
Computational and Applied Mathematics (2021) 40:176
https://doi.org/10.1007/s40314-021-01562-y

DEFT-FUNNEL: an open-source global optimization solver
for constrained grey-box and black-box problems

Phillipe R. Sampaio1

Received: 19 August 2020 / Revised: 11 June 2021 / Accepted: 12 June 2021 / Published online: 28 June 2021
© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2021

Abstract
The fast-growing need for grey-box and black-box optimization methods for constrained
global optimization problems in fields such as medicine, chemistry, engineering and artifi-
cial intelligence, has led to the development of new efficient algorithms for finding the best
possible solution. In this work, we present DEFT-FUNNEL, an open-source global optimiza-
tion algorithm for general constrained grey-box and black-box problems that belongs to the
class of trust-region sequential quadratic optimization algorithms. Polynomial interpolation
models are used as surrogates for the black-box functions and a clustering-based multistart
strategy is applied for searching for the global minima. Numerical experiments show that
DEFT-FUNNEL compares favorably with state-of-the-art methods on two sets of benchmark
problems: one set containing problems where every function is a black box and another set
with problems where some of the functions and their derivatives are known to the solver.
The code as well as the test sets used for experiments are available at the Github repository
http://github.com/phrsampaio/deft-funnel.

Keywords Global optimization · Constrained nonlinear optimization · Black-box
optimization · Grey-box optimization · Derivative-free optimization · Simulation-based
optimization

Mathematics Subject Classification 90-04 · 90C56 · 90C26

1 Introduction

The proposed solver searches for a global minimum of the optimization problem
⎧
⎪⎪⎨

⎪⎪⎩

min
x

f (x)

s.t.: lc ≤ c(x) ≤ uc,
lh ≤ h(x) ≤ uh,
lx ≤ x ≤ ux ,

(1)

Communicated by Ernesto G. Birgin.

B Phillipe R. Sampaio
sampaio.phillipe@gmail.com

1 Veolia Research and Innovation, Maisons-Laffitte, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-021-01562-y&domain=pdf
http://github.com/phrsampaio/deft-funnel

176 Page 2 of 36 P. R. Sampaio

where f : R
n → � might be a black box, c : R

n → R
q are black-box constraint functions

and h : R
n → R

l are white-box constraint functions, i.e. their analytical expressions as well
as their derivatives are available. The vectors lc, lh , uc and uh are lower and upper bounds
on the constraints values c(x) and h(x), while lx and ux are bounds on the x variables, with
lc ∈ (R ∪ −∞)q , lh ∈ (R ∪ −∞)l , uc ∈ (R ∪ ∞)q , uh ∈ (R ∪ ∞)l , lx ∈ (R ∪ −∞)n and
ux ∈ (R ∪ ∞)n . We also address the case where there are no white-box constraint functions
h. Finally, we assume that the bound constraints are unrelaxable, i.e. feasibility must be
maintained throughout the iterations, while the other general constraints are relaxable. The
definition of relaxable constraint employed in this paper follows the one proposed by Digabel
and Wild (2015), i.e. a relaxable constraint is a constraint that does not need to be satisfied
in order to obtain meaningful outputs from the simulations in order to compute the objective
and the constraints.

When at least one of the functions in (1) has a closed form (i.e. either the objective
function is a white box or there is at least one white-box constraint function in the problem),
it is said to be a grey-box problem. If no information about the functions is given at all, which
means that the objective function is a black box and that there are no white-box constraints,
the problem is known as a black-box problem. Both grey-box and black-box optimization
belong to the field of derivative-free optimization (DFO) (Audet and Hare 2017; Conn et al.
2009), where the derivatives of the functions are not available. DFOproblems are encountered
in real-life applications in various fields such as engineering, medicine, science and artificial
intelligence. The black boxes are often the result of an expensive simulation or a proprietary
code, in which case automatic differentiation (Griewank 2003; Griewank and Walther 2008)
is not applicable.

Many optimizations methods have been developed for finding stationary points or local
minima of (1) when both the objective and the constraints functions are black boxes (e.g.,
Amaioua et al. 2018; Audet et al. 2015; Bueno et al. 2013; Echebest et al. 2017; Lewis and
Torczon 2002; Powell 1994; Sampaio and Toint 2015, 2016). However, a local minimum
is not enough sometimes and so one needs to search for a global minimum (Floudas et al.
1999; Floudas 2000). A reduced number of methods have been proposed to find a global
minimum of black-box problems with nonlinear constraints (see, for instance, Boukouvala
et al. 2017; Jones et al. 1998; Regis and Shoemaker 2005; Regis 2011, 2014; Regis and
Shoemaker 2007). Moreover, many global optimization methods for constrained black-box
problems proposed in the literature or used in industry are unavailable to the public and are
not open source. We refer the reader to the survey papers by Rios and Sahinidis (2013) and
by Larson et al. (2019) and to the textbooks by Conn et al. (2009) and by Audet and Hare
(2017) for a comprehensive review on DFO algorithms for different types of problems.

In the case of constrained grey-box problems, especially those found in industrial appli-
cations, it is a good idea to exploit the available information about the white boxes because
such problems are usually hard to be solved (i.e. highly nonlinear, multimodal and with
very expensive functions) and the available derivatives can be very helpful to drive the opti-
mization solver towards local and global minima. Therefore, one would expect the solver
to use any information given as input in order to attain the global minimum as fast as pos-
sible. Unfortunately, even less global optimization solvers exist for such problems today.
A common approach of optimization researchers, engineers and practioners is to consider
all the functions as black boxes and to use a black-box optimization algorithm to solve the
problem. Two of the few methods that exploit the available information are ARGONAUT
(Boukouvala et al. 2017) and a trust-region two-phase algorithm proposed by Bajaj et al.
(2018). In ARGONAUT, the black-box functions are replaced by surrogate models and a
global optimization algorithm is used to solve the problem to global optimality in order to

123

DEFT-FUNNEL: an open-source global optimization solver... Page 3 of 36 176

find a lower bound while a local optimization algorithm is applied with different starting
points to find the upper bounds. The surrogate models are updated only after the resolution
of the problem by using the function values of the global minimum and local minima found
by the solver within a clustering procedure that defines new sample points. After updating the
models, the problem is solved againwith the updatedmodels and this process is repeated until
convergence is declared. In the two-phase algorithm described by Bajaj et al. (2018), radial
basis functions (RBF) are used as surrogate models for the black-box functions. Moreover,
as in DEFT-FUNNEL, the self-correcting geometry approach proposed by (Scheinberg and
Toint 2010) is applied to the management of the interpolation set. The algorithm of Bajaj et
al. (2018) is composed of a feasibility phase, where the goal is to find a feasible point, and
an optimization phase, where the feasible point found in the first phase is used as a starting
point to find a global minimum.

The algorithm from Bajaj et al. (2018) is the one sharing more elements in common
with DEFT-FUNNEL. However, these two methods differ since DEFT-FUNNEL combines
amultistart strategywith a sequential quadratic optimization (SQO) algorithm in order to find
a global minimum while the algorithm from Bajaj et al. (2018) applies a global optimization
solver. Furthermore, DEFT-FUNNEL employs polynomial models rather than RBF models
since the former is well suited for the SQO algorithm used in its local search. Despite the
good performance of the algorithms proposed in Boukouvala et al. (2017) and Bajaj et al.
(2018), neither is freely available or open source.

Contributions. This paper proposes a new global optimization solver for general con-
strained grey-box and black-box problems written in Matlab (MATLAB 2015b) that exploits
any provided white-box functions given as inputs and that employs surrogate models built
from polynomial interpolation in a trust-region-based SQO algorithm. Differently from the
ARGONAUT approach, the surrogate models are updated during the optimization process
as soon as new information from the evaluation of the functions at the iterates becomes avail-
able. Furthermore, the proposed solver, named DEFT-FUNNEL, is open source and freely
available at the Github repository http://github.com/phrsampaio/deft-funnel. It is based on
the works by Sampaio and Toint (2015, 2016) and it extends their original DFO algorithm
to grey-box problems and to the search for a global minimum. As its previous versions, it
does not require feasible starting points. To our knowledge, DEFT-FUNNEL is the first open-
source global optimization solver for general constrained grey-box and black-box problems
that exploits the derivative information available from the white-box functions. It is also the
first one of the class of trust-funnel algorithms (Gould and Toint 2010) to be used in the
search for global minima in both derivative-based and derivative-free optimization.

