
Computational and Applied Mathematics (2021) 40:197
https://doi.org/10.1007/s40314-021-01584-6

Multi-scale computational modeling for pH-dependent flows
and bivalent ions: application to kaolinite clays

July Hebert da Silva Mariano1 · Sidarta Araújo Lima1 · Viviane Klein1 ·
Luiz Carlos Radtke1

Received: 8 June 2020 / Revised: 8 July 2021 / Accepted: 15 July 2021 /
Published online: 31 July 2021
© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2021

Abstract
In this work, we present a new three-scale (nano, micro, and macroscopic) computational
model to quantify pH-dependent flows and monovalent/bivalent ion transport in clayey
charged porous media. In our multi-scale approach, we consider the micropores saturated
by an aqueous solution containing five ionic species (Na+, H+, Cl−, OH−, X2+, where the
latter represents a generic bivalent ion). At the nanoscale, we derive a new algebraic equation
in terms of the concentration of the ionic solutes that determines the zeta-potential and, con-
sequently, the electroosmotic permeability (a macroscale parameter). At the microscale, we
consider a Newtonian fluid governed by the Stokes equation and the transport of the solutes
given by the Nernst–Planck equation. Applying the homogenization technique, we obtain the
macroscopic model and discretize it using the Galerkin finite element method together with a
staggered algorithm and theNewton–Raphsonmethod. Ourmulti-scale computationalmodel
highlights the coupling among the different scales. Finally, we present numerical results con-
sidering different types of boundary conditions (Dirichlet and Danckwerts) to simulate the
electroremediation applied to a kaolinite clay soil.
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1 Introduction

Soil remediation became a big challenge in recent years due to its applications in the industrial
and agricultural sectors (Albergaria and Nouws 2016; Meuser 2010; Reddy and Cameselle
2009). The demand for innovative approaches for treating contaminated soils has motivated
the development of enhanced technologies such as soil flushing, chemical treatment, biore-
mediation, and phytoremediation (Meuser 2010). Among them, electrokinetic remediation
(also known as electroremediation) is a very cost-effective technique for removing ionic
contaminants from low hydraulic permeability charged porous media, such as clayey soils
polluted by heavy metals (Acar and Alshawabkeh 1993; Reddy and Cameselle 2009).

In the field scale, since the 80’s the electrokinetic remediation has been extensively stud-
ied and has shown great potential for removing heavy metal of contaminated electrically
charged soils (Cameselle et al. 2013; Reddy and Cameselle 2009). The remediation process
is based on the application of an electric potential difference or a low-intensity direct current
among electrodes located at the ends of the field. This electric potential difference induces
the movement of the ions in the electrolyte solution and generates a fluid flow toward the
electrodes, known as electroosmotic flow (Lemaire et al. 2007; Lima et al. 2008, 2010a;
Olphen 1977). The solvable contaminant is then collected at the electrodes.

It is well known that the efficiency of the electrokinetic remediation strongly depends on
the electrochemical phenomena occurring in the small scales of the charged porous media
(Acar and Alshawabkeh 1993; Mitchell 1976; Reddy and Cameselle 2009; Sposito 1989).
In this context, experiments of the electrochemical process in charged porous media were
performed in laboratory scale to understand the electrokinetics of heavy metal contaminants
such as Pb, Zn, Cu, Cd, Hg, Co (Acar and Alshawabkeh 1993; Alshawabkeh and Acar 1996;
Angove et al. 1997, 1998; Beddiar et al. 2005; Mammar et al. 2001; Murad andMoyne 2008;
Page and Page 2002; Reddy and Cameselle 2009; Rosanne et al. 2004; Vane and Zang 1997).
For example, Angove et al. (1997) experimentally quantifies the protonic and heavy metal
adsorption forH+,Co2+, andCd2+ using potentiometric titration and adsorption experiments
where the adsorption of the cations ismodeled consideringLangmuir isotherms (Angove et al.
1997, 1998). Also, several researchers have studied the dependence of the zeta potential (ζ -
potential) on the concentration of the ions using experimental and numerical approaches
(Beddiar et al. 2005; Hunter 1981; Leroy and Revil 2004; Lima et al. 2008, 2010a; Mammar
et al. 2001; Vane and Zang 1997; Wang and Revil 2010). In this context, to study surface
complexationmodels that determine the ζ -potential and surface charge density in the presence
of monovalent ions for charged porous media, we recommend the authors Revil and Wang
(Leroy and Revil 2004; Wang and Revil 2010). Noteworthy, quantifying the ζ -potential (a
nanoscale parameter) accurately is important since the electroosmotic permeability (amacro-
scale parameter) strongly depends on it (Hunter 1981; Lima et al. 2008, 2010a; Mammar
et al. 2001; Moyne and Murad 2006).

On the other hand, to better understand the electro-chemical-hydraulic phenomena occur-
ring in charged porous media, a broad range of mathematical modeling and numerical
simulations have been developed (Alshawabkeh and Acar 1996; Beddiar et al. 2005; Came-
selle et al. 2013;Gupta et al. 2008; Lemaire et al. 2007; Lima et al. 2008, 2010a, b;Moyne and
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Murad 2006; Murad and Moyne 2008). Significant advances were provided by single-scale
(macroscopic) modeling (Alshawabkeh and Acar 1996; Beddiar et al. 2005; Dormieux et al.
1995; Gupta et al. 2008). Nowadays, models based on the multi-scale approach have been
widely presented in the scientific community, where we highlight the models derived from
the Lattice-Boltzmann technique, such as Yang et al. (Yang et al. 2019; Yang andWang 2019)
and the models deduced using the periodic homogenization procedure (Gupta et al. 2008;
Lima et al. 2008; Moyne and Murad 2006; Murad and Moyne 2008). Nevertheless, accurate
models for quantifying the dependence of the ζ -potential on the monovalent ions Na+, H+,
Cl− and OH− as well as heavy metal ions such as Cu2+, Cd2+, and Pb2+, are still lacking.
A broad literature review shows that the determination of the ζ -potential is mainly based on
empirical laws (Al-Hamdan and Reddy 2008; Alshawabkeh and Acar 1996; Beddiar et al.
2005; Hunter 1981; Rosanne et al. 2004; Vane and Zang 1997).

In this paper, we present a newmulti-scale (nano/micro/macroscopic) model that provides
a rigorous analytical/numerical derivation of an equation for the ζ -potential in the scenario
where the soil is contaminated by bivalent ions. We also derive the constitutive laws for the
parameters of the macroscopic model and highlight the importance of the bivalent ion on the
process. Consequently, a better understanding of the coupling between the electrochemical
phenomena on the nano/microscopic level and the macroscopic response of the medium is
achieved (Gupta et al. 2008; Le et al. 2013; Lemaire et al. 2007;Mainka et al. 2014;Malevich
et al. 2010; Ponce et al. 2013). For multi-scale models assuming monovalent ion transport in
charged porous media, we recommend (Lima et al. 2008, 2010a; Moyne and Murad 2006;
Murad and Moyne 2008; Ponce et al. 2013).

In this work, we extend the work of (Igreja et al. 2017; Lima et al. 2008) by considering an
electrically charged clayey soil saturated by an aqueous solution containing five ionic species
(Na+, H+, Cl−, OH−, X2+) using the asymptotic homogenization method. Differently from
the multi-scale models deduced by Yang et al. (2019; 2019) for the electro-diffusive trans-
port based on the Lattice-Boltzmann technique, here we use the asymptotic homogenization
method and incorporate the electroosmotic flow where X2+ represents a generic bivalent
metallic ion such as the heavy metals Cu2+, Cd2+, and Pb2+. This multi-scale model high-
lights the influence of the bivalent ion on the electric potential of the electric double layer
(EDL), on the surface charge density, and on the macroscopic parameters. In particular, the
multi-scale approach models the dependence of the ζ -potential on the ionic concentrations
and obtains a more precise description of the electroosmotic permeability as a function of
pH and salt/heavy metal concentrations. One of its novelties is a constitutive law for the
electroosmotic permeability as a function of the concentration of the triple {Na+,H+,X2+}.

