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Abstract
This paper presents severalmodified subgradient extragradientmethodswith inertial effects to
approximate solutions of variational inequality problems in real Hilbert spaces. The operators
involved are either pseudomonotone Lipschitz continuous or pseudomonotone non-Lipschitz
continuous. The advantage of the suggested algorithms is that they can work adaptively
without the prior information of the Lipschitz constant of the mapping involved. Strong
convergence theorems of the proposed algorithms are established under some suitable condi-
tions. Finally, some numerical experiments are given to verify the advantages and efficiency
of the proposed iterative algorithms with respect to previously known ones.

Keywords Variational inequality · Optimal control · Extragradient method ·
Pseudomonotone mapping · Non-Lipschitz operator

Mathematics Subject Classification 47J20 · 47J25 · 47J30 · 68W10 · 65K15

1 Introduction and preliminaries

The goal of this paper is to provide several efficient and adaptive numerical methods to
solve pseudomonotone variational inequality problems in real Hilbert spaces. Recall that the
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classical variational inequality problem (shortly, VIP) is given as follows:

find x∗ ∈ C such that
〈
Mx∗, z − x∗〉 ≥ 0, ∀z ∈ C, (VIP)

where C is a nonempty, closed and convex subset of a real Hilbert space H with inner
product 〈·, ·〉 and induced norm ‖ · ‖, and M : H → H is an operator. Throughout the
paper, the solution set of the (VIP) is denoted by VI(C, M), and is assumed to be nonempty.
The variational inequality, as one of the fundamental problems in mathematics, provides a
unified and useful framework for the study of many linear and nonlinear problems. It has
become one of the effective mathematical methods and research tools in solving optimization
problems, and has been widely used in many research fields (such as engineering, finance,
mechanics, transportation modeling, operations management and optimal control), see, e.g.,
Mordukhovich (2018), Vuong and Shehu (2019), Bonacker et al. (2020), Cuong et al. (2020),
Khan et al. (2015) and Sahu et al. (2021).

Let us first review the basic definitions of some mappings in nonlinear analysis, which
will be used in the next sequel. Recall that a mapping M : H → H is said to be:

– L-Lipschitz continuous with L > 0 if ‖Mx − My‖ ≤ L‖x − y‖, ∀x, y ∈ H.
– monotone if 〈Mx − My, x − y〉 ≥ 0, ∀x, y ∈ H.
– pseudomonotone if 〈Mx, y − x〉 ≥ 0 ⇒ 〈My, y − x〉 ≥ 0, ∀x, y ∈ H.
– sequentially weakly continuous if for each sequence {xn} converges weakly to x implies

{Mxn} converges weakly to Mx .

In the past decades, researchers proposed a large number of iterative methods to solve
variational inequality problems, among which the methods based on extragradient types are
the focus of this paper. Recall that the classical extragradient method (shortly, EGM), which
was introduced by Korpelevich (1976), requires computing the projection on the feasible
set twice in each iteration. The computation of the projection is difficult if the feasible
set is complex. In order to improve the computational efficiency of the iterative algorithm,
scholars have proposed many improvements to the EGM, see, e.g., (He 1997; Solodov and
Svaiter 1999; Tseng 2000; Censor et al. 2011; Malitsky 2015) and the references therein.
It should be mentioned that the subgradient extragradient method (SEGM) proposed by
Censor et al. (2011) replaces the projection on the feasible set in the second step of the
EGM with a projection on the half-space in each iteration. It is known that the projection
on a half-space can be computed explicitly (see, e.g., Cegielski 2012). Thus, the SEGM
greatly improves the computational efficiency of the EGM. Note that the SEGM can only
obtain the weak convergence in infinite-dimensional Hilbert spaces. From the viewpoint
of the physically tangible property, the strong convergence, which is norm convergence, is
often much more desirable than the weak convergence. This shows the theoretical value
and potential applications of analyzing the strong convergence of iterative algorithms in
infinite-dimensional Hilbert spaces. In the last decades, many techniques were developed to
obtain strongly convergent numerical methods for solving variational inequality problems in
infinite-dimensional Hilbert spaces; see, e.g., Mann-type methods (Kraikaew and Saejung
2014; Tan et al. 2021), viscosity-typemethods (Shehu and Iyiola 2017; Thong et al. 2019), and
projection-based methods (Censor et al. 2011; Cho 2020). In this paper, we consider several
strongly convergent numerical algorithms for variational inequalities in the framework of real
Hilbert spaces, which ismotivated by the real applications of the (VIP) in infinite-dimensional
spaces, such as machine learning and quantum mechanics.

On the other hand, it is noted that the Lipschitz constants of the operators corresponding
to the problems studied in practical applications are difficult to obtain and estimate, which
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will further affect the use of those algorithms whose step size is related to the prior infor-
mation of the Lipschitz constant. Recently, some adaptive algorithms that do not require the
prior information of the Lipschitz constant of the operator involved were proposed to solve
variational inequality problems, see, e.g., Thong and Hieu (2018), Yang et al. (2018), Yang
and Liu (2019), Liu and Yang (2020), Cai et al. (2021), Hieu et al. (2021) and the references
therein. Among the step size selections of these methods, a non-monotonic step size criterion
proposed by Liu and Yang (2020), and a new Armijo-type step size approach introduced by
Cai et al. (2021) are desired to be mentioned. Their numerical experiments demonstrated the
advantages and efficiency of the proposed algorithms over previously known ones.

It is known that the class of pseudomonotone mappings contains the class of monotone
mappings. Recently, many algorithms were proposed in the literature to solve pseudomono-
tone variational inequalities in real Hilbert spaces; see, e.g., Hieu et al. (2021), Shehu et al.
(2019), Jolaoso et al. (2020), Thong et al. (2020), Yang (2021), Grad and Lara (2021) and the
references therein. However, a common feature enjoyed by these algorithms is the require-
ment that the operator satisfies theLipschitz continuity,whichmaybedifficult to be satisfied in
practical applications. To overcome this drawback, scholars proposedmany iterative schemes
for solving non-Lipschitz continuous monotone (or pseudomonotone) variational inequality
problems (see, e.g., Cai et al. 2021; Shehu et al. 2019; Cho 2020; Malitsky 2020; Reich
et al. 2021; Tan and Cho 2021). On the other hand, the inertial extrapolation method based
on discrete versions of a second-order dissipative dynamic system was widely studied as
one of the acceleration techniques. Recently, inertial-type methods attracted a great deal of
attention and interest from researchers in the optimization community, who proposed a large
number of inertial-type numerical algorithms to solve image processing, signal recovery,
variational inequality problems, equilibrium problems, split feasibility problems, fixed point
problems, and variational inclusion problems, see, e.g., Hieu and Gibali (2020), Ceng and
Shang (2021), Shehu and Yao (2020), Shehu and Gibali (2021) and the references therein.
The main feature of inertial-type methods is the inclusion in each iteration of an inertial
term, which is obtained from the combination of some previously known iteration points.
This small change can improve the convergence speed of the original algorithm without the
inertial term.

