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Abstract
In this paper, we numerically compare several well-established and recent qualitative algo-
rithms for the shape reconstruction of obstacles in elastic scattering based on the measured
noisy full far-field data. The compared algorithms include linear sampling method, factoriza-
tion method and its variant (i.e., F� method), direct sampling method, and direct factorization
method. To regularize the ill-conditioned far-field integral operator used in linear sampling
method and factorization method, the Tikhonov regularization is used, where we compared
two different regularization parameter choice technique: the generalized discrepancy princi-
ple (GDP) and the improved maximum product criterion (IMPC). The GDP requires a priori
knowledge of the noise level in the far-field data, while the IMPC does not have such an
impractical requirement. Extensive numerical examples are provided to illustrate the differ-
ence, similarity, advantage, and disadvantage of the tested qualitative methods under various
settings. The direct sampling method and direct factorization method outperform the others
in computational efficiency while achieving comparable reconstruction accuracy. We find
the F� method is numerically less sensitive to noise.
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1 Introduction

The inverse elastic scattering problem of shape reconstruction of scattering objects from the
knowledge of far-field patterns has been extensively studied (Yaman et al. 2013; Bao and
Yin 2017; Bao et al. 2018). Many different quantitative and qualitative numerical algorithms
were proposed in the last few decades. However, their numerical comparison are inadequately
discussed, except related theoretical reviews (Colton et al. 2000b; Potthast 2005, 2006) for
acoustic and electromagnetic scattering problems.

Existing numerical reconstruction algorithms for inverse scattering problems can be
roughly categorized into two classes: (i) nonlinear optimization methods and (ii) qualitative
methods. The nonlinear optimization approaches (Roger 1981; Murch et al. 1988; Giorgi
et al. 2013) often involve an expensive iterative procedure, where a direct (forward) scatter-
ing problem needs to be (approximately) solved at each iteration. Although such optimization
approaches require less number of incident fields, they do need a priori knowledge of the
boundary conditions of the unknown scatterer (e.g., sound-soft or not), and its number of
connected components, which may not be available in many practical applications. More-
over, the optimization iterations may converge to an incorrect approximation of the true
scatterer when the provided a priori information (initial guess) is far away from the truth.
The qualitative methods have the advantage of not requiring any a priori information about
the unknown scatterer and were shown to be computationally faster than the nonlinear opti-
mization methods, since they determine only an approximation of the scatterer shape and
very limited information about its physical/material properties.

In this paper, we will focus on the numerical comparison of several different qualita-
tive methods, including the linear sampling method (Colton and Kirsch 1996), factorization
method (Kirsch 1998; Kirsch and Grinberg 2008) and its variant, direct sampling method
(Ji et al. 2018), and direct factorization method (Leem et al. 2018a). In particular, we will
provide reconstructions of 2D rigid bodies irradiated by incident elastic plane waves. In
such sampling type qualitative methods, the support of the scattering obstacle is obtained by
(approximately) solving a vector integral equation of the first kind and noting that a specific
norm (called indicator functional) becomes unbounded or large as a sampling point lying on
a rectangular grid containing the scatterer approaches its boundary.

Both linear samplingmethod and factorizationmethod yield an ill-posed far-field equation,
which is customarily solved via Tikhonov regularization. The regularization parameter is
often computed viaMorozov’s generalized discrepancy principle (GDP) (Colton et al. 1997).
However, Morozov’s generalized discrepancy principle requires the computation of the zeros
of the discrepancy function at each point of the grid, a process that is time-consuming (Leem
et al. 2018b). The locally convergent Newton-type method is often used to compute zeros.
To achieve the global convergence and significantly reduce the computational cost of finding
zeros, an efficient fixed-point (FP) iteration was proposed in Bazán (2014) for approximately
determining the regularization parameter. Moreover, the noise level in the data should be
known a priori, something that in real-life applications is not the case in general. To avoid
these difficulties, we also tested a variant of the maximum product criterion (MPC) , the so-
called Improved Maximum Product Criterion (IMPC) (Bazán et al. 2012), which computes
regularized solution norms and corresponding residual norms, and chooses as regularization
parameter the critical point associated with the largest local maximum of the product of
these norms as a function of the regularization parameter. In addition, as with MPC, IMPC
does not depend on user specified input parameters (like subspace dimension or truncating
parameter) and requires no a priori knowledge of the unknown noise level. IMPC extends
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in a very elegant way the MPC, and it has been applied with great success in reconstructing
three-dimensional obstacles in acoustics (Bazán et al. 2015) and in electromagnetic scattering
applications (Bazán et al. 2016).

We organize our paper as follows. In Sect. 2, the direct scattering problem for a rigid body
irradiated by an incident elastic plane wave is introduced. The corresponding inverse elastic
scattering problem is also presented. In Sect. 3, the compared qualitativemethods and rules for
choosing regularization parameter are briefly described. Extensive numerical examples with
different settings are reported in Sect. 4 to illustrate some interesting similarity/difference
and advantage/disadvantage of the compared methods. Finally, some concluding remarks are
provided in Sect. 5.

2 Formulation of the direct and inverse scattering problem

We formulate our problem by considering the scattering process of a given time-harmonic
elastic plane wave uinc by an impenetrable obstacle D ⊂ R

2 which is open, bounded,
and simply connected domain with a smooth boundary ∂D that is of class C2. We assume
that R2 is filled up with a homogeneous and isotropic elastic medium with Lamé constant
coefficientsμ, λ, andmass density ρ. We further assume the strong elliptic conditions:μ > 0
and 2μ + λ > 0. Denote by n̂r the outward unit normal vector on the boundary ∂D at point
r, and the complement of our scatterer D, denoted by R2\D, will be referred as the exterior
domain.