This paper serves also as the first release of the DEFT-FUNNEL code. Notice also that
some modifications and additions have been made to the local search SQO algorithm with
respect to the one presented in Sampaio and Toint (2016). In particular, some changes were
done in the condition for the normal step calculation, in the criticality step and in the main-
tenance of the interpolation set, all of them being described in due course. Furthermore, we
have also added a second-order correction step.

The extension to global optimization is based on the multi-level single linkage (MLSL)
method (KanandTimmer1987a, b), awell-known stochasticmultistart strategy that combines
random sampling, a clustering-based approach for the selection of the starting points and local
searches in order to identify all local minima under specific conditions. In DEFT-FUNNEL,
it is used for selecting the starting points of the local searches done with the trust-funnel SQO
algorithm.

Organization. The outline of this paper is as follows. Section 2 introduces the MLSL
methodwhile in Sect. 3 theDEFT-FUNNEL solver is presented in detail. In Sect. 4, numerical

123

http://github.com/phrsampaio/deft-funnel

176 Page 4 of 36 P. R. Sampaio

results on a set of benchmark problems for global optimization are shown and the performance
of DEFT-FUNNEL is compared with those of other state-of-the-art algorithms in a black-box
setting. Moreover, numerical results on a set of grey-box problems are also analyzed. Finally,
some conclusions about the proposed solver are drawn in Sect. 5.

Notation.Unless otherwise specified, the norm ‖·‖ is the standard Euclidean norm. Given
any vector x ∈ R

n , we denote its i-th component by [x]i . We define [x]+ = max(0, x)where
the max operation is done componentwise. We let B(z;Δ) denote the closed Euclidian ball
centered at z, with radius Δ > 0. Given any set A, |A| denotes the cardinality of A. By
Pd
n , we mean the space of all polynomials of degree at most d in R

n . The Greek symbol π

is used for the mathematical constant, also referred to as Archimedes’constant, as well as
for defining the optimality measures of the normal and tangent subproblems, πv

k and π
f
k ,

respectively — both cases are explicitly stated for avoiding confusion. Finally, given any
subspace S, we denote its dimension by dim(S).

2 Multi-level single linkage

The MLSL method (Kan and Timmer 1987a, b) is a stochastic multistart strategy originally
designed for bound-constrained global optimization problems as below

{
min f (x)
s.t.: x ∈ Ω,

(2)

whereΩ ⊆ R
n is a convex, compact set containing globalminima in its interior and is defined

by lower and upper bounds. It was later extended to problems with general constraints by
Sendín et al. (2009). As in most of stochastic multistart methods, MLSL consists of a global
phase, where random points are sampled from a probabilistic distribution, and a local phase,
where selected points from the global phase are used as starting points for local searches.
MLSL aims at avoiding unnecessary and costly local searches that culminate in the same
local minimum. To achieve this goal, sample points are drawn from an uniform distribution
in the global phase and then a local search procedure is applied to each of them except if
there is another sample point within a critical distance with smaller objective function value
or if the current point is a previously detected local minimum. The method is fully described
in Algorithm 2.1.

Algorithm 2.1: MLSL

1: L∗ = ∅
2: for k = 1 to . . . do
3: Generate N random points uniformly distributed in Ω .
4: Rank the sample points by increasing value of f .
5: for i = 1 to γ kN do (where 0 < γ ≤ 1)
6: if xi /∈ L∗ and �x j such that ‖x j − xi‖ ≤ rk and f (x j) < f (xi) then
7: L∗ = L∗ ∪ LocalSearch(xi)
8: end if
9: end for

10: end for
11: return the best local minimum found in L∗

123

DEFT-FUNNEL: an open-source global optimization solver... Page 5 of 36 176

The ranking of the sample points at line 4 is optional and does not affect the convergence
properties of the algorithm. It is mainly useful when γ < 1, which means that preference is
given to the γ kN starting points having the lowest objective function values, as one might
believe that they are more likely to be closer to a local minimum that those points with higher
objective function values.

The critical distance rk is defined as

rk
def= π−1/2

(

Γ
(
1 + n

2

)
m(Ω)

σ log kN

kN

)1/n

, (3)

for some σ > 0 and where π here is the Archimedes’ constant, Γ is the gamma function
defined by Γ (x) = ∫ ∞

0 e−t t x−1 dt and m(Ω) is the Lebesgue measure of the set Ω . The
details of this formula are elaborated on Kan and Timmer (1987a, b) and are not part of the
scope of this paper. The method is centred on the idea of exploring the region of attraction
of all local minima, which is formally defined below.

Definition 1 Given a local search procedure P , we define a region of attraction R(x∗) in Ω

to be the set of all points in Ω starting from which P will arrive at x∗.
The ideal multistart method is the one that runs a local search only once at the region

of attraction of every local minimum. However, two types of errors might occur in practice
(Locatelli 1998):

– Error 1. The same local minimum x∗ has been found after applying local search to two
or more points belonging to the same region of attraction of x∗.

– Error 2. The region of attraction of a local minimum x∗ contains at least one sampled
point, but local search has never been applied to points in this region.

In Kan and Timmer (1987a, b), the authors demonstrate the following theoretical properties
of MLSL that are directly linked to the errors above:

– Property 1. [Theorem 8 in Kan and Timmer (1987a) and Theorem 1 in Kan and Timmer
(1987b)] If σ > 4 in (3), then, even if the sampling continues forever, the total number
of local searches ever started by MLSL is finite with probability 1.

– Property 2. [Theorem 12 in Kan and Timmer (1987a) and Theorem 2 inKan and Timmer
(1987b)] If rk tends to 0 with increasing k, then any local minimum x∗ will be found
within a finite number of iterations with probability 1.

Property 1 states that the number of possible occurrences of Error 1 is finite while Property
2 says that Error 2 never happens. Due to its strong theoretical results and good practical
performance, MLSL became one of the most reliable and popular multistart methods of late.

Finally, we note that MLSL has already been applied into global black-box optimization
problems with general constraints before (Armstrong and Favorite 2016; Sendín et al. 2009).
In particular, Armstrong and Favorite (2016) proposes the method MLSL-MADS, which
integrates MLSL with a mesh adaptive direct search (MADS) method (Audet and Dennis
2006) to find multiple local minima of an inverse transport problem involving black-box
functions.

3 The DEFT-FUNNEL solver

First, the function z : R
n → R

q+l is defined as z(x)
def= (c(x), h(x)), i.e. it includes all

the constraint functions of the original problem (1). Then, by defining f (x, s)
def= f (x) and

z(x, s)
def= z(x) − s, the problem (1) is rewritten as

123

176 Page 6 of 36 P. R. Sampaio

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
(x,s)

f (x, s)

s.t.: z(x, s) = 0,
ls ≤ s ≤ us,
lx ≤ x ≤ ux ,

(4)

where s ∈ R
q+l are slack variables and ls ∈ (R ∪ −∞)q+l and us ∈ (R ∪ ∞)q+l are the

lower and upper bounds of the modified problem with ls = [
lc lh

]T
and us = [

uc uh
]T

. We
highlight that the rewriting of the original problem (1) as (4) is done within the solver and
that the user does not need to interfere.

DEFT-FUNNEL is composed of a global search and a local search that are combined to
solve the problem (4). In the next two sections, we elaborate on each of these search steps.

3.1 Global search

Asmentioned previously, the global search in DEFT-FUNNEL relies on theMLSLmultistart
strategy. However, different from the Algorithm 2.1, the global search in DEFT-FUNNEL
makes use of a merit function Φ rather than the objective function f in order to decide
which starting points are selected for the local search. Moreover, the sampling of N random
points is done within the set {x ∈ R

n | lx ≤ x ≤ ux }. If there exists an index i such that lxi
is not defined by the user, the negative value −10 is used by default during the sampling.
Analogously, if there exists an index i such that uxi is not defined by the user, the positive
value 10 is used by default.