Inspired and motivated by the above work, this paper proposes several adaptive inertial
subgradient extragradient methods to solve variational inequality problems in infinite-
dimensional real Hilbert spaces. Our contributions in this paper are stated as follows: (1)
the subgradient extragradient method introduced by Censor et al. (2011) is modified in two
simple ways by using two different step sizes in each iteration; (2) two non-monotonic adap-
tive step size criteria are used to make the proposed algorithms work adaptively; (3) the
variational inequality operators involved in the proposed methods are pseudomonotone Lip-
schitz continuous (or non-Lipschitz continuous); (4) the strong convergence of the iterative
sequences generated by the proposed algorithms is established without the prior knowledge
of the Lipschitz constant of the operator; (5) inertial extrapolation terms are added to the pro-
posed algorithms to accelerate their convergence speed; and (6) some numerical experiments
are given to verify the computational efficiency of the proposed iterative schemes compared
to some known algorithms in the literature (Cai et al. 2021; Thong and Vuong 2019; Thong
et al. 2020).

In thewhole paper,we use the symbol xn → x (xn⇀x) to represent the strong convergence
(weak convergence) of the sequence {xn} to x , and use PC : H → C to denote the metric
projection fromH ontoC , i.e., PC (x) := argmin{‖x − y‖, y ∈ C}. We conclude the section
by giving the following lemma that is crucial in the convergence analysis of the proposed
algorithms.
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Lemma 1.1 (Saejung and Yotkaew 2012) Let {pn} be a positive sequence, {sn} be a sequence
of real numbers, and {αn} be a sequence in (0, 1) such that

∑∞
n=1 αn = ∞. Assume that

pn+1 ≤ (1 − αn)pn + αnsn, ∀n ≥ 1.

If lim supk→∞ snk ≤ 0 for every subsequence
{
pnk

}
of {pn} satisfying lim infk→∞ (pnk+1 −

pnk ) ≥ 0, then limn→∞ pn = 0.

2 Main results

In this section, we introduce several modified subgradient extragradient algorithms with
inertial effects for solving pseudomonotone variational inequality problems in infinite-
dimensional Hilbert spaces. The advantage of our algorithms is that they can work without
the prior knowledge of the Lipschitz constant of the mapping and the strong convergence of
the iterative sequence generated by the proposed algorithms can be guaranteed.

2.1 The first type of modified subgradient extragradient methods

In this subsection, two new iterative schemes are proposed for solving the (VIP) in real Hilbert
spaces. We first introduce a new modified subgradient extragradient algorithm with a non-
monotonic sequence of step sizes (see Algorithm 2.1 below) and assume that the proposed
algorithm satisfies the following conditions.

(C1) The feasible set C is a nonempty, closed and convex subset of the real Hilbert space H
and the solution set of the problem (VIP) is nonempty.

(C2) The operator M : H → H is pseudomonotone, L-Lipschitz continuous on H and
sequentially weakly continuous on C .

(C3) Let {εn} be a positive sequence such that limn→∞ εn
τn

= 0, where {τn} ⊂ (0, 1) satisfies
limn→∞ τn = 0 and

∑∞
n=1 τn = ∞. Let {σn} ⊂ (a, b) ⊂ (0, 1 − τn) for some a >

0, b > 0.

We now state the first iterative scheme in Algorithm 2.1.
The following lemmas are important for the convergence analysis of our main results.

Lemma 2.1 Suppose that Condition (C2) holds. Then the sequence {λn} generated by (2.3)
is well defined and limn→∞ λn = λ and λ ∈ [

min{μ/L, λ1}, λ1 + ∑∞
n=1 ξn

]
.

Proof The proof is similar to Lemma 3.1 in Liu and Yang (2020) and thus we omit the details.
��

Lemma 2.2 Assume that Condition (C2) holds. Let {qn} be a sequence generated by Algo-
rithm 2.1. Then, for all p ∈ VI(C, M),

‖qn − p‖2 ≤ ‖un − p‖2 − β∗ (‖un − vn‖2 + ‖qn − vn‖2
)
,

where β∗ = 2 − β − βμλn
λn+1

if β ∈ [1, 2/(1 + μ)) and β∗ = β − βμλn
λn+1

if β ∈ (0, 1).

Proof From the definition of qn and the property of projection ‖PC (x) − y‖2 ≤ ‖x − y‖2 −
‖x − PC (x)‖2, ∀x ∈ H, y ∈ C , we have

‖qn − p‖2 = ∥∥PTn (un − βλnMvn) − p
∥∥2
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Algorithm 2.1
Initialization: Take φ > 0, λ1 > 0, β ∈ (0, 2/(1 + μ)), μ ∈ (0, 1). Select {εn}, {τn} and {σn} to satisfy
Condition (C3). Choose a nonnegative real sequence {ξn} such that

∑∞
n=1 ξn < +∞. Let x0, x1 ∈ H be

arbitrary.
Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1), calculate xn+1 as follows.
Step 1. Compute un = xn + φn(xn − xn−1), where

φn =
⎧
⎨

⎩
min

{
εn

‖xn − xn−1‖ , φ

}
, if xn �= xn−1;

φ, otherwise.
(2.1)

Step 2. Compute vn = PC (un − λnMun). If un = vn or Mvn = 0, then stop and vn is a solution of (VIP).
Otherwise, go to Step 3.
Step 3. Compute qn = PTn (un − βλnMvn), where

Tn := {x ∈ H | 〈un − λnMun − vn , x − vn〉 ≤ 0} . (2.2)

Step 4. Compute xn+1 = (1 − τn − σn)un + σnqn , and update

λn+1 =

⎧
⎪⎨

⎪⎩

min

{

μ
‖un − vn‖2 + ‖qn − vn‖2
2 〈Mun − Mvn , qn − vn〉 , λn + ξn

}

, if 〈Mun − Mvn , qn − vn〉 > 0;
λn + ξn , otherwise.

(2.3)

Set n := n + 1 and go to Step 1.