Let S := {z ∈ R
2 : |z| = 1} denotes the unit circle in R

2 and z⊥ be the vector obtained
by rotating z counter-clockwise by π/2. Let uinc be the elastic plane wave with incident
direction d̂ = (cos θ, sin θ) ∈ S, which is of the linear combination form

uinc(r) = apd̂eikpr·d̂ + as d̂
⊥
eiksr·d̂, (1)

where kp is the longitudinal wave number and ks is the transverse one. Here, the vectors
with hat on the top are unit vectors. At this point, we mention that our scatterer could also
be irradiated only by an incident plane P-wave (longitudinal wave) with (ap, as) = (1, 0)
or only by a plane S-wave (transverse wave) with (ap, as) = (0, 1).

Let ∇,∇·,� be the standard gradient, divergence, and Laplace operator, respectively.
Define the differential operator �∗ as

�∗ = μ� + (λ + μ)∇(∇·). (2)

The total displacement elastic field u is viewed as the sum of the incident field uinc and the
scattered field usct, that is

u(r) = uinc(r) + usct(r), r ∈ R
2\D. (3)

The direct elastic scattering problem can be described by the boundary-value problem
(Elschner and Yamamoto 2010; Hahner and Hsiao 1993): For a given incident elastic plane

wave uinc and obstacle D ⊂ R
2, find the total elastic fieldu ∈ [

C2(R2\D)
]2∩[

C1(R2\D)
]2
,

such that

�∗u(r) + ρω2u(r) = 0, r ∈ R
2\D (4)

u(r) = 0, r ∈ ∂D (5)

lim
r→∞

√
r

(
∂usct
 (r)

∂r
− ik
usct
 (r)

)
= 0, 
 = p, s, (6)
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where r := |r|, ω > 0 is the circular frequency, and kp = ω
√

ρ
2μ+λ

and ks = ω
√

ρ
μ
are wave

numbers. The Dirichlet boundary condition (5) corresponds to a rigid body (scatterer) whose
surface cannot be deformed by the stresses generated by the incident displacement field.
The Sommerfeld–Kupradze type radiation conditions (6) hold uniformly in all directions
r̂ = r/|r| for both P and S-components of the scattered field usctp ,uscts , respectively. Since
both u and usct satisfy the Navier equation (4), the well-known Helmholtz decomposition
leads to Kupradze (2012)

usct(r) = usctp (r) + uscts (r) with (� + k2p)u
sct
p (r) = 0, (� + k2s )u

sct
s (r) = 0,

where usctp (r) is the longitudinal part (P-wave being rotational-free), uscts (r) the transverse
part (S-wave divergence-free) and kp , ks are the corresponding wave numbers. The same
decomposition also holds for the total field u(r) = up(r) + us(r).

The free-space Green’s dyadic (or tensor) �(r, r′) of the Navier equation (4) satisfies the
following equation:

�∗�(r, r′) + ρω2�(r, r′) = −I δ(r − r′), r, r′ ∈ R
2 (7)

with δ(r − r′) being the Dirac measure at the point r, and it is given by Pelekanos and
Sevroglou (2005)

�(r, r′) = i

4μ
I H (1)

0 (ks |r − r′|)

− i

4ρω2 ∇r ⊗ ∇r

[
H (1)
0 (kp|r − r′|) − H (1)

0 (ks |r − r′|)
]
, (8)

where I is an identity matrix, H (1)
0 (·) is the cylindrical Hankel function of the first kind and

zero order, and ⊗ denotes the juxtaposition between two vectors (i.e., a dyadic).
From the numerical point of view, we want to avoid the dyadic nature of the fundamental

solution. For the dyadic approach for elastic scattering problems, we refer to Sevroglou and
Pelekanos (2001) and the references therein. In particular, let p ∈ S denotes the polarization
vector of an elastic point source at any z ∈ R

2. For any r ∈ R
2\{z}, we will adopt the notation

�(r, z;p) := �(r, z) · p to highlight the dependence on p.
Using asymptotic analysis for 0(r, z;p), we can arrive at

�(r, z;p) = �∞
p (r̂, z;p)r̂

eikpr√
r

+ �∞
s (r̂, z;p)r̂

⊥ eiksr√
r

+ O(r−3/2), r → ∞, (9)

where the far-field patterns �∞(·, z;p) = (�∞
p (·, z;p), �∞

s (·, z;p)) of this elastic point
source of the P , and S-part of �(r, z;p) are given by Pelekanos and Sevroglou (2005)

�∞
p (r̂, z;p) = 1

λ + 2μ

i + 1

4
√

πkp
e−ikp r̂·zr̂ · p, (10)

�∞
s (r̂, z;p) = 1

μ

i + 1

4
√

πks
e−iks r̂·zr̂⊥ · p, (11)

respectively. ExploitingBetti’s formulae, through asymptotic analysis and taking into account
(9) and (10)–(11), we can arrive at the asymptotic form of the radiating solution usct of the
Navier equation (4)

usct(r) = u∞
p (r̂)

eikpr√
r

+ u∞
s (r̂)

eiksr√
r

+ O(r−3/2), (12)
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uniformly with respect to r̂ = r/|r| as r = |r| → ∞. The functions u∞
p and u∞

s are the
corresponding far-field patterns defined on S, and are known as the longitudinal and the
transverse far-field patterns, respectively. From the point of view of the investigation of
the inverse scattering problem, the far-field patterns, which consist of a measure of the
scattered field at the radiation zone, are essential and useful on the numerical reconstructions
of obstacles. The explicit formulae of the elastic far-field patterns u∞

p and u∞
s are omitted for

brevity, which can be found in the literature, see, e.g., (Athanasiadis et al. 2006; Pelekanos
and Sevroglou 2003; Sevroglou 2005).

Our interested inverse elastic scattering problem of (4)–(6) consists in the determination
of the unknown boundary ∂D of the rigid scatterer D, from the knowledge (with noise) of the
far-field patterns u∞(r̂) := (u∞

p (r̂);u∞
s (r̂)) of the scattered field in all incident directions

d̂ ∈ S and observation directions r̂ ∈ S. In practical applications, we can only measure
far-field pattern data from finite many directions that uniformly distributed on the unit circle.
In theory, the above direct and inverse elastic scattering problem admits at most one solution
(Hahner and Hsiao 1993; Li et al. 2016).