The global search is implemented in the function deft_funnel_multistart, which
is called by typing the following line in the Matlab command window:

[best_sol, best_fval, best_indicators, total_eval, nb_local_searches, fL
] = deft_funnel_multistart(@f, @c, @h, @dev_f, @dev_h, n, nb_cons_c,
nb_cons_h)

The inputs and outputs of deft_funnel_multistart are detailed in Table 1.
The merit function Φ employed in DEFT-FUNNEL is the well-known 	1 penalty functon

which is defined as follows:

Φ(x)
def= f (x) + λ

m∑

i=1

([
zi (x) − [

us
]

i

]+ + [[
ls

]

i − zi (x)
]+)

, (5)

wherem = q + l is the total number of constraints excluding bound constraints on x , λ is the
penalty parameter and zi (x) = (ci (x), hi (x)), i = 1, . . . ,m. One of the advantages of this
penalty function over others is that it is exact, that is, for sufficiently large values of λ, the
local minimum of Φ subject only to the bound constraints on the x variables is also the local
minimum of the original constrained problem (1). Note that, althoughΦ is nondifferentiable,
it is only used in the global search for selecting the starting points for the local searches.

The LocalSearch algorithm at line 7 is started by calling the function deft_funnel
whose inputs and outputs are given in the next section.

3.2 Local search

Before describing in detail each component of the local search, we give a global view of its
full algorithm in what follows. The algorithm is based on the one described in Sampaio and
Toint (2016). It is a trust-region SQO method that makes use of a funnel upper bound vmax

k

123

DEFT-FUNNEL: an open-source global optimization solver... Page 7 of 36 176

Table 1 Inputs and outputs of the function deft_funnel_multistart

Name Description

Mandatory Inputs f Function handle of the objective function

c Function handle of the black-box constraints if any or an
empty array

h Function handle of the white-box constraints if any or an
empty array

dev_f Function handle of the derivatives of f if white box or an
empty array

dev_h Function handle of the derivatives of h if any or an empty
array

n Number of decision variables

nb_cons_c Number of black-box constraints (bound constraints not
included)

nb_cons_h Number of white-box constraints (bound constraints not
included)

Optional Inputs lsbounds Vector of lower bounds for the constraints

usbounds Vector of upper bounds for the constraints

lxbounds Vector of lower bounds for the x variables

uxbounds Vector of upper bounds for the x variables

maxeval Max. number of evaluations (default: 5000*n)

maxeval_ls Max. number of evaluations per local search (default:
maxeval*0.7)

whichmodel Approach to build the surrogate models

f_global_optimum Known objective function value of the global optimum

Outputs best_sol Best feasible solution found

best_fval Objective function value of “best_sol”

best_indicators Indicators of “best_sol”

total_eval Number of evaluations used

nb_local_searches Number of local searches done

fL Objective function values of all local minima found

on the infeasibility of the iterates in order to ensure convergence. At each iteration k, the
iterate is defined by the point (xk, sk), where xk ∈ Yk , with Yk being the interpolation set at
iteration k. Every iterate satisfies the following bound constraints:

ls ≤ sk ≤ us, (6)

lx ≤ xk ≤ ux . (7)

At each iteration, the local search algorithm checks if there are (nearly) active bounds
at xk . If there is at least one active bound and if some conditions are satisfied, the local
search algorithm calls itself recursively with a new subspace built from the active bound(s)
as well as a new interpolation set that belongs to the new subspace. This step is done by the
SubspaceMinimization subroutine, which is detailed in Sect. 3.2.2.

Next, the subroutine CriticalityStep checks if either the trust-region size is too small or the
last search direction is too small. If neither holds, it checks if both feasibility and optimality
have been achieved in the current subspace. If any of these criticality conditions is satisfied,

123

176 Page 8 of 36 P. R. Sampaio

Fig. 1 Illustration of the composite step dk = nk + tk . The normal step nk attempts to improve feasibility by
reducing the linearized constraint violation at (xk , sk), whereas the tangent step aims at minimizing the objec-
tive function without deteriorating the gains in feasibility obtained through the normal step. Here, A(xk , sk)
denotes the Jacobian of z(x, s) at (xk , sk)

the local search returns the current iterate (xk, sk). The subroutine CriticalityStep is discussed
in depth in Sect. 3.2.7.

If criticality has not been attained at (xk, sk), a new step dk
def= (dxk , dsk)

T is computed.
Each full step of the trust-funnel algorithm is decomposed as

dk =
(
dxk
dsk

)

=
(
nxk
nsk

)

+
(
t xk
t sk

)

= nk + tk, (8)

where the normal step component nk aims to improve feasibility and the tangent step com-
ponent tk reduces the objective function model without worsening the constraint violation up
to first order. This is done by requiring the tangent step to lie in the null space of the approxi-
mated Jacobian of the constraints and by requiring the predicted improvement in the objective
function obtained in the tangent step to not be negligible compared to the predicted change
in f resulting from the normal step. The full composite step dk is illustrated in Fig. 1. As it
is explained in the next subsections, the computation of the composite step in the proposed
algorithm does not involve the function z itself but rather its surrogate model.

The step nk is computed by the subroutine NormalStep, which considers a trust-region
bound Δz

k whose update rule is based on the improvement on feasibility obtained at iteration
k. The computation of the normal step is fully described in Sect. 3.2.3. The step tk is computed
by the subroutine TangentStep, which considers the trust-region bound Δk = min[Δ f

k ,Δz
k],

whereΔ
f
k is a trust-region bound that is updated according to the improvement on optimality

obtained at iteration k. The calculation of the tangent step is described in detail in Sect. 3.2.4.
Depending on the contributions of the current iteration in terms of optimality and feasi-

bility, the iteration is classified into three types: μ-iteration, f -iteration and z-iteration. If
dk = 0, no contribution has been made to optimality or feasibility and thus iteration k is

123

DEFT-FUNNEL: an open-source global optimization solver... Page 9 of 36 176

said to be a μ-iteration. If iteration k has mainly contributed to optimality, it is said to be a
f -iteration. Otherwise, it is defined as a z-iteration.
After having computed a trial point xk + dk , the algorithm proceeds by checking the iter-

ation type and whether the iteration was successful in a sense to be defined in Sects. 3.2.6
and3.2.6. The iterate and the trust regions are thenupdated correspondingly,while the interpo-
lation set is updated by the subroutine UpdateInterpolationSet according to a self-correcting
geometry scheme described in Sect. 3.3. The subroutine f − iteration is responsible for

updating the trust regions Δ
f
k and Δz

k if iteration k is a f -iteration, while the subroutine
z − iteration does the same for Δz

k if iteration k is a z-iteration. The details of both subrou-
tines are given in Sects. 3.2.6 and 3.3. Finally, if Yk has been modified, the surrogate models
are updated to satisfy the interpolation conditions for the new set Yk+1, implying that new
function evaluations are carried out for the additional point obtained at iteration k.

The complete local search algorithm is presented below, while its subroutines are fully
explained in the next sections.

Algorithm 3.1: LocalSearch

0: Initialization. Choose an initial vector of Lagrange multipliers μ−1, initial trust-region
radiiΔ f

0 > 0 andΔz
0 > 0, a fixed accuracy threshold ε > 0 for declaring convergence on

subspaces with dimension smaller than n, and an initial accuracy threshold ε0 > 0 used
for checking the criticality conditions on the full space. Define Δ0 = min[Δ f

0 ,Δz
0] ≤

Δmax. Initialize Y0, with x0 ∈ Y0 ⊂ B(x0;Δ0) and pmax ≥ |Y0| ≥ n + 1, where
pmax = (n + 1)(n + 2)/2 if underdetermined quadratic models are considered, and
pmax = (n + 1)(n + 2), in case where regression models are chosen. Compute the
associated models m f

0 and mc
0 around x0 and Lagrange polynomials {l0, j }pj=0. Set k = 0

(updated at Step 8) and i = 0 (updated within CriticalityStep).
1: SubspaceMinimization.
2: CriticalityStep.
3: NormalStep.
4: TangentStep.
5: Conclude a μ-iteration. If nk = tk = 0, then

5.1: set (xk+1, sk+1) = (xk, sk), Δ
f
k+1 = Δ

f
k and Δz

k+1 = Δz
k ;

5.2: set Δk+1 = min[Δ f
k+1,Δ

z
k+1], vmax

k+1 = vmax
k and Yk+1 = Yk .

6: Conclude an f -iteration. If tk �= 0 and the improvement in the objective function is
significant and the infeasibility at the trial point is lower than vmax

k , then

6.1: UpdateInterpolationSet;
6.2: f -iteration;

6.3: Set Δk+1 = min[Δ f
k+1,Δ

z
k+1] and vmax

k+1 = vmax
k .

