L^2(\Omega)} ds
$$

$$
\le \|p_h - p(u_h)\|_{L^2(0,T;L^2(\Omega))}^2 + \frac{1}{4} \|u - u_h\|_{L^2(0,T;L^2(\Omega))}^2.
$$
 (3.24)

Setting $v = p(u_h) - p$ in [\(3.20\)](#page-9-0), and integrate the resulting equation from 0 to *T*. Then, an integration-by-parts formula with $\hat{r}_y(0) = \hat{r}_p(T) = 0$ leads to

$$
\int_0^T \left(\hat{r}_y, \frac{\partial \hat{r}_p}{\partial t}\right) ds - \int_0^T a\left(\hat{r}_y, \hat{r}_p\right) ds = \int_0^T \left(u - u_h, p(u_h) - p\right) ds. \quad (3.25)
$$

Again, choose $v = y(u_h) - y$ in [\(3.21\)](#page-9-1) and integrate with respect to time from 0 to *T* to obtain

$$
\int_0^T \left(\frac{\partial \hat{r}_p}{\partial t}, \hat{r}_y \right) ds - \int_0^T a \left(\hat{r}_p, \hat{r}_y \right) ds = \int_0^T (y - y(u_h), y(u_h) - y) ds. \quad (3.26)
$$

Use of (3.25) and (3.26) yields

2 Springer JDMAC

$$
E_2 = \int_0^T (u - u_h, p(u_h) - p) ds = \int_0^T (y - y(u_h), y(u_h) - y) ds
$$

=
$$
- \int_0^T ||y - y(u_h)||^2_{L^2(\Omega)} ds \le 0.
$$
 (3.27)

Finally, assumption [\(3.22\)](#page-10-0) and an application of the Young's inequality lead to the bound of *E*3,

$$
E_3 \le C \int_0^T \sum_{K \in \mathcal{T}_h} h_K |u_h + p_h|_{H^1(K)} \|u - u_h\|_{L^2(K)} ds
$$

$$
\le C^2 \int_0^T \sum_{K \in \mathcal{T}_h} h_K^2 |u_h + p_h|_{H^1(K)}^2 ds + \frac{1}{4} \|u - u_h\|_{L^2(0,T;L^2(\Omega))}^2.
$$
 (3.28)

Altogether, [\(3.23\)](#page-10-1), [\(3.24\)](#page-11-2), [\(3.27\)](#page-11-3), and [\(3.28\)](#page-11-4) yield the desired estimates. This completes the \Box

By collecting Lemmas [3.1–](#page-8-2)[3.4,](#page-10-2) we finally derive the main results for the state and co-state variables in the $L^{\infty}(L^{\infty})$ -norm.

Theorem 3.5 *Let* (y, p, u) *and* (y_h, p_h, u_h) *be the solutions of* $(2.3)–(2.7)$ $(2.3)–(2.7)$ $(2.3)–(2.7)$ *and* $(3.3)–(3.7)$ $(3.3)–(3.7)$ $(3.3)–(3.7)$ *, respectively. Let* $f \in L^{\infty}(0, T; L^{\infty}(\Omega)) \cap W^{1,1}(0, T; L^{\infty}(\Omega))$ *. Then, the following a posteriori error estimates hold for each t* \in $(0, T]$ *,*

$$
\|u - u_h\|_{L^2(0,T;L^2(\Omega))} \le \tilde{C}_1 \left[\left(\int_0^T \sum_{K \in \mathcal{T}_h} h_K^2 |u_h + p_h|_{H^1(K)}^2 ds \right)^{1/2} + \|\hat{\xi}_y(0)\|_{L^\infty(\Omega)} + \|\hat{\eta}_y(t)\|_{L^\infty(\Omega)} + (\ln \bar{h})^2 \right]
$$

$$
\times \left\{ \left\| \mathfrak{E}_{\infty,0} \left(\frac{\partial y_h}{\partial t}, \frac{\partial \mathcal{G}_y}{\partial t} \right) \right\|_{L^1[0,T]} + \mathfrak{E}_{\infty,0} (p_h(t), \tilde{\mathcal{G}}_p(t)) + \left\| \mathfrak{E}_{\infty,0} \left(\frac{\partial p_h}{\partial t}, \frac{\partial \tilde{\mathcal{G}}_p}{\partial t} \right) \right\|_{L^1[0,T]} \right\} \right],
$$

where \tilde{C}_1 *depends on the domain* Ω *and the constant* \tilde{C} *as defined in Lemma [3.4,](#page-10-2)*

$$
\|y - y_h\|_{L^{\infty}(0,T;L^{\infty}(\Omega))} \le \|y_0 - y_{h,0}\|_{L^{\infty}(\Omega)} + \tilde{c}_1 \left(\ln \bar{h}\right)^2 \left[\mathfrak{E}_{\infty,0}(y_h(t), \mathcal{G}_y(t))\right]
$$

$$
+ \mathfrak{E}_{\infty,0}(y_{h,0}, \mathcal{G}_y(0)) + \left\|\mathfrak{E}_{\infty,0}\left(\frac{\partial y_h}{\partial t}, \frac{\partial \mathcal{G}_y}{\partial t}\right)\right\|_{L^1[0,T]} + \|u - u_h\|_{L^2(0,T;L^2(\Omega))},
$$

$$
\|p - p_h\|_{L^{\infty}(0,T;L^{\infty}(\Omega))} \le \|y_0 - y_{h,0}\|_{L^{\infty}(\Omega)} + \tilde{c}_2 \left(\ln \bar{h}\right)^2 \left[\mathfrak{E}_{\infty,0}\left(p_h(t), \tilde{\mathcal{G}}_p(t)\right)\right]
$$

$$
+ \left\|\mathfrak{E}_{\infty,0}\left(\frac{\partial p_h}{\partial t}, \frac{\partial \tilde{\mathcal{G}}_p}{\partial t}\right)\right\|_{L^1[0,T]} + \mathfrak{E}_{\infty,0}(y_{h,0}, \mathcal{G}_y(0))
$$

$$
+ \mathfrak{E}_{\infty,0}\left(y_h(t), \mathcal{G}_y(t)\right) + \|u - u_h\|_{L^2(0,T;L^2(\Omega))},
$$

where the constants \tilde{c}_1 *and* \tilde{c}_2 *depend on the domain* Ω *.*

Proof The first inequality follows from Lemmas [3.1,](#page-8-2) [3.2,](#page-8-3) and [3.4.](#page-10-2)

To prove the second inequality, we decompose the error in the state variable as

$$
y - y_h = (y - y(u_h)) + (y(u_h) - \tilde{y}) + (\tilde{y} - y_h) = \hat{r}_y - (\hat{\xi}_y - \hat{\eta}_y).
$$

For any $t \in (0, T]$, we have

$$
\|(y - y_h)(t)\|_{L^{\infty}(\Omega)} \leq \|\hat{r}_y(t)\|_{L^{\infty}(\Omega)} + \left\|\hat{\xi}_y(t)\right\|_{L^{\infty}(\Omega)} + \left\|\hat{\eta}_y(t)\right\|_{L^{\infty}(\Omega)}.
$$

An application of Lemma [3.1](#page-8-2) yields

$$
\left\|\hat{\eta}_y(t)\right\|_{L^{\infty}(\Omega)} \leq c_3 \left(\ln \bar{h}\right)^2 \mathfrak{E}_{\infty,0}\big(y_h(t), \mathcal{G}_y(t)\big).
$$

Using Lemma [3.2,](#page-8-3) it now follows that:

$$
\left\|\hat{\xi}_y(t)\right\|_{L^{\infty}(\Omega)} \leq \|y_0 - y_{h,0}\|_{L^{\infty}(\Omega)} + c_4 \left(\ln \bar{h}\right)^2 \mathfrak{E}_{\infty,0}(y_{h,0}, \mathcal{G}_y(0)) + c_1 \left(\ln \bar{h}\right)^2 \left\|\mathfrak{E}_{\infty,0}\left(\frac{\partial y_h}{\partial t}, \frac{\partial \mathcal{G}_y}{\partial t}\right)\right\|_{L^1[0,t]},
$$

where c_i , $i = 1, 3, 4$ depend on Ω . Altogether, these estimates and Lemma [3.3](#page-9-2) lead to the desired result, where $\tilde{c}_1 = \max\{c_1, c_3, c_4\}.$

Similarly for the co-state variable, we use the triangle inequality to write

$$
\|(p-p_h)(t)\|_{L^{\infty}(\Omega)} \leq \|\hat{r}_p(t)\|_{L^{\infty}(\Omega)} + \left\|\hat{\xi}_p(t)\right\|_{L^{\infty}(\Omega)} + \left\|\hat{\eta}_p(t)\right\|_{L^{\infty}(\Omega)}.
$$

2 Springer JDM

Again, using Lemmas [3.1](#page-8-2)[–3.3](#page-9-2) and a similar argument as above, we conclude that

$$
\begin{aligned} ||(p_h - p)(t)||_{L^{\infty}(\Omega)} &\leq c_5 \left(\ln \bar{h}\right)^2 \mathfrak{E}_{\infty,0} \left(p_h(t), \tilde{\mathcal{G}}_p(t)\right) \\ &+ c_2 \left(\ln \bar{h}\right)^2 \left\| \mathfrak{E}_{\infty,0} \left(\frac{\partial p_h}{\partial t}, \frac{\partial \tilde{\mathcal{G}}_p}{\partial t}\right) \right\|_{L^1[0,t]} + ||y_0 - y_{h,0}||_{L^{\infty}(\Omega)} \\ &+ c_4 \left(\ln \bar{h}\right)^2 \mathfrak{E}_{\infty,0}(y_{h,0}, \mathcal{G}_y(0)) + C_{\Omega} \left(\ln \bar{h}\right)^2 \mathfrak{E}_{\infty,0}(y_h(t), \mathcal{G}_y(t)) \\ &+ ||u - u_h||_{L^2(0,T;L^2(\Omega))}, \end{aligned}
$$

where the constants *c_i*, *i* = 2, 4, 5 depend on the domain Ω and \tilde{c}_2 = max{*c*₂, *c*₄, *c*₅, *C*_Ω}.
This completes the proof This completes the proof.