3 A brief description of compared qualitative methods

In this section, we briefly review several qualitative methods for solving the above inverse
elastic scattering problem. In particular, we will consider the linear sampling method, fac-
torization method and its variant, direct sampling method, and direct factorization method
involving full far-field patterns, which are used successfully for the reconstruction of bound-
aries of scatterers treated in a large variety of inverse acoustic, electromagnetic, and elastic
problems (Kirsch 1998; Kirsch and Grinberg 2008; Charalambopoulos et al. 2006). We will
numerically compare these methods for solving inverse elastic scattering problems, and deal
with reconstructions of the boundary of a rigid obstacle with homogeneous Dirichlet bound-
ary condition.

For a given kernel g = (gp, gs) ∈ L2 := [L2(S)]2, define the elastic Herglotz wavefunc-
tion

vg(r) = e−iπ/4

[∫

S

√
kp
ω
gp(d̂, z;p)d̂eikpr·d̂ +

√
ks
ω
gs(d̂, z;p)d̂

⊥
eiksr·d̂ds(d̂)

]

, (13)

which refers to a superposition of plane waves over the unit circle S propagating in every
direction, and the components gp(d̂, z;p), gs(d̂, z;p) of g are, respectively, known as the
longitudinal and transverse Herglotz kernels (Sevroglou and Pelekanos 2002). The far-field
patterns of the scattered fields corresponding to the elastic Herglotz wave function (13) are
expressed via the elastic far-field operator F : L2 → L2 given by

(Fg)(r̂)

= e−iπ/4
[∫

S

√
kp
ω
u∞(r̂, d̂, d̂)gp(d̂, z;p) +

√
ks
ω
u∞(r̂, d̂, d̂

⊥
)gs(d̂, z;p)ds(d̂)

]
,
(14)

where r̂, d̂ denote the observation and incident directions, respectively, and the far-field
patterns have the form

u∞(·, d̂, d̂) = (u∞
p (·, d̂, d̂), u∞

s (·, d̂, d̂)), (15)

u∞(·, d̂, d̂
⊥
) = (u∞

p (·, d̂, d̂
⊥
), u∞

s (·, d̂, d̂
⊥
)). (16)
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Basic known properties of the above elastic far-field operator F can be found in Alves (2002),
Arens (2001), Pelekanos and Sevroglou (2003), and Sevroglou (2005). In particular, the far-
field operator F is known to be normal, compact, and injective, and it has a countable infinite
number of nonzero eigenvalues, which lie on the circle with center (2π/ω)i and radius 2π/ω

in the complex plane.

3.1 The linear samplingmethod and factorizationmethod

The linear sampling method (LSM) was first introduced for inverse acoustic scattering prob-
lems and then extended to electromagnetic and elastic scattering problems (Potthast 2006).
Let p ∈ S be the chosen polarization vector of an elastic point source (see (9)). The basic
idea of LSM is, for any z ∈ D, to solve for a density g(·, z;p) = (

gp(·, z;p), gs(·, z;p)
)

from the far-field equation

Fg(·, z;p) = φz := �∞(·, z;p) (17)

with φz := �∞(·, z;p) is the far-field pattern of �(r, z;p) given in (10) and (11). It was
shown that ‖g(·, z;p)‖L2 → ∞ as z approaches ∂D, which suggests to use the value of

I
LSM(z) := ‖g(·, z;p)‖L2

as an indicator function for qualitatively characterize the shape of D. In practical numerical
implementations, such a simple LSM indeed demonstrates a very satisfactory reconstruction
accuracy. However, it is unclear what will happen when z /∈ D and Eq. (17) may not be
solvable in general.

To address those theoretical drawbacks of LSM, Kirsch in Kirsch (1998) first proposed
the factorization method (FM), which solves the following ‘factorized’ far-field equation:

(F∗F)1/4g(·, z;p) = φz (18)

with F∗ being the Hilbert adjoint operator of F . Similar to the LSM, the value of

I
FM(z) := ‖g(·, z;p)‖L2

with g given in (18) can be used as an indicator function for determining the support of the
scatterer, From the knowledge of the density g(·, z;p) ∈ L2(S), the boundary of our obstacle
can be recovered at the points where ‖g(·, z;p)‖L2 becomes unbounded or has an extremely
large value in numerical approximations.

The mathematical justification of FM is the key equivalence (Alves 2002; Kirsch and
Grinberg 2008) (for any z ∈ R

2)

z ∈ D ⇐⇒ �∞(r̂, z;p) ∈ Range
(
(F∗F)1/4

)
, (19)

where D is assumed to be simply connected and ω2 is not an interior Dirichlet eigenvalue of
−�∗ in D. This explicit equivalence provides a complete characterization of the support of the
elastic scatterer D, leading to the above factorization method. The FM was further analyzed
in Hu et al. (2012), where shape reconstructions can be achieved using only one part (P or
S-part) of the far-field patterns. Very recently, this equivalence relation was further exploited
for determining the interior eigenvalues (i.e., resonant frequencies) and the corresponding
eigenfunctions associated with an unknown obstacle, which leads to an improved wave
imaging scheme with enhanced imaging resolution (Liu et al. 2019) for certain practical
scenarios.
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For simplicity, we will denote ‖ · ‖L2 by ‖ · ‖ in the following. Due to the compactness
of F , the inversion of F in (17) and (F∗F)1/4 in (18) are ill-posed, which are often treated
by Tikhonov regularization for their stable approximation in the presence of noise. More
specifically, let Fδ be the noisy far-field operator obtained by replacing the exact far-field
pattern u∞ in F by the measured noisy far-field pattern u∞

δ , such that ‖Fδ − F‖ < δ. The
Tikhonov regularization (Tikhonov et al. 2013; Kirsch 1998) approximates g by gγ , which
is defined as the minimizer of the following Tikhonov regularized objective functional (for
any fixed z):

gγ := argmin
g∈L2

(‖Aδg − φz‖2 + γ 2‖g‖2) , (20)

where Aδ = Fδ or Aδ = (F∗
δ Fδ)