At the nanoscale, we model the phenomena occurring at the surface of the particles via the
Poisson–Boltzmann equationwithNeumann boundary conditions due to the balance between
electric field and surface charge density (Sposito 1989). The surface charge density, on its
hand, is modeled as a function of the ionic concentration variation resulting from the H+ pro-
tonation/deprotonation and X2+ cationic exchange reaction at the particle surface (Angove
et al. 1997, 1998). Considering the thin EDL assumption, where the double layers do not
overlap, for the nanoscale problem we obtain analytical solutions determining the electric
potential of the EDL, the surface charge density and, the ζ -potential. At the microscale, we
model the ion transport by the Nernst–Planck equations and the hydrodynamic flow via the
Stokes problem. We also assume a slip boundary condition in the tangential velocity compo-
nent due to the movement of the ions in the EDL (Lima et al. 2008, 2010a). The two-scale
nano/micro model is then homogenized to the Darcy scale using asymptotic homogenization
applied to periodic structures, which leads to the macroscopic equations.
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Fig. 1 Portrait of natural length scales in a clay soil. Reproduced with permission from Lima et al. (2008)

The resulting mathematical model is a nonlinear and strongly coupled system of partial
differential equations. Using data from Angove et al. (1998), we simulate the multi-scale
model restricted to the stratified layers assumption (one-dimensional case) considering the
Cadmium as a the bivalent ion (X2+ = Cd2+) and kaolinite clay as the charged porousmedia.
The numerical simulation uses the Galerkin finite element method and the Newton–Raphson
method together with a computationally efficient staggered algorithm (Kim et al. 2011). We
then set realistic boundary conditions, such as Danckwerts, to simulate the hydrodynamics
and ionic transport in the stationary regime of an electroosmosis experiment of heavy metal
remediation.

2 Multi-scale model

Consider an electrically charged porous media composed of a clayey soil saturated with
an aqueous solution containing the monovalent ionic species Na+, H+, Cl−, OH− and an
arbitrary bivalent ion denoted by X2+. Here we improve the multi-scale model presented in
Lima et al. (2008) by adding the bivalent ion X2+ to the aqueous solution. In this section we
develop the mathematical model in the three-scales considered-nano, micro and macro. The
scales are illustrated in Fig. 1.

2.1 Nanoscopic model

Consider the nanoscopic domain a thin layer, O(10−9 m), surrounding the surface of the
clay particles. This thin layer, known as the EDL, is composed of the electrically charged
surface of the clay and an aqueous solution containing the ionic species Na+, H+, X2+, Cl−,
OH− (see Fig. 1). We split the nanoscopic model into two subsections. In the first subsection,
we solve the Poisson–Boltzmann equation to determine the electric potential of the EDL and
the surface charge density, denoted by ϕ and σ , respectively. Both of these quantities, ϕ

and σ , are derived as functions of the concentration of the ionic species at the bulk and of
the electric potential of the EDL at the clay surface, commonly called the ζ -potential. In
the second subsection, we deduce a nonlinear algebraic expression for the ζ -potential that
depends only on controllable data by modeling the chemical reactions occurring at the clay
surface.

2.1.1 The Poisson–Boltzmann equation

Let Ci and Cib , i = Na+, H+, X2+, Cl−, OH−, be the molar concentration of the ionic
species in the EDL and in the bulk fluid, respectively. The concentrations Ci and Cib are
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Fig. 2 Portraits of a clay soil: a microscopic scale, b nanoscopic scale. Reproduced with permission from
Lima et al. (2008)

related through the electric potential of the EDL via the Boltzmann distribution (Dormieux
et al. 1995; Olphen 1977)

Ci = Cibe
−ziϕ, (1)

for i = Na+, H+, X2+, Cl−, OH−, where ϕ = Fϕ/RT and {zi , F, R, T } are the set
composed of ion valence, Faraday constant, universal ideal gas constant and absolute tem-
perature, respectively. Moreover, in the bulk fluid, the electroneutrality condition is satisfied
pointwisely in the form

Cb = CNa+
b

+ CH+
b

+ 2CX2+
b

= CCl−b
+ COH−

b
, (2)

where Cb is the total concentration of cations (or anions) in the bulk.
Let �l = (0, LD) be the one-dimensional nanoscopic subdomain in the direction normal

to the clay surface where LD is the Debye’s length (see Fig. 2b). Consider z = l� a point
further away from the interface such that (l� � LD). Then, assuming the surface charge is
uniformly distributed on the clay surface, the electric potential of the EDL is modeled by the
one-dimensional Poisson–Boltzmann equation (Landau and Lifshitz 1960; Lima et al. 2008,
2010a)

d2ϕ

dz2
= − F

ε̃0ε̃r

∑

i

ziCi , in �l , (3)

for i = Na+,H+, X2+,Cl−,OH−, where ε̃0 is the permittivity of the free space and ε̃r
is the dielectric constant. Applying (1) into (3), and using the electroneutrality condition
(2), we rewrite the Poisson–Boltzmann equation in terms of the electrical potential and bulk
concentrations

d2ϕ

dz2
= 2F

ε̃0ε̃r

[

Cb sinh (ϕ) + CX2+
b
e−ϕ(1 − e−ϕ)

]

. (4)

In Eq. (4) is clear the influence of the bivalent ion CX2+
b

on the nanoscale model, note that

for CX2+
b

= 0 we recover the Poisson–Boltzmann model for monovalent ions presented in

Lima et al. (Lima et al. 2008).

123



197 Page 6 of 36 J. H. da Silva Mariano et al.

Next, we provide boundary conditions for the new Poisson-Boltzmann problem (4). To
obtain a condition at z = 0, we assume that the electrical field balances the surface charge
density σ at the wall. For the other boundary condition, we adopt the thin EDL assumption
where the clay particles are so far away from each other that adjacent double layers do not
overlap (see Fig. 2a); consequently, there is no electric field at z = l�. Thus, the boundary
conditions are

dϕ

dz

∣

∣

∣

∣

z=0
= − σ

ε̃0ε̃r
, (5a)

dϕ

dz

∣

∣

∣

∣

z=l�

= 0. (5b)

Solving (4)–(5), we arrive at the analytical expression for ϕ and, consequently, for σ (see
Appendix A for details)

ϕ = RT

F
log

[(

Cb + CX2+
b

Cb

)

(

1 + λ1eκz

1 − λ1eκz

)2

−
CX2+

b

Cb

]

, (6)

σ = β

[

2Cb(cosh
(

ζ
)− 1) + CX2+

b

(

e−ζ − 1
)2
]1/2

, (7)

where ζ = Fζ/RT , with the ζ -potential, ζ, defined as the electric potential of the EDL at
the clay surface, i.e., ζ :=ϕ(z = 0), and β = sgn(ζ )

√

2ε̃ε̃0RT where sgn is the sign function.
Moreover,

κ = −sgn(ζ )
√

2F2(Cb + CX2+
b

)/(ε̃ε̃0RT ) and (8a)

λ1 =
√

CX2+
b

+ Cbeζ −√

Cb + CX2+
b

√

CX2+
b

+ Cbeζ +√

Cb + CX2+
b

. (8b)

Equations (6)–(7) establish the nanoscopic model in terms of {ϕ, σ } provided that CX2+
b

and ζ are given. We note that in the absence of the bivalent ion (CX2+
b

= 0), the nanoscale

model (6)–(7) reduces to the model containing only monovalent ions presented in Lima et al.
(2008).

In the next subsection, we describe the chemical reactions occurring at the clay surface
to determine an alternative analytical expression for σ and then, consequently, a nonlinear
algebraic equation to compute ζ .

2.1.2 Chemical reactions at the clay surface

Consider that there is no mineral dissolution so that the volume fraction between the solid
and fluid phase is constant. Also, assume that the component of the charge density induced
by isomorphous substitutions on the basal planes is small compared to the one due to broken
bonds on the lateral edges of the solid particles containing aluminol and silanol groups
(Mitchell 1976; Sposito 1989). Following Angove et al. (1998), we henceforth adopt a model
based on protonation/deprotonation and cationic exchange reactions which take place in the
site (> M − O−), a typical representative of the reactive group on the lateral edges of the
solid surface (Mitchell 1976). Moreover, we enforce local thermodynamic equilibrium by
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considering the chemical reactions of H+ with the clay surface given by (Angove et al. 1997,
1998)

(> M − OH) + H+ � (> M − OH2)
+, (9)

(> M − OH) � (> M − O)− + H+, (10)

where (> M−) represents the metallic ion lying in the tetrahedral (Si4+) or octahedral
(Al3+) layers (Mitchell 1976). We also assume that the bivalent ion X2+ reacts to the clay
surface via

2(> M − OH) + X2+ � (> M − O2X) + 2H+. (11)

For example, Angove et al. proposes the reaction (11) for the bivalent metallic ions Cadmium
and Cobalt (Angove et al. 1998).

Let �max be the total number of sites available for adsorption per unit area associated with
the Aluminol and Silanol groups defined as

�max:=γMOH + γMOH+
2

+ γMO− + γMO2X , (12)

where γ j , for j = MOH , MOH+
2 , MO−, MO2X , is the concentration of each species on

the clay surface. Applying the law of mass action, the equilibrium constants associated with
the reactions (9)–(11) are, respectively,

K1 :=
CMOH+

2

CMOHCH+
0

=
γMOH+

2

γMOHCH+
0

, (13a)

K2 :=
CH+

0
CMO−

CMOH
=

γMO−CH+
0

γMOH
, (13b)

K3 :=
CMO2XC

2
H+
0

C
2
MOHCX2+

0

=
�maxγMO2XC

2
H+
0

γ 2
MOHCX2+

0

, (13c)

where C j = γ j/�max, for j = MOH, MOH+
2 , MO−, MO2X , is the dimensionless sur-

face concentration of each species at the clay surface, and CH+
0

, CX2+
0

represent the molar

concentrations of H+ and X2+ at the clay surface quantified using (1) with ϕ = ζ .

