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Abstract
In this paper, multiple attribute group decision making(MAGDM) problems with single-
valued neutrosophic 2-tuple linguistic (SVN2TL) set information are presented based on
Frank operator, extend multi-attributive border approximation area comparison (MABAC)
method, and best worst method (BWM).We first give the the concept of BWMmethod, Frank
operator, and basic operational rules onSVN2TL setwith Frank t-norms and t-conorms. Then,
two aggregation operators including SVN2TL Frank weighted averaging (SVN2TLFWA)
operator and Frank weighted geometric (SVN2TLFWG) operator are developed, and some
desirable properties are discussed as well. What’s more, an iterative algorithm is designed
for the determination of decision makers’ weight based on BWM method. Subsequently,
combine the extend MABAC method and proposed operators, a new approach is developed
to deal MAGDMwith SVN2TL information. Finally, a numerical example has been given to
show the procedure of the proposed method, and some sensitivity and comparative analysis
are also conducted to illustrate the effectiveness and superiority of the proposed method.
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1 Introduction

As one of the basic activities of human society, decision-making problems (DMPs) exists in
all aspects of social life, from the state, government, enterprises and institutions to everyone
(Blanco-Mesa et al. 2017). When using MAGDM theory to solve DMPs, it is first necessary
for decision makers (DMs) to express their evaluation information in an appropriate way.

In some cases, the evaluation information can be given in the form of deterministic values,
such as student’s grade, car prices, etc. But in more cases, due to the complexity of the DMPs
itself and limitations of human cognition, it is difficult to give their evaluations in the form
of certain values, such as the service quality of merchants in e-commerce. For this problem,
scholar Zadeh creatively proposed the concept of fuzzy set (FS), creating a pioneer in studying
uncertain phenomena from the perspective of fuzzy membership (Zadeh 1975). However, FS
only contains the membership degree (MD), which can not deal with complex situations.
Therefore, based on FS, Atanassov introduced the theory of intuitionistic fuzzy set (IFS)
(Atanassov 1986).

Being composed of MD and nonmembership degree (NMD), IFS is more suitable for
describing uncertain phenomena than classical FS. Therefore, in the past few decades, IFS
has been successfully applied to many fields. However, IFS cannot address indeterminate
information. For example, when we invite an expert to judge the accuracy of a statement,
he may say that the MD of the statement is 0.5, the NMD is 0.6, and the uncertainty degree
is 0.2. In this case, it is beyond the scope of application of IFS. To solve this problem,
Smarandache introduced the concept of neutrosophic set (NS) (Smarandache 1999). NS is
composed of three independent memberships, including truth-membership (TM ), faulty-
membership (FM ) and indeterminacy-membership (IM). NS is more general and extensive,
but it is still difficult to apply. To overcome application problems, several subclasses of NS
have been proposed over the years including interval neutrosophic set (Wang et al. 2005),
single-valued neutrosophic set (SVNS) (Wang et al. 2010), simplified neutrosophic set (Ye
2014) and neutrosophic soft set (Deli and Broumi 2015).

When the actual problem is too complicated or unclear, it is difficult to fully express the
information using quantitative expressions. Linguistic variables (LVs) are the most direct
form of describing fuzzy information. Compared with precise values, LVs are closer to the
way humans express knowledge, and can better reflect the fuzzy and uncertain informa-
tion of people’s cognition. In recent years, the combination of LVs and other Fuzzy set has
been continuously proposed, such as linguistic IFS (Garg and Kumar 2019), linguistic hes-
itant fuzzy set Liao (2015), linguistic NS Ji et al. (2018), and so on. To avoid the loss of
information in the process of aggregation, Herrera and Martnez (2000) proposed 2-tuple
symbolic representation, which converts linguistic information into continuous 2-tuple Lin-
guistic terms. Therefore, it has gradually become a research hotspot for scholars and applied
tomany domains. However, using LVs to express decisionmaker’s preference implies that the
degree of criterion belonging to a linguistic variable is 1, which cannot describe the degree
of nonmembership and decision-maker’s hesitation. This defect hinders its application in
DMPs.

To improve this limitation, Ye (2015) introduced a new powerful fuzzy tool called single-
valued neutrosophic linguistic set (SVNLS). It combines the advantages of linguistic item
and SVNS, and can describe uncertain information comprehensively and reasonably. For
example, the performance of the engine of a certain vehicle by a decision maker may be
given as 〈s5, (0.4, 0.2, 0.2)〉, which indicates that the mark of a certain vehicle with respect
to the performance of the engine is about the linguistic item s5 with satisfaction degree
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0.4, dissatisfaction degree 0.2, and indeterminacy degree 0.2. From the latest research trends,
SVNLS iswidely used inDMPs.After the expression of evaluation information is determined,
it is possible to use the aggregation operator to aggregate the information by DMs (Blanco-
Mesa 2019), and then use the aggregation operator or fuzzy decision method to sort the
candidates.

With regard to aggregation operators (AOs),Wuet al. (2018) proposed theSVN2-tuple lin-
guistic Hamacher weighted averaging (SVN2TLHWA) operator based on Hamacher t-norm
and t-conorm. Yu et al. (2020) proposed a SVN linguistic set (SVNLS) induced ordered
weighted averaging distance operator. Wang et al. (2017) proposed a series of maclaurin
symmetric mean (MSM) operator under SVNLS environments. Wang et al. (2019) devel-
oped a weighted dual muirhead mean operator under SVN2TL environment. Guo and Sun
(2019) proposed a SVNLS-PT operator based on SVNLS set and prospect theory. Zhang
et al. (2020) developed a weighted distance operator under SVNLS environment. Ju et al.
(2018) put forward a weighted MSM operator under SVN interval 2-tuple linguistic environ-
ment.With regard tomethods, Ye (2015) develop an extended TOPSISmethod under SVNLS
environment. Chen et al. (2018) proposed a TOPSISmethod based on ordered weighted aver-
aging distance under SVNLS environment. Ji et al. (2018) proposed anMABACCELECTRE
method using SVNLS to handle the problem of outsourcing provider selection.

Recently, Pamucar and Cirovic develop a new reliable method called MABAC (Pamučar
and Ćirović 2015). Compared with the existing methods, it owns the merits of considering
the potential losses and gains, easy coding, systematic process and a sound logic. After that,
scholars have studied the combination of MABAC method and some fuzzy sets to solve
MAGDM problems, such as Pythagorean fuzzy set (Peng and Yang 2016), interval-valued
intuitionistic fuzzy (Xue et al. 2016), hesitant fuzzy linguistic set (Sun et al. 2017), SVN (Peng
and Dai 2018) Probability Multi-Valued Neutrosophic Sets (Liu and Cheng 2020), q-rung
orthopair fuzzy (Wang et al. 2020), 2-Tuple Linguistic Neutrosophic (Wang et al. 2019),
probabilistic uncertain linguistic information (Wei et al. 2020), picture 2-tuple linguistic
(Zhang et al. 2020). However, there is no research of MABAC method under single-valued
neutrosophic 2-tuple linguistic sets (SVN2TLS) environment in the current literature.

Besides, all AOsmentioned above are mainly based on a algebraic t-norms and t-conorms.
The most widely used algebraic operations are algebraic product and sum. Although it is
useful to carry out computing, it is lack of flexibility and robustness. With a parameter,
Frank t-norms and t-conorms (Frank 1979) has certain compatibility and can solveMAGDM
problems according to different parameter selection. What’s more, it can degenerate to prob-
ability and Lukasiewicz t-norms and t-conorms which make them more flexible and robust
(Ji et al. 2018; Nancy 2016; Peng et al. 2018; Qin et al. 2016). Ji et al. (2018) studied the
Frank prioritized Bonferroni mean operator under SVNL environment and applied in select-
ing third-party logistics providers. Nancy (2016)investigated some operations of SVN under
Frank normoperations. Peng et al. (2018) studied the the FrankHeronianmean operator under
linguistic intuitionistic environment and used to evaluate coal mine safety. However, there
are few researches on the application of Frank operators. What’s more, we have not found
any research in SVN2TLS environment. Therefore, this paper attempts to fill the research
gap by extending the Frank t-norms and t-conorms to SVN2TLS environment.

What’s more, as the rationality of weight in MAGDM directly affects the accuracy of
decision-making results, the research of weight plays an important role in MAGDM. Gen-
erally, the weight of MAGDM includes attribute weight and expert weight. However, the
previous studies have assumed that expert weight or attribute weight is already known. Ji
et al. (2018) and Guo and Sun (2019) applied mean-squared deviation method to calculate
objective attribute weight. Wu et al. (2018) applied the method of maximizing deviation to
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calculate objective attribute weight. Guo and Sun (2019) also calculated subjective weights
of attributes based on prospect values.

The best worst method (BWM) was first suggested by Rezaei (2016). For the BWM
method, the best and worst criteria need to be provided by DMs at first. After that, determine
the pairwise comparisons vectors of the best and worst criteria over all the other criteria, and
finally obtain the optimal weights by solving a linear programming. In comparison with the
AHP method, the number of pairwise comparisons in the BWM method is greatly reduced.
For N criteria problems, the AHP method requires n2 − n comparisons, while the BWM
method only requires 2n − 3. Therefore, it can reduce the confusion caused by too many
comparisons, making the final result easier to pass the consistency test. At present, there are
very few applications of BWMmethod in MADM, and only five articles (Ecer and Pamucar
2020; Li et al. 2019; Maghsoodi et al. 2020; Wang et al. 2020; Yang et al. 2020) have been
retrieved through web of science. We can find that the current scholars mainly study the
application of the BWM method to solving attribute weights, but no scholars have applied
the BWM method to the calculation of expert weights. In actual situations, there is usually
an organizer who organizes experts to give an evaluation of the attributes of something.
The organizer is usually familiar with the invited experts, so he (she) can select the best
and worst experts from the invited list and compare them in pairs. Therefore, motivated
on the above ideas, in this paper, we first apply BWM method to solve subjective expert
weights. Second, the results may be biased because the current mixed methods often simply
synthesize subjective and objective weights without forming a feedback network to obtain a
stable solution.

Motivated by the above situation, we propose an iterative algorithm to integrate the BWM
method and the objectivemethod to obtain a stable expertweight value.Although theMABAC
method considers potential gains and losses in the ranking of alternatives, it cannot reflect the
characteristic that DMs are more sensitive to losses than gains and DMS are not completely
rational (Wang 2020). Therefore, in this article, MABAC is improved by introducing risk
preference parameters to reflect the characteristics of DMs’ risk attitudes.

In this paper, the main innovations and contributions are summarized as:

1. First, Frank t-norms and t-conorms are extend to SVN2TLS environment. Then, two new
AOs are proposed including SVN2TL Frank weighted averaging (SVN2TLFWA) oper-
ator and SVN2TL Frank weighted geometric (SVN2TLFWG) operator, and discussed
some desirable properties.