≤ ‖un − βλnMvn − p‖2 − ‖un − βλnMvn − qn‖2
= ‖un − p‖2 + (βλn)

2 ‖Mvn‖2 − 2 〈un − p, βλnMvn〉 − ‖un − qn‖2
− (βλn)

2 ‖Mvn‖2 + 2 〈un − qn, βλnMvn〉
= ‖un − p‖2 − ‖un − qn‖2 − 2 〈βλnMvn, qn − p〉
= ‖un − p‖2 − ‖un − qn‖2 − 2 〈βλnMvn, qn − vn〉 − 2 〈βλnMvn, vn − p〉 .(2.4)

Since p ∈ VI(C, M) and vn ∈ C , we obtain 〈Mp, vn − p〉 ≥ 0. By the pseudomonotonicity
of mapping M , we have 〈Mvn, vn − p〉 ≥ 0. Thus the inequality (2.4) reduces to

‖qn − p‖2 ≤ ‖un − p‖2 − ‖un − qn‖2 − 2 〈βλnMvn, qn − vn〉 . (2.5)

Now we estimate 2 〈βλnMvn, qn − vn〉. Note that
− ‖un − qn‖2 = −‖un − vn‖2 − ‖vn − qn‖2 + 2 〈un − vn, qn − vn〉 . (2.6)

In addition,

〈un − vn, qn − vn〉
= 〈un − vn − λnMun + λnMun − λnMvn + λnMvn, qn − vn〉
= 〈un − λnMun − vn, qn − vn〉 + λn 〈Mun − Mvn, qn − vn〉

+ 〈λnMvn, qn − vn〉 . (2.7)

Since qn ∈ Tn , one sees that

〈un − λnMun − vn, qn − vn〉 ≤ 0. (2.8)

According to the definition of λn+1, it follows that

〈Mun − Mvn, qn − vn〉 ≤ μ

2λn+1
‖un − vn‖2 + μ

2λn+1
‖qn − vn‖2 . (2.9)
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Substituting (2.7), (2.8), and (2.9) into (2.6), we have

−‖un − qn‖2 ≤ −
(
1 − μλn

λn+1

) (‖un − vn‖2 + ‖qn − vn‖2
) + 2 〈λnMvn, qn − vn〉 ,

which implies that

− 2 〈βλnMvn, qn − vn〉 ≤ −β

(
1 − μλn

λn+1

) (‖un − vn‖2 + ‖qn − vn‖2
)

+β ‖un − qn‖2 . (2.10)

Combining (2.5) and (2.10), we conclude that

‖qn − p‖2 ≤ ‖un − p‖2 − β

(
1 − μλn

λn+1

) (‖un − vn‖2 + ‖qn − vn‖2
)

−(1 − β) ‖un − qn‖2 . (2.11)

Note that

‖un − qn‖2 ≤ 2
(‖un − vn‖2 + ‖qn − vn‖2

)
,

which yields that

−(1 − β) ‖un − qn‖2 ≤ −2(1 − β)
(‖un − vn‖2 + ‖qn − vn‖2

)
, ∀β ≥ 1.

This together with (2.11) implies

‖qn − p‖2 ≤ ‖un − p‖2 −
(
2 − β − βμλn

λn+1

) (‖un − vn‖2 + ‖qn − vn‖2
)
, ∀β ≥ 1.

On the other hand, if β ∈ (0, 1), then we obtain

‖qn − p‖2 ≤ ‖un − p‖2 − β

(
1 − μλn

λn+1

) (‖un − vn‖2 + ‖qn − vn‖2
)
, ∀β ∈ (0, 1).

This completes the proof of the lemma. ��
Remark 2.1 FromLemma 2.1 and the assumptions of the parametersμ and β (i.e.,μ ∈ (0, 1)
and β ∈ (0, 2/(1 + μ))), we can obtain that β∗ > 0 for all n ≥ n0 in Lemma 2.2 always
holds.

Lemma 2.3 (Thong et al. 2020, Lemma 3.3) Suppose that Conditions (C1)–(C3) hold. Let
{un} and {vn} be two sequences formulated by Algorithm 2.1. If there exists a subsequence{
unk

}
of {un} such that

{
unk

}
converges weakly to z ∈ H and limk→∞ ‖unk − vnk‖ = 0,

then z ∈ VI(C, M).

We now in a position to prove our first main result of this section.

Theorem 2.1 Suppose that Conditions (C1)–(C3) hold. Then the sequence {xn} generated by
Algorithm 2.1 converges to p ∈ VI(C, M) in norm, where ‖p‖ = min{‖z‖ : z ∈ VI(C, M)}.
Proof To begin with, our first goal is to show that the sequence {xn} is bounded. Indeed,
thanks to Lemma 2.2 and Remark 2.1, one sees that

‖qn − p‖ ≤ ‖un − p‖, ∀n ≥ n0. (2.12)
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From the definition of un , one sees that

‖un − p‖ ≤ ‖xn − p‖ + τn · φn
τn

‖xn − xn−1‖. (2.13)

According to Condition (C3), we have φn
τn

‖xn − xn−1‖ → 0 as n → ∞. Therefore, there
exists a constant Q1 > 0 such that

φn

τn
‖xn − xn−1‖ ≤ Q1, ∀n ≥ 1,

which together with (2.12) and (2.13) implies that

‖qn − p‖ ≤ ‖un − p‖ ≤ ‖xn − p‖ + τnQ1, ∀n ≥ n0. (2.14)

Using the definition of xn+1 and (2.14), we obtain

‖xn+1 − p‖ = ‖(1 − τn − σn)(un − p) + σn(qn − p) − τn p‖
≤ (1 − τn − σn)‖un − p‖ + σn‖qn − p‖ + τn‖p‖
≤ (1 − τn)‖un − p‖ + τn‖p‖
≤ (1 − τn)‖xn − p‖ + τn(‖p‖ + Q1)

≤ max {‖xn − p‖, ‖p‖ + Q1} , ∀n ≥ n0

≤ · · · ≤ max
{‖xn0 − p‖, ‖p‖ + Q1

}
. (2.15)

This implies that the sequence {xn} is bounded. We have that the sequences {un} and {qn}
are also bounded.