Theorem 3.6 *Let* (y, p, u) *and* (y_h, p_h, u_h) *be the solutions of* $(2.3)–(2.7)$ $(2.3)–(2.7)$ $(2.3)–(2.7)$ *and* $(3.3)–(3.7)$ $(3.3)–(3.7)$ $(3.3)–(3.7)$ *, respectively. Assume that all the conditions in Theorem [3.5](#page-11-5) are valid. Then, for each t* ∈ $(0, T]$, there exists a positive constant \tilde{C}_2 , such that the following error estimate:

$$
\|u - u_h\|_{L^{\infty}(0,T;L^{\infty}(\Omega))} \leq \tilde{C}_2 \Biggl\{ \|y_0 - y_{h,0}\|_{L^{\infty}(\Omega)} + (\ln \bar{h})^2 \Biggl[\mathfrak{E}_{\infty,0}(y_{h,0}, G_y(0))
$$

+
$$
\mathfrak{E}_{\infty,0}(y_h(t), G_y(t)) + \mathfrak{E}_{\infty,0}(p_h(t), \tilde{G}_p(t))
$$

+
$$
\Biggl\| \mathfrak{E}_{\infty,0} \left(\frac{\partial y_h}{\partial t}, \frac{\partial \mathcal{G}_y}{\partial t} \right) \Biggr\|_{L^1[0,T]} + \| \mathfrak{E}_{\infty,0} (\frac{\partial p_h}{\partial t}, \frac{\partial \tilde{G}_p}{\partial t}) \|_{L^1[0,T]} \Biggr] + \Biggl(\int_0^T \sum_{K \in \mathcal{T}_h} h_K^2 |u_h + p_h|_{H^1(K)}^2 \, \mathrm{d}s \Biggr)^{1/2} \Biggr\},\
$$

holds, where the constant \tilde{C}_2 *depends on the domain* Ω *, the regularity constant* C_R *, and the constant* \tilde{C}_1 *as defined in Lemma [3.5.](#page-11-5)*

Proof From [\(2.8\)](#page-4-1) and [\(3.8\)](#page-7-0), we obtain

$$
||u - u_h||_{L^{\infty}(0,T;L^{\infty}(\Omega))} = ||\Pi_{[u_a, u_b]}(-p) - \Pi_{[u_a, u_b]}(-p_h)||_{L^{\infty}(0,T;L^{\infty}(\Omega))}
$$

\$\leq\$ ||p_h - p||_L^{\infty}(0,T;L^{\infty}(\Omega)),

where we have used the Lipschitz continuity of $\Pi_{[u_a, u_b]}$ with Lipschitz constant 1. An application of Lemma 3.1 and Theorem 3.5 completes the rest of the proof. cation of Lemma [3.1](#page-8-2) and Theorem [3.5](#page-11-5) completes the rest of the proof.

4 Error analysis for fully discrete control problem

This section describes the fully discrete variational discretization approximations of parabolic optimal control problem [\(3.1\)](#page-6-1)–[\(3.2\)](#page-6-2). Let $0 = t_0 < t_1 < \cdots < t_N = T$, be a partition of [0, *T*] with $I_n = (t_{n-1}, t_n]$ and $k_n := t_n - t_{n-1}$. Let $\mathcal{T}_n := {K} (0 ≤ n ≤ N)$ be the triangulation of $\overline{\Omega}$ at the time level t_n . We assume that \mathcal{T}_n satisfies the following conditions:

(1) If *K*₁, *K*₂ ∈ \mathcal{T}_n and *K*₁ \neq *K*₂, then either *K*₁ ∩ *K*₂ = Ø or *K*₁ ∩ *K*₂ share a common edge or a common vertex.

(2) Two simplicial decompositions T_{n-1} and T_n of Ω are said to be compatible if they are derived from the same macro-triangulation $\mathcal{T} = \mathcal{T}_0$ by an admissible refinement procedure which preserves the shape regularity (Brenner and Scot[t](#page-29-28) [2008](#page-29-28)) and assures that for any elements *K* ∈ *T*_{*n*−1} and *K*^{\prime} ∈ *T*_{*n*}, either *K* ∩ *K*^{\prime} = Ø, *K* ⊂ *K*^{\prime}, or *K*^{\prime} ⊂ *K*. There is a

natural partial ordering on a set of compatible triangulations namely $\mathcal{T}_{n-1} \leq \mathcal{T}_n$ if \mathcal{T}_n is a refinement of \mathcal{T}_{n-1} . Then, for a given pair of successive compatible triangulations \mathcal{T}_{n-1} and *T_n*, we define naturally the finest common coarsening $T_n := T_n \wedge T_{n-1}$ with local mesh sizes are given by $\hat{h}_n := \max\{h_{n-1}, h_n\}$. These conditions allow us to bound the elliptic errors which lie in two adjacent finite-element spaces, see Lakkis and Makridaki[s](#page-29-24) [\(2006](#page-29-24)).

We shall also need the following notation for future use. For $0 \le n \le N$, let $\mathcal{E}_n := \{E\}$ be the set of all edges of the triangles $K \in \mathcal{T}_n$ which do not lie on $\partial \Omega$, and $\Sigma_n := \bigcup_{E \in \mathcal{E}_n} E$. Furthermore, we will also use the sets $\hat{\Sigma}_n := \Sigma_n \cap \Sigma_{n-1}$ and $\check{\Sigma}_n := \Sigma_n \cup \Sigma_{n-1}$.

For each $n = 0, \ldots, N$, we consider the finite-element spaces V^n corresponding to the triangulation \mathcal{T}_n as follows:

$$
V^n := \left\{ \chi \in C\left(\overline{\Omega}\right) : \ \chi|_K \in \mathbb{P}_1(K), \quad \forall K \in \mathcal{T}_n \right\},\
$$

where $\mathbb{P}_1(K)$ is the space of polynomials of degree less than or equal to 1 on *K*. Set $V_0^n =$ $V^n \cap H_0^1(\Omega)$.

For the purpose of fully discrete approximation, we need the following notation:

$$
\phi^n := \phi(\cdot, t_n), \quad \bar{\partial}\phi^n := \frac{1}{k_n}(\phi^n - \phi^{n-1}) \quad \text{and} \quad \mathcal{L}_h^n\left(\bar{\partial}\phi^n\right) := \frac{1}{k_n}\left(\phi^n - \mathcal{L}_h^n\phi^{n-1}\right),
$$

where \mathcal{L}_h^n is the L^2 -projection from $L^2(\Omega)$ to V^n .

Representation of the bilinear form: For a function $v \in V_0^n$ ($0 \le n \le N$), the bilinear form $a(v, w)$ can be represented as

$$
a(v, w) = \sum_{K \in \mathcal{T}_n} < -\text{div}(\nabla v), w > K + \sum_{E \in \mathcal{E}_n} < J_1[v], w > E, \quad \forall w \in H_0^1(\Omega),
$$

where $J_1[v]$ denotes the spatial jump of the field ∇v across an element side $E \in \mathcal{E}_n$ defined as

$$
J_1[v]|_E(x) := \lim_{\epsilon \to 0} (\nabla v(x + \epsilon \mathbf{n}_E) - \nabla v(x - \epsilon \mathbf{n}_E)) \cdot \mathbf{n}_E,
$$

where \mathbf{n}_E is a unit normal vector to E at the point x .

Let \mathcal{L}_h^n and $\mathcal{L}_{h,0}^n$ be the L^2 -projections onto V^n and V_0^n , such that

$$
\left(\mathcal{L}_h^n\phi\,,\psi_n\right)=(\phi,\psi_n)\quad\forall\;\psi_n\in V^n\quad\text{and}\quad\left(\mathcal{L}_{h,0}^n\phi\,,\psi_n\right)=(\phi,\psi_n)\quad\forall\;\psi_n\in V_0^n.
$$

Discrete elliptic operator: The discrete elliptic operator associated with the bilinear form *a*(·, ·) and the finite element space V_0^n is the operator A_h^n : $H_0^1(\Omega) \to V_0^n + \mathcal{L}_h^n f^n$, such that for $v \in H_0^1(\Omega)$ and $0 \le n \le N$,

$$
(-\mathcal{A}_h^n v, w_h) = a(v, w_h), \quad \forall w_h \in V_0^n.
$$

The fully discrete variational discretization approximations of the problem (2.1) – (2.2) are defined as follows: Find $(y_h^n, u_h^n) \in V_0^n \times U_{ad}$, for $n \in [1 : N]$, such that

$$
\min_{u_h^n \in U_{ad}} \frac{1}{2} \sum_{n=1}^N \int_{I_n} \left\{ \left\| y_h^n - y_d^n \right\|_{L^2(\Omega)}^2 + \left\| u_h^n \right\|_{L^2(\Omega)}^2 \right\} ds,
$$
\n(4.1)

2 Springer JDMW

subject to

$$
\begin{cases}\n(\bar{\partial}y_h^n, v_h) + a\left(y_h^n, v_h\right) = \left(f^n + u_h^n, v_h\right), & \forall v_h \in V_0^n, \\
y_h^0 = y_h, & \text{(4.2)}\n\end{cases}
$$

where $y_{h,0}$ is the suitable approximation or projection of y_0 in V_0^0 .