We define the surface charge density σ as the product between the Faraday constant and
the sum of the weighted concentration of the charged species present at the clay surface

σ :=F
∑

i

ziγi = F
(

γMOH+
2

− γMO−
)

. (14)

Substituting (13a), (13b) and the Boltzmann distribution (1) restricted to the clay surface into
(14), we obtain the following expression for the charge density σ in function of the surface
concentration γMOH

σ = F

(

K1CH+
b
e−ζ̄ − K2eζ̄

CH+
b

)

γMOH. (15)

To fully determine σ , we next derive an expression for γMOH.
Combining (12) with equations (13), we arrive at the quadratic equation

ν1γ
2
MOH + ν2γMOH − �Max = 0 (16)
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with

ν1 = K3CX2+
b

/
(

�MaxC
2
H+
b

)

, ν2 = 1 + K1CH+
b
e−ζ̄ + K2e

ζ̄ /CH+
b

. (17)

Hence, the surface concentration γMOH is given by

γMOH =
(

−ν2 +
√

ν22 + 4ν1�max

)/

(2ν1). (18)

Equations (15) and (18) provide an analytical expression for the surface charge density σ

as a function of the ζ -potential and the available experimental data (K1, K2, K3,�Max, CX2+
b
,

CH+
b
). Combining equations (7) and (15), we obtain the nonlinear algebraic equation for the

ζ -potential

2εε0RT

F2γ 2
MOH

[

2Cb(cosh
(

ζ
)− 1) + CX2+

b

(

e−ζ − 1
)2
]

=
(

K1CH+
b
e−ζ̄ − K2e

ζ̄ /CH+
b

)2
,

(19)

where γMOH is given by (17)–(18).
In most of the literature, the ζ -potential is obtained from experimental data (Eykholt and

Daniel 1994; Vane and Zang 1997). Equation (19) provides a new algebraic way for deter-
mining the ζ -potential as a function of the monovalent and bivalent ions. The ζ -potential is a
parameter of utmost importance since it is used to quantify the electroosmotic permeability.
We highlight that the nanoscopic variables depend on the set of physical-chemical reactions
considered and incorporated in the nanoscopic model, mainly by the equilibrium constants
and maximum site density (K1, K2, K3, �Max). In this context, the chemical reactions pos-
tulate in Revil and Wang account for the physical–chemical parameters for monovalent ions
(Leroy and Revil 2004; Wang and Revil 2010). Then, we adopt the results proposed by
Angove et al. (1997; 1998) for the chemical reactions that include monovalent and bivalent
ions (see Eq. (9)–(11)). Note that a set of particular physical-chemical reactions subjected
to some specific experimental data may generate different values for the physical-chemical
constants.

2.2 Microscopic model

Let � = � f ∪ �s be a biphasic microscopic domain composed of rigid solid particles and
micropores (bulk fluid) (Fig.2a). The solid phase�s consists of the clay particles carrying the
surface charge density σ described by (15)–(18). The micropores subdomain� f is occupied
by the bulk fluid containing the five ionic solutes Na+,H+, X2+,Cl−,OH−.

Here we consider the thermodynamic equilibrium between ions and non-ionized solvent
molecules. In this scenario, the sodium chloride in water is completely dissociated while the
water molecules are partially dissociated due to the auto ionization described by the chemical
reaction

H2O � H+ + OH−. (20)

The equilibrium constant of reaction (20) is called the ionic product of water KW given by

KW :=CH+
b
COH−

b
= 10−14(mol/l)2. (21)
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Under a steady-state assumption, the transport of the ions in the bulk solution is governed
by the Nernst–Planck equations (Alshawabkeh and Acar 1996; Lima et al. 2008). For i =
Na+, X2+, Cl− and j = H+, OH−, we have, in � f

∇ ·˜Ji = 0, (22a)

∇ ·˜Jj = −ṁ, (22b)

where˜Ji:=Cibv−Di
(∇Cib + ziCib∇φ

)

is the total convective/electro–diffusive ionic flux of
each solute, v is the fluid velocity and Di , Dj are the water-ion binary diffusion coefficients.
Also, ṁ is the source term quantifying the mass production due to hydrolysis (20) and
φ:=Fφ/RT is the dimensionless macroscopic electric potential. We observe that φ is the
macroscopic electric potential due to the presence of electrodes while ϕ represents the EDL
electric potential, the nanoscopic one.

To complete the microscopic model, we consider the bulk fluid a Newtonian incom-
pressible solution with gravity and convection/inertial effects negligible. Then, microscopic
hydrodynamics is governed by the classical Stokes problem

μ f Δv − ∇ p = 0, ∇ · v = 0, in � f , (23)

where p is the pressure and μ f is the water viscosity.
The microscopic equations are supplemented by interfacial conditions on the parti-

cle/micropore interface � f s (see Fig. 2a). Due to thin double layer assumption, the EDL
is treated as a boundary layer in the vicinity of the particles (see Fig. 2b). Thus, the boundary
condition for the velocity in the Stokes problem is given by a slip condition in the tangen-
tial velocity component. Denoting the unitary normal and tangential vectors by n and τ ,
respectively, we have, on � f s , (Edwards 1995; Eykholt and Daniel 1994)

v · τ = ε̃0ε̃r ζ

μ f
∇φ · τ ,

v · n = 0, (24)

2.2.1 Formulation in primary unknowns

Now we rewrite the system of Eq. (22) as a function of the selected primary unknowns:
velocity, pressure, electric potential, and concentration of the cations.

The anion concentration COH−
b
and the source term due to hydrolysis are eliminated by

subtracting (22b) for j = OH− from (22b) for j = H+ and using (21). As a result, we obtain
the following nonlinear equation called the pH-equation

∇ · ĴH+ = 0, (25)

where

ĴH+ = �CH+
b

v − ̂DH+
(

∇CH+
b

+ CH+
b

∇φ
)

, (26)

with

̂DH+:=DH+ + DOH−KW

(CH+
b

)2
and �:=1 − KW

(CH+
b

)2
.
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We replace equation (22a) for i = Cl− by an equation modeling the conservation of
charge. Consider the definition of the electric current in the fluid given by

If :=F
∑

i
zi˜Ji, (27)

for i = Na+, H+, X2+, Cl−, OH−. Applying the Nernst–Planck equations (22) and the
constraints (2) and (21) in the definition (27), we obtain the conservation of charge equation

∇ · If = 0, (28)

with

If = −A∇CNa+
b

− B∇CH+
b

− C∇CX2+
b

− D∇φ, (29)

where

A:=F
(

DNa+ − DCl−
)

,

B:=F
[

DH+ − DCl− + (

DOH− − DCl−
)

KW /C2
H+
b

]

,

C :=2F(DX2+ − DCl−),

D:=F
[

(

DNa+ + DCl−
)

CNa+
b

+ (

DH+ + DCl−
)

CH+
b

+2(2DX2+ + DCl−)CX2+
b

+ (

DOH− − DCl−
)

KW /CH+
b

]

.

2.3 Summary of the nanoscopic/microscopic model

The nanoscopic/microscopic steady-state model consists in: Given the constants {μ f , Kw,

DNa+ , DH+ , DX2+ , DCl− , DOH− , F, R, T , A,C}, the functions {�, ̂DH , B} depending on
CH+

b
, and the coefficient D depending on {CNa+

b
,CH+

b
,CX2+

b
}, find the microscopic fields

{p, v, CNa+
b
,CH+

b
,CX2+

b
} satisfying

∇ · v = 0,

μ f Δv − ∇ p = 0,

∇ ·
(

CNa+
b

v
)

− ∇ ·
[

DNa+
(

∇CNa+
b

+ CNa+
b
∇φ
)]

= 0,

∇ ·
(

CX2+
b

v
)

− ∇ ·
[

DX2+
(

∇CX2+
b

+ 2CX2+
b

∇φ
)]

= 0,

∇ ·
(

�CH+
b

v
)

− ∇ ·
[

̂DH+
(

∇CH+
b

+ CH+
b

∇φ
)]

= 0,

∇ ·
(

A∇CNa+
b

+ B∇CH+
b

+ C∇CX2+
b

+ D∇φ
)

= 0, (30)

where the concentrations COH−
b
and CCl−b

are quantified by (21) and (2), respectively. The
microscopic system is subjected to the interfacial conditions (24).