From (2.14), one sees that

‖un − p‖2 ≤ (‖xn − p‖ + τnQ1)
2

= ‖xn − p‖2 + τn(2Q1‖xn − p‖ + τnQ
2
1)

≤ ‖xn − p‖2 + τnQ2 (2.16)

for some Q2 > 0. Combining (2.16), Lemma 2.2 and the inequality ‖τ x + σ y + δz‖2 =
τ‖x‖2 + σ‖y‖2 + δ‖z‖2 − τσ‖x − y‖2 − τδ‖x − z‖2 − σδ‖y − z‖2, where τ, σ, δ ∈ [0, 1]
and satisfies τ + σ + δ = 1, we obtain

‖xn+1 − p‖2 = ‖(1 − τn − σn)(un − p) + σn(qn − p) + τn(−p)‖2
≤ (1 − τn − σn)‖un − p‖2 + σn‖qn − p‖2 + τn‖p‖2
≤ (1 − τn − σn)‖un − p‖2 + σn‖un − p‖2 + τn‖p‖2

−σnβ
∗ (‖un − vn‖2 + ‖qn − vn‖2

)

≤ ‖xn − p‖2 − σnβ
∗ (‖un − vn‖2 + ‖qn − vn‖2

)

+τn(‖p‖2 + Q2), ∀n ≥ n0. (2.17)

It follows from (2.17) that

σnβ
∗ (‖un − vn‖2 + ‖qn − vn‖2

)

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + τn(‖p‖2 + Q2), ∀n ≥ n0. (2.18)

From the definition of un , we have

‖un − p‖2 ≤ ‖xn − p‖2 + 2φn‖xn − p‖‖xn − xn−1‖ + φ2
n‖xn − xn−1‖2

≤ ‖xn − p‖2 + 3Qφn‖xn − xn−1‖, (2.19)
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where Q := supn∈N{‖xn − p‖, φ‖xn − xn−1‖} > 0. Setting gn = (1 − σn)un + σnqn , one
has

‖gn − un‖ = σn‖un − qn‖. (2.20)

It follows from (2.12) that

‖gn − p‖ = ‖(1 − σn)(un − p) + σn(qn − p)‖
≤ (1 − σn)‖un − p‖ + σn‖un − p‖
= ‖un − p‖, ∀n ≥ n0. (2.21)

Combining (2.19), (2.20), (2.21), and the inequality ‖x+ y‖2 ≤ ‖x‖2+2〈y, x+ y〉, ∀x, y ∈
H, we have

‖xn+1 − p‖2 = ‖(1 − σn)un + σnqn − τnun − p‖2
= ‖(1 − τn)(gn − p) − τn(un − gn) − τn p‖2
≤ (1 − τn)

2‖gn − p‖2 − 2τn 〈un − gn + p, xn+1 − p〉
= (1 − τn)

2‖gn − p‖2 + 2τn 〈un − gn, p − xn+1〉 + 2τn 〈p, p − xn+1〉
≤ (1 − τn)‖gn − p‖2 + 2τn‖un − gn‖‖xn+1 − p‖ + 2τn 〈p, p − xn+1〉
≤ (1 − τn)‖xn − p‖2 + τn

[
2σn‖un − qn‖‖xn+1 − p‖

+ 2 〈p, p − xn+1〉 + 3Qφn

τn
‖xn − xn−1‖

]
, ∀n ≥ n0. (2.22)

Finally, we need to show that the sequence {‖xn − p‖} converges to zero. We set

pn = ‖xn − p‖2, sn = 3Qφn

τn
‖xn − xn−1‖ + 2 〈p, p − xn+1〉 + 2σn‖un − qn‖‖xn+1 − p‖.

Then the last inequality in (2.22) can be written as pn+1 ≤ (1 − τn)pn + τnsn for all
n ≥ n0. Note that the sequence {τn} is in (0, 1) and

∑∞
n=1 τn = ∞. By Lemma 1.1, it

remains to show that lim supk→∞ snk ≤ 0 for every subsequence
{
pnk

}
of {pn} satisfying

lim infk→∞
(
pnk+1 − pnk

) ≥ 0. For this purpose, we assume that
{
pnk

}
is a subsequence of

{pn} such that lim infk→∞
(
pnk+1 − pnk

) ≥ 0. From (2.18) and the assumption on {τn}, one
obtains

σnkβ
∗ (∥∥unk − vnk

∥∥2 + ∥∥qnk − vnk

∥∥2
)

≤ lim sup
k→∞

τnk (‖p‖2 + Q2) + lim sup
k→∞

(
pnk − pnk+1

)

≤ − lim inf
k→∞

(
pnk+1 − pnk

) ≤ 0,

which together with Remark 2.1 yields

lim
k→∞ ‖vnk − unk‖ = 0 and lim

k→∞ ‖qnk − vnk‖ = 0.

This implies that limk→∞ ‖qnk − unk‖ = 0, which combining with the boundedness of {xn}
yields that

lim
k→∞ σnk‖unk − qnk‖‖xnk+1 − p‖ = 0. (2.23)

Moreover, we have
∥∥xnk+1 − unk

∥∥ ≤ τnk

∥∥unk
∥∥ + σnk

∥∥unk − qnk
∥∥ → 0 as k → ∞,
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and

‖xnk − unk‖ = τnk · φnk

τnk
‖xnk − xnk−1‖ → 0 as k → ∞.

It follows that

‖xnk+1 − xnk‖ ≤ ‖xnk+1 − unk‖ + ‖unk − xnk‖ → 0 as k → ∞. (2.24)

Since the sequence {xnk } is bounded, there exists a subsequence {xnk j } of {xnk } such that
xnk j ⇀z. Furthermore,

lim sup
k→∞

〈
p, p − xnk

〉 = lim
j→∞〈p, p − xnk j 〉 = 〈p, p − z〉. (2.25)

We obtain that unk⇀z since ‖xnk − unk‖ → 0. This together with limk→∞ ‖unk − vnk‖ = 0
and Lemma 2.3 yields z ∈ VI(C, M). From the definition of p, the property of projection
〈x − PC (x), y − PC (x)〉 ≤ 0, ∀x ∈ H, y ∈ C and (2.25), we have

lim sup
k→∞

〈
p, p − xnk

〉 = 〈p, p − z〉 ≤ 0. (2.26)

Combining (2.24) and (2.26), we obtain

lim sup
k→∞

〈
p, p − xnk+1

〉 ≤ 0. (2.27)

This together with limn→∞ φn
τn

‖xn − xn−1‖ = 0 and (2.23) yields that lim supk→∞ snk ≤ 0.
Therefore, we conclude that limn→∞ ‖xn − p‖ = 0. That is, xn → p as n → ∞. This
completes the proof. ��

Next, we provide a new Armijo-type iterative scheme (see Algorithm 2.2 below) for
finding solutions to the non-Lipschitz continuous and pseudomonotone (VIP) in real Hilbert
spaces. The following condition (C4) will replace the condition (C2) in Algorithm 2.1.

(C4) The mapping M : H → H is pseudomonotone, uniformly continuous onH and sequen-
tially weakly continuous on C .