The optimal control problem [\(4.1\)](#page-14-0)–[\(4.2\)](#page-15-0) admits a unique solution (y_h^n, u_h^n) if and only if there exists a co-state $p_h^{n-1} \in V_0^n$, such that the following optimality conditions are satisfied: For each $n \in [1:N]$,

$$
(\bar{\partial}y_h^n, v_h) + a\left(y_h^n, v_h\right) = \left(f^n + u_h^n, v_h\right), \quad \forall v_h \in V_0^n,\tag{4.3}
$$

$$
y_h^0 = y_{h,0},
$$
\n(4.4)

$$
- (\bar{\partial} p_h^n, v_h) + a \left(p_h^{n-1}, v_h \right) = (y_h^n - y_d^n, v_h), \quad \forall v_h \in V_0^n,
$$
 (4.5)

$$
p_h^N = 0,\t\t(4.6)
$$

$$
\left(u_h^n + p_h^{n-1}, \hat{u}_h^n - u_h^n\right) \ge 0, \qquad \forall \hat{u}_h^n \in U_{ad}.\tag{4.7}
$$

Given a sequence of discrete values $\{y_h^n\}$, $n = 0, 1, ..., N$, we associate a continuous function of time defined by the continuous piecewise linear interpolant $Y_h(t)$, $t \in I_n$ as

$$
Y_h(t) := \frac{(t_n - t)}{k_n} y_h^{n-1} + \frac{(t - t_{n-1})}{k_n} y_h^n.
$$

Similarly, we define $P_h(t)$, $t \in I_n$, from the set of values $\{p_h^n\}$, $n = 0, 1, ..., N$ as

$$
P_h(t) := \frac{(t_n - t)}{k_n} p_h^{n-1} + \frac{(t - t_{n-1})}{k_n} p_h^n,
$$

and

$$
U_h(t)|_{I_n} := u_h^n.
$$

Finally, we define $Y_{h,t}^n = \frac{\partial}{\partial t} Y_h|_{I_n}$ and $P_{h,t}^n = \frac{\partial}{\partial t} P_h|_{I_n}$. Furthermore, we note that the values of $Y_h(t)$ and $P_h(t)$ at the nodal point $t = t_n$, $n = 1, 2, ..., N$ are coincided with y_h^n and p_h^n , respectively.

The weak form of fully discrete schemes [\(4.3\)](#page-15-1) and [\(4.5\)](#page-15-1) can be easily transformed into the pointwise form as

$$
\frac{y_h^n - \mathcal{L}_{h,0}^n y_h^{n-1}}{k_n} - \mathcal{A}_h^n y_h^n = \mathcal{L}_h^n f^n + U_h,
$$

$$
-\frac{p_h^n - \mathcal{L}_{h,0}^n p_h^{n-1}}{k_n} - \mathcal{A}_h^n p_h^{n-1} = y_h^n - \mathcal{L}_h^n y_h^n.
$$

This implies that

$$
Y_{h,t}^{n} - A_{h}^{n} y_{h}^{n} = \mathcal{L}_{h}^{n} f^{n} + U_{h} + \frac{\mathcal{L}_{h,0}^{n} y_{h}^{n-1} - y_{h}^{n-1}}{k_{n}}, \quad n \ge 1,
$$
 (4.8)

$$
-P_{h,t}^{n} - A_{h}^{n} p_{h}^{n-1} = y_{h}^{n} - \mathcal{L}_{h}^{n} y_{d}^{n} - \frac{\mathcal{L}_{h,0}^{n} p_{h}^{n-1} - p_{h}^{n-1}}{k_{n}} \quad n \ge 1. \tag{4.9}
$$

Then, the optimality conditions (4.3) – (4.7) can be stated as follows:

$$
\left(\bar{\partial}Y_h^n, v_h\right) + a\left(Y_h^n, v_h\right) = \left(f^n + U_h, v_h\right), \quad \forall v_h \in V_o^n,\tag{4.10}
$$

2 Springer JDMAC

$$
Y_h^0 = y_{h,0},\tag{4.11}
$$

$$
- (\bar{\partial} P_h^n, v_h) + a \left(P_h^{n-1}, v_h \right) = \left(Y_h^n - y_d^n, v_h \right), \quad \forall v_h \in V_0^n, \tag{4.12}
$$

$$
P_h^N = 0,\t\t(4.13)
$$

$$
\left(U_h + P_h^{n-1}, \hat{u}_h^n - U_h\right) \ge 0, \quad \forall \hat{u}_h^n \in U_{ad}.\tag{4.14}
$$

Analogous to the continuous case, we reformulate the discrete optimal control problem [\(4.1\)](#page-14-0)– [\(4.2\)](#page-15-0) as

$$
\min_{U_h \in U_{ad}} j_h^n(U_h) := J(U_h, Y_h(U_h)).
$$

Analogous to the semi-discrete error analysis, we first derive some intermediate error estimates for the state and co-state variables in the $L^{\infty}(L^{\infty})$ -norm. Here, the fully discrete analogues of elliptic reconstructions for the state and co-state variables are treated as intermediate objects in the error analysis.

For the purpose of error analysis, we shall define the errors for the state and co-state variables as follows:

$$
e_y := Y_h - y(U_h) \text{ and } e_p := P_h - p(U_h).
$$

From [\(3.9\)](#page-7-1), [\(3.11\)](#page-7-1), [\(4.10\)](#page-15-2), and [\(4.12\)](#page-15-2) with $\hat{u} = U_h$, we have the following error equations for $v \in H_0^1(\Omega)$:

$$
\left(\frac{\partial e_y}{\partial t}, v\right) + a\left(e_y, v\right) = -\omega_y^n(v) + a\left(Y_h - y_h^n, v\right) + \left(f^n - f, v\right),\tag{4.15}
$$

$$
-\left(\frac{\partial e_p}{\partial t}, v\right) + a\left(e_p, v\right) = \omega_p^n(v) + a\left(P_h - p_h^{n-1}, v\right) + \left(y_h^n - y(U_h), v\right) + \left(y_d - y_d^n, v\right),\tag{4.16}
$$

where

$$
\omega_y^n(v) := (f^n - \mathcal{L}_h^n f^n, v) + \left(\frac{y_h^{n-1} - \mathcal{L}_{h,0}^n y_h^{n-1}}{k_n}, v\right),
$$

$$
\omega_p^n(v) := (y_d^n - \mathcal{L}_h^n y_d^n, v) + \left(\frac{p_h^{n-1} - \mathcal{L}_{h,0}^n p_h^{n-1}}{k_n}, v\right).
$$

We now define the elliptic reconstructions at $t = t_n$, $n \in [1 : N]$ as follows: For given y_h^n , p_h^{n-1} , seek \tilde{y}_h^n , $\tilde{p}_h^{n-1} \in H_0^1(\Omega)$ satisfying

$$
a\left(\tilde{y}_h^n, v\right) = \left(\mathcal{G}_y^n, v\right), \ \forall v \in H_0^1(\Omega),\tag{4.17}
$$

and

$$
a\left(\tilde{p}_h^{n-1}, v\right) = \left(\tilde{\mathcal{G}}_p^n, v\right) + \left(\tilde{y}_h^n - y_h^n, v\right), \quad \forall v \in H_0^1(\Omega),\tag{4.18}
$$

where

$$
\mathcal{G}_{y}^{n} = \begin{cases}\n-\mathcal{A}_{h}^{0} y_{h}^{0} + f^{0} - \mathcal{L}_{h}^{0} f^{0}, & n = 0, \\
f^{n} + U_{h} - Y_{h,t}^{n}, & n \ge 1,\n\end{cases}
$$

2 Springer JDMX

and

$$
\tilde{\mathcal{G}}_p^n = \begin{cases}\n-\mathcal{A}_h^0 p_h^0 + y_d^0 - \mathcal{L}_h^0 y_d^0, & n = 0, \\
y_h^n - y_d^n + P_{h,t}^n, & n \ge 1.\n\end{cases}
$$

Using a sequence of discrete values $\{\tilde{y}_h^n\}$ for $n = 0, 1, ..., N$, we set a continuous function of time defined by piecewise linear interpolant $\tilde{y}(t)$ as

$$
\tilde{y}(t) := \frac{(t_n - t)}{k_n} \tilde{y}_h^{n-1} + \frac{(t - t_{n-1})}{k_n} \tilde{y}_h^n, \quad t_{n-1} \le t \le t_n, \quad n = 1, ..., N.
$$

Similarly, we define $\tilde{p}(t)$ from the set of values $\{\tilde{p}_h^n\}$, $n = 1, ..., N$ as

$$
\tilde{p}(t) := \frac{(t_n - t)}{k_n} \tilde{p}_h^{n-1} + \frac{(t - t_{n-1})}{k_n} \tilde{p}_h^n, \quad t_{n-1} \le t \le t_n, \quad n = 1, ..., N.
$$

We note that functions \tilde{y} and \tilde{p} satisfy, for each $t \in [0, T]$, the following equations:

$$
a(\tilde{y} - Y_h, v) = \omega_y(v), \quad \forall v \in H_0^1(\Omega),
$$

$$
a(\tilde{p} - P_h, v) = -\omega_p(v) + (\tilde{y} - Y_h, v), \quad \forall v \in H_0^1(\Omega).
$$

From (4.8) and (4.9) , we obtain

$$
\mathcal{G}_{y}^{n} = f^{n} + U_{h} - Y_{h,t}^{n} = -\mathcal{A}_{h}^{n} y_{h}^{n} + f^{n} - \mathcal{L}_{h}^{n} f^{n} - \frac{\mathcal{L}_{h,0}^{n} y_{h}^{n-1} - y_{h}^{n-1}}{k_{n}}, \quad n \ge 0
$$
\n
$$
\tilde{\mathcal{G}}_{p}^{n} = y_{h}^{n} - y_{d}^{n} + P_{h,t}^{n} = -\mathcal{A}_{h}^{n} p_{h}^{n-1} + \mathcal{L}_{h}^{n} y_{d}^{n} - y_{d}^{n} + \frac{\mathcal{L}_{h,0}^{n} p_{h}^{n-1} - p_{h}^{n-1}}{k_{n}} \quad n \ge 1.
$$

Using elliptic reconstruction, we decompose the errors as

 $e_y = (\tilde{y} - y(U_h)) - (\tilde{y} - Y_h) =: \xi_y - \eta_y$, and $e_p = (\tilde{p} - p(U_h)) - (\tilde{p} - P_h) =: \xi_p - \eta_p$. Note that

$$
\tilde{y} - \tilde{y}_h^n := -(1 - l(t)) \left(\tilde{y}_h^n - \tilde{y}_h^{n-1} \right) \text{ and } \tilde{p} - \tilde{p}_h^{n-1} := l(t) \left(\tilde{p}_h^n - \tilde{p}_h^{n-1} \right),
$$

where $l(t) = \frac{t - t_{n-1}}{k_n}$. Using [\(4.17\)](#page-16-0)–[\(4.18\)](#page-16-1) in [\(4.15\)](#page-16-2)–[\(4.16\)](#page-16-3), we obtain

$$
\left(\frac{\partial \xi_y}{\partial t}, v\right) + a(\xi_y, v) = \left(\frac{\partial \eta_y}{\partial t}, v\right) + \left(f^n - f, v\right)
$$

$$
+ (1 - l(t)) \left(g_y^{n-1} - g_y^n, v\right), \quad \forall v \in H_0^1(\Omega), \quad (4.19)
$$

$$
- \left(\frac{\partial \xi_p}{\partial t}, v\right) + a\left(\xi_p, v\right) = -\left(\frac{\partial \eta_p}{\partial t}, v\right) + \left(y_d - y_d^n, v\right) + \left(\tilde{y}_h^n - y(U_h), v\right)
$$

$$
\frac{\partial \xi_p}{\partial t}, v\bigg) + a\left(\xi_p, v\right) = -\left(\frac{\partial \eta_p}{\partial t}, v\right) + \left(y_d - y_d^n, v\right) + \left(\tilde{y}_h^n - y(U_h), v\right) \n+ l(t)\left(\tilde{G}_p^n - \tilde{G}_p^{n+1}, v\right), \quad \forall v \in H_0^1(\Omega). \tag{4.20}
$$

Now, we state the following lemma for elliptic error bounds in $L^{\infty}(L^{\infty})$ -norm.