2. CombinedwithBWMmethod, an iterative algorithm is proposed to integrate the objective
method to obtain a stable expert weight.

3. Based on the improved MABAC method, two new approaches are proposed under
SVN2TLS environment and some special cases are investigated to verify the superiority
of the proposed approaches.

To achieve the above contents, this remainder is organized as follows. In Sect. 2, we
presents some concepts including BWMmethod, Frank operator, SVN2TLS, and score func-
tion. In Sect. 3, SVN2TLFWA operator and SVN2TLFWG operator are proposed based on
SVN2TLS environment and Frank operator. In Sect. 4, we discussed the DMs’s weight and
attribute weights, and a new MAGDM approach based on Frank aggregation operator is
demonstrated. In Sect. 4, some examples are illustrated to show the effectiveness and supe-
riority of the proposed method. The last section concludes the paper with future research
directions.
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2 Preliminaries

In this section, some basic concepts regarding Frank operator, SVN2TLS and BWMmethod
are introduced.

2.1 Frank operator

Definition 1 (Nancy 2016) Frank product ⊗F and Frank sum ⊕F can be defined as:

a ⊕F b = 1 − logλ

(
1 + (λ1−a − 1)(λ1−b − 1)

λ − 1

)
, (1)

a ⊗F b = logλ

(
1 + (λa − 1)(λb − 1)

λ − 1

)
. (2)

where λ > 1, a, b ∈ [0, 1].

It can be easily proved that when λ → 1, a ⊕F b → a + b − ab, a ⊗F b → ab. When
λ → ∞, a ⊕F b → min(a + b, 1), a ⊗F b → max(0, a + b − 1).

Definition 2 (Liu et al. 2020) If function TE−F : [0, t]2 → [0, t] satisfies:

TE−F (a, b) = t logλ

(
(λa/t − 1)(λb/t − 1)

λ − 1
+ 1

)
. (3)

then, it called extended Frank T-norm. where λ ∈ (1,∞).

Definition 3 (Liu et al. 2020) If function SE−F : [0, t]2 → [0, t] satisfies:

SE−F (a, b) = t(1 − logλ

(
1 + (λ1−a/t − 1)(λ1−b/t − 1)

(λ − 1)

)
. (4)

then, it called extended Frank T-conorm. where λ ∈ (1,∞).

2.2 linguistic 2-tuple

Definition 4 (Herrera and Martnez 2000) Let S = {s0, s1, · · · , sg} be a linguistic term set
with odd granularity g + 1, and β ∈ [0, g]. Then, a linguistic 2-tuple (si , α) that expresses
the equivalent information to β can be obtained with the following function:

Δ : [0, g] → S × [−0.5, 0.5),

Δ(β) = (si , α)wi th

{
si , i = round(β)

α = β − i, α ∈ [−0.5, 0.5).

where round(·) is the common rounding operation. Oppositely,Δ has an inverse function
with Δ−1:

Δ−1 : S × [−0.5, 0.5) → [0, g],
Δ−1(si , α) = i + α.
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2.3 BWMmethod

Generally, to get a ranking results among several alternatives, there is usually an organizer that
collect some experts with different knowledge fields using scientific and effective theoretical
methods to gather the evaluation information of the schemes in a certain way, and finally get
the ranking of alternatives.

Because the knowledge level, personalities and characters of experts are different , experts
cannot be treated equally. It is reflected in the decision-making process that experts need to
be assigned different weights. In the actual decision-making process, there is usually an
organizer, and the organizer is relatively clear about the background of the invited experts.
Therefore, for the organizer, it is more confident to provide the expert’s preferences infor-
mation by pairwise comparisons. For the information of preference relations, decision can
usually be achieved under the framework of the AHP (Saaty 1980). The AHP method has
obvious advantages such as easy to understand and wide application, but it also has certain
shortcomings. The method of pairwise comparison may cause organizer fall into a certain
degree of confusionwhen there aremany experts and the degree of difference between experts
is not very large. under these circumstances, it difficult to pass the consistency test. If the
consistency index requirements are not met, the AHP method will be useless.

In 2015, Rezaei improved the AHP method and introduced the BWM method (Rezaei
2016). The BWM method requires less comparative data, the scoring process for decision
makers is simpler. Using the BWM method, the best and worst item need to determine, and
the importance degree between the best and worst item need to be evaluated (a scale of 1–9 is
usually used). For a comparison issue with n items, there are n-2 items need to compare with
the best andworst items, so BWMonly requires to conduct 2n−3 comparisons (AHP n2−n).
The number of comparisons is greatly reduced, making it easier to pass the consistency test.

In this part, the steps for BWM to calculate the weights of experts are summarized as:
Step 1 Determine the expert set {E1, E2, . . . , El};
Step 2 The organizer conducts a comprehensive analysis on the set of experts and selects

the best and worst experts;
Step 3 Determine the preferences of the best and worst experts over the other expert using

a number 1–9 and obtain two vectors;

UB = (uB1, . . . , uBl), VW = (v1W , . . . , vlW ),

where l is the number of experts, uBj indicates the preference degree of the best expert over
expert E j , v jW means the preference degree of expert E j over the worst expert.

Step 4. Get the optimal weight (μs
1, μ

s
2, · · · , μs

l ) and optimal solution ε∗ by solving linear
programming below:

min ε

s.t.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|μs
B

μs
j

− uBj | ≤ ε, j = 1, . . . , l

| μs
j

μs
W

− v jW | ≤ ε, j = 1, . . . , l

μs
j ≥ 0, j = 1, . . . , l∑l
j=1 μs

j = 1 .

(5)

The consistency ratio (CR) can be calculated as follow:

CR = ε∗

Consistency index
. (6)
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Table 1 Consistency index (Rezaei 2016)

1 2 3 4 5 6 7 8 9

Consistency index 0.00 0.44 1.00 1.63 2.33 3.00 3.73 4.47 5.23

Step 5. Compute the CR using Eq. (6). IfCR ≤ 0.1, output the optimal weight and optimal
solution; else, return to Step 1 and adjust the vectors UB and VW .

It should be noted that the greater the ε∗, the less reliable the comparisons are.

3 Some new AOs based on SVN2TLS and Frank t-norm and t-conorm

3.1 SVN2TLS

Definition 5 (Wu et al. 2018) A SVN2TLS in X is defined as:

A = {〈x, (sθ(x), αx ), (TA(x), IA(x), FA(x))〉|x ∈ X}, (7)

where sθ(x) ∈ S, αx ∈ [−0.5, 0.5), TA(x), IA(x), FA(x) ∈ [0, 1], 0 ≤ TA(x) + IA(x) +
FA(x) ≤ 3.

Definition 6 (Wu et al. 2018) Let ap = 〈(sθ(ap), αp), (T(ap), I(ap), F(ap))〉(p = 1, 2) be two
SVN2TLSs, then the operations are defined as:

1. a1 ⊕ a2 = 〈Δ(Δ−1(sθ(a1), α1) + Δ−1(sθ(a2), α2)),

×(Ta1 + Ta2 − Ta1Ta2, Ia1 Ia2, Fa1Fa2)〉;
2. a1 ⊗ a2 = 〈Δ(Δ−1(sθ(a1), α1)Δ

−1(sθ(a2), α2)),

×(Ta1Ta2, Ia1 + Ia2 − Ia1 Ia2, Fa1 + Fa2 − Fa1Fa2)〉;
3. λa1 = 〈Δ(λΔ−1(sθ(a1), α1)), (1 − (1 − Ta1)λ, (Ia1)λ, (Fa1)λ)〉;
4. (a1)λ = 〈Δ(Δ−1(sθ(a1), α1)

λ), ((Ta1)λ, 1 − (1 − Ia1)λ, 1 − (1 − Fa1)λ)〉.
Definition 7 Let ap(p = 1, 2) be two SVN2TLSs, then the Frank operations rules of
SVN2TLSs are defined as:

a1 ⊕ a2 = 〈Δ(t(1 − logλ(1 + (λ1−Δ−1(sθ(a1),α1)/t − 1)(λ1−Δ−1(sθ(a2),α2)/t − 1)

(λ − 1)
))),

× 1 − logλ

(
1 + (λ1−Ta1 − 1)(λ1−Ta2 − 1)

λ − 1

)
,

× logλ

(
1 + (λIa1 − 1)(λIa2 − 1)

λ − 1

)
, logλ

(
1 + (λFa1 − 1)(λFa2 − 1)

λ − 1

)
.

a1 ⊗ a2 = t logλ

(
(λΔ−1(sθ(a1),α1)/t − 1)(λΔ−1(sθ(a2),α2)/t − 1)

λ − 1
+ 1

)
,

× logλ

(
1 + (λTa1 − 1)(λTa2 − 1)

λ − 1

)
, 1 − logλ

(
1 + (λ1−Ia1 − 1)(λ1−Ia2 − 1)

λ − 1

)
,

× 1 − logλ

(
1 + (λ1−Fa1 − 1)(λ1−Fa2 − 1)

λ − 1

)
.

na1 = 〈Δ(t ∗ (1 − logλ(1 + (λ1−Δ−1(sθ(a1),α1)/t − 1)n

(λ − 1)n−1 ))),
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× 1 − logλ

(
1 + (λ1−Ta1 − 1)n

(λ − 1)n−1

)
, logλ

(
1 + (λIa1 − 1)n

(λ − 1)n−1

)
,

× logλ

(
1 + (λFa1 − 1)n

(λ − 1)n−1

)
.

(a1)
n = 〈Δ(t ∗ logλ

(
1 + (λΔ−1(sθ(a1),α1) − 1)n

(λ − 1)n−1

)
), logλ

(
1 + (λIa1 − 1)n

(λ − 1)n−1

)
,

× 1 − logλ

(
1 + (λ1−Ia1 − 1)n

(λ − 1)n−1

)
, 1 − logλ

(
1 + (λ1−Fa1 − 1)n

(λ − 1)n−1

)
.

Theorem 1 Let ap(p = 1, 2, 3) be three SVN2TLSs, η, η1, η2 ≥ 0 then we have:

1. a1 ⊕ a2 = a2 ⊕ a1;
2. a1 ⊗ a2 = a2 ⊗ a1;
3. (a1 ⊕ a2) ⊕ a3 = a1 ⊕ (a2 ⊕ a3);
4. (a1 ⊗ a2) ⊗ a3 = a1 ⊗ (a2 ⊗ a3);
5. η(a1 ⊕ a2) = ηa2 ⊕ ηa1;
6. η1a1 ⊕ η2a1 = (η1 + η2)a1;
7. aη1

1 ⊗ aη2
1 = aη1+η2

1 ;
8. (a1 ⊗ a2)η2 = aη

1 ⊗ aη
2 .