The Algorithm 2.2 is stated as follows.

Algorithm 2.2
Initialization: Take φ > 0, δ > 0, � ∈ (0, 1), μ ∈ (0, 1), β ∈ (0, 2/(1 + μ)). Select {εn}, {τn} and {σn} to
satisfy Condition (C3). Let x0, x1 ∈ H be arbitrary.
Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1), calculate xn+1 as follows.
Step 1. Compute un = xn + φn(xn − xn−1), where φn is defined in (2.1).
Step 2. Compute vn = PC (un − λnMun). If un = vn or Mvn = 0, then stop and vn is a solution of (VIP).
Otherwise, go to Step 3.
Step 3.Compute qn = PTn (un −βλnMvn), where Tn is defined in (2.2), λn := δ�mn andmn is the smallest
nonnegative integer m satisfying

δ�m 〈Mvn − Mun , vn − qn〉 ≤ μ

2

[
‖un − vn‖2 + ‖vn − qn‖2

]
. (2.28)

Step 4. Compute xn+1 = (1 − τn − σn)un + σnqn .
Set n := n + 1 and go to Step 1.

We need the following lemmas in order to analyze the convergence of Algorithm 2.2.
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Lemma 2.4 Suppose that Condition (C4) holds. Then the Armijo-like criteria (2.28) is well
defined.

Proof The proof is similar to Lemma 3.1 in Tan and Cho (2021). Therefore, we omit the
details. ��
Lemma 2.5 Assume that Condition (C4) holds. Let {qn} be a sequence generated by Algo-
rithm 2.2. Then, for all p ∈ VI(C, M),

‖qn − p‖2 ≤ ‖un − p‖2 − β∗∗ (‖un − vn‖2 + ‖qn − vn‖2
)
,

where β∗∗ = 2 − β − βμ if β ∈ [1, 2/(1 + μ)) and β∗∗ = β − βμ if β ∈ (0, 1).

Proof The proof is omitted since it follows the argument of Lemma 2.2. ��
Remark 2.2 Note that β∗∗ > 0 for all n ≥ 1 in Lemma 2.5 always holds.

Lemma 2.6 Suppose that Conditions (C1), (C3), and (C4) hold. Let {un} and {vn} be two
sequences generated by Algorithm 2.2. If there exists a subsequence

{
unk

}
of {un} such that{

unk
}
converges weakly to z ∈ H and limk→∞ ‖unk − vnk‖ = 0, then z ∈ VI(C, M).

Proof A simple modification of Cai et al. (2021, Lemma 3.2) yields the desired conclusion
and thus it is omitted. ��
Theorem 2.2 Suppose that Conditions (C1), (C3), and (C4) hold. Then the sequence {xn}
created by Algorithm 2.2 converges to p ∈ VI(C, M) in norm, where ‖p‖ = min{‖z‖ : z ∈
VI(C, M)}.
Proof The proof is similar to the proof of Theorem 2.1. Therefore, we omit some details of
the proof. By Lemma 2.5 and similar statements in (2.12)–(2.14), we have

‖qn − p‖ ≤ ‖un − p‖ ≤ ‖xn − p‖ + τnQ1, ∀n ≥ 1.

Applying a similar procedure as in (2.15), we can obtain that {xn}, {un}, and {qn} are bounded.
Combining (2.16), (2.17) and Lemma 2.5, we can show that

σnβ
∗∗ (‖un − vn‖2 + ‖qn − vn‖2

)

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + τn(‖p‖2 + Q2), ∀n ≥ 1.

Reviewing the statements from (2.19)–(2.22), we obtain

‖xn+1 − p‖2 ≤ (1 − τn)‖xn − p‖2 + τn

[
2σn‖un − qn‖‖xn+1 − p‖

+ 2 〈p, p − xn+1〉 + 3Qφn

τn
‖xn − xn−1‖

]
, ∀n ≥ 1.

The rest of the proof follows in the same way as that of Theorem 2.1 but we need apply
Lemma 2.6 in place of Lemma 2.3. ��

2.2 The second type of modified subgradient extragradient methods

In this subsection, two modified versions of the suggested Algorithms 2.1 and 2.2 are pro-
posed to solve the pseudomonotone and Lipschitz continuous (or non-Lipschitz continuous)
variational inequality problem in real Hilbert spaces. We first present a modified form of the
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suggested Algorithm 2.1, see Algorithm 2.3 below for more details. Note that this method
is different from the proposed Algorithm 2.1 in computing the values of the sequences {vn}
and {qn}.

Algorithm 2.3
Initialization: Take φ > 0, λ1 > 0, β ∈ (1/(2− μ), 1/μ), μ ∈ (0, 1). Select {εn}, {τn} and {σn} to satisfy
Condition (C3). Choose a nonnegative real sequence {ξn} such that

∑∞
n=1 ξn < +∞. Let x0, x1 ∈ H be

arbitrary.
Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1), calculate xn+1 as follows.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

un = xn + φn(xn − xn−1),

vn = PC (un − βλnMun),

qn = PHn (un − λnMvn),

Hn = {x ∈ H | 〈un − βλnMun − vn , x − vn〉 ≤ 0} ,

xn+1 = (1 − τn − σn)un + σnqn ,

where φn and λn are defined in (2.1) and (2.3), respectively.

The following lemma plays a crucial role in the convergence analysis of Algorithm 2.3.

Lemma 2.7 Assume that Condition (C2) holds. Let {qn} be a sequence generated by Algo-
rithm 2.3. Then, for all p ∈ VI(C, M),

‖qn − p‖2 ≤ ‖un − p‖2 − β† (‖un − vn‖2 + ‖qn − vn‖2
)
,

where β† = 2 − 1
β

− μλn
λn+1

if β ∈ (0, 1] and β† = 1
β

− μλn
λn+1

if β > 1.