7: Conclude a z-iteration. If the iteration is neither a μ-iteration nor a f -iteration, then

7.1: UpdateInterpolationSet;
7.2: z-iteration;

7.3: Set Δk+1 = min[Δ f
k+1,Δ

z
k+1] and update vmax

k if the improvement in feasibility
is significant.

123

176 Page 10 of 36 P. R. Sampaio

8: Update the models and the Lagrange polynomials. If Yk+1 �= Yk , compute the inter-
polation models m f

k+1 and mc
k+1 around xk+1 using Yk+1 and the associated Lagrange

polynomials {lk+1, j }pj=0. Increment k by one and go to Step 1.

The index k indicates the iteration number, which is incremented in the end of iteration, at
Step 8. However, whenever a recursive call takes place within SubspaceMinimization at Step
1, the iteration index k continues to be incremented within the new subspace. This means
that the current value of k is passed as input to LocalSearch and that its final value is also
returned by LocalSearch.

As it is explained in Sect. 3.2.7, the index i is incremented in CriticalityStep within an
inner loop that aims at ensuring that the derivative information of the models is not too
different from that of the original functions. Since i and k are incremented differently, they
do not equal to each other.

The local search is started inside the multistart strategy loop in the global search, but it
can also be called directly by the user in order to use DEFT-FUNNEL without multistart.
This is done by typing the following line at the Matlab command window:

[best_sol, best_fval, best_indicators, total_eval, nb_local_searches, fL
] = deft_funnel_multistart(@f, @c, @h, @dev_f, @dev_h, n, nb_cons_c,
nb_cons_h)

The inputs and outputs of the function deft_funnel are detailed below in Table 2.
Many other additional parameters can be set directly in the function deft_funnel_set_
parameters. Those are related to the trust-region mechanism, to the interpolation set
maintenance and to criticality step thresholds.

Once the initial interpolation set has been built using one of the methods described
in the next subsection, the algorithm calls the function deft_funnel_main. In fact,
deft_funnel serves only as a wrapper for the main function of the local search,
deft_funnel_main, doing all the data preprocessing and paramaters setting needed
in the initialization process. All the main steps such as the subspace minimization step,
the criticality step and the computation of the new directions are part of the scope of
deft_funnel_main.

3.2.1 Building the surrogate models

The local search algorithm starts by building an initial interpolation set either from a
simplex or by drawing samples from an uniform distribution. The construction of the inter-
polation set is done in the function deft_funnel_build_initial_sample_set,
which is called only once during a local search within deft_funnel. The choice
between random sampling and simplex is done in deft_funnelwhen calling the function
deft_funnel_set_parameters, which defines themajority of parameters of the local
search. If random sampling is chosen, it checks if the resulting interpolation set is well poised
and, if not, it is updated using the Algorithm 6.3 described in Chapter 6 in Conn et al. (2009),
which is implemented in deft_funnel_repair_Y.

For the sake of simplicity, we assume henceforth that the objective function is also a
black box. Let Y0 = {y0, y1, . . . , y p} be a poised set of sample points with an initial
point x0 ∈ Y0, where p denotes the cardinality of Yk . As described in Sect. 3.3, p can

123

DEFT-FUNNEL: an open-source global optimization solver... Page 11 of 36 176

Table 2 Inputs and outputs of the function deft_funnel

Name Description

Mandatory inputs f Function handle of the objective function

c Function handle of the black-box constraints if any or an empty
array

h Function handle of the white-box constraints if any or an empty
array

dev_f Function handle of the derivatives of f if white box or an empty
array

dev_h Function handle of the derivatives of h if any or an empty array

x0 Starting point (no need to be feasible)

nb_cons_c Number of black-box constraints (bound constraints not
included)

nb_cons_h Number of white-box constraints (bound constraints not
included)

Optional inputs lsbounds Vector of lower bounds for the constraints

usbounds Vector of upper bounds for the constraints

lxbounds Vector of lower bounds for the x variables

uxbounds Vector of upper bounds for the x variables

maxeval Max. number of evaluations (default: 500*n)

type_f String ’BB’ if f is a black box (default) or ’WB’ otherwise

whichmodel Approach to build the surrogate models

Outputs x The best approximation found to a local minimum

fx The value of the objective function at x

mu Local estimates for the Lagrange multipliers

indicators Feasibility and optimality indicators

evaluations Number of calls to the objective function and constraints

iterate Info about the best point found as well as the coordinates of all
past iterates

exit_algo Output signal (0: terminated with success; -1: terminated with
errors)

increase over the iterations as the interpolation set is augmented with new trial points.
The next step of our algorithm is to replace the objective function f (x) and the black-
box constraint functions c(x) = (c1(x), c2(x), . . . , cq(x)) by surrogate models m f (x) and
mc(x) = (mc1(x),mc2(x), . . . ,mcq (x)), respectively, built from the solution of the interpo-
lation system

M(φ,Y)αφ = Υ (Y), (9)

where

M(φ,Y) =

⎛

⎜
⎜
⎜
⎝

φ0(y0) φ1(y0) · · · φb(y0)
φ0(y1) φ1(y1) · · · φb(y1)

...
...

. . .
...

φ0(y p) φ1(y p) · · · φb(y p)

⎞

⎟
⎟
⎟
⎠

, Υ (Y) =

⎛

⎜
⎜
⎜
⎝

Υ (y0)
Υ (y1)

...

Υ (y p)

⎞

⎟
⎟
⎟
⎠

,

123

176 Page 12 of 36 P. R. Sampaio

whereφ = {φ0, . . . , φb} is the basis ofmonomials inPd
n andΥ (x) is replaced by the objective

function f (x), if building m f (x), or some black-box constraint function c j (x), if building
mcj , for j = 1, . . . , q .

If M(φ,Y) is square, (9) becomes an interpolation problem. If, in addition, M(φ,Y) is
nonsingular for some basis φ ∈ Pd

n , the set Y is said to be poised for interpolation in R
n .

Poisedness is important since, given a function f : R
n → R and a poised setY , it follows that

the interpolating polynomial m(x) exists and is unique (see, Conn et al. 2009, Lemma 3.2).
In the underdetermined case, p < b, the set Y is said to be poised if M(φ,Y) has full row
rank. As for the regression case, the set Y is said to be poised for polynomial least-squares
regression in R

n if the corresponding matrix M(φ,Y) has full column rank for some basis
φ ∈ Pd

n .
We consider underdetermined quadratic interpolation models that are fully linear and that

are enhanced with curvature information along the optimization process. Since the linear
system (9) is potentially underdetermined, the resulting interpolating polynomials may not
be unique and so we provide to the user four approaches to construct the models m f (x) and
mcj (x) that can be chosen by passing a number from 1 to 4 to the input ‘whichmodel’: 1 -
subbasis selection approach; 2 - minimum 	2-norm models; 3 - minimum Frobenius norm
models; and 4 - regression (recommended for noisy functions).

The subbasis selection consists in considering only p+1 columns of the matrix M(φ,Y)

in the linear system (9) in order to have a square matrix, which is equivalent to choosing
a subbasis φ̂ of φ with only p + 1 elements. This is done in DEFT-FUNNEL by selecting
the first p + 1 columns. In the second approach to build the models, the minimum 	2-norm
solution of the system (9) is computed. In the third approach, we minimize the Frobenius
norm of the Hessian of the surrogate model m(x) since it plays an important role on the error
bounds for quadratic models (see Conn et al. 2009, Theorem 5.4). This is done by solving
the following optimization problem in αφ = (αL , αQ), where αL and φL are related to the
linear components of the natural basis φ, while αQ and φQ , to the quadratic ones:

min 1
2‖αQ‖22

s.t.: M(φL ,Y)αL + M(φQ,Y)αQ = Υ (Y). (10)

Finally, regression models are built by obtaining the least-squares solution of the system (9).
Further details about each approach can be found in Conn et al. (2009). In DEFT-FUNNEL,
minimum 	2-norm models are the default option since they obtained better performance in
past numerical experiments than the others (Sampaio and Toint 2015, 2016).

If |Y0| = n + 1, where the initial interpolation points are affinely independent, a linear
model rather than an underdetermined quadratic model is built for each function. The reason
is that, despite both having error bounds that are linear in Δ for the first derivatives, the error
bound for the latter includes also the norm of the model Hessian, as stated in Lemma 2.2 in
Zhang et al. (2010), which makes it worse than the former.