1/4 and γ > 0 is a regularization parameter to be chosen.
The above Tikhonov minimization problem (20) is mathematically equivalent to solving the
regularized normal equation

(A∗
δ Aδ + γ 2 I )gγ = A∗

δφz. (21)

Let ({σ j }, {u j }, {v j }) be the singular system of Fδ with {σ j } being the singular values (in
decreasing order), {u j } and {v j } being the left and right singular functions, respectively, that
is Fδu j = σ jv j and F∗

δ v j = σ j u j . Then, the regularized solution of (21) can be expressed in
terms of the singular system ({σ j }, {u j }, {v j }) according to Colton et al. (2000a) and Colton
and Kress (2012)

gLSMγ =
∑

j

σ j

γ 2 + σ 2
j

(φz, v j )u j , when Aδ = Fδ (22)

or

gFMγ =
∑

j

√
σ j

γ 2 + σ j
(φz, u j )u j , when Aδ = (F∗

δ Fδ)
1/4. (23)

From the above expressions, we can see that the major operation cost of computing the
regularized I

LSM(z) and I
FM(z) lies in the inner products between singular functions and

φz. In finite dimension, such inner products become usually vector dot products. However,
this operation could become very expensive if it is repeated for a large number of different
sampling points that are necessary for a large probing domain in 3D problems.

For treating more general cases where the far-field operator F fails to be normal, we can
define similar indicator functionals with F being replaced by the derived self-adjoint positive
definite far-field operator F� (named “F-sharp”) given by (see Grinberg and Kirsch 2004;
Kirsch and Grinberg 2008)

F� = |Re(F)| + |Im(F)|,
where Re(A) = (A + A∗)/2, Im(A) = (A − A∗)/(2i), and |B| = (B∗B)1/2. More specifi-
cally, the LSM and FM far-field linear equations now take the following form, respectively:

F�gz = φz and F1/2
� gz = φz,

wherewehave used the fact that F∗
� = F� and (F∗

� F�)
1/4 = F1/2

� . Theoretically, the condition
numbers of F� and F are of the same order, as elaborated in Sect. 4.4. However, we observed
that F�-based methods are numerically more well conditioned than F-based methods due to
the regularization effect of round-off errors, as illustrated in Fig. 12.
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On the choice of regularization parameter �

There are various a priori or a posteriori methods of choosing a good regularization parameter
γ . We will focus on comparing two such methods: Morozov’s generalized discrepancy prin-
ciple (GDP) (Goncharskii et al. 1973; Engl 1987; Colton and Kress 2012) and the improve
maximum product criterion (IMPC) (Bazán 2014; Bazán et al. 2015), which are now briefly
described as follows. Recall that GDP chooses as regularization parameter γ the unique root
of the nonlinear equation

G(λ) := ‖Aδgλ − φz‖2 − δ2‖gλ‖2 = 0, (24)

where δ > 0 is an estimate for ‖E‖ = ‖Aδ −A‖, such that ‖E‖ ≤ δ. It is well known thatG is
convex for small λ and concave for large λ. As a result, global and monotone convergence of
the standard Newton’s method (with only local convergence) cannot be guaranteed (Lu et al.
2010) in general. This difficulty is circumvented by a fixed-point iteration (called GDP-FP)
introduced by Bazán (2014), as we will see shortly.

Following (Bazán et al. 2017) closely, we now describe the GDP-FP method. To this end,
we consider

r(λ) =‖Aδgλ − φz‖ and s(λ) = ‖gλ‖, (25)

and for any initial guess λ0 > 0, we define the fixed point iteration (k = 0, 1, 2, . . . )

λk+1 := ξ(λk), with ξ(λ) := λ

√
δs(λ)

r(λ)
. (26)

Bazán (2014) showed that the above-generated sequence {λk} converges globally to the
unique root of G(λ) irrespective of the chosen initial guess. Thus, provided that the solu-
tion norm and the corresponding residual norm are available, computing the regularization
parameter chosen by GDP via the above fixed-point iteration is efficient. Yet, another diffi-
culty with GDP is that it requires knowledge of the noise level δ and poor-quality solutions
may be produced when the noise level is not accurately estimated.

An alternative parameter selection criterion that avoids using knowledge of the noise level
and that has been shown to produce stable reconstructions is the maximum product criterion
(MPC) (Bazán et al. 2012). MPC selects as regularization parameter a maximizer of the
nonlinear function,

�(λ) = [r(λ)]2 [s(λ)]2 (27)

which is relatively simple to compute in most cases. However, MPC is not free of difficul-
ties and it can fail when � has several local maxima. The improved MPC (IMPC) (Bazán
et al. 2015) circumvents this problem by selecting the regularization parameter as the largest
maximum point of � and by introducing a fixed point iteration for its computation. More
specifically, the regularization parameter chosen by IMPC is computed via another fixed
point iteration (k = 0, 1, 2, . . .)

λk+1 = χ(λk), with χ(λ) := λ2s(λ)

r(λ)
(28)

with a sufficiently large initial guess λ0 ∈
[√

3
3

√
σ1,

√
σ1

]
(see Bazán et al. 2015, Thm 3.2).

We emphasize that both fixed-point approaches (26) and (28) require computing the reg-
ularized solution norm s(λ) and the corresponding residual norm r(λ) and that both of them
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can be efficiently implemented using the SVD of the far-field matrix Fδ . In practice, the
iteration of computing λk as the approximation of the desired regularization parameter γ

should stop when they begin to stagnate to keep low the computational cost of the entire
process. In our implementation, we choose to stop the iterations when the relative change of
consecutive values is small, i.e., when

|λk+1 − λk | ≤ ν|λk |, (29)

where ν is a small tolerance parameter (e.g., ν = 10−2). A smaller tolerance ν will lead to
more accurate regularization parameter with more iterations in the above fixed-point algo-
rithms. It is reasonable to choose a tolerance that is comparable to the level of noise, so that
the regularization parameter is not overestimated with excessively high computational cost.