Definition 8 Let a be any SVN2TLSs, the score function S(·), accuracy function A(·) and
certainty function C(·)for a are defined as:

1. S(a) = 〈Δ(Δ−1(sθ(a), α)
(2+Ta−Ia−Fa)

3 )〉;
2. A(a) = 〈Δ(Δ−1(sθ(a), α)(Ta − Fa))〉;
3. C(a) = 〈Δ(Δ−1(sθ(a), α)Ta)〉.
Definition 9 Let ap(p = 1, 2) be two SVN2TLSs, we have:

1. if S(a1) > S(a2), then a1 > a2;
2. if S(a1) = S(a2), and A(a1) > A(a2), then a1 > a2;
3. if S(a1) = S(a2), and A(a1) = A(a2), andC(a1) > C(a2) then a1 > a2;
4. if S(a1) = S(a2), and A(a1) = A(a2), andC(a1) = C(a2) then a1 = a2.

3.2 SVN2TLFWA operator

Definition 10 Assume ap is family of SVN2TLSs. The SVN2TLFWA operator is a mapping
from Ωn to Ω , and let the corresponding weight vector is w (0 ≤ wk ≤ 1,

∑n
k=1 wk = 1),

such that

SV N2T LFW A(a1, a2, . . . , an) =
n⊕

i=1

wi ai . (8)

Theorem 2 Let ap be n SVN2TLNs, then the Frank weighted averaging operator of n
SVN2TLNs is still a SVN2TLN, and

SV N2T LFW A(a1, a2, . . . , an) =
n⊕

i=1

wi ai

=
〈
Δ

(
t

(
1 − logλ

(
1 +

n∏
i=1

(λ1−Δ−1(sθ(ai ),αi )/t − 1)wi

)))
,
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×1 − logλ

(
1 +

n∏
i=1

(λ1−Tai − 1)wi

)
,

× logλ

(
1 +

n∏
i=1

(λIai − 1)wi

)
, logλ

(
1 +

n∏
i=1

(λFai − 1)wi

)
.

〉

(9)

Proof See “Appendix A”. �

Example 1 Leta1 = 〈s4, (0.2, 0.2, 0.3)〉, a2 = 〈s4, (0.4, 0.3, 0.1)〉, a3 = 〈s3, (0.6, 0.2, 0.1)〉
be three SVN2TLNs, and w = (0.3, 0.4, 0.2), λ = 2, t = 6, then according to Eq. (9), we
have

SV N2T LFW A(a1, a2, a3) = 0.3a1 ⊕ 0.4a2 ⊕ 0.2a3

=
〈
Δ

(
t
(
1 − log2

(
1 + (21−(4/6) − 1)0.3 · (21−(4/6) − 1)0.4 · (21−(3/6) − 1)0.2

)))
,

×1 − log2
(
1 + (21−0.2 − 1)0.3 · (21−0.4 − 1)0.4 · (21−0.6 − 1)0.2

)
,

× log2
(
1 + (20.2 − 1)0.3 · (20.3 − 1)0.4 · (20.2 − 1)0.2

)
,

× log2
(
1 + (20.3 − 1)0.3 · (20.1 − 1)0.4 · (20.1 − 1)0.2

) 〉
.

=
〈
Δ

(
t
(
1 − log2 (1.3265)

))
, 1 − log2 (1.5582) , log2 (1.2146) , log2 (1.1327)

〉
,

=
〈
Δ(3.5546) , 0.3601, 0.2805, 0.1798

〉
,

=
〈
(s4, −0.4454), 0.3601, 0.2805, 0.1798

〉
.

Theorem 3 (Idempotency). Let ap(p = 1, . . . , 3) be n SVN2TLNs, if ap = a =
〈(sθ(a), α), (T(a), I(a), F(a))〉 for all p, then

SVN2TLFWA(a1, . . . , an) = SVN2TLFWA(a, . . . , a) = a. (10)

Proof See “Appendix B”. �

Theorem 4 (Monotonicity). Let axi = 〈(sθ(axi )
, αxi ), (T(axi )

, I(axi ), F(axi )
)〉 and ayi =

〈(sθ(ayi )
, αyi ), (T(ayi )

, I(ayi ), F(ayi )
)〉(i = 1, 2, . . . , n) be two set of SVN2TLNs, if

Δ−1(sθ(axi )
, αxi ) ≤ Δ−1(sθ(ayi )

, αyi ), T(axi )
≤ T(ayi )

, I(axi ) ≥ I(ayi ), F(axi )
≥ F(ayi )

for
all i , then

SVN2TLFWA(ax1 , ax2 , . . . , axn ) ≤ SVN2TLFWA(ay1 , ay2 , . . . , ayn ). (11)

Proof See “Appendix C”. �
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Theorem 5 (Boundedness). Let a− = 〈(sθ(a), α)−, (T(a−), I(a−), F(a−))〉 and a+ =
〈(sθ(a), α)+, (T(a+), I(a+), F(a+))〉, where (sθ(a), α)− = mini {sθ(ai ), αi )}, T(a−) =
mini {T(ai )}, T(a+) = maxi {T(ai )}, I(a−) = maxi {I(ai )}, I(a+) = mini {I(ai )}, F(a−) =
maxi {F(ai )}, F(a+) = mini {F(ai )}then

a− ≤ SVN2TLFWA(a1, a2, . . . , an) ≤ a+. (12)

From Theorem 3,

SVN2TLFWA(a−, a−, . . . , a−) = a−,

SVN2TLFWA(a+, a+, . . . , a+) = a+.

From Theorem 4,

a− ≤ SVN2TLFWA(a1, a2, . . . , an) ≤ a+.

Theorem 6 Let a and ap(p = 1, 2, . . . , n) be SVN2TLNs, and 0 ≤ wk ≤ 1,
∑n

k=1 wk =
1, r > 0, then

SVN2TLFWA(ra1, . . . , ran) = r · SVN2TLFWA(a1, . . . , an);
SVN2TLFWA(a1 ⊕ a, . . . , an ⊕ a) = SVN2TLFWA(a1, . . . , an) ⊕ a;
SVN2TLFWA(ra1 ⊕ a, . . . , ran ⊕ a) = r · SVN2TLFWA(a1, . . . , an) ⊕ a.

Proof The proof process is similar to Nancy (2016), so we omitted it here. �
In the following, we will discuss some special values of parameter λ.

1. When λ → 1

lim
λ→1

SVN2TLFWA(a1, a2, . . . , an) = SV N2T LW A(a1, a2, . . . , an)

=
〈
Δ(t(1 −

n∏
i=1

(1 − Δ−1(sθ(ai ), αi )/t)
wi )),

× 1 −
n∏

i=1

(1 − Tai )
wi ,

n∏
i=1

(Iai )
wi ,

n∏
i=1

(Fai )
wi

〉
.

2. When λ → ∞
lim

λ→∞ SV N2T LFW A(a1, a2, . . . , an)

=
〈
Δ(t

n∑
i=1

(Δ−1(wi (sθ(ai ), αi )/t))),
n∑

i=1

wi Tai ,
n∑

i=1

wi Iai ,
n∑

i=1

wi Fai

〉
.

Proof See “Appendix D”. �

3.3 SVN2TLFWG operator

Theorem 7 Let ap(p = 1, . . . , n) be n SVN2TLNs, then the Frank weighted geometric
operator of n SVN2TLNs is still a SVN2TLN, and

SV N2T LFWG(a1, a2, . . . , αn)
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=
〈
Δ

(
t

(
logλ

(
1 +

n∏
i=1

(λΔ−1(sθ(ai ),αi )/t − 1)wi

)))
, logλ

(
1 +

n∏
i=1

(λTai − 1)wi

)
,

× 1 − logλ

(
1 +

n∏
i=1

(λ1−Iai − 1)wi

)
, 1 − logλ

(
1 +

n∏
i=1

(λ1−Fai − 1)wi

)〉
. (13)

1. When λ → 1

lim
λ→1

SVN2TLFWG(a1, a2, . . . , an) = SVN2TLWG(a1, a2, . . . , an)

=
〈
Δ

(
t

(
n∏

i=1

(Δ−1(sθ(ai ), αi )/t)
wi

))
,

×
n∏

i=1

(Tai )
wi , 1 −

n∏
i=1

(1 − Iai )
wi , 1 −

n∏
i=1

(1 − Fai )
wi

〉
.

2. When λ → ∞:

lim
λ→∞ SVN2TLFWG(a1, a2, . . . , an)

=
〈
Δ(t

n∑
i=1

(Δ−1(wi (sθ(ai ), αi )/t))),
n∑

i=1

wi Tai ,
n∑

i=1

wi Iai ,
n∑

i=1

wi Fai

〉
.

Example 2 Leta1 = 〈s4, (0.2, 0.2, 0.3)〉, a2 = 〈s4, (0.4, 0.3, 0.1)〉, a3 = 〈s3, (0.6, 0.2, 0.1)〉
be three SVN2TLNs, and w = (0.3, 0.4, 0.2), λ = 2, t = 6, then according to Eq (13), we
have

SVN2TLFWG(a1, a2, a3) = 0.3a1 ⊗ 0.4a2 ⊗ 0.2a3

=
〈
Δ

(
t
(
log2

(
1 + (2(4/6) − 1)0.3 · (2(4/6) − 1)0.4 · (2(3/6) − 1)0.2

)))
,

× log2
(
1 + (20.2 − 1)0.3 · (20.4 − 1)0.4 · (20.6 − 1)0.2

)
,

×1 − log2
(
1 + (2(1−0.2) − 1)0.3 · (2(1−0.3) − 1)0.4 · (2(1−0.2) − 1)0.2

)
,

×1 − log2
(
1 + (2(1−0.3) − 1)0.3 · (2(1−0.1) − 1)0.4 · (2(1−0.1) − 1)0.2

) 〉
,

=
〈
Δ

(
t
(
log2 (1.3265)

))
, log2 (1.3133) , 1 − log2 (1.7131) , 1 − log2 (1.7965)

〉
,

=
〈
Δ (2.4457) , 0.3932, 0.2234, 0.1548

〉
,

=
〈
(s2, 0.4457), 0.3932, 0.2234, 0.1548

〉
.

Theorem 8 Let a and ap(p = 1, 2, . . . , n) be SVN2TLNs, and 0 ≤ wk ≤ 1,
∑n

k=1 wk =
1, r > 0, then

SVN2TLFWA(ar1, . . . , a
r
n) = (SVN2TLFWA(a1, . . . , an))

r ;
SVN2TLFWA(a1 ⊗ a, . . . , an ⊗ a) = SVN2TLFWA(a1, . . . , an) ⊗ a;
SVN2TLFWA(ar1 ⊕ a, . . . , arn ⊗ a) = (SV N2T LFW A(a1, . . . , an))

r ⊗ a.
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4 Approach for MAGDM issue with proposed AOs

In an MAGDM problem, assume that (1) Alternative set: A = {A1, · · · , Am}; (2) Attribute
(Criteria) set: C = {C1, · · · ,Cn}; (3) WV of attribute w satisfies wi ∈ [0, 1] and∑n

i=1 wi = 1. (4) Experts set E , WV of expertμ satisfiesμk ∈ [0, 1] and∑l
i=1 μi = 1. The

evaluated information of alternative Ai under the attribute C j by expert Ek can be expressed
as (sθ

(i j)k
, αi j k ), (T(i j)k , I(i j)k , F(i j)k ). The corresponding evaluation matrix can be expressed

as:Rk = (Rk
i j )m×n .