Whenever n+1 < |Yk | ≤ (n+1)(n+2)/2 = pmax, the algorithm builds underdetermined
quadratic models based on the choice of the user between the approaches described above.
If regression models are considered instead, we set pmax = (n + 1)(n + 2), which means
that the sample set is allowed to have twice the number of sample points required for fully
quadratic interpolation models. Notice that having a number of sample points larger than
the required for quadratic interpolation can also worsen the local quality of the interpolation
models as the sample set could contain points that are too far from the iterate, which is not
ideal for models built for local approximation.

123

DEFT-FUNNEL: an open-source global optimization solver... Page 13 of 36 176

It is also possible to choose the initial degree of the models between fully linear, quadratic
with a diagonal Hessian or fully quadratic. This is done within deft_funnel by setting
the input argument cur_degree in the call to deft_funnel_set_parameters to
one of the following options: model_size.plin, model_size.pdiag or model_
size.pquad.

The interpolation system (9) is solved using a QR factorization of the matrix M(φ,Y)

within the function deft_funnel_computeP, which is called by deft_funnel_
build_models.

In order to evaluate the error of the surrogate models and their derivatives with respect to
the original functions f and c, we make use of the measure of well poisedness of Y given
below. Notice, however, that this definition is generalized for the interpolation, minimum-
norm and regression cases and that the construction of the Lagrange polynomials differs for
each case.

Definition 2 Let Y = {y0, y1, . . . , y p} be a poised set and Pd
n be a space of polynomials of

degree less than or equal to d on R
n . Let Λ > 0 and {	0(x), 	1(x), . . . , 	p(x)} be the set of

Lagrange polynomials associated with Y . Then, the set Y is said to be Λ-poised in B ∈ R
n

for Pd
n if and only if

max
0≤i≤p

max
x∈B |	i (x)| ≤ Λ. (11)

As it is shown in Conn et al. (2009), the error bound between at most fully quadratic
models and the original functions as well as the error bound between their gradients depend
linearly on the constantΛ; the smaller it is, the better the interpolationmodels approximate the
original functions.Wealso note that the error bounds for undetermined quadratic interpolation
models are linear in the diameter of the smallest ball containing Y for the first derivatives
and quadratic for the function values.

The coefficients of each Lagrange polynomial are given by the solution of linear system

M(φ, Ŷ)λ j = e j+1, j = 0, . . . , p, (12)

where e j+1 is the (j + 1)-th column of the identity matrix of order q + 1 and Ŷ is a shifted
and scaled version of Y that is contained in a ball of radius one centered at the origin given
by

Ŷ = {0, ŷ1, . . . , ŷ p} = {0, (y1 − y0)/Δ, . . . , (y p − y0)/Δ} ⊂ B(0; 1), (13)

where

Δ = Δ(Y) = max
1≤i≤p

‖yi − y0‖. (14)

By scaling Y , the condition number of M(φ, Ŷ), where φ is the basis of monomials, can be
used for measuring the well poisedness of the set Y (see Conn et al. 2009, Chapter 3, page
48). Since the Λ-poisedness depends on the region B in which poisedness is considered, we
also shift the scaled sample set.

When p < b, the set of Lagrange polynomials associatedwithY inDefinition 2 is obtained
by the minimum 	2-norm solution of (12). These Lagrange polynomials are an extension of
the standard Lagrange polynomials of the interpolation case. On the other hand, when p > b,
the set of regression Lagrange polynomials for Y is given by the least-squares solution of
(12), or equivalently,

min
λ j

‖M(φ, Ŷ)λ j − e j+1‖2, j = 0, . . . , p. (15)

123

176 Page 14 of 36 P. R. Sampaio

Fig. 2 Subspaceminimization procedure. The algorithmcalls itself recursively in the order to solve the problem
in a new subspace. If convergence is attained, it goes back to check if the solution found is also optimal in the
full space

Finally, since the constraint functions c(x) are replaced by surrogate models mc(x) in the

algorithm, we define the models mz(x)
def= (mc(x), h(x)) and mz(x, s)

def= mz(x) − s, which
are those used for computing new directions.

3.2.2 Subspace minimization

In this subsection, we explain how the subspace minimization is employed in our algorithm.
We define the subspace Sk at iteration k as

Sk
def= {x ∈ R

n | [x]i = [
lx

]

i for i ∈ Lk and [x]i = [
ux

]

i for i ∈ Uk},

where Lk
def= {i | [xk]i − [

lx
]

i ≤ εb} and Uk
def= {i | [

ux
]

i − [xk]i ≤ εb} define the
index sets of (nearly) active variables at their bounds, for some small constant εb > 0.
If Lk �= ∅ or Uk �= ∅, a new well-poised interpolation set Zk is built by the function
deft_funnel_choose_lin in the following way. First, it builds Zk by selecting all
points in Xk ∩ Sk that are inside the current trust region B = B(xk;Δk), where Xk is the
set of all points obtained up to iteration k. Then, in order to complete the set with a total
number of nS +1 interpolation points to build a linear model in Sk , where nS = dim(Sk) =
n − |Lk ∪ Uk |, it proceeds by generating random points within B ∩ Sk and including them
in Zk . In order to make Zk a Λ-poised set for a given Λ > 1, it applies the Algorithm 6.2
in Conn et al. (2009) for improving well poisedness via Lagrange polynomials. In practice,
each new interpolation point y j whose Lagrange polynomial 	 j (x) satisfies the condition
maxx∈B∩Sk |	 j (x)| > Λ is optimally replaced by a point that maximizes the corresponding
Lagrange polynomial in B ∩ Sk . After a new Λ-poised interpolation set Zk has been built, a
recursive call is made in order to solve the problem in the new subspace Sk with the new set
Zk .

If the algorithm converges in a subspace Sk with an optimal solution (x̃, s̃), it checks if
the latter is also optimal for the full-space problem, in which case the algorithm stops. If
not, the algorithm continues by attempting to compute a new direction in the full space. This
procedure is illustrated in Fig. 2.

123

DEFT-FUNNEL: an open-source global optimization solver... Page 15 of 36 176

Fig. 3 Illustration of a scenario where the interpolation set becomes degenerated as the optimal solution is
approached. This example considers a two-dimensional problem with the bound constraint [x]2 ≥ 0, which
is active at the solution x∗ and at the iterates close to it

The dimensionality reduction of the problem mitigates the chances of degeneration of the
interpolation set when the sample points become too close to each other and often affinely
dependent. Figure 3 gives an example of this scenario as the optimal solution is approached.

In order to check the criticality in the full-space problem, a full-space interpolation set
of degree n + 1 is built in an ε-neighborhood around the point x∗

S , which is obtained by
assembling the subspace solution x̃ and the |Lk ∪ Uk | fixed components [xk]i , where i ∈
Lk ∪ Uk . The models m f

k and mc
k are then updated and the criticality step is entered.

The complete subspace minimization step is described in Algorithm 3.2 and it is
implemented in the function deft_funnel_subspace_min, which is called inside
deft_funnel_main.

Algorithm 3.2: SubspaceMinimization(Ŝ, xk , sk , Δ f
k , Δ

z
k , v

max
k)

1: Check for (nearly) active bounds at xk and define Sk . If there is no (nearly) active bound
or if S has already been explored, go to Step 6. If all bounds are active, go to Step 5.

2: Build a new interpolation set Zk in Sk .
3: Call recursively LocalSearch(Sk , Zk , xk , sk , Δ

f
k , Δ

z
k , v

max
k) and mark Sk as explored.

4: Let (x∗
S , s∗

S) be the solution of the subspace problem after adding the fixed components
and let k be the current iteration number returned by the local search (which has been
updated during the recursive call in Step 3).

5: If dim(Ŝ) < n, return (x∗
S , s∗

S). Otherwise, set (xk, sk) = (x∗
S , s∗

S), construct new set

Yk around xk , build m f
k and mc

k and recompute π
f
k−1 (optimality measure).

6: If Sk has already been explored, set (xk+1, sk+1) = (xk, sk), reduce the trust regions radii
Δ

f
k+1 = γΔ

f
k and Δz

k+1 = γΔz
k , set Δk+1 = min[Δ f

k+1,Δ
z
k+1] and build a new poised

set Yk+1 in B(xk+1;Δk+1).