Also, under steady state conditions and assuming the absence of mineral dissolution
reaction, the transient flux related to ion adsorption on the particle surface vanishes. So, the
microscopic interfacial conditions for the transport equations and the conservation of charge
are represented by the following homogeneous Neumann conditions for the ionic fluxes

If · n = JNa+ · n = ĴH+ · n = JX2+ · n = 0, (31)
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Fig. 3 Stratified arrangement of face-to-face particles. Reproduced with permission from Igreja et al. (2017)

where If is given by (29), ĴH+ by (26) and,

Ji:= − Di
(∇Cib + ziCib∇φ

)

,

for i = Na+, X2+.

Note that the nanoscopic model is incorporated into the microscopic modeling through
the ζ -potential present in the tangential component of the velocity v in (24). The ζ -potential
is given by the solution of the nanoscopic nonlinear equation (19) that is numerically approx-
imated in Sect. 5.1.

In this paper, we assume the surface charge density is uniformly distributed at the clay sur-
face. This assumption simplifies the Poisson-Boltzmann problem to the one-dimensional case
allowing us to obtain its analytical solution (Liu et al. 2013; Olphen 1977; Sposito 1989). This
way, the computational cost of solving the Poisson-Boltzmann problem is eliminated, reduc-
ing the overall simulation cost. Moreover, it is challenging to obtain the physical-chemical
data that include bivalent ions. One source in the literature is Angove et al. (1997), where
they consider fewer reactions for the monovalent ions than Leroy andWang (2004; 2010) but
include reactions for the bivalent ions. Here we describe thoroughly all the techniques used
to derive the multi-scale model. In this way, incorporating new phenomena or scenarios into
the nanoscopic model would be straightforward.

3 Macroscopic model

We obtain the macroscopic equations by upscaling the microscopic model using the asymp-
totic homogenization technique presented in Lima et al. (2010a) and detailed in Appendix B.
Following this framework, we consider the clayey porous media a periodic bounded domain
with two characteristics length scales, microscopic andmacroscopic. Themicroscopic length
scale, l, is of the order of themicropores diameter, O(10−6 m). Themacroscopic length scale,
L , is of the order of the overall dimension of the sample, O(1m). Hence, the assumption of
separation of scales, ε:=l/L � 1, is satisfied. Moreover, the periodic domain is composed
of repetition of a standard periodic cell, denoted by Y . Each periodic cell is divided into the
subdomains Y f and Ys that share a common boundary ∂Y f s . Under these assumptions, ε = 1
corresponds to our microscopic model. The macroscopic model is obtained by investigating
the asymptotics as ε → 0.

We apply a procedure analogous to the one done by Lima et al. (Lima et al. 2008) to
obtain the macroscopic model. The upscaling of the transport equation for the ion X2+ is
analogous to one for the transport equation of the ion Na+. Summarizing, the three-scale
model is given by: find the macroscopic variables CNa+

b
, CX2+

b
, CH+

b
, p, φ, VD, satisfying,
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in the macroscopic domain �,

∇ · VD = 0, VD = −Keff
P ∇ p − Keff

E ∇φ, (32a)

∇ · JeffNa+ = ∇ · JeffX2+ = ∇ · ĴeffH+ = ∇ · Iefff = 0, (32b)

where

JeffNa+ = CNa+
b

VD − Deff
Na+

(

∇CNa+
b

+ CNa+
b
∇φ
)

, (33a)

JeffX2+ = CX2+
b

VD − Deff
X2+

(

∇CX2+
b

+ 2CX2+
b

∇φ
)

, (33b)

ĴeffH+ = �CH+
b

VD −̂Deff
H+
(

∇CH+
b

+ CH+
b

∇φ
)

, (33c)

Iefff = −Aeff∇CNa+
b

− Beff∇CH+
b

− Ceff∇CX2+
b

− Deff∇φ. (33d)

In the macroscopic formulation (32)–(33), Keff
P represents the effective hydraulic conduc-

tivity, Keff
E the effective electroosmotic permeability, Deff

i the effective diffusivity of the ion
i , for i = Na+, X2+, ̂Deff

H+ the effective diffusion coefficients of the H+ − OH− ions, with
Aeff , Beff , Ceff and Deff being the first, second, third and fourth coefficients in the Onsager
sense (Coelho et al. 1996; Moyne and Murad 2006). The effective parameters of the system
are given by

Keff
P = < κP >

μ f
, (34a)

Keff
E = − ε̃0ε̃r ζ

μ f
< I + ∇yf >, (34b)

̂Deff
H+ = ̂DH+ < I + ∇yf > (34c)

Deff
i = Di < I + ∇yf >, i = Na+, X2+, (34d)

Aeff = F
(

DNa+ − DCl−
)

< I + ∇yf >, (34e)

Beff = F
[

DH+ − DCl−

+ (DOH− − DCl−
)

KW /C2
H+
b

]

< I + ∇yf >, (34f)

Ceff = 2F(DX2+ − DCl−) < I + ∇yf >, (34g)

Deff = F
[

(

DNa+ + DCl−
)

CNa+
b

+ (DH+ + DCl−
)

CH+
b

+ 2(2DX2+ + DCl−)CX2+
b

+ (DOH− − DCl−
)

KW /CH+
b

]

< I + ∇yf >, (34h)

where I is the identity matrix, ∇y represents the spatial gradient with respect to the micro-
scopic coordinate y, in Y f , and < · > is the averaging over the standard periodic cell Y
defined as

< χ > := 1

|Y |
∫

Y f

χ dy. (35)

Moreover, the characteristic functions ∇yf and κP satisfy the cell problems
{

Δyyf (y) = 0, in Y f ,

∇yf (y) n = −n, on ∂Y f s,
(36)
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and
⎧

⎪

⎨

⎪

⎩

Δyyκ
j
P − ∇yπ

j
P = −e j , in Y f ,

∇y · κ
j
P = 0, in Y f ,

κ
j
P = 0, on ∂Y f s,

(37)

where j = 1, 2, 3, {e j }3j=1 is an orthonormal basis, κP is the tensorial periodic function

and πP is the vectorial field with vectorial components κ
j
P and scalars π

j
P . For a periodic

structure, the gradient of the vectorial function f computes the effect of the microscopic
geometry on the effective parameters (34b)–(34h), commonly associated to the tortuosity of
the medium. The tensor κP quantifies the influence of the microstructure on the macroscopic
permeability that is given by the average of κP over the periodic cell (see Eq. (34a)).

Solving the multi-scale model (32)–(37) takes the following steps:

1. From available experimental data for the electrochemical constants, we solve the
nanoscopic problem (19) to find the ζ -potential.

2. For a given microscopic geometry (see Fig. 2a), we solve the cell problems (36)–(37).
3. Knowing ζ , f and κP , we then determine the effective parameters (34).
4. Finally, we obtain solution the macroscopic model (32)–(33).

Note that the micro and the macro models are then coupled through the macroscopic
parameters (34). Note that in the interface electrolyte solution/solid surface, the ζ -potential
in the EDL gives rise to the electroosmotic permeability at the macroscale (34b). Also,
the electrical potential gradient applied due to the presence of electrodes in the sample is
the main driven force for the fluid flow and, consequently, for the transport of the solutes
induced by the convective phenomenon. The quantification of the ζ -potential in the presence
of monovalent/bivalent ions, its influence in the macroscopic electroosmotic permeability,
and, consequently, in the Darcy velocity are among the main results presented here.

3.1 One-dimensional model

To simulate the electroremediation process, we reduce the macroscopic system (32) to a
one-dimensional problem. In this scenario, the macroscopic domain is � = (0, L), where
x = 0 and x = L are located the anode and cathode, denoted as �a and �c, respectively, (see
Fig. 3a). To simplify themodel, we consider the clay particles have a stratifiedmicrogeometry
composed of parallel particles separated from each other by a fixed distance. In this stratified
geometry, denote by {x, y} the coordinates alignedwith the directions parallel and orthogonal
to the particle surface, respectively. Since flow and ion transport occur just in the x-direction,
we only compute the axial components of the fluxes {VD, Jeffi ,̂JeffH+ , Iefff }, and tensors {Keff

E ,
Keff

P ,Deff
i ,̂Deff ,Aeff ,Beff ,Ceff ,Deff

H+}, i = Na+, X2+ denotedwithout boldface. Considering
these assumptions, the macroscopic system (32) is reduced to the following one-dimensional
problem

dVD

dx
= 0, (38a)

VD = −K eff
E

dφ

dx
− K eff

P
dp

dx
, (38b)

dJ eff
Na+

dx
= dJ eff

X2+
dx

= d̂J effH+
dx

= dI efff
dx

= 0, (38c)
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J effNa+ = CNa+
b
VD − Deff

Na+

(

dCNa+
b

dx
+ CNa+

b

dφ

dx

)