3.2 The direct samplingmethod and direct factorizationmethod

As shown above, both LSM and FM need to invert the ill-posed far-field operator. They
require a costly Tikhonov regularization procedure at each sampling point z to achieve a
robust approximation accuracy in the presence of noise in data. Such numerical difficulty
of instability is avoided in the more recently developed direct sampling methods and direct
factorization method, where only matrix–vector multiplications are involved in the compu-
tation of indicator functions. Such direct methods are much faster and more robust against
measurement noise, although they usually provide somewhat less sharp reconstructions than
the LSM and FM. In particular, the unknown noise level and regularization parameter are
not needed anymore in such direct methods, since the inversion of ill-conditioned far-field
operator is circumvented.

We are particularly interested in a direct sampling method (DSM) introduced in Ji et al.
(2018), where the proposed indicator functional reads

I
DSM(z) :=

∣∣∣∣

∫

S

φ∗
z (y)Fφz(y)ds(y)

∣∣∣∣ . (30)

This simple indicator functional IDSM(z) has a positive lower bound for the sampling point
z ∈ D and it decays like the Bessel functions as the sampling point z goes away from the
scatterer boundary ∂D. It is also continuously dependent on the far-field patterns and hence
extremely stable with respect to data noise. We expect that the indicator IDSM(z) attains its
maximum near the boundary ∂D and decays monotonically like the Bessel functions as the
sampling points move away from ∂D, which was largely verified in numerical simulations.

In view of the difference between LSM and FM and mimicking the DSM, we can define
a direct factorization method (DFM) with the following indicator functional:

Î
DFM(z) :=

∣∣∣∣

∫

S

φ∗
z (y)(F

∗F)1/4φz(y)ds(y)

∣∣∣∣ , (31)

which was shown to be mathematically equivalent to the above DSM indicator IDSM(z).
Apparently, both indicator functionals IDSM(z) and ÎFM(z) are not directly derived from the
above far-field equations governing the LSM and FM. To disclose their hidden connections,
we canmake use of a truncated Neumann series expansion of (F∗F)−1/4 (upon appropriately
rescaling) in FM to arrive at another possible more intuitive DFM indicator functional (Leem
et al. 2018a)

I
DFM(z) := ‖(2I − β(F∗F)1/4)φz‖ ≈ ‖(F∗F)−1/4φz‖ = I

FM(z), (32)
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where β = 2√
σmax+√

σmin
with σmax and σmin being the maximum and minimal singular value

of F (upon appropriate discretization). We can show that both DFM indicator functionals
Î
DFM(z) and IDFM(z) are alsomathematically equivalent, which hence explains the validity of
the above DFM as a crude but satisfactory approximation of FM. In our simulations, we will
only use IDFM(z), since it usually provides sharper boundaries than ÎDFM(z), although there
is no essential difference in characterization of the scatterer. Based on our following extensive
numerical tests, the profiles obtained by I

DFM(z) indeed seem to be much less oscillatory
than those given by IDSM(z), which are clearly contaminated by undesirable artifacts outside
of the scatterer, such as heavy tails or some large oscillatory peaks (see, e.g., Liu 2017).

4 Numerical examples

In this section, we will numerically compare the above-discussed different indicator func-
tionals to reconstruct the shapes of various 2D elastic (rigid) bodies with the full far-field
patterns, and P or S-part of the far-field patterns under various settings. All simulations are
implemented using MATLAB 9.9 (R2020b) on a Dell Precision 7520 Laptop with Intel(R)
Core(TM) i7-7700HQ CPU@2.80 GHz and 32 GB RAM. The CPU time (in seconds) is
estimated using the MATLAB’s timing functions tic/toc.

For N longitudinal (pressure) waves or N transverse (shear) waves, incident from N
directions d̂ j = (cos θ j , sin θ j ) with θ j = 2π j/N , we assume that the far-field equation
(17) and (18) is discretized as described in Hu et al. (2012), giving rise to a system of
2N × 2N linear equations (with F ∈ C2N×2N )

Fgz = bz, and (F∗F)1/4gz = bz, (33)

where bz is a discrete version ofφz and F (we use the same notation of brevity) is a discretized
version of the far-field operator F . We shall consider the reconstruction problem in three
typical cases

(i) FF case based on the operator F (full far-field pattern),
(ii) PP case based on the operator Fp (part of the far-field pattern corresponding to N incident

plane longitudinal waves), and
(iii) SS case based on the operator Fs (part of the far-field pattern corresponding to N incident

plane transverse waves).

In PP (or SS) cases, a discretized version of Fp (resp. Fs) denoted by Fp (resp. Fs) can be
extracted (as orthogonal projection) from F by taking rows 1 (resp. N + 1) through N (resp.
2N ) and columns 1 (resp. N + 1) through N (resp. 2N ). Similarly, bp

z (resp. bsz) denotes the
vector of N first (resp. last) components of bz. With MATLAB matrix indexing notations,
we essentially have

Fp = F(1 : N , 1 : N ), Fs = F(N + 1 : 2N , N + 1 : 2N ),

bp
z = bz(1 : N ), bsz = bz(N + 1 : 2N ).

To avoid inverse crime, we construct the noisy far-field data according to

Fδ = F + δ‖F‖N , (34)

where Fδ is the noisy counterpart of the exact matrix F , N is a 2N × 2N random Gaussian
noise matrix normalized, such that ‖N‖ = 1 and δ is an error parameter which controls the
amount of noise in the far-field data. The synthetic “noise-free” far-field data used in the
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Fig. 1 The true binary profiles of tested 2D scatterers (with a 200 × 200 mesh size)

experiments are generated as in Hu et al. (2012) using parametric forms of the integrals that
represent the P-part and S-part of the scattered field.