As a final commentary on this section, notice that whenever a recursive call takes place
in Step 3 of Algorithm 3.2, the iteration index k continues to be incremented within the new
subspace, as already mentioned in Sect. 3.2. For this reason, the current value of k is retrieved
in Step 4, after LocalSearch has returned a solution. In other words, if the iteration number

123

176 Page 16 of 36 P. R. Sampaio

equals k = i ter for a certain i ter before Step 3, it does not necessarily equals k = i ter + 1
after Step 3.

3.2.3 The normal step

The normal step aims at reducing the constraint violation at (x, s) as defined by

v(x, s)
def= 1

2‖z(x, s)‖2. (16)

To ensure that the step nk is normal to the approximately linearized constraint mz(xk, sk) +
J (xk, sk)n = 0, where J (x, s)

def= (J (x) − Im) is the Jacobian of mz(x, s) with respect to
(x, s), the matrix Im is the m × m identity matrix and J (x) is the Jacobian of mz(x) with
respect to x , we require that

‖nk‖∞ ≤ κn‖mz(xk, sk)‖, (17)

for some κn ≥ 1.
The computation of nk is done by solving the constrained linear least-squares subproblem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
n=(nx ,ns)

1
2‖mz(xk, sk) + J (xk, sk)n‖2

s.t.: ls ≤ sk + ns ≤ us,
lx ≤ xk + nx ≤ ux ,

xk + nx ∈ Sk,
n ∈ Nk,

(18)

where

Nk
def= {n ∈ R

n+m | ‖n‖∞ ≤ min
[
Δz

k, κn ‖mz(xk, sk)‖
] }, (19)

for some trust-region radiusΔz
k > 0. Finally, a funnel bound vmax

k is imposed on the constraint

violation vk
def= v(xk, sk) for the acceptance of new iterates to ensure the convergence towards

feasibility.
We notice that, although a linear approximation of the constraints is used for calculating

the normal step, the second-order information of the quadratic interpolation model mz(x, s)
is still used in the SQO model employed in the tangent step problem as is shown next.

The subproblem (18) is solved within the function deft_funnel_normal_step,
which makes use of an original active-set algorithm where the unconstrained problem is
solved at each iteration in the subspace defined by the currently active bounds, themselves
being determined by a projected Cauchy step. Each subspace solution is then computed
using a SVD decomposition of the reduced matrix. This algorithm is implemented in the
function deft_funnel_blls and is intended for small-scale bound-constrained linear
least-squares problems.

3.2.4 The tangent step

The tangent step is a direction that improves optimality and it is computed by using a SQO
model for the problem (4) after the normal step calculation. The quadratic model for the
objective function is defined as

ψk((xk, sk) + d)
def= m f (xk, sk) + 〈gk, d〉 + 1

2 〈d, Bkd〉, (20)

123

DEFT-FUNNEL: an open-source global optimization solver... Page 17 of 36 176

where m f (xk, sk)
def= m f (xk), gk

def= ∇(x,s)m f (xk, sk), and Bk is the approximate Hessian
of the Lagrangian function

L(x, s, μ, ξ s, τ s, ξ x , τ x) = m f (x, s) + 〈μ,mz(x, s))〉 + 〈τ s, s − us〉 + 〈ξ s, ls − s〉
+ 〈τ x , x − ux 〉 + 〈ξ x , lx − x〉

with respect to (x, s), given by

Bk =
(
Hk + ∑m

i=1[μ̂k]i Zik 0
0 0

)

, (21)

where ξ s and τ s are the Lagrange multipliers associated to the lower and upper bounds,
respectively, on the slack variables s, and ξ x and τ x are the Lagrange multipliers associated
to the lower and upper bounds on the x variables. In (21), Hk = ∇2

xxm
f (xk, sk), Zik =

∇2
xxm

z
ik(xk, sk) and the vector μ̂k may be viewed as a local approximation of the Lagrange

multipliers with respect to the equality constraints mz(x, s) = 0.
By applying (8) into (20), we obtain

ψk((xk, sk) + nk + t) = ψk((xk, sk) + nk) + 〈gNk , t〉 + 1
2 〈t, Bkt〉, (22)

where

gNk
def= gk + Bk nk . (23)

Since (22) is a local approximation for the function f ((xk, sk) + nk + t), a trust region with
radius Δ

f
k is used for the complete step d = nk + t :

Tk
def= {d ∈ R

n+m | ‖d‖∞ ≤ Δ
f
k }. (24)

Moreover, given that the normal step was also calculated using local models, it makes sense
to remain in the intersection of both trust regions, which implies that

dk ∈ Rk
def= Nk ∩ Tk

def= {d ∈ R
n+m | ‖d‖∞ ≤ Δk}, (25)

where Δk = min[Δz
k,Δ

f
k].

In order to make sure that there is still enough space left for the tangent step within Rk ,
we first check if the following constraint on the normal step is satisfied:

‖nk‖∞ ≤ κRΔk, (26)

for some κR ∈ (0, 1). If (26) holds, the tangent step is calculated by solving the following
subproblem

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min
t=(t x ,t s)

〈gNk , t〉 + 1
2 〈t, Bkt〉

s.t.: J (xk, sk)t = 0,
ls ≤ sk + nsk + t s ≤ us,
lx ≤ xk + nxk + t x ≤ ux ,

xk + nxk + t x ∈ Sk .
nk + t ∈ Rk,

(27)

where we require that the new iterate xk + dxk belongs to subspace Sk and that it satisfies the
bound constraints (6) and (7). In theMatlab code, the tangent step is calculated by the function
deft_funnel_tangent_step, which in turn calls either the Matlab solver linprog
or our implementation of the nonmonotone spectral projected gradient method (Birgin et al.

123

176 Page 18 of 36 P. R. Sampaio

2000) in deft_funnel_spg to solve the subproblem (27). The choice between both
solvers is based on whether ‖Bk‖ ≤ ε, for a small ε > 0, in which case we assume that
the problem is linear and therefore linprog is used. Finally, as in the original trust-funnel
method of Gould and Toint (2010), inexact tangent steps are allowed.

The f -criticality measure is defined as

π
f
k

def= −〈gNk , rk〉, (28)

where rk is the projected Cauchy direction obtained by solving the linear optimization prob-
lem

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min
r=(r x ,rs)

〈gNk , r〉
s.t.: J (xk, sk)r = 0,

ls ≤ sk + nsk + rs ≤ us,
lx ≤ xk + nxk + r x ≤ ux ,

xk + nxk + r x ∈ Sk .
‖r‖∞ ≤ 1.

(29)

By definition,π f
k measures howmuch decrease could be obtained locally along the projection

of the negative of the approximate gradient gNk onto the nullspace of J (xk, sk) intersected
with the region delimited by the bound constraints on xk + nxk + rs and sk + nsk + r x in
(29). This measure is computed in deft_funnel_compute_optimality, which uses
lingprog to solve the subproblem (29).

A new local estimate of the Lagrange multipliers (μk, ξ
s
k , τ

s
k , ξ xk , τ x

k) is computed by
solving the following problem:

⎧
⎨

⎩

min
(μ,ξ̂ s ,τ̂ s ,ξ̂ x ,τ̂ x)

1
2‖Mk(μ, ξ̂ s, τ̂ s, ξ̂ x , τ̂ x)‖2

s.t.: ξ̂ s, τ̂ s, ξ̂ x , τ̂ x ≥ 0,
(30)

where

Mk(μ, ξ̂ s, τ̂ s, ξ̂ x , τ̂ x)
def=

(
gNk
0

)

+
(
J (xk)T

−Im

)

μ +
(

0
I sτ

)

τ̂ s +
(

0
−I sξ

)

ξ̂ s

+
(
I xτ
0

)

τ̂ x +
(−I xξ

0

)

ξ̂ x ,

the matrices I sξ and I sτ are obtained from Im by removing the columns whose indices are not
associated to any active (lower and upper, respectively) bound at sk + nsk , the matrices I xξ
and I xτ are obtained from the n × n identity matrix by removing the columns whose indices
are not associated to any active (lower and upper, respectively) bound at xk + nxk , and the
Lagrange multipliers (ξ̂ s, τ̂ s , ξ̂ x , τ̂ x) are those in (ξ s, τ s, ξ x , τ x) associated to active bounds
at sk + nsk and xk + nxk . All the other Lagrange multipliers are set to zero.