, (38d)

J effX2+ = CX2+
b
VD − Deff

X2+

(

dCX2+
b

dx
+ 2CX2+

b

dφ

dx

)

, (38e)

Ĵ effH+ = �CH+
b
VD − ̂Deff

H+

(

dCH+
b

dx
+ CH+

b

dφ

dx

)

, (38f)

I efff = −Aeff
dCNa+

b

dx
− Beff

dCH+
b

dx
− Ceff

dCX2+
b

dx

− Deff dφ

dx
. (38g)

We consider the periodic cell Y delimited by two parallel clay particles separated by a
fixed distance, 2H , and particles thickness δ (see Fig. 3b). In this scenario, the porosity is
given by η = H/(H + δ), the cell problems (36)–(37) are reduced to d f /dy = 0 and
κP = − (y2 − H2

)

/2μ f . Using (35) and replacing the previous expressions in (34) the
effective parameters are rewritten as

K eff
E = −η̃ε0ε̃rζ/μ f , (39a)

� = 1 − KW /C2
H+
b

, (39b)

K eff
P = H3/

[

3 (H + δ) μ f
]

, (39c)

̂Deff
H+ = η

(

DH+ + KW DOH−/C2
H+
b

)

, (39d)

Deff
i = ηDi , i = Na+, X2+, (39e)

Aeff = Fη
(

DNa+ − DCl−
)

, (39f)

Ceff = 2Fη(DX2+ − DCl−) (39g)

Beff = Fη

⎡

⎣DH+ − DCl− + (

DOH− − DCl−
) KW

C2
H+
b

⎤

⎦ , (39h)

Deff = Fη
[

(

DNa+ + DCl−
)

CNa+
b
+ (

DH+ + DCl−
)

CH+
b

+ 2(2DX2+ + DCl−)CX2+
b

+ (

DOH− − DCl−
)

KW /CH+
b

]

, (39i)

We note that the effective parameters K eff
E , ̂Deff

H+ , Beff , Deff are functions of the concen-
tration of the cations on the bulk. Hence the system (38) is nonlinear and strongly couples the
different scales. In particular, we would like to highlight that the classical effective hydraulic
conductivity (39c) incorporates only microscopic parameter κP associated to the microge-
ometry. On the other hand, the effective electroosmotic permeability K eff

E (39a) incorporates
the nanoscopic information (19) through the ζ -potential and the microscopic information
through the characteristic function f = f(y).

3.2 Boundary conditions

It is a hard task to postulate boundary conditions that accurately model the electroosmotic
experiments. For the convective/diffusive transport equations, boundary conditions of the
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first and the second type are commonly imposed. However, these boundary conditions are
not suitable to model the electrokinetic of the ionic transport in the presence of charged
porous media due to the existence of flux on the boundaries caused by the electrode reac-
tions, by the prescribed electric current, and by the advection phenomenon (Parker and van
Genuchten 1984; Reddy and Cameselle 2009). Another type of boundary conditions, known
as Danckwerts boundary conditions, arises.

The Danckwerts boundary conditions describe more realistic scenarios of the electroos-
motic experiment. They prescribe flow conditions at the interface of the sample with the
bath, where the concentration is controlled. They match the total flow in the sample with the
flow at the bath immediately outside, where the diffusive/dispersive effects are neglected by
assuming that the solution is well-mixed (Lafolie and Hayot 1993; Parker and van Genuchten
1984).

For closing the macroscopic problem (38), we prescribe Danckwerts boundary conditions
at the electrodes following (Acar and Alshawabkeh 1993; Alshawabkeh and Acar 1996):

For the anode (x = 0) :

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

J eff
Na+ = Cbath

Na VD,

J eff
X2+ = Cbath

X VD,

I efff = −I0,

p = patm,

CH+
b

= C .

(40a)

For the cathode (x = L) :

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

J eff
Na+ = CNa+

b
VD,

J eff
X2+ = CX+

b
VD,

φ = 0,

p = patm,

CH+
b

= C .

(40b)

4 Numerical method

We numerically approximate the solution of macroscopic model (38)–(40) using Galerkin
finite element method together with the Newton method. The discretized model extends the
validated model proposed by Igreja et al. (2017) that obtained analytical solutions to validate
the numerical model considering monovalent ions, thus making the simulations reliable.
To optimize the numerical computation, we apply a staggered algorithm that decouples the
system into the three problems described below.
Problem I: substitute (38b) into (38a) to approximate the pressure using delayed information
about the effective parameters and the electric potential.
Problem II: solve (38b) to find the Darcy velocity using the pressure obtained in Problem
I.
Problem III: with the Darcy velocity computed in
Problem II, we simultaneously approximate the system (38c)–(38g) to obtain the concen-
tration of the cations and the electric potential.

The three problems are solved sequentially at each iteration until a given tolerance is
reached.
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4.1 Variational formulation

Let H1(�) be the usual Hilbert space and L2(�) be the space of square integrable functions
with the inner product defined by

( f , g):=
∫

�

f g dx , ∀ f , g ∈ L2(�). (41)

Also, let H1
0(�) be the subspace of functions in H1(�) with zero trace on �. Considering the

Danckwerts boundary conditions (40), we define the following subspaces of H1(�)

P(�) = {

q ∈ H1(�); q(0) = q(L) = patm
}

,

U(�) = {

C ∈ H1(�); C(0) = C(L) = C
}

,

V(�) = {

φ ∈ H1(�); φ(L) = 0
}

where patm denotes the atmospheric pressure and C is the H+ concentration imposed at the
ends of the sample.

The variational formulation of the macroscopic problem (38) is obtained by multiplying
the equations by weight functions in the appropriated function space, integrating by parts and
applying the boundary conditions (5). Let the index n = 1, 2, . . . , N indicate the iteration in
the staggered scheme. Below, we present the resulting variational equations in the sequence
that they are solved.
Problem I: given the pair (K eff

E,n−1, φ
n−1) find pn ∈ P(�) such that

(

K eff
P

dpn

dx
,
dq

dx

)

= −
(

K eff
E,n−1

dφn−1

dx
,
dq

dx

)

, (42)

for all q ∈ H1
0. We observe that to obtain (42) we substitute (38b) into (38a).

Problem II: given the triple (K eff,n−1
E , φn−1, pn) find V n

D ∈ L2(�), satisfying

(

V n
D, w

) = −
(

K eff
E,n−1

dφn−1

dx
+ K eff

P
dpn

dx
, w

)

, (43)

for all w ∈ L2(�). Note that the electroosmotic component of the Darcy law is delayed in
relation to hydraulic one.
Problem III: given (Cn−1

Na+
b
,Cn−1

X2+
b

,Cn−1
H+
b

, φn−1, V n
D), find [Cn

Na+
b
,Cn

X2+
b

,Cn
H+
b

, φn] ∈
(

H1(�)
)2 × U(�) × V(�), such that

(

J effi,n ,
dq1
dx

)

− Cn
ib V

n
D q1

∣

∣

∣

∣

x=L
= −Cbath

i V n
D q1

∣

∣

∣

∣

x=0
, (44a)

(

Ĵ effH+,n,
dq2
dx

)

= 0, (44b)

(

I efff ,n,
dq3
dx

)

= −I0 q3

∣

∣

∣

∣

x=0
, (44c)

for i = Na+, X2+ and for all q1 ∈ H1(�), q2 ∈ H1
0(�), q3 ∈ V(�). The equations in

nonlinear system (44) are solved together using the Newton–Raphson method (Quarteroni
and Valli 1994).
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4.2 Discrete approximation

Let {Th}be a family of partitionsTh = {�e}of�whereh represents themaximumdiameter of
the elements �e ∈ Th . Let Sk

h = {ψh ∈ C0(�);ψh |�e ∈ Pk(�
e)} be the C0(�) Lagrangian

finite element space of degree k ≥ 1 in each element �e, where Pk(�
e) is the set of the

polynomials of degree ≤ k posed on �e. The weak formulation of the system (42)–(44c) is
discretized by the Galerkin finite element approximation on the conforming spacesPk

h (�) =
Sk
h ∩ P(�), Uk

h (�) = Sk
h ∩ U(�) and Vk

h (�) = Sk
h ∩ V(�). For the velocity VD and CNa+

b
,

we define the discrete spaces Sk
h ∩ L2(�) and Sk

h ∩ H1(�), respectively.