Lemma 4.1 *Let* $(\tilde{y}_h^n, \tilde{p}_h^{n-1})$ ∈ $H_0^1(\Omega) \times H_0^1(\Omega)$ *satisfy* [\(4.17\)](#page-16-0)–[\(4.18\)](#page-16-1)*. Then,* 0 ≤ *n* ≤ *N, we have*

$$
\left\|\tilde{y}_{h}^{n}-y_{h}^{n}\right\|_{L^{\infty}(\Omega)} \leq C(\Omega)\left(\ln \hat{h}_{n}\right)^{2} \mathfrak{E}_{\infty,0}\left(y_{h}^{n}, \mathcal{G}_{y}^{n}\right).
$$

² Springer JDMK

Moreover, for $n \in [1:N]$ *, we have*

$$
\left\|\tilde{p}_h^{n-1} - p_h^{n-1}\right\|_{L^{\infty}(\Omega)} \leq C(\Omega) \left(\ln \hat{h}_n\right)^2 \mathfrak{E}_{\infty,0}\left(p_h^{n-1}, \tilde{\mathcal{G}}_p^n\right) + \left\|\tilde{y}_h^n - y_h^n\right\|_{L^{\infty}(\Omega)},
$$

where $C(\Omega)$ *is a positive constant depend on* Ω *.*

In the following lemma, we derive the bounds for ξ_y and ξ_p .

Lemma 4.2 *Let* ξ_y *and* ξ_p *satisfy* [\(4.19\)](#page-17-0) *and* [\(4.20\)](#page-17-0)*, respectively. Then, for any* $1 \le m \le N$ *with* $h_m = \min_{1 \le n \le m} \min_{K \in T_n} h_K$, the following estimates hold:

$$
\|\xi_{y}(t_{m})\|_{L^{\infty}(\Omega)} \leq \|\xi_{y}(0)\|_{L^{\infty}(\Omega)} + c_{6} \left(\ln \hat{h}_{m}\right)^{2} \sum_{n=1}^{m} k_{n} \hat{\mathfrak{E}}_{\infty,0} \left(\frac{y_{h}^{n} - y_{h}^{n-1}}{k_{n}}, \mathcal{G}_{y}^{n}\right)
$$

$$
-\mathcal{G}_{y}^{n-1}; \mathcal{T}_{n-1}, \mathcal{T}_{n}\right) + \sum_{n=1}^{m} \int_{I_{n}} \|f^{n} - f\|_{L^{\infty}(\Omega)} ds
$$

$$
+\frac{k_{n}}{2} \left\|\mathcal{G}_{y}^{n-1} - \mathcal{G}_{y}^{n}\right\|_{L^{\infty}(\Omega)}, \tag{4.21}
$$

and

$$
\|\xi_{p}(t_{m})\|_{L^{\infty}(\Omega)} \leq c_{7} \left(\ln \hat{h}_{m}\right)^{2} \sum_{n=1}^{m} k_{n} \hat{\mathfrak{E}}_{\infty,0} \left(\frac{p_{h}^{n-1} - p_{h}^{n}}{k_{n}}, \tilde{\mathcal{G}}_{p}^{n} - \tilde{\mathcal{G}}_{p}^{n+1}; \mathcal{T}_{n-1}, \mathcal{T}_{n}\right) + \sum_{n=1}^{m} \int_{I_{n}} \|y_{d} - y_{d}^{n}\|_{L^{\infty}(\Omega)} + \frac{k_{n}}{2} \left\|\tilde{\mathcal{G}}_{p}^{n} - \tilde{\mathcal{G}}_{p}^{n+1}\right\|_{L^{\infty}(\Omega)} + \|\xi_{y}(t_{m})\|_{L^{\infty}(\Omega)}.
$$
\n(4.22)

*In the above, the constants c*₆ *and c*₇ *are positive and depend on the domain* Ω.

Proof Note that ξ_y satisfies [\(4.19\)](#page-17-0), for any $t_m \in [0, T]$, a fix point $x_m \in \Omega$, and an application of (2.13) leads to

$$
|\xi_y(x_m, t_m)| \leq \int_{\Omega} |\mathfrak{F}(x_m, t_m; w, 0) \xi_y(w, 0)| dw
$$

+
$$
\int_0^{t_m} \int_{\Omega} \left| \mathfrak{F}(x_m, t_m; w, s) \frac{\partial \eta_y}{\partial t}(w, s) \right| dw ds
$$

+
$$
\sum_{n=1}^m \int_{I_n} \int_{\Omega} \left| \mathfrak{F}(x_m, t_m; w, s) (f^n - f) \right| dw ds
$$

+
$$
\sum_{n=1}^m \int_{I_n} \int_{\Omega} \left| \mathfrak{F}(x_m, t_m; w, s) (1 - l(s)) (G_y^{n-1} - G_y^n) \right| dw ds;
$$

using the Hölder's inequality and [\(2.14\)](#page-6-5) with $|\xi_y(x_m, t_m)| = ||\xi_y(t_m)||_{L^{\infty}(\Omega)}$ (since x_m is fixed), we obtain

$$
\|\xi_{y}(t_{m})\|_{L^{\infty}(\Omega)} \leq \|\xi_{y}(0)\|_{L^{\infty}(\Omega)} + \left\|\frac{\partial \eta_{y}}{\partial t}\right\|_{L^{1}([0,t_{m}];L^{\infty}(\Omega))} + \sum_{n=1}^{m} \int_{I_{n}} \|f^{n} - f\|_{L^{\infty}(\Omega)} ds
$$

$$
+ \frac{k_{n}}{2} \left\|\mathcal{G}_{y}^{n-1} - \mathcal{G}_{y}^{n}\right\|_{L^{\infty}(\Omega)}.
$$

2 Springer JDMX

Use of Lemma [2.2](#page-5-3) leads to

$$
\|\xi_{y}(t_{m})\|_{L^{\infty}(\Omega)} \leq \|\xi_{y}(0)\|_{L^{\infty}(\Omega)} + c_{6} \left(\ln \hat{h}_{m}\right)^{2} \sum_{n=1}^{m} k_{n} \hat{\mathfrak{E}}_{\infty,0} \left(\frac{y_{h}^{n} - y_{h}^{n-1}}{k_{n}}, \mathcal{G}_{y}^{n}\right)
$$

$$
-\mathcal{G}_{y}^{n-1}; \mathcal{T}_{n-1}, \mathcal{T}_{n}\right) + \sum_{n=1}^{m} \int_{I_{n}} \|f^{n} - f\|_{L^{\infty}(\Omega)} ds
$$

$$
+\frac{k_{n}}{2} \left\|\mathcal{G}_{y}^{n-1} - \mathcal{G}_{y}^{n}\right\|_{L^{\infty}(\Omega)},
$$

and this completes the proof of [\(4.21\)](#page-18-0).

To prove [\(4.22\)](#page-18-1), we first note that ξ_p satisfies [\(4.20\)](#page-17-0). For any $t_m \in [0, T]$ and fix point $x_m \in \Omega$, a similar argument as before leads to

$$
|\xi_p(x_m, t_m)| \leq \int_{\Omega} \left| \mathfrak{F}(x_m, t_m; w, T) \xi_p(w, T) \right| dw
$$

+
$$
\int_{t_m}^T \int_{\Omega} \left| \mathfrak{F}(x_m, t_m; w, s) \frac{\partial \eta_p}{\partial t}(w, s) \right| dw ds
$$

+
$$
\sum_{n=1}^m \int_{I_n} \int_{\Omega} \left| \mathfrak{F}(x_m, t_m; w, s) (y_d - y_d^n) dw \right| ds
$$

+
$$
\sum_{n=1}^m \int_{I_n} \int_{\Omega} \left| \mathfrak{F}(x_m, t_m; w, s) (\mathfrak{F}_h^n - y(U_h)) \right| dw ds
$$

+
$$
\sum_{n=1}^m \int_{I_n} \int_{\Omega} \left| \mathfrak{F}(x_m, t_m; w, s) l(s) (\mathfrak{F}_p^n - \mathfrak{F}_p^{n+1}) \right| dw ds.
$$

An application of the Hölder's inequality and [\(2.14\)](#page-6-5) with $|\xi_p(x_m, t_m)| = ||\xi_p(t_m)||_{L^{\infty}(\Omega)}$ yields

$$
\|\xi_p(t_m)\|_{L^{\infty}(\Omega)} \le \|\xi_p(T)\|_{L^{\infty}(\Omega)} + \left\|\frac{\partial \eta_p}{\partial t}\right\|_{L^1([t_m,T];L^{\infty}(\Omega))} + \sum_{n=1}^m \int_{I_n} \|y_d - y_d^n\|_{L^{\infty}(\Omega)} ds
$$

+
$$
\sum_{n=1}^m \int_{I_n} \|\tilde{y}_h^n - y(U_h)\|_{L^{\infty}(\Omega)} ds + \frac{k_n}{2} \left\|\tilde{\mathcal{G}}_p^n - \tilde{\mathcal{G}}_p^{n+1}\right\|_{L^{\infty}(\Omega)}.
$$

An application of Lemma [2.2](#page-5-3) and $\xi_p(T) = 0$ imply

$$
\|\xi_p(t_m)\|_{L^{\infty}(\Omega)} \le c_7 \left(\ln \hat{h}_m\right)^2 \sum_{n=1}^m k_n \hat{\mathfrak{E}}_{\infty,0} \left(\frac{p_h^{n-1} - p_h^n}{k_n}, \tilde{\mathcal{G}}_p^n - \tilde{\mathcal{G}}_p^{n+1}; \mathcal{T}_{n-1}, \mathcal{T}_n\right) + \sum_{n=1}^m \int_{I_n} \|y_d - y_d^n\|_{L^{\infty}(\Omega)} ds + \frac{k_n}{2} \left\|\tilde{\mathcal{G}}_p^n - \tilde{\mathcal{G}}_p^{n+1}\right\|_{L^{\infty}(\Omega)} + \|\xi_y(t_m)\|_{L^{\infty}(\Omega)},
$$

which completes the rest of the proof.