The steps of MAGDM problem can be summarized as the construction of the evalua-
tion index system, obtaining the evaluation value of the alternatives, calculating the expert
weight, integrating the evaluation information, determining the attribute weight, sorting the
alternatives according to the decision-making method and determining the optimal one.

Definition 11 Let ap(p = 1, 2) be two SVN2TLSs, then the Hamming distance is defined
as

d(a1, a2) = |Δ−1(sθ(a1), α1)Ta1 − Δ−1(sθ(a2), α2)Ta2 | + |Δ−1(sθ(a1), α1)(1 − Ia1)

−Δ−1(sθ(a2), α2)(1 − Ia2)| + |Δ−1(sθ(a1), α1)(1 − Fa1)

−Δ−1(sθ(a2), α2)(1 − Fa2)|. (14)

4.1 Determine DMs’weights

The subjectiveweightmethod relies on the experience andprofessional knowledgeof decision
makers, and the objective weight method relies on the actual evaluation information. To not
only consider the experience and professional knowledge of DMs, but also use the evaluation
information, the comprehensiveweights ofDMs is determined by linear combinationmethod.
Let μs

j and μo
j be subjective and objective weight of experts, respectively, then we have :

μ j = ρμs
j + (1 − ρ)μo

j . (15)

Definition 12 Let (Rk
i j )m×n be the evaluation matrix of the expert Ek using SVN2TSNNs,

and (R◦
i j )m×n be the overall matrix which is defined as:

R◦
i j =

l∑
k=1

μk R
k
i j , (16)

In group decision-making problems, it is generally considered that there is a consistent trend
in the decisions of experts. If an expert’s evaluation of the scheme set is highly similar to that
of the group, it means that the expert has the same opinion with other experts or the opinion of
the expert is generally supported by the group, then the expert should have a higher objective
weight.

Definition 13 Let Rk and R◦ be the evaluationmatrix of expert Ek and expert group,respectively.
For the attributeC j of the alternative Ai , the relative deviation between expert Rk and R◦ is
represented by ψk

i j , which is defined as

ψ(Rk
i j , R

◦
i j ) = d

(
Rk
i j , R

◦
i j

)
, (17)
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then, after the k-th iteration, the sum of the deviations between the evaluationmatrix of expert
Ek and the expert group is denoted by Δψ

(r)
k :

Δψ
(r)
k =

m∑
i=1

n∑
j=1

ψ
(
Rk
i j , R

◦
i j

)
. (18)

According to the consistency principle, the smallerΔψ
(r)
k is, the higher the similarity between

expert Ek and the expert group, and then the higher objective weight μo
k should be given.

Therefore, the k − th normalized objective weight μo(r)
k can be obtained as follows:

μ
o(r)
k =

∑l
t=1 Δψ

(r)
t − Δψ

(r)
k∑l

t=1 Δψ
(r)
t

. (19)

In this paper, considering the subjective and objective weights of experts, an iterative algo-
rithm is used to achieve a stable solution. The end condition of the iterative algorithm is
shown in Definition 16.

Definition 14 Norm is used to calculate the distance difference between the objective weight
vector of the r − th iteration and the r-1 iteration.

Δμo =
∣∣∣∣∣

l∑
k=1

(
μ
o(r)
k − μ

o(r−1)
k

)∣∣∣∣∣
1
2

, (20)

When Δμo ≤ ε, such as ε = 10−4, the iteration process is finished. The specific steps are
summarized as follows:

Step 1 Input expert evaluation information, expert subjective weight, and initialize
parameters ρ = 0.5, r = 1, ε = 10−4.
Step 2 If iterative number r = 1, the objective weight a is initialized μo

k = 1
l and go to

step 3. If r �= 1, the objective weight of the r-1 iteration result μo(r−1)
k is substituted into

formula (15) to calculate the comprehensive weight.
Step 3 Calculate the weighted expert evaluation matrix R◦

i j according to Definition 12.

Step 4 Calculate the sum of the deviations of expert Ek , Δψ
(r)
k according to Definition

13.
Step 5 Calculate the objective weight of the expert Ek after rth iteration μ

o(r)
k according

to Definition 13.
Step 6 Calculate the distance difference between the objective weight vector of the
r − th iteration and the r-1 iteration Δμo according to Definition 14. If Δμo ≤ ε, stop
the iteration and go to the next step. Return to step 2, if Δμo > ε.
Step 7 Output the comprehensive expert weight μk .

4.2 Determine the attribute weights

In the actual DMPs, the weight of attributes may not be clear, so based on the maximiz-
ing deviation method (Wu et al. 2018; Wu and Chen 2007), we applied it to the SVN2TL
environment.

Case 1 The weight information of attributes are completed unknown:

max D(w) =
l∑

k=1

n∑
j=1

m∑
i=1

m∑
r=1

μkw j d(a(k)
i j , a(k)

r j ),
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s.t. w j ∈ [0, 1], j = 1, 2, . . . , n,

n∑
j=1

w2
j = 1. (21)

Based on Lagrange function, we have

L(w, η) =
l∑

k=1

n∑
j=1

m∑
i=1

m∑
r=1

μkw j d(a(k)
i j , a(k)

r j ) + η

2

⎛
⎝ n∑

j=1

w2
j − 1

⎞
⎠ .

Calculate the partial derivatives of variables w j and η we have:

{
∂L(w,η)

∂w j
= ∑l

k=1
∑m

i=1
∑m

r=1 μkd(a(k)
i j , a(k)

r j ) + ηw j = 0,
∂L(w,η)

∂η
= ∑n

j=1 w2
j − 1 = 0.

By solving the above formula and normalizing it, we can get

w j =
∑l

k=1
∑m

i=1
∑m

r=1 μkd
(
a(k)
i j , a(k)

r j

)
∑l

k=1
∑n

j=1
∑m

i=1
∑m

r=1 μkd
(
a(k)
i j , a(k)

r j

) .

Case 2 In case the weight of attributes may be partially unknown we have:

max D(w) =
l∑

k=1

n∑
j=1

m∑
i=1

m∑
r=1

μkw j d(a(k)
i j , a(k)

r j )

s.t. w j ∈ [0, 1], w j ∈ Θ, j = 1, 2, . . . , n,

n∑
j=1

w j = 1. (22)

where Θ represents the set of relationships that attribute weights need to satisfies.

4.3 Approach for MAGDM under SVN2TLS environment

In this section, the proposed SVN2TLFWA or SVN2TLFWG operator is integrated with
BWM and MABAC to deal a MAGDM issue. The steps are summarized as follows (see
Fig. 1).

Step 1 Obtain the weight of each DM μ by the method iterative algorithm proposed in
4.1.
Step 2 Obtain the overall decision matrix R = (Ri j )m×n by proposed SVN2TLFWA or
SVN2TLFWG operator.
Step 3 Obtain the attribute weight W based on the method proposed in 4.2.
Step 4 Normalize the decision matrix R = (Ri j )m×n .

for benefit attributes:

Ni j = Ri j = (sθi j , αi j )
′, (T ′

i j , I
′
i j , Fi j ) = (sθi j , αi j ), (Ti j , Ii j , Fi j ), (23)

for cost attributes:

Ni j = Δ(t − Δ−1(sθi j , αi j )), (Fi j , 1 − Ii j , Ti j ), (24)
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Step 5 Calculate the weighted normalized matrix V = [vi j ]m×n as below:

vi j = w j Ri j = (sθi j , αi j )
′′, (T ′′

i j , I
′′
i j , F

′′
i j )

=
〈
Δ(t ∗ (1 − logλ(1 + (λ1−Δ−1(sθ(i j),αi j )

′/t − 1)w j

(λ − 1)w j−1 ))),

× 1 − logλ

(
1 + (λ

1−T ′
i j − 1)w j

(λ − 1)w j−1

)
, logλ

(
1 + (λ

I ′
i j − 1)w j

(λ − 1)w j−1

)
,

logλ

(
1 + (λ

F ′
i j − 1)w j

(λ − 1)w j−1

)〉
. (25)

Step 6 Determine the BBA vector B = [g j ]1×n from SVN2TLFWG operator.

g j =
(

m∏
i=1

vi j

) 1
m

=
〈
Δ

(
t

(
logλ

(
1 +

n∏
i=1

(λ
Δ−1(sθi j ,αi )

′′/t − 1)1/m
)))

,

× logλ

(
1 +

n∏
i=1

(λ
T ′′
i j − 1)1/m

)
,

× 1 − logλ

(
1 +

n∏
i=1

(λ
1−I ′′

i j − 1)1/m
)

, 1 − logλ

(
1 +

n∏
i=1

(λ
1−F ′′

i j − 1)1/m
)〉

.

(26)

Step 7 Calculate the distance matrix D = [di j ]m×n .

Although the MABAC method considers the potential value of “gain” and “loss” in the
ranking of alternatives, it cannot reflect the characteristics that DMs are more sensitive to
“loss” than “gain”. It cannot describe the attitude of DMs to avoid risk. However, DMs often
show incomplete rationality in the real decision-making process, that is, bounded rational
behavior. Therefore, the risk preference parameter θ is introduced to reflect the characteristics
of DMs’ risk attitude, as follows:

di j =
{
d(vi j , g j ), i f S(vi j ) ≥ S(g j ),

−θd(vi j , g j ), i f S(vi j ) < S(g j ),
(27)

θ(θ > 0) is the risk preference of the decision maker.θ = 1/ > 1/ < 1 indicates that the
DM is risk neutral / aversion / seeking.

Step 8 Rank the alternatives and get the best option. Qi is defined as the row sum of
matrix D as:

Qi =
n∑
j=1

di j , i = 1, . . . ,m, (28)

The better alternative is the one with the bigger value of Qi .