Proof From (2.4) and (2.5), we obtain

‖qn − p‖2 ≤ ‖un − p‖2 − ‖un − qn‖2 − 2 〈λnMvn, qn − vn〉 . (2.29)

Now we estimate 2 〈λnMvn, qn − vn〉. Note that
− ‖un − qn‖2 = −‖un − vn‖2 − ‖vn − qn‖2 + 2 〈un − vn, qn − vn〉 . (2.30)

One can show that

〈un − vn, qn − vn〉
= 〈un − vn − βλnMun + βλnMun − βλnMvn + βλnMvn, qn − vn〉
= 〈un − βλnMun − vn, qn − vn〉 + βλn 〈Mun − Mvn, qn − vn〉

+ 〈βλnMvn, qn − vn〉 . (2.31)

Since qn ∈ Hn , one has

〈un − βλnMun − vn, qn − vn〉 ≤ 0. (2.32)

According to the definition of λn+1, we deduce that

〈Mun − Mvn, qn − vn〉 ≤ μ

2λn+1
‖un − vn‖2 + μ

2λn+1
‖qn − vn‖2 . (2.33)

Substituting (2.31), (2.32), and (2.33) into (2.30), we have

−‖un − qn‖2 ≤ −
(
1 − βμλn

λn+1

) (‖un − vn‖2 + ‖qn − vn‖2
) + 2β 〈λnMvn, qn − vn〉 ,
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which implies that

− 2 〈λnMvn, qn − vn〉 ≤ −
(
1

β
− μλn

λn+1

) (‖un − vn‖2 + ‖qn − vn‖2
)

+ 1

β
‖un − qn‖2 . (2.34)

Combining (2.29) and (2.34), we conclude that

‖qn − p‖2 ≤ ‖un − p‖2 −
(
1

β
− μλn

λn+1

) (‖un − vn‖2 + ‖qn − vn‖2
)

−
(
1 − 1

β

)
‖un − qn‖2 . (2.35)

Note that

‖un − qn‖2 ≤ 2
(‖un − vn‖2 + ‖qn − vn‖2

)
,

which yields that

−
(
1 − 1

β

)
‖un − qn‖2 ≤ −2

(
1 − 1

β

) (‖un − vn‖2 + ‖qn − vn‖2
)
, ∀β ∈ (0, 1].

This together with (2.35) implies

‖qn − p‖2 ≤ ‖un − p‖2 −
(
2 − 1

β
− μλn

λn+1

) (‖un − vn‖2 + ‖qn − vn‖2
)
, ∀β ∈ (0, 1].

On the other hand, if β > 1, then we obtain

‖qn − p‖2 ≤ ‖un − p‖2 −
(
1

β
− μλn

λn+1

) (‖un − vn‖2 + ‖qn − vn‖2
)
, ∀β > 1.

The proof is completed. ��

Remark 2.3 FromLemma 2.1 and the assumptions of the parametersμ and β (i.e.,μ ∈ (0, 1)
and β ∈ (1/(2 − μ), 1/μ)), we can obtain that β† > 0 for all n ≥ n1 in Lemma 2.7 always
holds.

Lemma 2.8 Suppose that Conditions (C1)–(C3) hold. Let {un} and {vn} be two sequences
formulated by Algorithm 2.3. If there exists a subsequence

{
unk

}
of {un} such that

{
unk

}

converges weakly to z ∈ H and limk→∞ ‖unk − vnk‖ = 0, then z ∈ VI(C, M).

Proof The conclusion can be obtained by applying a similar statement in Thong et al. (2020,
Lemma 3.3). ��

Theorem 2.3 Suppose that Conditions (C1)–(C3) hold. Then the sequence {xn} formed by
Algorithm 2.3 converges to p ∈ VI(C, M) in norm, where ‖p‖ = min{‖z‖ : z ∈ VI(C, M)}.

Proof It follows fromLemma2.7 thatβ† > 0 for alln ≥ n1,which is similar to the conclusion
of Remark 2.1. Thus, we can obtain the conclusion required by replacing Lemmas 2.2 and
2.3 in the proof of Theorem 2.1 with Lemmas 2.7 and 2.8, respectively. We omit the details
of the proof to avoid repetition. ��
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Now, we state the last iterative scheme proposed in this paper in Algorithm 2.4 below.
The difference between this scheme and the proposed Algorithm 2.3 is that it can solve the
pseudomonotone and non-Lipschitz continuous (VIP) because it uses an Armijo-type step
size (2.28) instead of the adaptive step size criterion (2.3).

The Algorithm 2.4 is described as follows.

Algorithm 2.4
Initialization: Take φ > 0, δ > 0, � ∈ (0, 1), μ ∈ (0, 1), β ∈ (1/(2 − μ), 1/μ). Select {εn}, {τn} and {σn}
to satisfy Condition (C3). Let x0, x1 ∈ H be arbitrary.
Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1), calculate xn+1 as follows.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

un = xn + φn(xn − xn−1),

vn = PC (un − βλnMun),

qn = PHn (un − λnMvn),

Hn = {x ∈ H | 〈un − βλnMun − vn , x − vn〉 ≤ 0} ,

xn+1 = (1 − τn − σn)un + σnqn ,

where φn and λn are defined in (2.1) and (2.28), respectively.

Lemma 2.9 Assume that Condition (C4) holds. Let {qn} be a sequence generated by Algo-
rithm 2.4. Then, for all p ∈ VI(C, M),

‖qn − p‖2 ≤ ‖un − p‖2 − β‡ (‖un − vn‖2 + ‖qn − vn‖2
)
,

where β‡ = 2 − 1
β

− μ if β ∈ (0, 1] and β‡ = 1
β

− μ if β > 1.

Proof The proof follows the proof of Lemma 2.7 and so it is omitted. ��
Remark 2.4 Note that β‡ > 0 for all n ≥ 1 in Lemma 2.9 always holds.

Lemma 2.10 Suppose that Conditions (C1), (C3), and (C4) hold. Let {un} and {vn} be two
sequences generated by Algorithm 2.4. If there exists a subsequence

{
unk

}
of {un} such that{

unk
}
converges weakly to z ∈ H and limk→∞ ‖unk − vnk‖ = 0, then z ∈ VI(C, M).

Proof We can obtain the conclusion by a simplemodification of Cai et al. (2021, Lemma 3.2).
��

Theorem 2.4 Suppose that Conditions (C1), (C3), and (C4) hold. Then the sequence {xn}
generated by Algorithm 2.4 converges to p ∈ VI(C, M) in norm, where ‖p‖ = min{‖z‖ :
z ∈ VI(C, M)}.
Proof The proof is similar to that of Theorem 2.2. However, we need to replace Lemmas 2.5
and 2.6 in Theorem 2.2 with Lemmas 2.9 and 2.10, respectively. Therefore, we omit the
details of the proof. ��
Remark 2.5 We now explain the contribution of this paper in detail as follows.

1. We modify the subgradient extragradient method (SEGM) introduced by Censor et al.
(2011) in two simple ways. Specifically, our algorithms use two different step sizes for
computing the values ofvn andqn in each iteration,while theSEGMbyCensor et al. (2011)
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employs the same step size for computing these two values in each iteration. Numerical
experimental results will show that this modification improves the convergence speed and
computational efficiency of the original method (see numerical results for our algorithms
when β = 1 and β �= 1 in Sect. 3).