Let (y, p, u) and (Y_h, P_h, U_h) be the solutions of (2.3) – (2.7) and (4.10) – (4.14) , respectively. To derive a posteriori error bounds for the state and co-state variables, we decompose the errors as follows:

$$
\Box
$$

$$
y - Y_h = (y - y(U_h)) + (y(U_h) - Y_h) =: r_y - e_y,
$$

$$
p - P_h = (p - p(U_h)) + (p(U_h) - P_h) =: r_p - e_p.
$$

From [\(2.3\)](#page-3-3), [\(2.5\)](#page-3-3), [\(3.9\)](#page-7-1), and [\(3.11\)](#page-7-1) with $\hat{u} = U_h$, we derive the following error equations:

$$
\left(\frac{\partial r_y}{\partial t}, v\right) + a(r_y, v) = (u - U_h, v), \quad \forall v \in H_0^1(\Omega), \tag{4.23}
$$

$$
-\left(\frac{\partial r_p}{\partial t}, v\right) + a(r_p, v) = (r_y, v), \quad \forall v \in H_0^1(\Omega). \tag{4.24}
$$

The following lemma provides the bounds for r_y and r_p .

Lemma 4.3 *Let* (y, p, u) *and* $(y(\hat{u}), p(\hat{u}))$ *be the solutions of* $(2.3)–(2.7)$ $(2.3)–(2.7)$ $(2.3)–(2.7)$ *and* $(3.9)–(3.12)$ $(3.9)–(3.12)$ $(3.9)–(3.12)$ *with* $\hat{u} = U_h$, respectively. Then, for any $1 \leq m \leq N$, we have

$$
||r_{y}(t_{m})||_{L^{\infty}(\Omega)} \le ||r_{y}(0)||_{L^{\infty}(\Omega)} + ||u - U_{h}||_{L^{2}(0,T;L^{2}(\Omega))},
$$
\n(4.25)

and

$$
||r_p(t_m)||_{L^{\infty}(\Omega)} \le ||r_p(T)||_{L^{\infty}(\Omega)} + ||r_y||_{L^2(0,T;L^2(\Omega))} \le C||u - U_h||_{L^2(0,T;L^2(\Omega))}(4.26)
$$

Proof Following the lines of argument of Lemma [3.3,](#page-9-2) the proof of inequalities [\(4.25\)](#page-20-0) and [\(4.26\)](#page-20-1) can easily be obtained. The details are thus omitted.

In the following lemma, we derive the a posteriori error estimate for the control variable in the $L^2(L^2)$ -norm.

Lemma 4.4 *Let* (y, p, u) *and* (Y_h, P_h, U_h) *be the solutions of* $(2.3)–(2.7)$ $(2.3)–(2.7)$ $(2.3)–(2.7)$ *and* $(4.10)–(4.14)$ $(4.10)–(4.14)$ $(4.10)–(4.14)$ *, respectively.* Assume that $(U_h + P_h^{n-1})|_K \in H^1(K)$ and $\tilde{u}_h \in U_{ad}$, and there exists a positive *constant C, such that*

$$
\left| \int_0^T \left(U_h + P_h^{n-1}, \tilde{u}_h - u \right) \, ds \right| \leq C \int_0^T \sum_{K \in \mathcal{T}_n} h_K \left| U_h + P_h^{n-1} \right|_{H^1(K)} \| u - \tilde{U}_h \|_{L^2(K)} \, ds.
$$

Then, we have

$$
||u - U_h||_{L^2(0,T;L^2(\Omega))} \le \tilde{C}_3 \Bigg[\left(\int_0^T \sum_{K \in \mathcal{T}_n} h_K^2 \left| U_h + P_h^{n-1} \right|_{H^1(K)}^2 ds \right)^{1/2} + \left\| P_h^{n-1} - p(U_h) \right\|_{L^\infty(0,T;L^\infty(\Omega))} \Bigg],
$$

where \tilde{C}_3 = max{1, *C*}, and (*y*(\hat{u}), *p*(\hat{u})) *is defined by the system* [\(3.9\)](#page-7-1)–[\(3.11\)](#page-7-1) *with* $\hat{u} = U_h$. *Proof* From (2.7) , we have

 $(u, u - U_h) \leq -(p, u - U_h);$

using the above inequality, it follows that

$$
\|u - U_h\|_{L^2(0,T;L^2(\Omega))}^2 = \int_0^T (u - U_h, u - U_h) \, ds
$$

$$
\leq \int_0^T \{-(p, u - U_h) - (U_h, u - U_h)\} \, ds
$$

2 Springer JDMNC

$$
= -\int_0^T \left(P_h^{n-1} + U_h, u - \tilde{u}_h \right) ds - \int_0^T \left(U_h + P_h^{n-1}, \tilde{u}_h - U_h \right) ds + \int_0^T \left(P_h^{n-1} - p(U_h), u - U_h \right) ds + \int_0^T \left(p(U_h) - p, u - U_h \right) ds.
$$

An use of [\(4.14\)](#page-15-2) yields

$$
\|u - U_h\|_{L^2(0,T;L^2(\Omega))}^2 \le \int_0^T \left(U_h + P_h^{n-1}, \tilde{u}_h - u \right) ds + \int_0^T \left(P_h^{n-1} - p(U_h), u - U_h \right) ds
$$

+ $\int_0^T \left(p(U_h) - p, u - U_h \right) ds$
=: $\hat{E}_1 + \hat{E}_2 + \hat{E}_3$.

Following the idea of Lemma [3.4,](#page-10-2) it is easy to bound the term \hat{E}_i , $i = 1, 2, 3$. Therefore, we omit the details. This completes the proof. we omit the details. This completes the proof.

By collecting Lemmas [4.1](#page-17-1)[–4.4,](#page-20-2) we finally derive the main results of this paper.

Theorem 4.5 *Let* (y, p, u) *and* (Y_h, P_h, U_h) *be the solutions of* (2.3) *–* (2.7) *and* (4.10) *–* (4.14) *, respectively. Then, there exists constants* \tilde{c}_3 , \tilde{c}_4 (depend on Ω), for each $t \in (0, T]$, and any $1 \leq m \leq N$ with $h_m = \min_{1 \leq n \leq m} \min_{K \in \mathcal{T}_n} h_K$, the following estimates

$$
||u - U_h||_{L^2(0,T;L^2(\Omega))} \le \tilde{C}_4 \Bigg[\left(\int_0^T \sum_{K \in \mathcal{T}_n} h_K^2 |U_h + P_h^{n-1}|_{H^1(K)}^2 ds \right)^{1/2} + ||\xi_p||_{L^\infty(0,T;L^\infty(\Omega))} + ||\eta_p||_{L^\infty(0,T;L^\infty(\Omega))} \Bigg], \quad (4.27)
$$

where the constant \tilde{C}_4 *depends on the domain* Ω *and the constant* \tilde{C}_3 *as defined in Lemma [4.4,](#page-20-2)*

$$
||y - Y_h||_{L^{\infty}(0,T;L^{\infty}(\Omega))} \le ||y_0 - y_{h,0}||_{L^{\infty}(\Omega)} + \tilde{c}_3 \left(\ln \hat{h}_m\right)^2 \left[\mathfrak{E}_{\infty,0}\left(y_{h,0}, \mathcal{G}_y^0\right) + \mathfrak{E}_{\infty,0}\left(y_h^m, \mathcal{G}_y^m\right) + \sum_{n=1}^m k_n \hat{\mathfrak{E}}_{\infty,0} \left(\frac{y_h^n - y_h^{n-1}}{k_n}, \mathcal{G}_y^n - \mathcal{G}_y^{n-1}; \mathcal{T}_{n-1}, \mathcal{T}_n\right)\right] + \sum_{n=1}^m \int_{I_n} ||f^n - f||_{L^{\infty}(\Omega)} \, ds + \frac{k_n}{2} \left\|\mathcal{G}_y^{n-1} - \mathcal{G}_y^n\right\|_{L^{\infty}(\Omega)} + ||u - U_h||_{L^2(0,T;L^2(\Omega))},
$$
\n(4.28)

$$
||p - P_h||_{L^{\infty}(0,T;L^{\infty}(\Omega))} \leq \tilde{c}_4 (\ln \hat{h}_m)^2 \left[\mathfrak{E}_{\infty,0}(p_h^m, \tilde{g}_p^m) + \sum_{n=1}^m k_n \hat{\mathfrak{E}}_{\infty,0} (\frac{p_h^{n-1} - p_h^n}{k_n},
$$

$$
\tilde{g}_p^n - \tilde{g}_p^{n+1}; \mathcal{T}_{n-1}, \mathcal{T}_n) + \mathfrak{E}_{\infty,0}(y_h^m, \mathcal{G}_y^m) \right] + \sum_{n=1}^m \int_{I_n} ||y_d - y_d^n||_{L^{\infty}(\Omega)} ds
$$

$$
+ \frac{k_n}{2} ||\tilde{g}_p^n - \tilde{g}_p^{n+1}||_{L^{\infty}(\Omega)} + ||\xi_y||_{L^{\infty}(0,T;L^{\infty}(\Omega))} + ||u - U_h||_{L^2(0,T;L^2(\Omega))}
$$
(4.29)

hold.

$$
y - Y_h = (y - y(U_h)) + (y(U_h) - \tilde{y}) + (\tilde{y} - Y_h) = r_y - (\xi_y - \eta_y).
$$

For a fix $x_m \in \Omega$ and $t_m \in (0, T]$, we have

 $||(y - Y_h)(t_m)||_{L^{\infty}(\Omega)} \leq ||r_y(t_m)||_{L^{\infty}(\Omega)} + ||\xi_y(t_m)||_{L^{\infty}(\Omega)} + ||\eta_y(t_m)||_{L^{\infty}(\Omega)}$.