5 Case study

To show the validity and merits of the proposed approach, some examples are given in this
section.
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Fig. 1 Flowchart of the proposed approach
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Table 2 Evaluation matrix of Example 3

C1 C2 C3 C4

R1 ℘1 〈s74 , (0.2, 0.2, 0.3)〉 〈s74 , (0.4, 0.3, 0.1)〉 〈s73 , (0.6, 0.2, 0.1)〉 〈s73 , (0.7, 0.1, 0.2)〉
φ2 〈s72 , (0.6, 0.1, 0.2)〉 〈s74 , (0.6, 0.1, 0.2)〉 〈s72 , (0.5, 0.2, 0.2)〉 〈s74 , (0.5, 0.2, 0.1)〉
℘3 〈s73 , (0.3, 0.2, 0.3)〉 〈s73 , (0.3, 0.1, 0.2)〉 〈s72 , (0.7, 0.3, 0.1)〉 〈s74 , (0.6, 0.2, 0.5)〉
℘4 〈s75 , (0.7, 0.1, 0.1)〉 〈s75 , (0.6, 0.1, 0.2)〉 〈s75 , (0.5, 0.1, 0.2)〉 〈s75 , (0.3, 0.2, 0.5)〉

R2 ℘1 〈s74 , (0.6, 0.2, 0.2)〉 〈s73 , (0.6, 0.1, 0.2)〉 〈s73 , (0.5, 0.1, 0.2)〉 〈s74 , (0.5, 0.3, 0.4)〉
℘2 〈s72 , (0.5, 0.2, 0.4)〉 〈s73 , (0.7, 0.3, 0.1)〉 〈s73 , (0.6, 0.3, 0.2)〉 〈s73 , (0.7, 0.2, 0.1)〉
℘3 〈s73 , (0.6, 0.3, 0.2)〉 〈s74 , (0.5, 0.4, 0.2)〉 〈s73 , (0.6, 0.1, 0.3)〉 〈s74 , (0.7, 0.1, 0.2)〉
℘4 〈s75 , (0.7, 0.2, 0.2)〉 〈s74 , (0.4, 0.2, 0.2)〉 〈s75 , (0.7, 0.2, 0.3)〉 〈s75 , (0.6, 0.3, 0.2)〉

R3 ℘1 〈s75 , (0.5, 0.1, 0.2)〉 〈s74 , (0.6, 0.2, 0.1)〉 〈s72 , (0.6, 0.1, 0.3)〉 〈s74 , (0.3, 0.6, 0.2)〉
℘2 〈s72 , (0.5, 0.1, 0.3)〉 〈s74 , (0.7, 0.2, 0.1)〉 〈s72 , (0.6, 0.1, 0.3)〉 〈s74 , (0.3, 0.6, 0.2)〉
℘3 〈s74 , (0.6, 0.2, 0.1)〉 〈s73 , (0.4, 0.1, 0.1)〉 〈s73 , (0.5, 0.2, 0.2)〉 〈s73 , (0.7, 0.2, 0.1)〉
℘4 〈s75 , (0.5, 0.2, 0.3)〉 〈s74 , (0.2, 0.1, 0.6)〉 〈s75 , (0.6, 0.2, 0.4)〉 〈s74 , (0.5, 0.2, 0.3)〉

R4 ℘1 〈s76 , (0.6, 0.1, 0.2)〉 〈s75 , (0.7, 0.1, 0.2)〉 〈s73 , (0.8, 0.1, 0.2)〉 〈s74 , (0.5, 0.2, 0.3)〉
℘2 〈s73 , (0.4, 0.2, 0.2)〉 〈s74 , (0.6, 0.3, 0.1)〉 〈s73 , (0.7, 0.2, 0.2)〉 〈s75 , (0.3, 0.4, 0.1)〉
℘3 〈s72 , (0.6, 0.1, 0.2)〉 〈s74 , (0.5, 0.2, 0.1)〉 〈s73 , (0.5, 0.2, 0.1)〉 〈s74 , (0.5, 0.1, 0.2)〉
℘4 〈s74 , (0.6, 0.2, 0.1)〉 〈s75 , (0.7, 0.2, 0.2)〉 〈s75 , (0.6, 0.3, 0.2)〉 〈s76 , (0.4, 0.2, 0.5)〉

5.1 The procedure of the proposedmethod

Example 3 The purchase of a car is a complex fuzzy decision-making problem with many
influencing factors. For different needs, the factors considered will be different. However, in
this part, we only consider the general and decisive factors such as space (C1), engine per-
formance (C2), use cost (C3), safety (C4). There were four cars (alternatives) to be evaluated
by four DMs dt (t = 1, 2, 3, 4) based on SVN2TLNNs with LTs Ω = {s70 , s71 , . . . , s76 } as
shown in Table 1.

Step 1 Suppose the organizer provides the following pairwise comparison vectors:UB =
[1, 1, 2, 3] andVW = [3, 2, 2, 1]. Solving this problem using BWM method Eq. (5), we can
obtain subjective weight of experts as μs

1 = 0.3717, μs
2 = 0.3007, μs

3 = 0.1931, μs
4 =

0.1345, and ε∗ = 0. The provided comparison vectors meet the consistency condition, so
the solution is feasible. Let ρ = 0.5, λ = 2, ε = 10−8, using iterative algorithm we can get
comprehensive experts weight μ1 = 0.3097, μ2 = 0.2807, μ3 = 0.2155, μ4 = 0.1942.

Step 2 Based on SVN2TLFWAoperator the synthesize decisionmatrix R can be obtained
as shown in Table 3.

Step 3 Calculation of attribute weight by the maximizing deviation method. Uti-
lize the optimal model Eq. (21), the attribute weights can be obtained as [wi ]1×4 =
[0.3650, 0.1987, 0.2630, 0.1733].

Step 4 Normalize the synthesize decisionmatrix, Based onEq. (23), which can be founded
as in Table 4.

Step 5 Construct the weighted normalized matrix V .
Step 6 Compute the BBA vector B which is shown as:

g1 = 〈(
s72 , 0.1383), (0.2338, 0.5453, 0.6070

)〉
,
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Table 3 Synthesize decision matrix R of Example 3

c1 c2

x1 〈(s76 , 0), (0.4753, 0.1511, 0.2271)〉 〈(s74 , 0.0250), (0.5689, 0.1644, 0.1393)〉
x2 〈(s72 , 0.2112), (0.5159, 0.1393, 0.2664)〉 〈(s74 ,−0.2465), (0.6529, 0.1969, 0.1243)〉
x3 〈(s73 , 0.0833), (0.5125, 0.1970, 0.2480)〉 〈(s74 ,−0.4824), (0.4215, 0.1708, 0.1511)〉
x4 〈(s75 , −0.1462), (0.6449, 0.1617, 0.1656)〉 〈(s75 ,−0.4182), (0.5024, 0.1393, 0.2564)〉

c3 c4

x1 〈(s73 , −0.1964), (0.5610, 0.1243, 0.1769)〉 〈(s74 ,−0.2733), (0.5377, 0.2335, 0.2639)〉
x2 〈(s73 , −0.4969), (0.5936, 0.1939, 0.2185)〉 〈(s74 , 0.0250), (0.4986, 0.2933, 0.1164)〉
x3 〈(s73 , −0.2853), (0.5980, 0.1877, 0.1592)〉 〈(s74 ,−0.1870), (0.6371, 0.1444, 0.2321)〉
x4 〈(s75 , 0), (0.6037, 0.1753, 0.2613)〉 〈(s76 , 0), (0.4578, 0.2245, 0.3491)〉

Table 4 Normalized matrix of Example 3

c1 c2

x1 〈(s76 , 0), (0.4753, 0.1511, 0.2271)〉 〈(s74 , 0.0250), (0.5689, 0.1644, 0.1393)〉
x2 〈(s72 , 0.2112), (0.5159, 0.1393, 0.2664)〉 〈(s74 ,−0.2465), (0.6529, 0.1969, 0.1243)〉
x3 〈(s73 , 0.0833), (0.5125, 0.1970, 0.2480)〉 〈(s74 ,−0.4824), (0.4215, 0.1708, 0.1511)〉
x4 〈(s75 , −0.1462), (0.6449, 0.1617, 0.1656)〉 〈(s75 ,−0.4182), (0.5024, 0.1393, 0.2564)〉

c3 c4

x1 〈(s73 , 0.1964), (0.1769, 0.8757, 0.5610)〉 〈(s74 ,−0.2733), (0.5377, 0.2335, 0.2639)〉
x2 〈(s73 , 0.4969), (0.2185, 0.8061, 0.5936)〉 〈(s74 , 0.0250), (0.4986, 0.2933, 0.1164)〉
x3 〈(s73 , 0.2853), (0.1592, 0.8123, 0.5980)〉 〈(s74 ,−0.1870), (0.6371, 0.1444, 0.2321)〉
x4 〈(s71 , 0), (0.2613, 0.8247, 0.6037)〉 〈(s76 , 0), (0.4578, 0.2245, 0.3491)〉

g2 = 〈(
s71 , 0.0704), (0.1315, 0.7306, 0.7289

)〉
,

g3 = 〈(
s71 ,−0.2279), (0.0559, 0.9537, 0.8761

)〉
,

g4 = 〈(
s72 ,−0.4916), (0.1146, 0.7930, 0.7999

)〉
,

Step 7 Obtain the distance matrix D as

D =

⎛
⎜⎜⎝

4.0433 0.0525 0.0498 −0.3555
−1.3613 −0.0831 0.0996 −0.2519
−0.9639 −0.1398 0.0557 −0.2527
0.7511 0.1345 −0.1080 1.9316

⎞
⎟⎟⎠ ,

Step 8 Compute the sum of row elements of the matrix D, then we have [Qi ]1×4 =
[3.7900,−1.5968,−1.3008, 2.7092]. Therefore, the ranking results of the alternatives is
℘1 � ℘4 � ℘3 � ℘2.
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Table 5 Ranking order with different parameter λ(μ = 0.5, θ = 1)

Operator λ Value of gi (i = 1, 2, 3, 4) Ranking results

SVN2TLFWA λ → 1 [8.1442,−3.3917,−2.7422, 5.4748] ℘1 � ℘4 � ℘3 � ℘2

λ = 2 [3.7900,−1.5968,−1.3008, 2.7092] ℘1 � ℘4 � ℘3 � ℘2

λ = 3 [3.4081,−1.3254,−1.0157, 2.0659] ℘1 � ℘4 � ℘3 � ℘2

λ = 5 [3.2301,−1.1963,−1.0132, 1.8415] ℘1 � ℘4 � ℘3 � ℘2

λ = 10 [3.0198,−1.1825,−1.0152, 1.6144] ℘1 � ℘4 � ℘3 � ℘2

λ = 50 [2.6570,−1.1882,−1.0424, 1.1646] ℘1 � ℘4 � ℘3 � ℘2

λ → ∞ [0.9602,−0.6524,−0.1564, 0.7206] ℘1 � ℘4 � ℘3 � ℘2

SVN2TLFWG λ → 1 [2.0021,−0.3913,−0.1567, 1.5852] ℘1 � ℘4 � ℘3 � ℘2

λ = 2 [1.2109,−0.5084,−0.2413, 0.9454] ℘1 � ℘4 � ℘3 � ℘2

λ = 3 [0.8252,−0.9509,−0.5448, 0.7336] ℘1 � ℘4 � ℘3 � ℘2

λ = 5 [0.8587,−0.9044,−0.4860, 0.4158] ℘1 � ℘4 � ℘3 � ℘2

λ = 10 [0.7512,−0.9378,−0.5258, 0.5078] ℘1 � ℘4 � ℘3 � ℘2

λ = 50 [0.7234,−0.8816,−0.4709, 0.4041] ℘1 � ℘4 � ℘3 � ℘2

λ → ∞ [0.7267,−0.8755,−0.3669, 0.5044] ℘1 � ℘4 � ℘3 � ℘2

5.2 Sensitivity analysis

In this part, we will analyze the influence of different values of parameters (λ, θ, ρ) on
the sorting results. Table 5 and Fig. 2 show the ranging results using SVN2TLFWA or
SVN2TLFWGwith different values of parameter λ. From themwe can see that with different
AOs and λ the ordering of the alternatives are the same, which is ℘1 � ℘4 � ℘3 � ℘2. By
further analysis, we can conclude that the sum of row elements Q1, Q4 of the SVN2TLFWA
operator decreases with the increase of parameter λ, however, the trend of Q2, Q3 is opposite
to that of Q1, Q4.