5 Simulation for electroremediation in kaolinite clay

To simulate the electroosmotic experiment illustrate in Fig. 3, we hereafter assume the clay
soil is composed of kaolinite particles saturated by an aqueous solution where the bivalent ion
is the metallic ion cadmium, i.e., X2+ = Cd2+ (Angove et al. 1997, 1998; Mitchell 1976).
To analyze the influence of the nanoscopic variables in the behavior of the macroscopic
unknowns, first, we numerically solve the nanoscopic equations (19) and (15) to construct
the dependence of the ζ -potential and surface charge density σ on a given set of sodium
concentration, CNa+

b
, cadmium concentration, CCd2+b

, and, pH. Then, considering the strat-

ified microstructure described in Sect. 3.1, we quantify the nano and microscopic effective
parameters (39a)–(39i). Finally, we simulate the electroremediation process using the finite
element discretization of the macroscopic system (38) for two different cases based on the
Dirichlet and Danckwerts boundary conditions.

In the first case, we propose four different scenarios for controlled variables at the elec-
trodes. To this end, we prescribe Dirichlet boundary conditions at the electrodes for the
electric potential, pressure, pH, and cationic concentrations. For the second case, we impose
Danckwerts boundary conditions (40a)–(40b) to incorporate the chemistry of the reactions
at the electrodes. Here, we run three simulations for different values of electric current pre-
scribed at the anode. Table 1 displays the value of the constants used in the simulations.

5.1 Numerical simulation for the nanoscopic model

Herewe simulate the dependence of the nanoscopic unknowns, ζ -potential and surface charge
density σ , on the cationic concentrations and pH. To this end, for a given triple {CNa+

b
, CH+

b
,

CCd2+b
}, we apply the Newton–Raphson method to numerically solve the nonlinear equation

(19) for the ζ -potential and then use (15) to determine the surface charge density σ . In the
simulations, we use the physical-chemical parameters presented in Angove et al. (1997) that
are displayed in Table 1. Figures 4, 5, 6, 7 display the numerical solutions obtained for
different scenarios.

Figures 4 and 5 show the surface charge density and ζ -potential as functions of pH for
different values of CCd2+b

for CNa+
b

= 10mol/m3 and CNa+
b

= 100mol/m3, respectively. The

numerical solutions clearly confirms that isoelectric point occurs in the vicinity of pH = 5.0
in accordance with the value predicted in Angove et al. (1997, 1998). We observe that for
acid regimes, pH < 5.0, due to the increase of H+ concentration, the protonation reactions
(9)–(10) dominate the electro-chemistry and, consequently, the surface charge density and
ζ -potential are both positive. Also, increasing the CCd2+b

increases the surface charge density
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Table 1 Parameters used in the numerical simulations

Parameter Value Unity

Faraday constant, (F) 96485.3399 C/mol

Universal gas constant, (R) 8.314 Jmol−1K−1

Temperature, (T ) 300 K

Avogadro constant, (Na) 6.02 × 1023 mol−1

Dielectric constant, (εr ) 80.1 –

Vacuum permittivity, (ε0) 8.854 × 10−12 C · V−1 · m−1

Equilibrium constant of the chemical
reaction (13a), (K1)

100.24 m3/mol

Equilibrium constant of the chemical
reaction (13b), (K2)

10−4.15 mol/m3

Equilibrium constant of the chemical
reaction (13c), (K3)

10−4.75 mol/m3

Maximum surface site density, (�Max) 3.2 × 10−6 mol/m2

Ionic product of water, (Kw) 1.0 ×10−14 (mol/l)2

Diffusion coefficient of ions H+, (DH+ ) 9.311 ×10−9 m2 · s−1

Diffusion coefficient of ions OH−, (DOH− ) 5.273 ×10−9 m2 · s−1

Diffusion coefficient of ions Na+, (DNa+ ) 1.334 ×10−9 m2 · s−1

Diffusion coefficient of ions Cl−, (DCl− ) 2.032 ×10−9 m2 · s−1

Diffusion coefficient of ions Cd2+, (DCd2+ ) 7.190×10−10 m2 · s−1

Water viscosity, (μ f ) 1.0×10−3 Pa × s

Sample length, (L) 10−2 m

Distance between two particles, (2H) 2.0 × 10−7 m

Particle thickness, (δ) 0.5 × 10−7 m

Porosity, (η) 0.75 –

Hydraulic conductivity, (K eff
P ) 2.2 × 10−12 m2 × Pa−1 × s−1

and decreases the ζ -potential. Conversely, for alkaline regimes, pH > 5.0, the decrease ofH+
concentration favors the deprotonation reaction (10) turning the surface charge density and
ζ -potential both negative. Moreover, for the pH > 5.0 the presence of the Cd2+ gives rise to
the cationic exchange reaction (11), inhibiting the deprotonation reaction (10); consequently,
the surface charge density and the ζ -potential remain almost constant. In the alkaline regime,
for a high value of the metallic ion concentration, the electro-chemistry is dominated by
the cationic exchange reaction (11) and consequently the surface charge density and the
ζ -potential tend to zero. Finally, increasing the sodium concentration increases the charge
density (in absolute value) and decreases the ζ -potential (in absolute value).

Figures 6 and 7 display the surface charge density and ζ -potential as a function ofCCd2+b
for

acid and basic pH values for CNa+
b

= 10mol/m3 and CNa+
b

= 100mol/m3, respectively. For
the pH values lower than the isoelectric point, pH = 3 and pH = 4, the electro-chemistry
is dominated by the deprotonation reactions (9)–(10); consequently, the results show the
surface charge density increasing and the ζ -potential decreasing. For a pH value close to the
isoelectric point, pH = 5, the charge density and ζ -potential are almost independent of the
ionic-strength. For pHvalues higher than the isoelectric point, pH = 7 andpH = 9, increasing
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Fig. 4 Charge density and ζ -potential for CNa+b
= 10mol/m3 and different values of C

Cd2+b

the Cd2+ concentration favors the cationic exchange reaction (11); consequently the charge
density and the ζ -potential tend to zero. It is important to highlight that these ζ -potential
simulations are very important since they are used to compute the effective electroosmotic
permeability, K eff

E , via (39a). The effective parameter K eff
E appears in equation (38b) showing

that, for a constant pressure prescribed at the ends of the sample, the nanoscopic parameter
ζ -potential dominates the behavior of the macroscopic fluid velocity profile.

5.2 Numerical simulation for the controlled variables

Here we simulate electroosmosis experiments in a sample with length L = 0.01 m consider-
ing controlled variables at the electrodes, i.e., Dirichlet boundary conditions for all unknowns.
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Fig. 5 Charge density and ζ -potential for CNa+b
= 100mol/m3 and different values of C

Cd2+b

To analyse the influence of the pH on the electroosmosis process, we simulate four distinct
scenarios:

– Scenario 1: pH = 4 at both electrodes;
– Scenario 2: pH = 7 at both electrodes;
– Scenario 3: pH = 4 at the anode and pH = 7 at the cathode.
– Scenario 4: pH = 7 at the anode and pH = 4 at the cathode.

The other boundary conditions are kept the same throughout the simulations. For the anode
(x = 0m), we impose CNa+

b
= 10mol/m3, CCd2+b

= 1mol/m3, φ = 1V and p = 105Pa. For

the cathode (x = 0.01m), we consider CNa+
b

= 1mol/m3, CCd2+b
= 0.1mol/m3, φ = 0V and

p = 105Pa. We discretize the domain using a fine nonuniform mesh with 104 elements. The
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Fig. 6 Charge density and ζ -potential for CNa+b
= 10mol/m3 and different values of pH

resulting local Pèclet number, defined by Peh :=hVref/2D, is low, Peh = O(1), assuring the
stability of the Galerkin scheme. In Figures 8, 9, 10, 11, 12, the results for scenarios 1, 2, 3,
and, 4 are plotted in red, blue, black, and green, respectively.

Figure 8 displays the pH profile for the four different scenarios. In Fig. 8a, the influence
of the convection given by the electroosmotic and electromigration terms together with the
electrochemical phenomena in the EDL causes a tendency for basification inside the sample.
For the acid regime, there is the formation of a plateau inside the sample with the pH ≈ 4.5.
For the basic regime, the plateau inside the sample occurs at pH ≈ 8.2. In Fig. 8b, we
observe that scenarios 3 and 4 behave similarly to scenarios 1 and 2, respectively. Note that
the basification and the plateaus also occur togetherwith a sharp boundary layer in the vicinity
of the cathode to satisfy the imposed Dirichlet boundary condition.
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Fig. 7 Charge density and ζ -potential for CNa+b
= 100mol/m3 and different values of pH

It is important to mention that the work of Igreja et al. (2017) (see Eq. 38 of their paper)
demonstrates that, for the pH profile, the range of the plateau is inversely proportional to
both the gradient of the electric potential and Darcy’s velocity. Here, Figs. 4, 5, 6, 7 show
that the presence of the bivalent ion lowers the range of the values for the surface charge
and the ζ -potential compared to those obtained on the presence of the monovalent ion only.
Consequently, Eqs. (38b) and (39a) show that the Darcy velocity also assumes lower values
in the presence of the bivalent ion. Getting back to Eq. (38) from (Igreja et al. 2017), the
lower values for Darcy’s velocity results in a higher pH plateau. Therefore, comparing these
results with the results in Lima et al. (2008), we observe that the presence of the bivalent
Cd2+ ion increases the pH plateaus significantly.
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Fig. 8 pH profiles for pH values fixed at the electrodes