Using Lemma [4.1,](#page-17-1) the last term of the right hand side is bounded as

$$
\|\eta_{y}(t_m)\|_{L^{\infty}(\Omega)} \leq c_8 \left(\ln \hat{h}_m\right)^2 \mathfrak{E}_{\infty,0}\left(y_h^m, \mathcal{G}_y^m\right).
$$

By Lemma [4.2,](#page-18-2) we have

$$
\|\xi_{y}(t_{m})\|_{L^{\infty}(\Omega)} \leq \|y_{0} - y_{h,0}\|_{L^{\infty}(\Omega)} + c_{4} \left(\ln \hat{h}_{m}\right)^{2} \mathfrak{E}_{\infty,0}(y_{h,0}, \mathcal{G}_{y}^{0})
$$

$$
+ c_{6} \left(\ln \hat{h}_{m}\right)^{2} \sum_{n=1}^{m} k_{n} \hat{\mathfrak{E}}_{\infty,0} \left(\frac{y_{h}^{n} - y_{h}^{n-1}}{k_{n}}, \mathcal{G}_{y}^{n} - \mathcal{G}_{y}^{n-1}; \mathcal{T}_{n-1}, \mathcal{T}_{n}\right)
$$

$$
+ \sum_{n=1}^{m} \int_{I_{n}} \|f^{n} - f\|_{L^{\infty}(\Omega)} ds + \frac{k_{n}}{2} \|\mathcal{G}_{y}^{n-1} - \mathcal{G}_{y}^{n}\|_{L^{\infty}(\Omega)}.
$$

Since $r_y(0) = 0$, apply Lemma [4.3](#page-20-3) to obtain

$$
||r_{y}(t_{m})||_{L^{\infty}(\Omega)} \leq ||u - U_{h}||_{L^{2}(0,T;L^{2}(\Omega))},
$$

where c_i , $i = 4, 6, 8$ depend on Ω . Combining these above estimates and setting \tilde{c}_3 = $max{c_4, c_6, c_8}$, we accomplish [\(4.28\)](#page-21-1).

Next, we estimate the error for the co-state variable. By the triangle inequality, for any $t_m \in (0, T]$, we have

$$
\|(p - P_h)(t_m)\|_{L^{\infty}(\Omega)} \le \|r_p(t_m)\|_{L^{\infty}(\Omega)} + \|\xi_p(t_m)\|_{L^{\infty}(\Omega)} + \|\eta_p(t_m)\|_{L^{\infty}(\Omega)}.
$$

We apply Lemmas [4.1](#page-17-1)[–4.3](#page-20-3) with $\xi_p(T) = 0$ and $r_p(T) = 0$ to arrive at

$$
\begin{aligned}\n\| (p - P_h)(t_m) \|_{L^\infty(\Omega)} &\leq \tilde{c}_4 (\ln \hat{h}_m)^2 \bigg[\mathfrak{E}_{\infty,0} \left(p_h^m, \tilde{\mathcal{G}}_p^m \right) + \sum_{n=1}^m k_n \hat{\mathfrak{E}}_{\infty,0} \\
\bigg(\frac{p_h^{n-1} - p_h^n}{k_n}, \tilde{\mathcal{G}}_p^n - \tilde{\mathcal{G}}_p^{n+1}; \mathcal{T}_{n-1}, \mathcal{T}_n \bigg) \\
&\quad + \mathfrak{E}_{\infty,0} \left(y_h^m, \mathcal{G}_y^m \right) \bigg] + \sum_{n=1}^m \int_{I_n} \| y_d - y_d^n \|_{L^\infty(\Omega)} \, \mathrm{d} s \\
&\quad + \frac{k_n}{2} \left\| \tilde{\mathcal{G}}_p^n - \tilde{\mathcal{G}}_p^{n+1} \right\|_{L^\infty(\Omega)} + \| \xi_y \|_{L^\infty(0,T;L^\infty(\Omega))} + \| r_y \|_{L^\infty(0,T;L^\infty(\Omega))},\n\end{aligned}
$$

where the constants $c_i|_{i=7,9}$ depend on the domain Ω . Setting $\tilde{c}_4 = \max\{c_7, c_9\}$, we complete the rest of the proof. the rest of the proof.

Theorem 4.6 *Let* (y, p, u) *and* (Y_h, P_h, U_h) *be the solutions of* $(2.3)–(2.7)$ $(2.3)–(2.7)$ $(2.3)–(2.7)$ *and* $(4.10)–(4.14)$ $(4.10)–(4.14)$ $(4.10)–(4.14)$ *, respectively. Assume that all the conditions in Theorem [4.5](#page-21-2) are valid. For each t* \in $(0, T]$ *, there exists a positive constant* \tilde{C}_5 *, such that the following error estimate*

$$
||u - U_h||_{L^{\infty}(0,T;L^{\infty}(\Omega))}
$$

2 Springer JDMX

$$
\leq \tilde{C}_{5} \left[\|y_{0} - y_{h,0}\|_{L^{\infty}(\Omega)} + (\ln \hat{h}_{m})^{2} \left\{ \mathfrak{E}_{\infty,0}(y_{h,0}, \mathcal{G}_{y}^{0}) + \mathfrak{E}_{\infty,0}(y_{h}^{m}, \mathcal{G}_{y}^{m}) \right. \right.\left. + \sum_{n=1}^{m} k_{n} \hat{\mathfrak{E}}_{\infty,0} \left(\frac{y_{h}^{n} - y_{h}^{n-1}}{k_{n}}, \mathcal{G}_{y}^{n} - \mathcal{G}_{y}^{n-1}; \mathcal{T}_{n-1}, \mathcal{T}_{n} \right) + \mathfrak{E}_{\infty,0}(p_{h}^{m}, \tilde{\mathcal{G}}_{p}^{m}) \right.\left. + \sum_{n=1}^{m} k_{n} \hat{\mathfrak{E}}_{\infty,0} \left(\frac{p_{h}^{n-1} - p_{h}^{n}}{k_{n}}, \tilde{\mathcal{G}}_{p}^{n} - \tilde{\mathcal{G}}_{p}^{n+1}; \mathcal{T}_{n-1}, \mathcal{T}_{n} \right) \right\} + \frac{k_{n}}{2} \| \mathcal{G}_{y}^{n-1} - \mathcal{G}_{y}^{n} \|_{L^{\infty}(\Omega)}\left. + \frac{k_{n}}{2} \| \tilde{\mathcal{G}}_{p}^{n} - \tilde{\mathcal{G}}_{p}^{n+1} \|_{L^{\infty}(\Omega)} + \sum_{n=1}^{m} \int_{I_{n}} \| f^{n} - f \|_{L^{\infty}(\Omega)} \right) ds\left. + \sum_{n=1}^{m} \int_{I_{n}} \| y_{d} - y_{d}^{n} \|_{L^{\infty}(\Omega)} ds + \left(\int_{0}^{T} \sum_{K \in \mathcal{T}_{n}} h_{K}^{2} | U_{h} + P_{h}^{n-1} |_{H^{1}(K)}^{2} ds \right)^{1/2} \right]
$$

holds, where the constant \tilde{C}_5 *depends on the domain* Ω *, the regularity constant* C_R *, and the constant C*˜⁴ *as defined in Lemma [4.5.](#page-21-2)*

Proof Use of pointwise projection of *u* and *Uh* leads to

$$
||u - U_h||_{L^{\infty}(0,T;L^{\infty}(\Omega))} = ||\Pi_{[u_a,u_b]}(-p) - \Pi_{[u_a,u_b]}(-P_h)||_{L^{\infty}(0,T;L^{\infty}(\Omega))}
$$

\$\leq\$ ||P_h - p||_{L^{\infty}(0,T;L^{\infty}(\Omega))}.}

In the above, we have used the Lipschitz continuity of $\Pi_{[u_a, u_b]}$ with Lipschitz constant 1.
Inviting Theorem 4.5, we complete the rest of the proof. Inviting Theorem [4.5,](#page-21-2) we complete the rest of the proof.

5 Numerical experiments

This section performs two numerical experiments to illustrate the theoretical results of the previous section. For the purpose of adaptive refinement, we need the following error estimators:

- initial data estimator $(\eta_1) = ||y_0 y_{h,0}||_{L^{\infty}(\Omega)}$,
- spatial estimator for the state $(\eta_2) = (\ln \hat{h}_m)^2 \mathfrak{E}_{\infty,0}(y_h^m, \mathcal{G}_y^m)$,
- temporal error estimator for the state $(\eta_3) = \sum_{n=1}^m \int_{I_n} ||f^n f||_{L^{\infty}(\Omega)} ds + \frac{k_n}{2} ||\mathcal{G}_y^{n-1} \mathcal{G}_{\mathcal{Y}}^n||_{L^\infty(\Omega)},$
- spatial estimator for the co-state $(\eta_4) = (\ln \hat{h}_m)^2 \mathfrak{E}_{\infty,0}(p_h^m, \tilde{\mathcal{G}}_p^m)$,
- temporal error estimator for the co-state $(\eta_5) = \sum_{n=1}^m \int_{I_n} ||y_d y_d^n||_{L^{\infty}(\Omega)} ds + \frac{k_n}{2} ||\tilde{G}_p^n \tilde{\mathcal{G}}_p^{n+1}$ || $L^\infty(\Omega)$
- a control error estimator $(\eta_6) = \left(\int_0^T \sum_{K \in \mathcal{T}_n} h_K^2 |U_h + P_h^{n-1}|_{H^1(K)}^2 ds\right)^{1/2}$, and
- *L*∞-type error estimators

$$
\eta_7 = \left(\ln \hat{h}_m\right)^2 \sum_{n=1}^m k_n \hat{\mathfrak{E}}_{\infty,0} \left(\frac{y_h^n - y_h^{n-1}}{k_n}, \mathcal{G}_y^n - \mathcal{G}_y^{n-1}; \mathcal{T}_{n-1}, \mathcal{T}_n\right),
$$

$$
\eta_8 = \left(\ln \hat{h}_m\right)^2 \sum_{n=1}^m k_n \hat{\mathfrak{E}}_{\infty,0} \left(\frac{p_h^{n-1} - p_h^n}{k_n}, \tilde{\mathcal{G}}_p^n - \tilde{\mathcal{G}}_p^{n+1}; \mathcal{T}_{n-1}, \mathcal{T}_n\right).
$$