In step 2, the BWM method is applied to obtain the subjective weight of experts. To
overcome the shortcomings of subjectivemethods, combinedwith the evaluation information
provided by experts, an iterative algorithm was proposed to calculate the comprehensive
weight of experts, and the linear combination method was used to combine the subjective
and objective weights. Therefore, the parameter ρ in Eq. (15) can affect the comprehensive
weight of experts. For theBWMmethod, the result is determinedwhen a pairwise comparison
vector is given. Also, it should be noted that ρ is the proportion of subjective weight. The
influence of parameter ρ on the weight of experts and the number of iterations is shown in
Table 6.

From Table 6, we can see that with the increase of ρ, the weights of expert 1 and expert 2
are increasing while the corresponding weights of expert 3 and expert 4 are decreasing. The
reason is that among the subjective weights calculated by the BWM method, the weights of
expert 1 and expert 2 are relatively large, 0.3717 and 0. 3007, respectively.

5.3 The reliability of the proposedmethod

The relative performance of the proposed method will be tested based on three criteria
established by Wang and Triantaphyllou (2005).
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Table 6 WV of experts and ranking order with different parameter ρ(SVN2TLFWA)

ρ WV of experts μi (i = 1, 2, 3, 4) Number of iterations

SVN2TLFWA ρ = 0.2 [0.2704; 0.2692; 0.2296; 0.2308] 7

ρ = 0.4 [0.2971; 0.2692; 0.2772; 0.2052] 7

ρ = 0.6 [0.3229; 0.2851; 0.2114; 0.1807] 6

ρ = 0.8 [0.3477; 0.2929; 0.2022; 0.1571] 5

SVN2TLFWG ρ = 0.2 [0.2794; 0.2699; 0.2296; 0.2090] 8

ρ = 0.4 [0.3044; 0.2781; 0.2286; 0.1890] 7

ρ = 0.6 [0.3280; 0.2859; 0.2162; 0.1700] 6

ρ = 0.8 [0.3504; 0.2934; 0.2043; 0.1519] 5

Fig. 2 Value of gi based on SVN2TLFWA operator

Table 7 Evaluation values of alternative φ′
4 for different DMs

C1 C2 C3 C4

φ4 R1 〈s72 , (0.3, 0.2, 0.3)〉 〈s73 , (0.3, 0.3, 0.2)〉 〈s73 , (0.5, 0.3, 0.2)〉 〈s73 , (0.3, 0.2, 0.5)〉
R2 〈s72 , (0.5, 0.3, 0.2)〉 〈s73 , (0.4, 0.4, 0.2)〉 〈s73 , (0.5, 0.3, 0.3)〉 〈s73 , (0.5, 0.3, 0.4)〉
R3 〈s72 , (0.5, 0.2, 0.3)〉 〈s73 , (0.4, 0.2, 0.6)〉 〈s72 , (0.5, 0.2, 0.4)〉 〈s73 , (0.3, 0.6, 0.3)〉
R4 〈s72 , (0.4, 0.2, 0.2)〉 〈s74 , (0.5, 0.3, 0.2)〉 〈s73 , (0.5, 0.2, 0.2)〉 〈s74 , (0.3, 0.4, 0.5)〉

Criterion 1 The relative order of the alternatives will not change by replacing a non-
optimal alternative with a worse one.
Criterion 2 The transitive property should be followed.
Criterion 3 After the problem is divided into small groups, other data are unchanged,
the relative order should be identical to the original problem.
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Table 8 Evaluation matrix of Example 4

c1 c2 c3

R1 ℘1 〈s74 , (0.4, 0.2, 0.3)〉 〈s75 , (0.4, 0.2, 0.3)〉 〈s75 , (0.3, 0.2, 0.5)〉
℘2 〈s73 , (0.6, 0.1, 0.2)〉 〈s75 , (0.6, 0.1, 0.2)〉 〈s74 , (0.5, 0.2, 0.2)〉
℘3 〈s74 , (0.3, 0.2, 0.3)〉 〈s74 , (0.5, 0.2, 0.3)〉 〈s73 , (0.5, 0.3, 0.1)〉
℘4 〈s74 , (0.7, 0.1, 0.1)〉 〈s73 , (0.6, 0.1, 0.2)〉 〈s72 , (0.3, 0.1, 0.2)〉

R2 ℘1 〈s75 , (0.4, 0.3, 0.4)〉 〈s75 , (0.5, 0.3, 0.2)〉 〈s72 , (0.3, 0.1, 0.6)〉
℘2 〈s73 , (0.4, 0.2, 0.3)〉 〈s5, (0.3, 0.2, 0.3)〉 〈s73 , (0.6, 0.2, 0.2)〉
℘3 〈s73 , (0.4, 0.2, 0.4)〉 〈s74 , (0.6, 0.3, 0.4)〉 〈s73 , (0.6, 0.1, 0.3)〉
℘4 〈s74 , (0.8, 0.1, 0.2)〉 〈s74 , (0.5, 0.2, 0.3)〉 〈s73 , (0.4, 0.3, 0.2)〉

R3 ℘1 〈s75 , (0.5, 0.2, 0.3)〉 〈s74 , (0.6, 0.2, 0.4)〉 〈s72 , (0.2, 0.1, 0.6)〉
℘2 〈s74 , (0.5, 0.2, 0.3)〉 〈s74 , (0.7, 0.2, 0.2)〉 〈s72 , (0.7, 0.2, 0.1)〉
℘3 〈s75 , (0.5, 0.1, 0.3)〉 〈s75 , (0.6, 0.1, 0.2)〉 〈s73 , (0.6, 0.2, 0.1)〉
℘4 〈s74 , (0.6, 0.1, 0.2)〉 〈s74 , (0.5, 0.2, 0.2)〉 〈s74 , (0.4, 0.1, 0.1)〉

With regard to Criterion 1, a non-optimum alternative ℘4 is substituted by the worse
one ℘′

4 shown in Table 7. The values of Qi in step 9 are generated as [Qi ]1×4 =
[4.5836,−0.2348, 0.1417,−1.3287], then the ranking order is ℘1 � ℘3 � ℘2 � ℘′

4 and
the most alternative is still ℘1. Therefore, the proposed method is reliable under Criterion 1.

With regard to Criteria 2 and 3, the original problem is decomposed into six groups:
{℘1, ℘2}, {℘1, ℘3}, {℘1, ℘4}, {℘2, ℘3}, {℘2, ℘4}, {℘3, ℘4}. By calculation, the correspond-
ing values of Qi are [Q1, Q2] = [4.3605,−2.0429], [Q1, Q3] = [3.1623,−1.5227],
[Q1, Q4]=[1.0724, 0.3172], [Q2, Q3]=[−0.1944, 0.2416], [Q2, Q4]=[−1.3645, 2.8092],
[Q3, Q4]=[−0.9497, 1.8993], so the orders of alternatives can be derived as:℘1 � ℘2, ℘1 �
℘3, ℘1 � ℘4, ℘3 � ℘2, ℘4 � ℘2, ℘4 � ℘3. Therefore,it can be deduced that the overall
ranking of alternatives is consistent with the original one. Thus, the proposed method is
reliable under Criteria 2 and 3.

5.4 Comparative analysing

In the below, the proposed approach will be compared with the existing methods including
SVN2TLHWA operator (Wu et al. 2018), MABACCELECTRE method under single-valued
neutrosophic linguistic environments (MESVNL) operator (Ji et al. 2018), SVNLS-PT oper-
ator (Guo and Sun 2019), INULWAAoperator (Ye 2017), andWSVNLMSMoperator (Wang
et al. 2017).

Example 4 This is a emergency management problems from Wu et al. (2018) (see Table 8).
SVNLNs were used by DMs to provide their preferences. In the following comparative
analysis, we assume that the weights of experts are consistent, which is [μl , μ2, μ3] =
[0.37, 0.33, 0.3].

5.4.1 Calculation process of the proposed method

Due to space reasons, some steps with unimportant data are not given here.
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Step 1 Assume λ = 2 and the WV of DMs is consistent with those in Wu et al. (2018),
which is (0.37, 0.33, 0.3).
Step 3 The WV of attributes can be obtained as w = (0.2926, 0.3147, 0.3927).
Step 4 Because all the attributes are benefit, this step can be omitted.
Step 6 Compute the BBA vector B which is shown as:

g1 = 〈(s2,−0.4358), (0.1772, 0.6166, 0.7021)〉,
g2 = 〈(s1,−0.0984), (0.2048, 0.6141, 0.6841)〉,
g3 = 〈(s1, 0.4707), (0.1934, 0.5162, 0.6093)〉.

Step 7 Obtain the distance matrix D as:

D =

⎛
⎜⎜⎝

0.1155 0.0944 −0.5022
−0.3029 0.3884 0.3298
−0.1265 −0.1212 0.2789
0.3859 −0.3279 0.1694

⎞
⎟⎟⎠ .

Step 8 Assuming θ = 1, we can get [Qi ]1×4 = [−0.2923, 0.4153, 0.0312, 0.2274].
Therefore, the ordering of the alternatives is ℘2 � ℘4 � ℘3 � ℘1.

It should be noted that when changing the parameter values of λ or θ , such as λ = 2, θ = 4
or λ = 3, θ = 3, the ranking order will be changed to ℘2 � ℘3 � ℘4 � ℘1.

5.4.2 Calculation process based on SVNLS-PT operator (Guo and Sun 2019)

In the following, the SVNLS-PT operator (Guo and Sun 2019) is taken into consideration.
For better comparative analysis, the data are consistent with that in Example 4.