For the implementation of LSM and FM, two different choices of Tikhonov regularization
parameter are compared against the naive inversion without any regularization. In the GDP-
FP and IMPC iterations, we use the SVD of Fδ (computed only once) and choose ν = 10−2

as the stopping tolerance parameter. We mention that in all numerical examples, the number
of used iterations is usually less than 10. This illustrates the excellent efficiency of GDP-FP
and IMPC iterations in computing the regularization parameter. As a comparison, we also
computed the Tikhonov regularization parameter based on GDP with MATLAB’s builtin
nonlinear solver fzero (with default setting) that uses a combination of bisection, secant,
and inverse quadratic interpolation methods. We remark that the performance of LSM-GDP
and FM-GDP highly depends on the fzero solver, which seems to be much slower than the
fixed-point iteration (26). This is expected, since the fzero solver obtains more accurate
zeros of G(λ) = 0, but it does not provide improved reconstructions. Hence, GDP-FP based
on (26) is better than fzero, since it achieves a similar reconstruction quality with much
less CPU time.

For the numerical reconstructions, we consider a uniform sampling grid in the square
region [−5, 5] × [−5, 5] containing the unknown scatterer, with m = 200 points in each
direction. We select λ = 1, μ = 1 and ω = 2

√
2 unless otherwise stated. We choose the

polarization vector p = (cosα, sin α)with a given α ∈ [0, π). In all plots, the true scatterer’s
shape (in black dashed line) for generating the far-field patterns is provided on top of the
reconstructed profiles for easier comparison. Figure 1 illustrates the true binary profile (with
interior in red and exterior in blue) of tested scatterers.

4.1 Influence of different noise levels and scatterers

We first compare the computational efficiency and reconstruction quality of the discussed
methods in FF case. Figure 2 shows the reconstructed profiles of a rotated kite, where four
different levels of noise δ = 0.01, 0.1, 0.3, 0.5 are compared with different methods. In all
figure titles, ‘LSM-NoReg’ and ‘FM-NoReg’ denote the LSM and FM without regulariza-
tion, ‘LSM-GDP’ and ‘FM-GDP’ denote the LSM and FMwith the regularization parameter
computed byfzero, and ‘FM-GDP-FP’ and ‘FM-IMPC’ denote the FMwith the regulariza-
tion parameter computed by the corresponding fixed point iterations. The CPU times are also
shown in the title of each subplot to illustrate the computational efficiency of each method
(utilizedMATLAB’s vectorized implementationwhenever possible). SuchCPU times should
be interpreted qualitatively.

Comparing differentmethods across various increasing noise levels, we have the following
interesting observations:
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Fig. 2 Reconstructed kite profiles (N = 64, α = 7π/4) with different noise levels: δ = 0.01 (top-left),
δ = 0.1 (top-right), δ = 0.3 (bottom-left), and δ = 0.5 (bottom-right)

1. Without regularization, the reconstructed profiles by LSM quickly become unidentifiable
as the noise level gets larger, and the profiles by FM seem to be less sensitive to the noise
level. However, the profiles’ shapes by FM also become less visible due to large noises.
The situationwill getworse if a large N is used.Hence, suitable regularization is necessary
for controlling the errors induced by random noise. We highlight that noise only occurs
in the measured far-field data F .

2. With the regularization parameters chosen by GDP based on fzero solver, the recon-
structed profiles by LSM and FM indeed better approximate the scatterer’s shape for all
noise levels, but the CPU times become higher. The high CPU times can be dramatically
reduced by the GDP-FP iteration, whose reconstructed profiles look very similar (com-
pare subplots of ‘FM-GDP’ and ‘FM-GDP-FP’). This indicates that GDP-FPmethod has
better efficiency than GDP with similar approximation accuracy.

3. With the noise level δ is unknown, the regularization parameters can be computed by
the IMPC iterations, where the reconstructed profiles look even slightly better than the
profiles by GDP or GDP-FP. This improved accuracy of IMPC is desirable, since it does
not require the advance knowledge of the noise level, which is usually unknown or needs
to be estimated when it comes to real-world applications. In GDP-based methods, the
estimation of δ vastly affects the values of computed regularization parameters and hence
the reconstruction quality.

4. The reconstructed profiles computed by DSM and DFM are very robust with respect
to the noise levels, where the DFM seems to provide more accurate (less oscillatory)
identification of the scatterer’s shape. Both DSM and DFM are also much faster than the
other regularization-basedmethods. Interestingly, theDFMprovides very similar profiles
as the FM-IMPC, but it costs much less CPU time by avoiding computing a Tikhonov
regularization parameter.

5. Alternatively, one can just fix a same regularization parameter in LSM and FM for all
sampling points to speed up such regularization-based algorithms, which however may
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Fig. 3 Reconstructed kite profiles (N = 64, α = 7π/4) by LSM and FMwith fixed regularization parameters
(γ = 10−1, 10−2, 10−3, 10−4) and different noise levels: δ = 0.01 (top-left), δ = 0.1 (top-right), δ = 0.3
(bottom-left), and δ = 0.5 (bottom-right)

lead to degraded reconstruction quality. As an illustration, Fig. 3 reports the reconstructed
kite profiles by LSM (denoted by ‘LSM-FixReg’) and FM (denoted by ‘FM-FixReg’)
with several fixed regularization parameters γ = 10−1, 10−2, 10−3, 10−4, where the
reduced CPU times are close to the non-regularized cases. Although the reconstruction
quality seems to be satisfactory for a small noise level, it deteriorates rapidly as the
noise level gets larger. The LSM method seems to be more sensitive to the choice of
regularization parameters.

To objectively assess the reconstruction quality of each method, the Jaccard index (Jac-
card 1908) of each profile is computed (using the MATLAB’s builtin function jaccard)
against the corresponding true binary profile (see Fig. 1). The Jaccard index (also known
as Jaccard similarity coefficient) is useful to access the insignificant difference in approx-
imation accuracy of different profiles, which are not distinguishable or measurable by the
human eye. In particular, the reconstructed profile is first rescaled to the range [0, 1] and then
converted into a binary profile for a given cut-off threshold between 0 and 1. To measure how
the reconstructed profile matches with the true binary profile at different thresholds, we plot
the Jaccard index as a function of 50 thresholds uniformly distributed between 0 and 1. The
total area under such a Jaccard index curve or its average value is a reasonable criterion to
measure the similarity of two profiles. A larger value of average Jaccard (Avg. JAC) index in
general indicates better overall reconstruction quality, in the sense of higher similarity with
the true binary profile.