The subproblem (30) is also solved using the active-set algorithm implemented in the
function deft_funnel_blls.

3.2.5 Which steps to compute and retain

The algorithm computes normal and tangent steps depending on the measures of feasibility
and optimality at each iteration. Differently from Sampaio and Toint (2015, 2016), where

123

DEFT-FUNNEL: an open-source global optimization solver... Page 19 of 36 176

the computation of the normal steps depends on the measure of optimality, here the normal
step is computed whenever the following condition holds

‖z(xk, sk)‖ > ε, (31)

for some small ε > 0 (i.e. preference is always given to feasibility). This choice is based
on the fact that, in many real-life problems with expensive functions and a small budget,
one seeks to find a feasible solution as fast as possible and that a solution having a smaller
objective function value than the current strategy is already enough. If (31) fails, we set
nk = 0.

We define a v-criticality measure that indicates how much decrease could be obtained
locally along the projection of the negative gradient of the Gauss-Newton model of mz at
(xk, sk) onto the region delimited by the bounds as

πv
k

def= −〈J (xk, sk)
T z(xk, sk), bk〉,

where the projected Cauchy step bk is given by the solution of
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
b=(bx ,bs)

〈J (xk, sk)T z(xk, sk), b〉
s.t.: ls ≤ sk + bs ≤ us,

lx ≤ xk + bx ≤ ux ,
xk + bx ∈ Sk,
‖b‖∞ ≤ 1.

(32)

We say that (xk, sk) is an infeasible stationary point if z(xk, sk) �= 0 and πv
k = 0, in which

case the algorithm terminates.
The procedure for the calculation of the normal step is given in the algorithm below. In

the code, it is implemented in the function deft_funnel_normal_step, which calls
the algorithm in deft_funnel_blls in order to solve the normal step subproblem (18).

Algorithm 3.3: NormalStep(xk , sk , πv
k , vk , v

max
k)

1: If z(xk, sk) �= 0 and πv
k = 0, STOP (infeasible stationary point).

2: If (31) holds, compute a normal step nk by solving (18). Otherwise, set nk = 0.

If the solution of (29) is rk = 0, then by (28) we have π
f
k = 0, in which case we set

tk = 0. If the current iterate is farther from feasibility than from optimality, i.e., for a given
a monotonic bounding function ωt , the condition

π
f
k > ωt (‖z(xk, sk)‖) (33)

fails, then we skip the tangent step computation by setting tk = 0.
After the computation of the tangent step, the usefulness of the latter is evaluated by

checking if the conditions

‖tk‖ > κZS‖nk‖ (34)

and

δ
f
k

def= δ
f ,t
k + δ

f ,n
k ≥ κδδ

f ,t
k , (35)

123

176 Page 20 of 36 P. R. Sampaio

where

δ
f ,t
k

def= ψk((xk, sk) + nk) − ψk((xk, sk) + nk + tk) (36)

and

δ
f ,n
k

def= ψk(xk, sk) − ψk((xk, sk) + nk), (37)

are satisfied for some κZS > 1 and κδ ∈ (0, 1). The inequality (35) indicates that the
predicted improvement in the objective function obtained in the tangent step is substantial
compared to the predicted change in f resulting from the normal step. If (34) holds but (35)
does not, the tangent step is not useful in the sense just discussed, and we choose to ignore
it by resetting tk = 0.

The tangent step procedure is stated in Algorithm 3.4 and is implemented in the function
deft_funnel_tangent_step.

Algorithm 3.4: TangentStep(xk , sk , nk)

1: If (26) holds, then
1.1: select a vector μ̂k and define Bk as in (21);
1.2: compute μk by solving (30);
1.3: compute the modified Cauchy direction rk by solving (29) and define π

f
k as (28);

1.4: if (33) holds, compute a tangent step tk by solving (27) and set dk = nk + tk .

2: If (26) fails, set μk = μk−1. In this case, or if (33) fails, or if (34) holds but (35) fails,
set tk = 0 and dk = nk .

3: Define (x+
k , s+

k) = (xk, sk) + dk .

3.2.6 Iteration types

As mentioned previously, each iteration is classified into one of three types depending on the
contributions made in terms of optimality and feasibility, namely: μ-iteration, f -iteration
and z-iteration. This is done by checking if some conditions hold for the trial point defined
as

(x+
k , s+

k)
def= (xk, sk) + dk . (38)

3.2.6.1 μ-iteration
If dk = 0, then it means that nk = 0, that is, (26) holds. In this case, the Lagrange

multipliers estimates are potentially the only new values that have been computed. For this
reason, iteration k is said to be a μ-iteration with reference to the Lagrange multipliers μ

associated to the constraints mz(x, s) = 0. Notice, however, that not only new μk values
have been computed, but all the other Lagrange multipliers (ξ sk , τ

s
k , ξ xk , τ x

k) as well.

In this case, we set (xk+1, sk+1) = (xk, sk), Δ
f
k+1 = Δ

f
k , Δ

z
k+1 = Δz

k , v
max
k+1 = vmax

k and
we use the new multipliers to build a new SQO model in (20).

Since null steps dk = 0 might be due to the poor quality of the interpolation models, we
check the Λ-poisedness in μ-iterations and attempt to improve it whenever the following
condition holds

ΛΔ(Yk) > εμ, (39)

123

DEFT-FUNNEL: an open-source global optimization solver... Page 21 of 36 176

where

Δ(Yk)
def= max

j
‖yk, j − xk‖,

Λ is estimated by solving the maximization problem (11) present in Definition 2 and εμ > 0.
The inequality (39) gives an estimate of the error bound for the interpolation models. If (39)
holds, we try to reduce the value at the left side by modifying the sample set Yk . Firstly, we
choose a constant ξ ∈ (0, 1) and replace all points yk, j ∈ Yk such that

‖yk, j − xk‖ > ξΔ(Yk)

by new points yk, j∗ that (approximately) maximize |	 jk (x)| in B(xk; ξΔ(Yk)). Then we use
the Algorithm 6.3 described in Chapter 6 in Conn et al. (2009) with the smaller region B to
improve Λ-poisedness of the new sample set. This procedure is implemented in the Matlab
code by the function deft_funnel_repair_sample_set.
3.2.6.2 f -iteration

If iteration k has mainly contributed to optimality, it is called an f -iteration. Formally,
this happens when tk �= 0, (35) holds, and

v(x+
k , s+

k) ≤ vmax
k . (40)

Convergence of the algorithm towards feasibility is ensured by condition (40), which limits
the constraint violation with the funnel bound.

In this case, we set (xk+1, sk+1) = (x+
k , s+

k) if

ρ
f
k

def= f (xk, sk) − f (x+
k , s+

k)

δ
f
k

≥ η1, (41)

for η1 ∈ (0, 1), and (xk+1, sk+1) = (xk, sk), otherwise. Note that δ
f
k > 0 (because of (36)

and (35)) unless (xk, sk) is first-order critical, and hence condition (41) is well defined. As
for the value of the funnel bound in this case, we set vmax

k+1 = vmax
k .

Since our method can suffer from the Maratos effect (Maratos 1978), we also apply a
second-order correction (see Section 15.6, in Nocedal and Wright 2006, for more details) to
the normal step whenever the complete direction dk is unsuccessful at improving optimality,
i.e., whenever the condition (41) fails. As the latter might be due to the inadequate local
approximation of the constraint functions, this effect may be overcome with a second-order
step n̂ that is calculated in deft_funnel_sec_order_correction by solving the
following subproblem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
n̂=(n̂x ,n̂s)

1
2‖mz(x+

k , s+
k) + J (xk, sk)n̂‖2

s.t.: ls ≤ s+
k + n̂s ≤ us,

lx ≤ x+
k + n̂x ≤ ux ,

x+
k + n̂x ∈ Sk,
n̂ ∈ N̂k,

(42)

where

N̂k
def= {n̂ ∈ R

n+m | ‖n̂‖∞ ≤ min
[
Δz

k, κn ‖mz(x+
k , s+

k)‖] }. (43)

After the second-order step n̂ has been computed, the conditions

v((x+
k , s+

k) + n̂) ≤ vmax
k (44)

123

176 Page 22 of 36 P. R. Sampaio

and

ρ
f C
k

def= f (xk, sk) − f ((x+
k , s+

k) + n̂)

δ
f
k

≥ η1 (45)

still need to be satisfied for the f -iteration with the augmented step (x+
k , s+

k) + n̂ to be
successful. If (44) and (45) hold, we set (xk+1, sk+1) = (x+

k , s+
k) + n̂.