2 Springer JDMW

The effective index of the a posteriori error estimator is defined as η/E , where the total estimated error (η) and the total error (E) are given by $\eta(y, p, u) := \sum_{j=1}^{8} \eta_j$ and

$$
E(y, p, u) := \|y - Y_h\|_{L^{\infty}(0,T;L^{\infty}(\Omega))} + \|p - P_h\|_{L^{\infty}(0,T;L^{\infty}(\Omega))} + \|u - U_h\|_{L^{\infty}(0,T;L^{\infty}(\Omega))},
$$

respectively. The numerical simulation is carried out with the help of the software*FreeFem++* Hetc[h](#page-29-29) [\(2012\)](#page-29-29) and all the constants involved in the estimators are taken to be 1. We use the following loop:

$$
SOLVE \rightarrow ESTIMATE \rightarrow MARK \rightarrow REFINE
$$

to achieve a refinement from the initializing triangulation.

Space–time adaptive algorithm: Given tolerances $\mathcal{E}_{space}, \mathcal{E}_{time}$ and the parameters $\delta_1 \in$ (0, 1), δ_2 > 1, λ_1 ∈ (0, 1), λ_2 ∈ (0, λ_1). Suppose that $(y_h^{n-1}, p_h^n, u_h^{n-1})$ is computed on the mesh \mathcal{T}_{n-1} at time level t_{n-1} with time step-size k_{n-1} using the variational discretization algorithm (see Tang and Che[n](#page-30-5) [2012b](#page-30-5)).

Step 1. set $\mathcal{T}_n := \mathcal{T}_{n-1}, k_n := k_{n-1}, t_n := t_{n-1} + k_n$ compute $(y_h^n, p_h^{n-1}, u_h^n)$ on \mathcal{T}_n using data $(y_h^{n-1}, p_h^n, u_h^{n-1})$ from the discrete problem compute the estimators η_i , $j = 1, \ldots, 8$ on \mathcal{T}_n

Step 2. while $\left(\sum_{j \in \{3,5\}} \eta_j\right) > \lambda_1 \cdot \mathcal{E}_{time}$ do

 $k_n := \delta_1 k_{n-1}, \quad t_n := t_{n-1} + k_n$ compute $(y_h^n, p_h^{n-1}, u_h^n)$ on \mathcal{T}_n by solving the discrete problem compute the estimators η_i , $j = 1, \ldots, 8$ on \mathcal{T}_n

end while **Step 3.** while $\left(\sum_{j \in \{1, 2, 4, 6, 7, 8\}} \eta_j \right) > \mathcal{E}_{\text{space}}$ do

refine mesh \mathcal{T}_n generate a modified mesh (say) $\mathcal{T}_n^{h_n}$ compute $(y_h^n, p_h^{n-1}, u_h^n)$ on $\mathcal{T}_h^{h_n}$ by solving the discrete problem compute the estimators η_i , $j = 1, \ldots, 8$ on $\mathcal{T}_n^{h_n}$

while $\left(\sum_{j \in \{3,5\}} \eta_j \right) > \lambda_1 \cdot \mathcal{E}_{time}$ do

 $k'_n := \delta_1 k_{n-1}, \quad t_n := t_{n-1} + k'_n.$ compute $(y_h^n, p_h^{n-1}, u_h^n)$ on $\mathcal{T}_{n,k'_h}^{h_n}$ by solving the discrete problem. compute the estimators η_j $j = 1, ..., 8$ on $\mathcal{T}_{n,k'_n}^{h_n}$

end while

end while

Step 4. if $\left(\sum_{j\in\{3,5\}} \eta_j\right) \leq \lambda_2 \cdot \mathcal{E}_{\text{time}}$ do set $k'_n := \delta_2 k_{n-1}, t_n := t_{n-1} + k'_n$ end if

The role of Step 2 is to reduce the time step-size to keep the time error estimator below the tolerance \mathcal{E}_{time} while keeping the space mesh unchanged. In Step 3, the refinement procedure is carried out until the time and space error estimators satisfy the desired tolerances. In the last step, if the time error estimator is much less than the prescribe time tolerance \mathcal{E}_{time} , then we increase the time step size by multiplying a factor δ_2 . For marking and refinement of

the elements $K \in \mathcal{T}_n$, we follow the strategy of Morin, Nochetto, and Siebert, see (Morin et al[.](#page-29-30) [2000\)](#page-29-30). For both the test example problems, we choose tolerances for time and space as $\mathcal{E}_{time} = \mathcal{E}_{space} = 0.001$.

Example 5.1 We consider the spatial domain $\Omega = [0, 1] \times [0, 1]$ and the time interval [0, *T*] = $[0, 1]$. We shall use the following data for the optimal control problem (1.1) – (1.3) :

$$
y(x, t) = \begin{cases} t \sin(2\pi x_1) \sin(2\pi x_2), & x_1 + x_2 \le 1, \\ 2t \sin(2\pi x_1) \sin(2\pi x_2), & x_1 + x_2 > 1, \end{cases}
$$

$$
p(x, t) = \begin{cases} (t - 1) \sin(2\pi x_1) \sin(2\pi x_2), & x_1 + x_2 \le 1, \\ 2(t - 1) \sin(2\pi x_1) \sin(2\pi x_2), & x_1 + x_2 > 1, \end{cases}
$$

with $u_a = -0.125$, and $u_b = +0.125$.

Note that functions f , y_d and u are easily determined from the control problem (1.1) – (1.3) as

$$
f = \frac{\partial y}{\partial t} - \Delta y - u,\tag{5.1}
$$

$$
y_d = \frac{\partial p}{\partial t} + \Delta p + y,\tag{5.2}
$$

$$
u = \min\{u_b, \, \max\{u_a, -p\}\}.
$$
 (5.3)

We approximate the time derivative by the backward Euler method. We partition the time interval [0, 1] with the step-size $\Delta t \approx 5.56 \times 10^{-3}$, such that $t_n = n \Delta t$, $n = 1, 2, ...N$ with the initial mesh $N = T/\Delta t (= 180)$. In the variational discretization, we use piecewise linear and continuous functions for approximations of the state (*y*) and co-state (*p*) variables, whereas the control variable (u) is computed using implicit relation between u and p . The variational discretization algorithm is used to solve the fully discrete optimal control problem (4.1) – (4.2) . The adaptive meshes are generated via the error estimators η_i , $i = 1, 2, \ldots, 8$. We present some computational results by setting tolerances 0.001 and the time step-size $\Delta t = 5.56 \times 10^{-3}$. In Figs. [2](#page-26-0) and [3,](#page-26-1) the plots of approximate solutions of y and *u* are depicted on uniform mesh, adaptive mesh step-(I), and adaptive mesh step-(II), respectively, at final time $T = 1.0$ $T = 1.0$ $T = 1.0$. Table 1 presents mesh information and errors for the state, co-state, and control variables in the $L^{\infty}(L^{\infty})$ -norm. This table also reveals that the number of nodes required for adaptive mesh is much less in comparison to the uniform mesh. It is clear from Fig. [1](#page-26-3) that the mesh adapts very well in the neighbourhood of the discontinuous line $x_1 + x_2 = 1$. The higher densities of the node points are distributed along the line $x_1 + x_2 = 1$ enable us to save convincing computational work in comparison to uniform mesh. In Table [2,](#page-27-0) we present the effective index of the total estimators. It is further observed that the total estimated error (η) and the total error (E) are decreasing with the increase of number of degrees of freedom (F) Dof). The effective index of the a posteriori estimator almost remains constant which exhibits the potential quality of our estimators. The plots for the estimated error verses # Dof, the total error verses # Dof (left), and effective indexes verses # Dof (right) are shown in Fig. [4.](#page-27-1)

The following example considers a three-dimensional data for the control problem (1.1) – $(1.3).$ $(1.3).$

Example 5.2 In this example, we consider the domain $\Omega = [0, 1] \times [0, 1] \times [0, 1]$ with time interval $[0, T] = [0, 1]$ for the control problem (1.1) – (1.3) and use the following data:

$$
y(x, t) = t \sin(\pi x_1) \sin(\pi x_2) \sin(\pi x_3), \quad (x, t) \in \Omega_T,
$$

		On uniform mesh	On adaptive mesh- (I)	On adaptive mesh- (II)
	h_{\min}	0.00666	3.5126e-04	3.0408e-04
Mesh	h_{max}	0.00666	$3.0645e - 01$	1.9218e-01
Information	$#$ nodes	17715	8879	7047
	# elements	31835	15929	12549
	$y - Y_h$	$2.0341e - 02$	2.1958e-02	2.8827e-03
$L^{\infty}(L^{\infty})$ -Error	$p - P_h$	1.6870e-02	3.3837e-03	1.2073e-03
	$u-U_h$	3.0998e-03	3.0750e-03	2.1170e-04

Table 1 Comparison of data on uniform mesh, adaptive mesh step-(I), and adaptive mesh step-(II) for the initial mesh $N = 180$

Fig. 1 Uniform mesh, adaptive mesh step-(I), and adaptive mesh step-(II)

(a)*On uniform* **(b)***On adaptive mesh step-(I)* **(c)***On adaptive mesh step-(II)*

Fig. 2 Plots of discrete solution on uniform mesh, adaptive mesh step-(I), and adaptive mesh step-(II), respectively

(a)*On uniform* **(b)***On adaptive mesh step-(I)* **(c)***On adaptive mesh step-(II)*

Fig. 3 Approximate controls corresponding to uniform mesh, adaptive mesh step-(I), and adaptive mesh step-(II), respectively

# Elements	# Dof (N)	$\eta(y, p, u)$	E(y, p, u)	Eff. Index (η/E)
7819	4967	7.8513e-01	5.6374e-01	1.3927
9069	5057	7.6432e-01	$5.6269e - 01$	1.3583
11209	6228	$5.6360e - 02$	$4.9394e - 02$	1.1410
12666	7099	5.5251e-02	$4.8513e - 02$	1.1389
13073	7257	5.9859e-03	$5.6261e - 03$	1.0639
14214	7783	$5.6266e - 03$	$5.2250e - 03$	1.0769
15147	8114	5.5263e-03	5.2057e-03	1.0616
15929	8883	5.8607e-04	5.6230e-04	1.0423

Table 2 The number of elements, # Dof, total estimated error, and total error and effective index

Fig. 4 Estimated and total errors (left); effective index (right)

$$
p(x, t) = (1 - t)\sin(\pi x_1)\sin(\pi x_2)\sin(\pi x_3), \quad (x, t) \in \Omega_T,
$$

with $x = (x_1, x_2, x_3)$, $u_a = -0.075$ and $u_b = 0.075$. Note that the functions f, y_d and u are computed from (5.1) - (5.3) .