2. The idea of step size selection (i.e., (2.1) and (2.28)) for the methods proposed in this
paper comes from the recent work in Liu and Yang (2020) and Cai et al. (2021). The
two step size criteria generate non-monotonic step size sequences, which improves the
algorithms in the literature (see, e.g., Tan et al. 2021; Yang et al. 2018; Yang and Liu
2019; Hieu et al. 2021; Thong et al. 2020) that use non-increasing step size sequences.
In addition, our Algorithms 2.2 and 2.4 can be used to solve non-Lipschitz continuous
variational inequalities, which extends a large number of algorithms in the literature (see,
e.g., Hieu et al. 2021; Shehu et al. 2019; Jolaoso et al. 2020; Thong et al. 2020; Yang
2021; Grad and Lara 2021) for solving Lipschitz continuous variational inequalities. On
the other hand, the four iterative schemes suggested in this paper are designed to solve
pseudomonotone variational inequalities. Therefore, our results extend many methods in
the literature (see, e.g., Tan et al. 2021; Shehu and Iyiola 2017; Thong et al. 2019; Censor
et al. 2011; Thong and Hieu 2018; Yang et al. 2018; Yang and Liu 2019) that can only
solve monotone variational inequalities.

3. Our algorithms added inertial terms, which accelerates the convergence speed of our
algorithms without inertial terms. In addition, the proposed schemes use the Mann-type
method to obtain strong convergence. Thus, the results obtained in this paper are preferable
to the weakly convergent algorithms in the literature (see, e.g., He 1997; Solodov and
Svaiter 1999; Tseng 2000; Censor et al. 2011; Malitsky 2015; Hieu et al. 2021) in infinite-
dimensional Hilbert spaces.

3 Numerical experiments

In this section, we provide several numerical examples to demonstrate the efficiency of our
algorithms compared to some known ones in Cai et al. (2021), Thong and Vuong (2019) and
Thong et al. (2020). All the programs are implemented in MATLAB 2018a on a Intel(R)
Core(TM) i5-8250S CPU @1.60 GHz computer with RAM 8.00 GB.

Example 3.1 Consider the linear operator M : Rm → R
m (m = 20) in the form M(x) =

Sx + q , where q ∈ R
m and S = NN T + Q + D, N is a m × m matrix, Q is a m ×

m skew-symmetric matrix, and D is a m × m diagonal matrix with its diagonal entries
being nonnegative (hence S is positive symmetric definite). The feasible set C is given by
C = {x ∈ R

m : −2 ≤ xi ≤ 5, i = 1, . . . ,m}. It is clear that M is monotone and Lipschitz
continuous with constant L = ‖S‖. In this experiment, all entries of N , Q are generated
randomly in [−2, 2], D is generated randomly in [0, 2] and q = 0. It can be checked that the
solution of the (VIP) is x∗ = {0}. We apply the proposed algorithms to solve this problem.
Take φ = 0.6, εn = 100/(n + 1)2, τn = 1/(n + 1) and σn = 0.9(1 − τn) for the suggested
Algorithms 2.1–2.4. Choose λ1 = 1, μ = 0.2 and ξn = 1/(n + 1)1.1 for the proposed
Algorithms 2.1 and 2.3. Select δ = 2, � = 0.5, μ = 0.2 for the stated Algorithms 2.2 and
2.4. The maximum number of iterations 500 is used as a common stopping criterion. We use
Dn = ‖xn − x∗‖ to measure the error of the nth iteration step. Figure 1 shows the numerical
performance of the proposed algorithms for different parameter β.
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(a) Our Algorithms 2.1 and 2.3
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(b) Our Algorithms 2.2 and 2.4

Fig. 1 Numerical results of our algorithms with different β in Example 3.1

Example 3.2 LetH = L2([0, 1]) be an infinite-dimensional Hilbert space with inner product

〈x, y〉 =
∫ 1

0
x(t)y(t) dt, ∀x, y ∈ H,

and induced norm

‖x‖ =
(∫ 1

0
|x(t)|2 dt

)1/2

, ∀x ∈ H.

Let r , R be two positive real numbers such that R/(k + 1) < r/k < r < R for some k > 1.
Take the feasible set as C = {x ∈ H : ‖x‖ ≤ r}. The operator M : H → H is given by

M(x) = (R − ‖x‖)x, ∀x ∈ H.

It is not hard to check that operator M is pseudomonotone rather than monotone. For the
experiment, we choose R = 1.5, r = 1, k = 1.1. The solution of the (VIP) with M and C
given above is x∗(t) = 0.We compare the proposedAlgorithms 2.1–2.4with the Algorithm 2
introduced by Thong and Vuong (2019) (shortly, TV Alg. 2). Set τn = 1/(n + 1) and
σn = 0.9(1 − τn) for all algorithms. Choose φ = 0.3, εn = 100/(n + 1)2 for the suggested
Algorithms 2.1–2.4. Take μ = 0.4, λ1 = 1 and ξn = 1/(n + 1)1.1 for the suggested
Algorithms 2.1 and 2.3. Select δ = 1, � = 0.5 and μ = 0.4 for the proposed Algorithm 2.2,
Algorithm 2.4 and TV Alg. 2. The maximum number of iterations 50 is used as a common
stopping criterion. The numerical behavior of the function Dn = ‖xn(t) − x∗(t)‖ of all
algorithms with four starting points x0(t) = x1(t) is shown in Fig. 2 and Table 1, where
“CPU" in Table 1 indicates the execution time of all algorithms in seconds.

Example 3.3 Consider the Hilbert space H = l2 := {x = (x1, x2, . . . , xi , . . .) |∑∞
i=1 |xi |2 < +∞} equipped with the inner product

〈x, y〉 =
∞∑

i=1

xi yi , ∀x, y ∈ H,

and the induced norm

‖x‖ = √〈x, x〉, ∀x ∈ H.
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Fig. 2 Numerical behavior of all algorithms at x0(t) = x1(t) = t4 for Example 3.2

Let C := {x ∈ H : |xi | ≤ 1/i}. Define an operator M : C → H by

Mx =
(

‖x‖ + 1

(‖x‖ + α)

)
x

for some α > 0. It can be verified that mapping M is pseudomonotone on H, uniformly
continuous and sequentially weakly continuous on C , but not Lipschitz continuous on H
(see Thong et al. 2020, Example 1). In the following cases, we take α = 0.5, H = R

m for
different values of m. In these situations, the feasible set C is a box given by

C =
{
x ∈ R

m : −1

i
≤ xi ≤ 1

i
, i = 1, 2, . . . ,m

}
.