Step 1 Normalize decision matrices. Since all attributes are benefit, this step is omitted
here.
Step 2Obtain prospect matrices. Let α = β = 0.88, θ = 2.25, γ = 0.61, δ = 0.72, p =
1 and the reference point is 〈s73 , (0.5, 0.5, 0.5)〉, then the prospect matrix V can be
obtained as:

V =

⎛
⎜⎜⎝
0.3324 0.3848 −0.5015
0.3448 0.4456 0.4363
0.2605 0.4200 0.4304
0.6552 0.3955 −0.1740

⎞
⎟⎟⎠ ,

Step 3 Calculate attribute weights. To unify the comparison, we assume the attribute
weights are consistent with those in Wu et al. (2018), namely,
w = (0.2926, 0.3147, 0.3927).
Step 4 Obtain the integrated prospect values V̄ . where V̄ = V ∗ w =
[0.0214, 0.4125, 0.3774, 0.2479].
Step 5 The larger the value of V̄i , the better the alternative ℘i . So we get ℘2 � ℘3 �
℘4 � ℘1.

5.4.3 Calculation process based on TOPSIS method

In the following, We consider replacing the MABAC method with the TOPSIS method. The
TOPSIS method is a sorting method that is close to the ideal solution. The detailed steps of
this method can be found in Chen et al. (2018).
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Fig. 3 Closeness coefficient for alternatives obtained by TOPSIS method

Step 1 Assume that the WV of DMs is consistent with those in Wu et al. (2018), and
both of them is (0.37, 0.33, 0.3). Suppose λ = 2.
Step 2 Let s+ = 〈(s76 , 0), (1, 0, 0) and s− = 〈(s70 , 0), (1, 0, 0) be the positive and
negative ideal solution, respectively. Then, calculate the distance between each alternative
to s+ and s− below.

d+
i =

n∑
j=1

w j d(Ri j , s
+), d−

i =
n∑
j=1

w j d(Ri j , s
−). (29)

Step 3 Calculate the comprehensive evaluation index of each alternative as

CCi = d−
i

d+
i + d−

i

.

Step 4 Get the ranking result according to the value of CCi . we have CCi =
[0.4303, 0.4491, 0.4304, 0.4351], then ℘2 � ℘4 � ℘3 � ℘1.

The influence of parameter λ on the closeness coefficient and the ranking result is shown
in Fig. 3. From Fig. 3 we can draw the following conclusions: (1) the closeness coefficient
based on SVN2TLFWA operator is monotonically decreasing relating to parameter λ; (2) the
change of parameter λ does not affect the ranking result; (3) compared with the MABAC-
based method, the TOPSIS-based method has a lower degree of discrimination between
alternatives and cannot reflect the risk preference of DMs.

Note:experts and attribute weights(EAW).
The comparisons results are shown in Table 9. The merits of proposed method are as

follows:

1. Wu et al. (2018) proposed a novel MAGDM method based on Hamacher t-norms under
SVN2TL environment with the WV of experts are known. In practical problems, the
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Table 9 Ranking results of different methods

AOs Parameter Computation Considering Ranking
number EAW order

SVN2TLHWA (Wu et al. 2018) One Low No ℘2 � ℘3 � ℘4 � ℘1

WSVNLMSM (Wang et al. 2017) None Median No ℘2 � ℘3 � ℘4 � ℘1

SVN2TLWDMM (Wang et al. 2019) One High No ℘2 � ℘3 � ℘4 � ℘1

SVNLS-PT (Guo and Sun 2019) One Low No ℘2 � ℘3 � ℘4 � ℘1

MABACCELECTRE (Ji et al. 2018) One Low No ℘2 � ℘3 � ℘4 � ℘1

The proposed method Three Low Yes ℘2 � ℘4 � ℘3 � ℘1

Fig. 4 The gap value between two adjacent ranked alternatives by different methods

weight of experts is usually unknown. In this paper, we fully consider this situation
and propose an iterative algorithm considering the weights of subjective and objective
of experts to make the decision results more reasonable. Besides, to reflect the risk
preference of DMs, the MABAC method was modified by introducing a risk preference
parameter. Thus, compared with Wu et al. (2018), the proposed method with the merit
of simple calculation systematic process and logic in line with human decision-making
principle.

In Wu et al. (2018), the ranking results are consistent(℘2 � ℘3 � ℘4 � ℘1)
regardless of the parameter λ of Hamacher t-norm is in the set {0, 1, 2,∞}. Take
SVN2TLGWA operator as an example, the score value is Si (i = 1, . . . , 4) =
(2.2130, 2.5013, 2.4489, 2.4385). Figure 4 shows the gap value between two adjacent
ranked alternatives. Gapi represents the gap value between the i th and the i+1th ranked
alternatives. Form Fig. 4, we can see that the values of the proposed method are much
larger than the method in Wu et al. (2018) and other methods, so the proposed method
can distinguish alternatives clearer than other method.

2. Based onMaclaurin symmetric mean operator (Wang et al. 2017) or dualMuirheadmean
operator (Wang et al. 2019) has the advantage of being able to capture the interrelation-
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ships among attributes, but the amount of calculation will also be higher. Compared
with the WSVNLMSM operator (Wang et al. 2017), although the proposed method in
this paper contains three parameters, ρ is the proportional coefficient to determine the
weights of subjective and objective experts, and θ is the risk attitude index of DMs.
For aggregation, there is only one parameter λ which make the proposed operators with
higher flexibility and consistency. what’s more, the SVN2TLWDMM operator in Wang
et al. (2019) can not be used to deal MAGDM problems.

3. From the calculation of SVNLS-PT operator proposed by Guo and Sun (2019), we can
see that too many parameters will affect the ranking result. At the same time, these
parameters are determined by experiments, so it is uncertain whether the parameters are
suitable for new problems or scenarios.

4. Without the introduce of 2-tuple, the aggregation results of Wang et al. (2017), Guo and
Sun (2019) and Ji et al. (2018) may not match any of the LTSs. For example, s4.2 makes
sense only in comparison. Therefore, the proposed operator is more efficient. What’s
more, the SVNLWA operator proposed by Guo and Sun (2019) and Ji et al. (2018) is
only the special cases of proposed operator with parameter λ → ∞.

6 Conclusions

In this paper, we investigated MAGDM under SVN2TLS environment. First, the Frank tri-
angular norms are extended to SVN2TLS environment. On this basis, some new operational
rules, and some related properties are investigated. Comparing with the existing literature (Ji
et al. 2018; Ye 2015;Wang et al. 2017; Guo and Sun 2019; Chen et al. 2018), Frank operation
can select appropriate parameterλbased on the actual situation and the preference of theDMs,
making the assembly process more flexible and robust. Later, two new AOs(SVN2TLFWA
and SVN2TLFWG) are proposed, and some desirable properties of the proposed AOs are
discussed. Then, by combining the improved MABAC method with SVN2TLNs informa-
tion, two new approaches are proposed to solve MAGDM problem and the computing steps
are simply depicted. Based on BWM method, an iterative algorithm has been developed for
determining unknown expert weights. what’s more, by introducing risk attitude parameters,
the improved MABAC method can flexibly reflect the attitude characteristics of DMs when
facing risks in the assessment. Finally, some examples are given to shown the detailed cal-
culation process and the advantages of the proposed method. In future, we will extend the
proposed operators to large group decision model and algorithm such as consensus model
and clustering model, and so on.
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Appendix A

1. When n = 1, w = 1, we have

SVN2TLFWA(a1, a2, . . . , αn) = SVN2TLFWA(ai )

=
〈
Δ

(
t
(
1 − logλ

(
1 + (λ1−Δ−1(sθ(a1),α1)/t − 1)

)))
, 1

− logλ

(
1 + (λ1−Ta1 − 1)

)
,

× logλ

(
1 + (λIa1 − 1)

)
, logλ

(
1 + (λFa1 − 1)

) 〉

= 〈(sθ(a1), α1), Ta1 , Ia1 , Fa1〉.

2. When n = 2, we have wpap =
〈
Δ

(
t ∗

(
1 − logλ

(
1 + (λ

1−Δ−1(sθ(ap ),αp )/t−1)wp

(λ−1)wp−1

)))
,

1 − logλ

(
1 + (λ

1−Tap −1)wp

(λ−1)w1−1

)
, logλ

(
1 + (λ

Iap −1)wp

(λ−1)wp−1

)
, logλ

(
1 + (λ

Fap −1)wp

(λ−1)wp−1

)〉
, p = 1, 2.

Then,

let τ = (λ
logλ(1+ (λ

1−Δ−1(sθ(a1),α1)/t−1)w1

(λ−1)w1−1 )

−1)(λ
logλ(1+ (λ

1−Δ−1(sθ(a2),α2)/t−1)w2

(λ−1)w2−1 )

−1)
(λ−1) ,

SVN2TLFWA(a1, a2) = w1a1 ⊕ w2a2

=
〈
Δ

(
t
(
1 − logλ(1 + τ)

))
,

×1 − logλ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 +

⎛
⎜⎝λ

logλ

(
1+

(
λ
1−Ta1 −1

)w1

(λ−1)w1−1

)

− 1

⎞
⎟⎠

⎛
⎜⎝λ

logλ

(
1+

(
λ
1−Ta2 −1

)w2

(λ−1)w2−1

)

− 1

⎞
⎟⎠

λ − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

× logλ

⎛
⎜⎜⎜⎝1 + (λ

logλ

(
1+

(
λ
Ia2 −1

)w2

(λ−1)w2−1

)

− 1)(λ
logλ

(
1+

(
λ
Ia2 −1

)w2

(λ−1)w2−1

)

− 1)

λ − 1

⎞
⎟⎟⎟⎠ ,

× logλ

⎛
⎜⎜⎜⎝1 + (λ

logλ

(
1+

(
λ
Fa2 −1

)w2

(λ−1)w2−1

)

− 1)(λ
logλ

(
1+

(
λ
Fa2 −1

)w2

(λ−1)w2−1

)

− 1)

λ − 1

⎞
⎟⎟⎟⎠

〉

=
〈
Δ

(
t

(
1 − logλ(1 +

∏2
i=1(λ

1−Δ−1(sθ(ai ),αi )/t − 1)wi

(λ − 1)w1+w2−1

))
,

×1 − logλ

⎛
⎜⎝1 +

∏2
i=1

(
λ1−Hai − 1

)wi

(λ − 1)w1+w2−1

⎞
⎟⎠ , logλ

(
1 +

∏2
i=1

(
λIa2 − 1

)wi

(λ − 1)w1+w2−1

)
,

× logλ

(
1 +

∏2
i=1

(
λFa2 − 1

)wi

(λ − 1)w1+w2−1

)〉
.