Similar to the previous example, we compute errors for the state, co-state, and control variables in the $L^{\infty}(L^{\infty})$ -norm. The errors for the state, co-state, and control variables on the uniform mesh as well as on the adaptive mesh are presented in Table [3.](#page-28-0) We notice that the number of nodes in the adaptive mesh is much less with comparison to the uniform mesh. Table [4](#page-28-1) contains the information on the number of elements, # Dof, total estimated error, the total error, and the effective index. It is observed that the total estimated error (η) and the total error (E) are decreasing with the increase of $#$ Dof. Furthermore, the effective index remains almost constant in the computation. Finally, in Fig. [5,](#page-28-2) the estimated error, total error verses # Dof (left), and the effective indexes verses # Dof (right) are presented.

6 Concluding remarks

In this article, we have derived a posteriori error estimates in the $L^{\infty}(L^{\infty})$ -norm for variational discretization approximations of the parabolic optimal control problems. We have used the variational discretization approximations where the state and co-state variables are approximated using the piecewise linear and continuous functions, and the control variable is computed using the implicit relation between control and co-state variables (see, [\(2.8\)](#page-4-1)). The

		On uniform mesh	On adaptive mesh- (I)	On adaptive mesh- (II)
Mesh	$#$ nodes	30752	11088	5776
Inf.	# elements	163800	61304	33404
	$y - Y_h$	5.5379e-02	1.1738e-03	1.1344e-03
$L^{\infty}(L^{\infty})$ -Error	$p - P_h$	$3.5604e - 02$	5.5326e-03	5.4649e-03
	$u-U_h$	$2.2772e - 02$	4.4337e-03	$4.3064e - 04$

Table 3 Comparison of data on uniform mesh, adaptive mesh step-(I), and adaptive mesh step-(II) for the initial mesh $N = 30$

Table 4 The number of elements, # Dof, total estimated error, and total error and effective index

# Elements	# Dof (N)	$\eta(y, p, u)$	E(y, p, u)	Eff. Index (η/E)
7128	1560	$3.5092e - 01$	1.5494e-01	2.2649
12870	2688	$1.5212e - 01$	$6.9913e - 02$	2.1758
20250	4096	$1.2466e - 01$	$6.7695e - 02$	1.8415
29376	5814	$2.3365e - 02$	$1.4951e - 02$	1.5628
43092	8360	$1.4526e - 02$	$1.0821e - 02$	1.3424
60858	11616	$1.5990e - 03$	$1.2071e - 03$	1.3247
82800	15600	$1.4125e - 03$	$1.1917e - 03$	1.1853
102344	18225	$1.3627e - 03$	1.1584e-03	1.1764

Fig. 5 Estimated and total errors (left); effective index (right)

elliptic reconstruction technique in conjunction with Green's function for the heat kernel are key ingredients in deriving the a posteriori error bounds. Interestingly, the constants involved in Theorems [4.5](#page-21-2) and [4.6](#page-22-0) are independent of time, but may depend on the domain (Ω) . In fact, some of the constants are stemming from the use of elliptic a posteriori error estimates. The proposed method does not require the discretization of the admissible control set but to implicitly utilize the optimality conditions for the discretization of the control variable. Our theoretical analysis is supported by numerical experiments which reveals that the adaptive scheme is able to save the substantial computational work.

Acknowledgements The authors would like to thank the anonymous referees for their valuable comments and constructive suggestions, which greatly improved the contents of this article.

References

- Aronson D. G (1968) Non-negative solutions of linear parabolic equations. Ann Scuola Norm Sup Pisa (3) 22:607–694
- Barbu V (1984) Optimal control for variational inequalities, research notes in mathematics, Vol 100, Pitman, London
- Becker R, Kapp H (1997) Optimization in PDE models with adaptive finite element discretization. In: Proc. ENUMATH97, Heidelberg, Sep. 29–Oct.3, World Scientific Publ., 1998
- Becker R, Kapp H, Rannacher R (1998) Adaptive Finite element methods for optimal control of partial differential equations: basic concept, SFB359, University Heidelberg
- Boman M (2000) On a posteriori error analysis in the maximum norm. Phd thesis, Chalmers University of Technology and Göteborg University
- Brenner SC, Scott LR (2008) The mathematical theory of finite element methods, texts in applied mathematics. Springer, New York
- Dari E, Duran RG, Padra C (2000) Maximum norm error estimators for three dimensional elliptic problems. SIAM J Numer Anal 37:683–700
- Demlow A (2006) Localized pointwise a posteriori error estimates for gradients of piecewise linear finite element approximations to second-order quasilinear elliptic problems. SIAM J Numer Anal 44:494–514
- Demlow A (2007) Local a posteriori estimates for gradient errors in finite element methods for elliptic problems. Math Comp 76:19–42
- Demlow A, Lakkis O, Makridakis C (2009) A posteriori error estimates in the maximum norm for parabolic problems. SIAM J Numer Anal 47:2157–2176
- Eriksson K, Johnson C (1995) Adaptive finite element methods for parabolic problems II: Optimal estimates in $L^{\infty}(L^2)$ and $L^{\infty}(L^{\infty})$. SIAM J Numer Anal 32:706–740
- Haslinger J, Neittaanmaki P (1989) Finite element approximation for optimal shape design. Wiley, Chichester Hetch F (2012) New development in free Fem++. J Numer Math 20:251–265
- Hinze M (2005) A variational discretization concept in control constrained optimization: the linear quadratic case. Comput Optim Appl 30:45–63
- Knowles G (1982) Finite element approximation of parabolic time optimal control problems. SIAM J Control Optim 20:414–427
- Lakkis O, Makridakis C (2006) Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems. Math Comp 75:1627–1658
- Langer U, Repin S, Wolfmayr M (2016) Functional a posteriori error estimates for parabolic time-periodic parabolic optimal control problems. Numer Funct Anal Optim 37:1267–1294

Lions JL (1971) Optimal control of systems governed by partial differential equations. Springer-Verlag, Berlin

- LiuW, Yan N (2003) A posteriori error estimates for optimal control problems governed by parabolic equations. Numer Math 93:497–521
- Luskin M, Rannacher R (1982) On the smoothing property of the Galerkin method for parabolic equations. SIAM J Numer Anal 19:93–113
- Makridakis C, Nochetto RH (2003) Elliptic reconstruction and a posteriori error estimates for parabolic problems. SIAM J Numer Anal 41:1585–1594
- Meyer C, Rösch A (2004) Superconvergence properties of optimal control problems. SIAM J Control Optim 43:970–985
- Morin P, Nochetto RH, Siebert KG (2000) Data oscillation and convergence of adaptive FEM. SIAM J Numer Anal 38:466–488
- Neittaanmaki P, Tiba D (1994) Optimal control of nonlinear parabolic systems: theory, algorithms and applications. M. Dekker, New York
- Nochetto RH (1995) Pointwise a posteriori error estimates for elliptic problems on highly graded meshes. Math Comp 64:1–22
- Nochetto RH, Schmidt A, Siebert KG, Veeser A (2003) Pointwise a posteriori error control for elliptic obstacle problems. Numer Math 95:163–195
- Nochetto RH, Schmidt A, Siebert KG, Veeser A (2005) Fully localized a posteriori error estimators and barrier sets for contact problems. SIAM J Numer Anal 42:2118–2135
- Nochetto RH, Schmidt A, Siebert KG, Veeser A (2006) Pointwise a posteriori error estimates for monotone semilinear problems. Numer Math 104:515–538
- Nietzel I, Vexler B (2012) A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems. Numer Math 120:345–386
- Otárola E, Rankin R, Salgado AJ (2019) Maximum-norm a posteriori error estimates for an optimal control problem. Comput Optim Appl 73:997–1017
- Pironneau O (1984) Optimal shape design for elliptic systems. Springer-Verlag, Berlin

- Rösch A (2004) Error estimates for parabolic optimal control problems with control constraints. Z Anal Anwend 23:353–376
- Sun T, Ge L, Liu W (2013) Equivalent a posteriori error estimates for a constrained optimal control problem governed by parabolic equations. Int J Numer Anal Model 10:1–23
- Tang Y, Chen Y (2012a) Recovery type a posteriori error estimates of fully discrete finite element methods for general convex parabolic optimal control problems. Numer Math Theoret Math Appl 5:573–591
- Tang Y, Chen Y (2012b) Variational discretization for optimal parabolic optimal control problems with control constraints. J Syst Sci Complex 25:880–895
- Tang Y, Hua Y (2014) Elliptic reconstruction and a posteriori error estimates for parabolic optimal control problems. J Appl Anal Comput 4:295–306
- Tiba D (1995) Lectures on the optimal control of elliptic equations. University of Jyväskylä, Department of Mathematics
- Wheeler MF (1973) A priori L^2 -error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J Numer Anal 10:723–759
- Winther R (1978) Error estimates for a Galerkin approximation of a parabolic control problem. Ann. Mat. Pura Appl. 117:173–206
- Xiong C, Li Y (2011) A posteriori error estimates for optimal distributed control governed by the evaluation equations. Appl Numer Math 61:181–200

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