Figures 9, 10 display the Na+ and Cd2+ concentration profiles considering the Dirichlet
boundary conditions CNa+

b
= 10mol/m3 and CCd2+b

= 1mol/m3 at the anode together with

CNa+
b

= 1mol/m3 and CCd2+b
= 0.1mol/m3 at the cathode. For the basic regime in scenario

2, with pH = 7.0 fixed at both electrodes, Fig. 8a shows that the pH > 5.25; consequently,
the ζ -potential is negative (see Figs. 4, 5) and K eff

E > 0 (see 39a) that causes a classical
electroosmotic flow in the opposite direction of the applied electric field. Thus, in this sce-
nario, the profiles for the cation concentration exhibit a boundary layer formation close to the
cathode. Conversely, for the acid regime in scenario 1, with pH = 4.0 kept at both electrodes,
the ζ -potential is positive and K eff

E < 0; consequently, the electroosmotic flow occurs in the
same direction of the electric field, with the boundary layer now close to the anode. Finally,
in Figs. 9b and 10b, we show the cations {Na+, Cd2+} concentration profiles considering the

123



197 Page 24 of 36 J. H. da Silva Mariano et al.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

X (meters)

0

1

2

3

4

5

6

7

8

9

10

N
a

+
 C

on
ce

nt
ra

tio
n 

(m
ol

/m
3
)

Scenario 1
Scenario 2

(a)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

X (meters)

0

1

2

3

4

5

6

7

8

9

10

N
a

+
 C

on
ce

nt
ra

tio
n 

(m
ol

/m
3
)

Scenario 3
Scenario 4

(b)

Fig. 9 Na+ concentration profiles for pH values fixed at the electrodes

scenarios 3 and 4 with different pH values at the electrodes. In the scenario 3, the acid regime
pH < 5.25 prevails in almost the entire domain (see Fig. 8b), then the ζ > 0 and K eff

E < 0
which implies in a convective electroosmotic flow towards the anode. In the scenario 4, the
basic regime with pH > 5.25 prevails; consequently, the electroosmotic flow is towards the
cathode.

Figure 11 simulates the electric potential considering φ = 1V at the anode and φ = 0V
at the cathode. For the acid and basic pH profiles obtained in Fig. 11a, the electric poten-
tial shows a nonlinear behavior in the vicinities of the electrodes with a linear distribution
inside the sample. Finally, Fig. 12 plots the simulation for the pressure p = 105 Pa con-
trolled at the electrodes. The nonlinear profile displayed for the pressure arises to fulfill the
incompressibility condition (38a) along with Darcy’s law (38b).
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Fig. 10 Cd2+ concentration profiles for pH values fixed at the electrodes

5.3 Numerical simulation for the danckwerts boundary condition

We now impose the Danckwerts boundary condition to the discrete problems (42)–(44) to
analyze more realistic scenarios of the electroremediation process where the electric current
and flow for the concentration of the solutes are imposed. For the numerical simulations, we
prescribe the concentrations Cbath

Na = 1.0mol/m3 and Cbath
Cd = 0.1mol/m3 at the inlet of the

sample. Moreover, we set the pH = 8.0, and p = 105Pa at both electrodes with φ = 0
applied at the cathode. Finally, we perform three simulations imposing the following values
for the electric current at the anode: I0 = 0.1, 0.5 e 1.5A/m2. In Figs 13–15, we display the
distribution of the pH, velocity,electric potential, pressure and concentration of the cations
for each value of the electric current imposed at the anode.
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Fig. 11 Electric potential profiles for pH values fixed at the electrodes

Figure 13a displays the pH profile for the different values of the electric current imposed
at the anode. Considering pH = 8.0 fixed at the electrodes, we observe a acidification of
the sample and the formation of a plateau close to the pH = 7.6 when the imposed electric
current increases. Also, a boundary layer appears in the vicinity of the electrodes due to the
Dirichlet condition for the pH. In Fig. 13b, we display the distribution of the Darcy velocity
for the three electric currents imposed. The results show that the increase of the current leads
to a substantial increase in the advective effect.

Figure 14 shows the electric potential and pressure profiles for different values of the
electric current imposed at the anode. In Fig. 14a, we observe that the electric potential
decreases linearly towards the cathode and grows with the current. This linear profile for the
electric potentialwas observed experimentally inBeddiar et al. (2005). In Fig. 14b,we present
the profile of the pressure for different current values. The abrupt variation counterbalances
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Fig. 12 Pressure profiles for pH values fixed at the electrodes

the electroosmotic component and fulfills the incompressibility constraint. This nonlinear
profile for the pressure was observed experimentally in Beddiar et al. (2005).

Figure 15 shows the behavior of sodium and cadmium concentration for different values of
the electric current imposed at the anode. From the potential profiles in Fig. 14a, we observe
that since pH > 5.25 throughout the sample, the ζ -potential is negative (see Figs. 4, 5);
consequently, K eff

E > 0 which implies that the electroosmotic flow is towards the cathode.
With the electroosmotic flow going in the opposite direction of the electric potential gradient
towards the cathode and the Darcy velocity proportional to the electric current (see Fig. 13b),
the boundary layer in the vicinity of the cathode becomes sharper as the current increases.
We also point out the formation of plateaus close to 0.4 mol/m3 and 0.04 mol/m3 for the
concentration of sodium and cadmium, respectively.
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Fig. 13 pH and velocity profiles for different currents prescribed at the anode

6 Conclusion

We have developed a three-scale (nano/micro/macroscopic) computational model based on
the homogenization technique. The resulting model is a system of nonlinear differential
equations that quantifies the hydrodynamics of an aqueous solution and the transport of
monovalent/bivalent ions (Na+, H+, X2+, Cl−, OH−) in charged porous media. The most
significant results are the following:

– We derived a nanoscopic model that features the influence of the concentration of mono-
valent and bivalent ions on the electric potential of the EDL, on the surface charge density
and on the ζ -potential.
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Fig. 14 Pressure and electric potential profiles for different currents prescribed at the anode

– Under the thin EDL assumption, we have obtained the analytical solution of the Poisson–
Boltzmann problem considering the presence of a bivalent metallic ion.

– The nonlinear algebraic Eq. (19) determines the ζ -potential and, consequently, computes
the surface charge density and the electroosmotic permeability.We have numerically sim-
ulated the ζ -potential and the surface charge density for different scenarios and showed
their dependence on the concentration of the cations.

– The multi-scale model allows us to bridge the nano-micro and macroscopic electro-
chemical phenomena in clay under steady-state conditions. In particular, we highlight
the dependence of the new constitutive law for the electroosmotic permeability on the
pH, sodium, and bivalent metallic ion concentration.

– The discrete model, obtained via the Galerkin finite element method, is used to numeri-
cally simulate the electroremediation process using a staggered algorithm together with
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Fig. 15 Concentrations profiles for different currents prescribed at the anode

the Newton–Raphson method. Due to the choice of a very fine mesh, the numerical sim-
ulations are stable and the profiles obtained are non-oscillatory. The numerical results
considered Dirichlet and Danckwerts boundary conditions. The obtained profiles show
the dependence of the electroremediation process on the pH, monovalent and bivalent
ions.

– The simulationswithDirichlet boundary conditions show that the presence of the bivalent
ion increases the pH plateaus (tendency for basification of the sample). Also, when the
regime changes from basic to acid, we observe an inversion of the electroosmotic flow.
In the acid regime, the flow is in the same direction of the applied electric field. In the
basic regime, it is in the opposite direction.

– The simulations with Danckwerts boundary conditions show a tendency for acidification
of the sample when the pH is controlled at the electrodes. Also, for a prescribed electric
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current at the anode, the profile of the electric potential is linear and decreases from the
anode to the cathode. Moreover, the boundary layer for the profile of the sodium and
cadmium concentrations becomes sharper when we increase the prescribed current.
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A Appendix A: Solution of the Poisson–Boltzmann equation

Following a similar procedure proposed in Liu et al. (2013) we derive the analytical solution
(6) of the Poisson–Boltzmann equation. We begin by rewriting (4) in dimensionless form

d2ϕ

dz2
= α

[

Cb sinh(ϕ) + CX2+
b

(e−ϕ − e−2ϕ)
]

(45)

with α = 2F2/εε0RT. Multiplying (45) by 2dϕ/dz and applying the chain rule, we arrive
at the differential equation

d

dz

(

dϕ

dz

)2

= 2α

[

Cb
d

dz
(cosh(ϕ)) + CX2+

b

(

1

2

d

dz
(e−2ϕ)

− d

dz
(e−ϕ)

)]

. (46)

Integrating (46) from z = l � LD where ϕ(z) = 0 in the bulk solution to a point z inside
the EDL, we obtain

(

dϕ

dz

)2

= α

[

2Cb (cosh(ϕ) − 1) + CX2+
b

(

1 − e−ϕ
)2
]

.