The Jaccard index curves corresponding to the profiles in Fig. 2 are shown in Fig. 4,
where we notice the average Jaccard indices of FM-based methods (including FM-GDP, FM-
GDP-FP, FM-IMPC, and DFM) are indeed slightly higher than those LSM-based algorithms
(including LSM-GDP and DSM), but such difference diminishes as the noise level gets
larger. Apparently, the LSM and FM without regularization give the lowest average Jaccard
indices, which is compatible with our visual inspection. From the viewpoint of qualitative
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Fig. 4 The comparison of Jaccard index for the reconstructed kite profiles in Fig. 2 with different noise levels
by different methods (N = 64, α = 7π/4).A higher average Jaccard (Avg. JAC) index indicates better overall
reconstruction quality

methods and random noises, we do not suggest to draw a definite conclusion that one method
always has a better reconstruction quality than the others purely based onmarginally different
quantitative average Jaccard indices.

Similar observations can be obtained for the other scatterers (Ellipse, Peanut, Triangle,
and Rectangle) with δ = 0.3, as shown in Fig. 5. In summary, appropriate regularization
can greatly enhance the reconstruction quality of LSM and FM, and the regularization-free
direct methods (including DSM and DFM) are very promising in terms of slightly worse
reconstruction quality and superior computational efficiency (faster CPU times). For brevity,
we will only report the average Jaccard index (Avg. JAC) as a simple yet objective criterion
to compare the reconstruction quality.

4.2 Influence of different polarization vectors

In the far-field equations, the polarization vector p can be freely chosen. In Fig. 6, we show
the reconstructed kite profiles with different polarization vectors and noise level δ = 0.3,
where most cases have slightly different shapes that closely trace the true kite. Such marginal
difference suggests us to use the sum of the indicator functionals with multiple polariza-
tion vectors as an improved indicator functional, whose reconstructed profiles are given in
Fig. 7. In comparison with the cases with a single polarization vector, using two or more
perpendicular polarization vectors indeed delivers slightly improved quality in reconstructed
profiles, especially for LSM-NoReg and FM-NoReg. In particular, it seems that only two
perpendicular polarization vectors with α ∈ {0, π/2} are sufficient to obtain a satisfactory
(more symmetric) reconstruction.
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Fig. 5 Reconstructed profiles of four different scatterers (N = 64, α = 7π/4, δ = 0.3)

Fig. 6 Reconstructed kite profileswith different single polarization vectors (N = 64, top-left:α = 0, top-right:
α = π/4, bottom-left: α = π/2, bottom-right: α = 3π/4)

4.3 Influence of only P-wave or S-wave and frequencies

In practice, we may only have far-field data measurements with respect to P-wave or S-wave,
which leads to the PP or SS cases. Figure 8 shows the constructed profiles (with δ = 0.3) for
the interested FF, PP, and SS cases, respectively, where both N = 64 and N = 256 incident
and observation directions are compared. The case N = 256 leads to a much more ill-
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Fig. 7 Reconstructed kite profiles by multiple polarization vectors (N = 64, left: sum of two different
α ∈ {0, π/2}, right: sum of 2 different α ∈ {π/4, 3π/4})

conditioned F , but the corresponding Fδ does not become significantly more ill-conditioned
due to the added noise. In other words, Fδ is in general more stable to invert than F whenever
the noise level δ is not too small.

As we can observe, the reconstructions corresponding to the FF case are of superior
quality when compared with those of the PP and SS cases. This was expected however,
since the FF case carries more data and hence more information about the scatterer. It is
well known that the linear sampling method requires a large number of data to yield reliable
reconstructions. Another reason is that, in general, the far-field matrix associated with the FF
case is less sensitive (ill-conditioned) to noise than the matrices associated with other cases.
Some details of the scatterer’s shape are somewhat incomplete and blurred in both PP and
SS cases due to a reduced amount of data.

The obvious difference between the PP and SS case is highly dependent on the value of
Lamé’s first parameter λ, which gives different values of wave numbers kp and ks . Figure 9
shows the constructed profiles with two different λ = −1.5 and λ = 0, where we notice the
PP case seems often better when λ = −1.5 (with kp > ks), while the SS case often looks
better with λ = 0 (with kp < ks). The Avg. JAC values cannot differentiate some of the
visual difference.

Finally, we also illustrate the influence of higher frequency ω (i.e., wave numbers kp and
ks) in Fig. 10, where all regularized and direct methods seem to produce more similar profiles
if ignoring the oscillatory effects. In the cases with higher frequency, the reconstructions by
LSM without regularization seem to be highly deteriorated in the sense of visualizing the
scatterer’s shape. To assemble the different characteristics with both lower and higher fre-
quency, it is usually recommended to superimpose a range ofmulti-frequency data (Dennison
and Devaney 2004; Bao et al. 2015) for better reconstruction quality.

4.4 Influence of F� operator

We now consider the corresponding F� based methods, whose implementations are straight-
forward by replacing F by F�. Figure 11 shows the reconstructed profiles of the kite and
peanut, where we observe much less difference across different methods for each case. In
FF case, the obtained profiles without regularization seem to be almost as good as (or even
slightly better than) the profiles generated by the regularized methods. The costly Tikhonov
regularization seems to be unnecessary, since it only marginally improves the approximation
quality. Such promising numerical outcomes of the F�-based methods without regulariza-
tion can be explained by the interesting fact that the condition number of computed F� is
much smaller than that of F , which implies that the numerical transformation from F to F�
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Fig. 8 Reconstructed kite profiles (top row: FF case; middle row: PP case; bottom row: SS case) of different
wave cases (N = 64 (left) and N = 256 (right), α ∈ {0, π/2})

has regularization effect. In the following, we will further discuss this interesting numer-
ical phenomena by analyzing their condition numbers. In short, due to the positive effect
of round-off errors, the computed F� indeed has a much smaller condition number when-
ever F is ill-conditioned (with many small singular values close to round-off errors). Hence,
F�-based methods are more stable.