Wecompare the proposedAlgorithms2.2 and 2.4with several strongly convergent algorithms
that can solve the (VIP) with uniformly continuous operators, including the Algorithm 3.1
introduced by Cai et al. (2021) (shortly, CDP Alg. 3.1) and the Algorithm 3 suggested by
Thong et al. (2020) (shortly, TSI Alg. 3). Take τn = 1/(n + 1), δ = 2, � = 0.5, μ = 0.1
for all the algorithms. Select σn = 0.9(1 − τn), φ = 0.4 and εn = 100/(n + 1)2 for the
suggested Algorithms 2.2 and 2.4. Set f (x) = 0.1x for CDP Alg. 3.1 and TSI Alg. 3. The
initial values x0 = x1 = 5rand(m,1) are randomly generated by MATLAB. The maximum
number of iterations 200 is used as a common stopping criterion. The numerical performance
of the function Dn = ‖xn−xn−1‖ of all algorithms with four different dimensions is reported
in Fig. 3 and Table 2, where “CPU” in Table 2 represents the execution time of all algorithms
in seconds.

Next, we use the proposed algorithms to solve the (VIP) that appears in optimal control
problems. Assume that L2 ([0, T ],Rm) represents the square-integrable Hilbert space with
inner product 〈p, q〉 = ∫ T

0 〈p(t), q(t)〉 dt and norm ‖p‖ = √〈p, p〉. The optimal control
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Fig. 3 Numerical behavior of all algorithms at m = 200000 for Example 3.3

problem is described as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p∗(t) ∈ Argmin{g(p) | p ∈ V },
g(p) = 
(x(T )),

V = {
p(t) ∈ L2

([0, T ],Rm) : pi (t) ∈ [
p−
i , p+

i

]
, i = 1, 2, . . . ,m

}
,

such that ẋ(t) = Q(t)x(t) + W (t)p(t), 0 ≤ t ≤ T , x(0) = x0,

(3.1)

where g(p) means the terminal objective function, 
 is a convex and differentiable defined
on the attainability set, p(t) denotes the control function, V represents a set of feasible
controls composed of m piecewise continuous functions, x(t) stands for the trajectory, and
Q(t) ∈ R

n×n and W (t) ∈ R
n×m are given continuous matrices for every t ∈ [0, T ]. By

the solution of problem (3.1), we mean a control p∗(t) and a corresponding (optimal) tra-
jectory x∗(t) such that its terminal value x∗(T ) minimizes objective function g(p). It is
known that the optimal control problem (3.1) can be transformed into a variational inequality
problem (see Preininger and Vuong 2018; Vuong and Shehu 2019). We first use the clas-
sical Euler discretization method to decompose the optimal control problem (3.1) and then
apply the proposed algorithms to solve the variational inequality problem corresponding to
the discretized version of the problem (see Preininger and Vuong 2018; Vuong and Shehu
2019 for more details). In the proposed Algorithms 2.1–2.4, we set N = 100, φ = 0.01,
εn = 10−4/(n + 1)2, τn = 10−4/(n + 1) and σn = 0.9(1 − τn). Pick λ1 = 0.4, μ = 0.5
and ξn = 1/(n + 1)1.1 for the proposed Algorithms 2.1 and 2.3. Select δ = 2, � = 0.5 and
μ = 0.5 for the suggested Algorithms 2.2 and 2.4. The initial controls p0(t) = p1(t) are
randomly generated in [−1, 1] and the stopping criterion is Dn = ‖pn+1 − pn‖ ≤ 10−4.

Example 3.4 (Rocket car (Bressan and Piccoli 2007))

minimize − x1(2) + (x2(2))
2 ,

subject to ẋ1(t) = x2(t), ẋ2(t) = p(t), ∀t ∈ [0, 2],
x1(0) = 0, x2(0) = 0, p(t) ∈ [−1, 1].
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Fig. 4 Numerical results for Example 3.4

The exact optimal control of Example 3.4 is p∗(t) = 1 if t ∈ [0, 1.2) and p∗(t) = −1 if
t ∈ (1.2, 2]. The approximate optimal control of the stated Algorithm 2.2 is plotted in Fig. 4a.
Moreover, the numerical behavior of the proposed algorithms is shown in Fig. 4b.

Remark 3.1 We have the following observations for Examples 3.1–3.4: (i) as can be seen in
Examples 3.2 and 3.3, the algorithms proposed in this paper converge faster than some known
methods in the literature (Cai et al. 2021; Thong and Vuong 2019; Thong et al. 2020), and
these results are independent of the choice of initial values and the size of the dimensions (see
Figs. 2, 3, Tables 1, 2); (ii) our four algorithms can obtain a faster convergence speed when
the appropriate value of β is chosen; in other words, our algorithms can achieve a higher
error accuracy when the two step sizes used in each iteration are different (i.e., β �= 1) than
when they are the same (i.e., β = 1), see Figs. 1, 2, 3, 4 and Tables 1, 2; (iii) from Fig. 2 and
Table 1, it can be seen that our Armijo-type Algorithms 2.2 and 2.4 take more computation
time than the adaptive step size Algorithms 2.1 and 2.3, because the Armijo-type methods
may take extra time to find a suitable step size in each iteration, while the adaptive step
size type methods can use previously known information to automatically compute the next
iteration step size; (iv) the proposed algorithms can work well in solving optimal control
problems (see Fig. 4); and (v) notice that the operator M in Example 3.3 is non-Lipschitz
continuous rather than Lipschitz continuous, whichmeans that the algorithms proposed in the
literature (see, e.g., Hieu et al. 2021; Shehu et al. 2019; Jolaoso et al. 2020; Thong et al. 2020;
Yang 2021; Grad and Lara 2021) for solving Lipschitz continuous variational inequalities
will not be available in this example. In summary, the iterative schemes suggested in this
paper are useful, efficient and robust.

4 Conclusions

In this paper, we presented four new iterative schemes inspired by the inertial method, the
subgradient extragradient method and the Mann-type method for solving the variational
inequality problem with a pseudomonotone and Lipschitz continuous (or non-Lipschitz con-
tinuous) operator. Our algorithms use two non-monotonic step size criteria allowing them
to work without the prior information about the Lipschitz constant of the operator. Strong
convergence theorems of the proposed iterative algorithms are proved under some mild con-
ditions in the framework of real Hilbert spaces. Finally, some numerical experimental results
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show the computational efficiency of the suggested methods compared to previously known
schemes.
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