Then, we have

dϕ

dz
= sgn(ζ )

√
α

[

2Cb (cosh(ϕ) − 1) + CX2+
b

(

1 − e−ϕ
)2
] 1

2

, (47)

with “sgn” the signal function. Using the fact that 2 cosh(ϕ) = eϕ + e−ϕ , we rearrange
the terms and integrate the above expression from z = 0, where ϕ(z = 0) = ζ is the
dimensionless ζ -potential, to z to get that

∫ ϕ

ζ

eϕdϕ

(1 − eϕ)
[

(Cb + CX2+
b

) − Cb
(

1 − eϕ
)

]1/2 = sgn(ζ )
√

αz. (48)

To solve the integral on (48), we make the change of variables U = 1 − eϕ to obtain

∫

eϕdϕ

(1 − eϕ)
[

(Cb + CX2+
b

) − Cb
(

1 − eϕ
)

]1/2 =

−
∫

1

U
[(

Cb + CX2+
b

)

− CbU
]1/2 dU .
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where for convenience the limits are omitted. Taking T = [(Cb + CX2+
b

) − CbU ] 1
2 , the above

expression can be rewritten in the form

∫

eϕdϕ

(1 − eϕ)
[

(Cb + CX2+
b

) − Cb
(

1 − eϕ
)

]1/2 =

2
∫

1
(

Cb + CX2+
b

)

− T 2
dT . (49)

with T = [(Cb + CX2+
b

) − Cb(1 − eϕ)] 1
2 . Making the change of variables V = T /(Cb +

CX2+
b

)
1
2 , the expression (49) results in

∫

eϕdϕ

(1 − eϕ)
[

(Cb + CX2+
b

) − Cb
(

1 − eϕ
)

]1/2 =

2
(

Cb + CX2+
b

)1/2

∫

1

1 − V 2 dV , (50)

with

V =

√

√

√

√

√

(

Cb + CX2+
b

)

− Cb
(

1 − eϕ
)

(

Cb + CX2+
b

) . (51)

Using the of partial fraction method in (50) we have

∫

eϕdϕ

(1 − eϕ)
[

(Cb + CX2+
b

) − Cb
(

1 − eϕ
)

]1/2 =

− 1
(

Cb + CX2+
b

)1/2 log

(

V − 1

V + 1

)

. (52)

Combining the expression (48), (51) and (52) we have

log

⎡

⎢

⎣

√

CX2+
b

+ Cbeϕ −√

Cb + CX2+
b

√

CX2+
b

+ Cbeϕ +√

Cb + CX2+
b

⎤

⎥

⎦

ϕ

ζ

=

−sgn(ζ )

√

α
(

Cb + CX2+
b

)

z (53)

Rearranging the terms in (53), we derive the expression for the electric potential given by
(6) and (8). Finally, to deduce expression (7) for charge density, we combine the expressions
(5a) and (47) resulting in (7).

123



Multi-scale computational modeling... Page 33 of 36 197

B Appendix B: Homogenization procedure

Expanding the procedure proposed in previous articles, we adopt the homogenization proce-
dure based on perturbation expansions (Lima et al. 2008).Within this frameworkwe postulate
the asymptotic expansions for the unknowns in the form

f ε(x, y) =
∞
∑

k=0

εk f k(x, y)

where x and y = x/ε denote the macroscopic and microscopic coordinates respectively.
Inserting the ansatz into the microscopic governing equations and collecting powers of ε we
obtain successive equations at different orders

∇y ·
[

Dib

(

∇yC
0
ib + ziC

0
ib∇yφ

0
)]

= 0, (54)

∇y · v0 = 0, ∇y p
0 = 0, (55)

∇y · (C0
ibv0

)+ ∇x ·
[

Dib

(

∇yC
0
ib + ziC

0
ib∇yφ

0
)]

+ ∇y · J0
ib = 0, (56)

J0
ib = −Dib

[

(∇xC
0
ib + ∇yC

1
ib

)+ ziC
0
ib

(

∇xφ
0 + ∇yφ

1
)

+ ziC
1
ib∇yφ

0
]

, (57)

∇x · v0 + ∇y · v1 = 0, μ f �yyv0 − ∇y p
1 = ∇x p

0, (58)

∇x · (C0
ibv0

)+ ∇y · (C0
ibv1 + C1

ibv0
)+ ∇x · J0

ib + ∇y · J1
ib = 0, (59)

whereas the successive orders of the interface conditions read as
[

Dib

(

∇yC
0
ib + ziC

0
ib∇yφ

0
)]

· n = 0, (60)

v0 · n = v1 · n = 0, v0 · τ = ε̃0̃εr

μ f

[

ζ 0 (∇xφ
0 + ∇yφ

1)+ ζ 1∇yφ
0] · τ (61)

J0
ib · n = J1

ib = 0 (62)

We begin by collecting our set of slow y-independent variables. From (55) we have
∇y p0 (x, y, t) = 0 implies p0 (x, y, t) = p0 (x, t). Moreover, from the generalized transport

equation (54) together with (60) we have C0
ib± (x, y, t) = C0

ib± (x, t), and φ
0
(x, y, t) =

φ
0
(x, t).
Since that {C0

Nab+ , C0
Hb+ , C0

Cd2+b
, φ0} is independent of the fast variable, using (55) only

the last terms in the equations (56) survive. Thus, combining the constitutive laws (56)–(57)
with the boundary conditions (62) we obtain

{�yy91 = 0 in Y f
(∇x90 + ∇y91

) · n = 0 on ∂Y f s

Then, making use of the separation of variables we obtain the closure problem (36). To derive
the macroscopic Nernst–Planck equation for the Na+, H+ and Cd2+ transport we define the
volume averaging operator over the periodic cell in the form

< χ >:= 1

|Y |
∫

Y f

χdy
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Recalling that C0
ib
are y-independent and defining V0

D := < v0 > the macroscopic Darcy’s
velocity. By averaging the generalized equation (59) using boundary condition (62) we have

∇x ·
(

C0
ibV0

D

)

+ ∇x · < J0
ib >= −

∫

∂�

J1
ib · nd� = 0

Replacing the constitutive laws for the fluxes (57) together with the closure relations (36) in
the above expressions we obtain

∇x ·
(

C0
ibV0

D

)

= ∇x ·
[

Deff
ib

(

∇xC
0
ib + ziC

0
ib∇xφ

0
)]

where the effective diffusivities are given by (34c)–(34d).
To derive Darcy’s Law we proceed in a similar fashion to Lima et al. (2010a), we decom-

pose velocity and pressure fluctuation into their hydraulic and electroosmotic components
v0 = v0

P + v0
E and p1 = p1P + p1E with each one satisfying the local cell problems

⎧

⎨

⎩

μ f �yyv0
P − ∇y p1P = ∇x p0

∇y · v0
P = 0 in Y f

v0
P = 0 on ∂Y f s

(63)

and
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

μ f �yyv0
E − ∇y p1E = 0

∇y · v0
E = 0 in Y f

v0
E · n = 0

v0
E · τ = ε̃0ε̃rζ

0

μ f

(

I + ∇yf
)∇xφ

0 · τ on ∂Y f s

(64)

The local system (63) for {v0
P, p

1
P} is nothing but the classical closure problem which gives

rise to the hydraulic conductivity (37) see Auriault (1991). By exploring linearity between
(63) and (37) we obtain

v0
P = −κP∇x p

0 (65)

Unlike (63) the cell problem for v0
E is ruled by the slip boundary condition. By invoking the

closure problem for the tortuosity function f one may observe that (64) admit solution of the
type

v0
E = −κ0

E∇xφ
0 with κ0

E = − ε̃0̃εrζ 0

μ f

(

I + ∇yf
)

(66)

By adding (65) and (66) yields the constitutive law for the total microscopic velocity. Then,
averaging we obtain the macroscopic Darcy’s law

V0
D = < v0 > = −Keff

P ∇x p
0 − Keff

E ∇xφ
0 (67)

with the effective conductivities defined by (34a)–(34b).
The macroscopic mass conservation can easily be obtained by averaging (58) using the

divergence theorem along with boundary condition (61) to obtain

∇x · V0
D = − < ∇y · v1 >= − 1

|Y |
∫

Y f
∇y · v1dy = − 1

|Y |
∫

∂Y f s
v1 · ndy = 0

which when combined with (67) furnishes

∇x · V0
D = ∇x · (Keff

E ∇xφ
0 + Keff

P ∇x p
0) = 0.
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