Suppose Theorem 2 holds when n=k, i.e.,
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SVN2TLFWA(a1, a2, . . . , an)

=
〈
Δ

(
t(1 − logλ(1 +

∏n
i=1(λ

1−Δ−1(sθ(ai ),αi )/t − 1)wi

(λ − 1)
∑n

i=1 wi−1
)

)
,

×1 − logλ

(
1 +

∏n
i=1(λ

1−Hai − 1)wi

(λ − 1)
∑n

i=1 wi−1

)
,

× logλ

(
1 +

∏n
i=1(λ

Ia2 − 1)wi

(λ − 1)
∑n

i=1 wi−1

)
,

× logλ

(
1 +

∏n
i=1(λ

Fa2 − 1)wi

(λ − 1)
∑n

i=1 wi−1

)〉
,

Let ϑ =

⎛
⎜⎜⎜⎜⎜⎝

λ

logλ

⎛
⎜⎝1+

∏n
i=1(λ

1−Δ−1(sθ(a1),α1)/t−1)wi

(λ−1)
∑n

i=1 wi−1

⎞
⎟⎠

−1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝λ

logλ

⎛
⎜⎝1+ (λ

1−Δ−1(sθ(an+1),αn+1)/t−1)wn+1

(λ−1)wn+1−1

⎞
⎟⎠

−1

⎞
⎟⎟⎟⎟⎠

(λ−1) ,

SVN2TLFWA(a1, a2, . . . , an, an+1) = SV N2T LFW A(a1, a2, . . . , an) ⊕ wn+1ak+1

=
〈
Δ

(
t
(
1 − logλ(1 + ϑ)

))
,

×1 − logλ

⎛
⎜⎜⎜⎝1 + (λ

logλ

(
1+

∏n
i=1(λ

1−Ta1 −1)wi

(λ−1)
∑n

i=1 wi−1

)

− 1)(λ
logλ

(
1+ (λ

1−Tan+1 −1)wn+1

(λ−1)wn+1−1

)
− 1)

λ − 1

⎞
⎟⎟⎟⎠ ,

× logλ

⎛
⎜⎜⎜⎜⎜⎜⎝
1 + (λ

logλ

⎛
⎜⎝1+

(∏n
i=1 λ

Iai −1

)wi

(λ−1)
∑n

i=1 wi−1

⎞
⎟⎠

− 1)(λ
logλ

(
1+ (λ

Ian+1 −1)wn+1

(λ−1)wn+1−1

)
− 1)

λ − 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

× logλ

⎛
⎜⎜⎜⎜⎜⎜⎝
1 + (λ

logλ

⎛
⎜⎝1+

(∏n
i=1 λ

Fai −1

)wi

(λ−1)
∑n

i=1 wi−1

⎞
⎟⎠

− 1)(λ
logλ

(
1+ (λ

Fan+1 −1)wn+1

(λ−1)wn+1−1

)
− 1)

λ − 1

⎞
⎟⎟⎟⎟⎟⎟⎠

〉
,

=
〈
Δ

(
t

(
1 − logλ

(
1 +

n+1∏
i=1

(λ1−Δ−1(sθ(ai ),αi )/t − 1)wi

)))
,

×1 − logλ

(
1 +

n+1∏
i=1

(λ1−Tai − 1)wi

)
,
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× logλ

(
1 +

n+1∏
i=1

(λIai − 1)wi

)
,

× logλ

(
1 +

n+1∏
i=1

(λFai − 1)wi

)〉
when

n+1∑
i=1

wi = 1.

Appendix B

SVN2TLFWA(a1, a2, . . . , αn)

=
〈
Δ

(
t

(
1 − logλ

(
1 +

n∏
i=1

(λ1−Δ−1(sθ(ai ),αi )/t − 1)wi

)))
,

×1 − logλ

(
1 +

n∏
i=1

(λ1−Tai − 1)wi

)
,

× logλ

(
1 +

n∏
i=1

(λIai − 1)wi

)
, logλ

(
1 +

n∏
i=1

(λFai − 1)wi

)〉

=
〈
Δ

(
t
(
1 − logλ

(
1 + (λ1−Δ−1(sθ(ai ),αi )/t − 1)

∑n
i=1 wi

)))
,

×1 − logλ

(
1 + (λ1−Tai − 1)

∑n
i=1 wi

)
,

× logλ

(
1 + (λIai − 1)

∑n
i=1 wi

)
, logλ

(
1 + (λFai − 1)

∑n
i=1 wi

) 〉

=
〈
Δ

(
t
(
1 − logλ

(
λ1−Δ−1(sθ(ai ),αi )/t

)))
, 1 − logλ

(
λ1−Tai

)
, logλ

(
λIai

)
, logλ

(
λFai

) 〉

=
〈
(sθ(ai ), αi ), Tai , Iai , Fai

〉

Appendix C

Let SVN2TLFWA(ax1 , ax2 , . . . , axn ) = 〈(sθ(ax ), αx ), (T(ax ), I(ax ), F(ax ))〉 and SV N2T LF
W A(ay1 , ay2 , . . . , ayn ) = 〈(sθ(ay), αy), (T(ay), I(ay), F(ay))〉, given that Δ−1(sθ(axi )

, αxi ) ≤
Δ−1(sθ(ayi )

, αyi ), T(axi )
≤ T(ayi )

, I(axi ) ≥ I(ayi ), F(axi )
≥ F(ayi )

for all i , we can obtain

1 − Δ−1(sθ(axi )
, αxi )/t ≥ 1 − Δ−1(sθ(ayi )

, αyi )/t

1 +
n∏

i=1

(λ
1−Δ−1(sθ(axi ),αxi )/t − 1)wi

≥ 1 +
n∏

i=1

(λ
1−Δ−1(sθ(ayi ),αyi )/t − 1)wi

×Δ

(
t

(
1 − logλ

(
1 +

n∏
i=1

(λ
1−Δ−1(sθ(axi ),αxi )/t − 1)wi

)))
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≤ Δ

(
t

(
1 − logλ

(
1 +

n∏
i=1

(λ
1−Δ−1(sθ(ayi ),αyi )/t − 1)wi

)))
.

That means sθ(ax ), αx ≤ sθ(ay), αy . Similarly, we can get T(ax ) ≤ T(ay), I(ax ) ≥
I(ay), andF(ax ) ≥ F(ay).

From Definitions 9 and 10, we have Δ(Δ−1(sθ(ax ), αx )
(2+Tax −Iax −Fax )

3 ≤
Δ(Δ−1(sθ(ay), αy)

(2+Tay−Iay−Fay )

3 , so S(ax ) ≤ S(ay). Therefore, SV N2T LFW A
(ax1 , ax2 , . . . , axn ) ≤ SV N2T LFW A(ay1 , ay2 , . . . , ayn ).

Appendix D

1. When λ → 1, the SVN2TLFWA operator reduces to SVN2TLWA operator
(a) We first prove that

lim
λ→1

logλ

(
1 +

n∏
i=1

(λIai − 1)wi

)
= lim

λ→1

ln(1 + ∏n
i=1(λ

Iai − 1)wi )

ln λ
,

= lim
λ→1

∏n
i=1(λ

Iai − 1)wi

ln λ
= lim

λ→1

∏n
i=1(e

Iai ln λ − 1)wi

ln λ

= lim
λ→1

∏n
i=1(Iai ln λ)wi

ln λ
,

= lim
λ→1

∏n
i=1(ln λ)wi

∏n
i=1(Iai )

wi

ln λ
=

n∏
i=1

(Iai )
wi .

Similarly, we have limλ→1 logλ(1 + ∏n
i=1(λ

Fai − 1)wi ) = ∏n
i=1(Fai )

wi

(b) Base on (a), we can get

lim
λ→1

(
1 − logλ

(
1 +

n∏
i=1

(λ1−Tai − 1)wi

))
= 1 − lim

λ→1

(
logλ(1 +

n∏
i=1

(
λ1−Tai − 1)wi

))

= 1 −
n∏

i=1

(1 − Tai )
wi .

Let 1 − Δ−1(sθ(ai ), αi )/t = ψ , similarly, we can get limλ→1 Δ(t(1 − logλ(1 +∏n
i=1(λ

1−Δ−1(sθ(ai ),αi )/t − 1)wi ))) = limλ→1 Δ(t(1 − logλ(1 + ∏n
i=1(λ

ψ − 1)wi ))) =
Δ(t(1 − ∏n

i=1(1 − Δ−1(sθ(ai ), αi )/t)wi )).

2. When λ → ∞, the SVN2TLFWA operator reduces to traditional arithmetic weighted
average operator

(a) We first prove that limλ→∞
(
1 − logλ

(
1 + ∏n

i=1(λ
1−Tai − 1)wi

))
= ∑n

i=1 wi Tai
Based on logarithmic transform and L’Hospital’s rule, we have

lim
λ→∞

(
1 − logλ

(
1 +

n∏
i=1

(λ1−Tai − 1)wi

))
= 1 − lim

λ→∞
ln(1 + ∏n

i=1(λ
1−Tai − 1)wi ))

ln λ
,

= 1 − lim
λ→∞

(ln(1 + ∏n
i=1(λ

1−Tai − 1)wi ))′

(ln λ)′
,

123



267 Page 30 of 32 L. Xu et al.

= 1 − lim
λ→∞

∏n
i=1(λ

1−Tai −1)wi

(∑n
i=1 wi (1−Tai )

λ
−Tai

λ
1−Tai −1

)

1+∏n
i=1(λ

1−Tai −1)wi

1
λ

,

= 1 − lim
λ→∞

∏n
i=1(λ

1−Tai − 1)wi

1 + ∏n
i=1(λ

1−Tai − 1)wi

×
(

n∑
i=1

wi (1 − Tai )
λ1−Tai

λ1−Tai − 1

)
,

= 1 −
n∑

i=1

wi (1 − Tai ) =
n∑

i=1

wi Tai .

Let 1 − Δ−1(sθ(ai ), αi )/t = ψ . Similarly, we have

lim
λ→∞ Δ

(
t

(
1 − logλ

(
1 +

n∏
i=1

(λ1−Δ−1(sθ(ai ),αi )/t − 1)wi

)))
= Δ

(
t

n∑
i=1

(Δ−1wi (sθ(ai ), αi )/t)

)
.

(b)

lim
λ→∞

(
logλ

(
1 +

n∏
i=1

(λIai − 1)wi

))
= lim

λ→∞
ln(1 + ∏n

i=1(λ
Iai − 1)wi ))

ln λ
,

= lim
λ→∞

(
ln(1 + ∏n

i=1

(
λIai − 1)wi

))′

(ln λ)′
,

= lim
λ→∞

∏n
i=1(λ

Iai −1)wi

(∑n
i=1 wi (Tai )

λ
Iai −1

λ
Tai −1

)

1+∏n
i=1(λ

Iai −1)wi

1
λ

,

= lim
λ→∞

∏n
i=1(λ

Iai − 1)wi

1 + ∏n
i=1(λ

Iai − 1)wi

(
n∑

i=1

wi (Tai )
λTai

λTai − 1

)
,

=
n∑

i=1

wi Iai .

Similarly, we have

lim
λ→∞

(
logλ

(
1 +

n∏
i=1

(λFai − 1)wi

))
=

n∑
i=1

wi Fai .
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