Let Cond(A) = σmax(A)/σmin(A) denotes the 2-norm condition number of a matrix A.
Since F is normal and hence it is diagonalizable by a unitary matrix W , i.e., F = W�W ∗,
where the diagonal matrix � = diag(η1, η2, . . . , η2N ) contains all the complex eigenvalues
η j , j = 1, 2, . . . , 2N . By the definitions (Kirsch and Grinberg 2008), we have

Re(F) = WRe(�)W ∗ = Wdiag (Re(η1),Re(η2), . . . ,Re(η2N ))W ∗

and

Im(F) = W Im(�)W ∗ = Wdiag (Im(η1), Im(η2), . . . , Im(η2N ))W ∗,

which further implies that

F� = Wdiag (|Re(η1)| + |Im(η1)|, , . . . , |Re(η2N )| + |Im(η2N )|))W ∗.
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Fig. 9 Reconstructed kite profiles (top row: FF case; middle row: PP case; bottom row: SS case) with different
λ (left: λ = −1.5, right: λ = 0, N = 256, α ∈ {0, π/2})

Therefore, by treating η j as a R2 vector �η j :=
[
Re(η j )

Im(η j )

]
, we in fact have

Cond(F) = max j |η j |
min j |η j | =

max j

√
|Re(η j )|2 + |Im(η j )|2

min j

√
|Re(η j )|2 + |Im(η j )|2

= max j ‖�η j‖2
min j ‖�η j‖2

and

Cond(F�) = max j
(|Re(η j )| + |Im(η j )|

)

min j
(|Re(η j )| + |Im(η j )|

) = max j ‖�η j‖1
min j ‖�η j‖1 .

From the equivalence of vector norms in R
2 ‖�η j‖2 ≤ ‖�η j‖1 ≤ √

2‖�η j‖2, we arrive at
1√
2

max j ‖�η j‖1
min j ‖�η j‖1 ≤ max j ‖�η j‖2

min j ‖�η j‖2 ≤ √
2
max j ‖�η j‖1
min j ‖�η j‖1 ,

that is the following condition number estimates:

1√
2
Cond(F�) ≤ Cond(F) ≤ √

2 Cond(F�). (35)
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Fig. 10 Reconstructed kite profiles (top row: FF case; middle row: PP case; bottom row: SS case) with higher
frequency (left: ω = 4π , right: ω = 8π , N = 256, α ∈ {0, π/2})

Therefore, the condition number of F� is theoretically of the same order as that of F .
Numerically, however, we observed that F�-based methods are much less sensitive to

noise and the computed F� using MATLAB’s matrix square root function sqrtm (Deadman
et al. 2012) indeed has a significantly smaller condition number than the ill-conditioned F .
In particular, we notice for an ill-conditioned F there holds Cond(F�) ≈ √

Cond(F). This
regularization effect can be roughly explained by the fact that the square rooting operation in
sqrtm takes those small singular values of round-off error level (i.e.,O(10−16)) to its square
root (i.e., O(10−8)). For example, the ill-conditioned Hilbert matrix H = hilb(20) has a
large condition number of 2.1×1018, while its derived square root |H | = sqrtm(H∗H) has
a much smaller condition number of 1.5 × 109. Such regularization effect due to round-off
errors is beneficial to stable computation.

As a simple illustration, the singular values of F and F� for the scatterer Kite are compared
in Fig. 12, where the smallest singular value of F� is much larger than that of F and the
presence of random noise actually dramatically reduces the condition numbers of both F and
F�. This essentially mitigates the necessity of sought-after regularization procedure when
inverting Fδ

� for a relatively large δ. However, we point out that the construction of F�

requires some one-time extra computation (e.g., sqrtm). The positive influence of random
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Fig. 11 Reconstructed kite and peanut profiles by F�-based methods (N = 256, α = {0, π/2})
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Fig. 12 Comparison of the singular values distribution of Fδ and Fδ
� , respectively, for the scatterer Kite with

N = 256 (left: δ = 0, right: δ = 0.1). Notice that the condition number of F� is much smaller than that of F

perturbation on the condition number has been sporadically discussed in literature, see, e.g.,
(Edelman 1988; Sankar et al. 2006), where the perturbed matrix was shown to be well
conditioned with a high probability.
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5 Conclusions

In this paper, several qualitative methods, including linear sampling method (LSM), factor-
ization method (FM) and its variant (i.e., F� based method), direct sampling method (DSM),
and direct factorization method (DFM), are numerically compared for the shape reconstruc-
tion of 2D obstacles in elastic scattering based on the simulated noisy full far-field data. For
Tikhonov regularization in linear sampling method and factorization method, we used two
different regularization parameter choice techniques: the generalized discrepancy principle
(GDP) and the improvedmaximum product criterion (IMPC). Extensive numerical examples
with the use of average Jaccard index are provided to illustrate the pros and cons of each
method through varying different settings, such as noise level, scatterer shape, P- or S-wave,
frequency, and other contributing factors.

Based on our comprehensive numerical tests, both DFM and DSM are among the best
choices in terms of both approximation accuracy and computational efficiency, although the
more costly regularized LSM and FM sometimes indeed provide marginally better profiles
with less artifacts. In some cases (e.g., F� based methods), the costly regularization seems to
be unnecessary due to smaller condition numbers. Finally, we highlight that in more realistic
applications with limited aperture (Ikehata et al. 2012; Leem et al. 2019) and/or phaseless
far-field data (Dong et al. 2019; Ji et al. 2019; Ji and Liu 2019), each method may display
different numerical performance.
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