3.2.6.3 z-iteration
If iteration k is neither a μ-iteration nor a f -iteration, then it is said to be a z-iteration.

This means that the major contribution of iteration k is to improve feasibility, which happens
when either tk = 0 or when (35) fails.

The trial point is accepted if the improvement in feasibility is comparable to its predicted
value

δzk
def= 1

2‖mz(xk, sk)‖2 − 1
2‖mz(xk, sk) + J (xk, sk)dk‖2,

and the latter is itself comparable to its predicted decrease along the normal step, that is

nk �= 0, δzk ≥ κznδ
z,n
k and ρz

k
def= v(xk, sk) − v(x+

k , s+
k)

δzk
≥ η1, (46)

for some κzn ∈ (0, 1) and where

δ
z,n
k

def= 1
2‖mz(xk, sk)‖2 − 1

2‖mz(xk, sk) + J (xk, sk)nk‖2. (47)

If (46) is not satisfied, the trial point (x+
k , s+

k) is rejected.
Finally, the funnel bound is updated as follows

vmax
k+1 =

{
max

[
κt x1v

max
k , v(x+

k , s+
k) + κt x2(v(xk, sk) − v(x+

k , s+
k))

]
if (46) hold,

vmax
k otherwise,

(48)

for some κt x1 ∈ (0, 1) and κt x2 ∈ (0, 1).

3.2.7 Criticality step

Two different criticality steps are employed: one for the subspaces Sk with dim(Sk) < n and
one for the full space (dim(Sk) = n). In the latter, convergence is declared whenever at least
one of the following conditions is satisfied: (1) the trust-region radiusΔk is too small, (2) the
computed direction dk is too small or (3) both feasibility and optimality have been achieved
and the error between the real functions and the models is expected to be sufficiently small.
As it was mentioned before, this error is directly linked to the Λ-poisedness measure given
in Definition 2. In the subspace, we are less demanding and only ask that either Δk be very
small or both feasibility and optimality have been achieved without checking the models
error though.

The complete criticality step in DEFT-FUNNEL is described in the next algorithm.

Algorithm 3.5: CriticalityStep(Sk , Yk , π
f
k−1, α, β, Δk , dk , ε, εi)

1: If dim(Sk) < 0,

1.1: If Δk ≤ ε‖(xk, sk)‖, return (xk, sk).
1.2: If ‖z(xk, sk)‖ ≤ ε and π

f
k−1 ≤ ε, return (xk, sk).

123

DEFT-FUNNEL: an open-source global optimization solver... Page 23 of 36 176

2: If dim(Sk) = n,

2.1: If Δk ≤ ε‖(xk, sk)‖ or ‖dk‖ ≤ ε‖(xk, sk)‖, return (xk, sk).
2.2: Define m̂ f

i = m f
k , m̂

c
i = mc

k and π̂
f
i = π

f
k−1.

2.3: If ‖z(xk, sk)‖ ≤ εi and π̂
f
i ≤ εi , set εi+1 = max

[
α‖z(xk, sk)‖, απ̂

f
i , ε

]
for a

fixed input parameter α ∈ (0, 1) and modify Yk as needed to ensure it is Λ-poised
in B(xk; εi+1). If Yk was modified, compute new models m̂ f

i and m̂c
i , calculate r̂i

and π̂
f
i and increment i by one. If ‖z(xk, sk)‖ ≤ ε and π̂

f
i ≤ ε, return (xk, sk);

otherwise, start Step 2.3 again;

2.4: Set m f
k = m̂ f

i , m
c
k = m̂c

i , π
f
k−1 = π̂

f
i , Δk = β max

[
‖z(xk, sk)‖, π f

k−1

]
, where

β > 0 is a fixed input parameter and define ϑi = xk if a new model has been
computed.

In order to check feasibility and optimality in the full space, the algorithm employs a
dynamic threshold εi that is expected to fall below the fixed accuracy threshold ε whenever
criticality is verified in the current iterate. The initial value of εi is set inStep0ofAlgorithm3.1
when i = 0. The implicit loop in Step 2.3 may be viewed as a model improvement step that
aims to ensure that the derivative information of the surrogate models do not differ too much
from that of the original functions. This inner iteration follows the same idea of the criticality
test in Algorithm 2 of Scheinberg and Toint (2010).

Notice that the definition of ϑi at Step 2.4 of Algorithm 3.5 serves to indicate the point at
which well-poised models mc and m f are known and the current trust region is larger than
the region at which these models are poised. This variable is then used in the update rule of
the interpolation set, as it is detailed in the next section.

3.3 Maintenance of the interpolation set and trust-region updating strategy

The management of the geometry of the interpolation set is based on the self-correcting
geometry scheme proposed in Scheinberg and Toint (2010), where unsuccessful trial points
are used to improve the geometry of the interpolation set. It depends on the criterion used to
define successful iterations, which is passed to the algorithm through the parameter criterion,
which depends on the iteration type (μ, f or z). For f -iterations, the inequality ρ

f
k ≥ η1

must be satisfied, whereas for z-iterations the conditions in (46) must hold.
In general, unsuccessful trial points replace other sample points in the interpolation set

which maximize a combined criteria of distance and poisedness involving the trial point.
However, this replacement is avoidedwhen the iterate is a point ϑi (defined in CriticalityStep,

Algorithm 3.5) at which well-poised models mc and m f are already known. Finally, the
proposed solver do not make use of “dummy” interpolation points resulting from projections
onto the subspaces as in Sampaio and Toint (2016). The whole procedure is described in
Algorithm 3.6. As before, the maximum cardinality of the interpolation set, pmax, is (n +
1)(n + 2)/2.

123

176 Page 24 of 36 P. R. Sampaio

Algorithm 3.6: UpdateInterpolationSet(Yk , xk , x
+
k , Δk , ϑi , εi , criterion)

1: Augment the interpolation set. If |Yk | < pmax, then define Yk+1 = Yk ∪ {x+
k }.

2: Successful iteration. If |Yk | = pmax and criterion holds, then defineYk+1 = Yk \{yk,r }∪
{x+

k } for
yk,r = arg max

yk, j∈Yk

‖yk, j − x+
k ‖2|	k, j (x+

k)|. (49)

3: Replace a far interpolation point. If |Yk | = pmax, criterion fails, either xk �= ϑi or
Δk ≤ εi , and the set

Fk
def= {yk, j ∈ Yk such that ‖yk, j − xk | > ζΔ and 	k, j (x

+
k) �= 0} (50)

is non-empty, then define Yk+1 = Yk \ {yk,r } ∪ {x+
k }, where

yk,r = arg max
yk, j∈Fk

‖yk, j − x+
k ‖2|	k, j (x+

k)|. (51)

4: Replace a close interpolation point. If |Yk | = pmax, criterion fails, either xk �= ϑi or
Δk ≤ εi , the set Fk is empty, and the set

Ck
def= {yk, j ∈ Yk such that ‖yk, j − xk‖ ≤ ζΔ and |	k, j (x+

k)| > Λ} (52)

is non-empty, then define Yk+1 = Yk \ {yk,r } ∪ {x+
k }, where

yk,r = arg max
yk, j∈Ck

‖yk, j − x+
k ‖2|	k, j (x+

k)|. (53)

5: No replacements. If |Yk | = pmax, criterion fails and either [xk = ϑi and Δk > εi] or
Fk ∪ Ck = ∅, then define Yk+1 = Yk .

The trust-region update strategies associated to f - and z-iterations are now described.
Following the idea proposed in Gratton et al. (2011), the trust-region radii are allowed to
decrease even when the interpolation set has been changed after the replacement of a far
point or a close point at unsuccessful iterations. However, the number of times it can be
shrunk in this case is limited to νmax

f and νmax
z as a means to prevent the trust regions from

becoming too small too quickly. If the interpolation set has not been updated, the algorithm
understands that the lack of success is not due to the surrogate models but rather due to the
trust region size, and thus it reduces the latter.

Algorithm 3.7: f -iteration(xk , sk , x
+
k , s

+
k , Δ

f
k , Δ

z
k)

1: Successful iteration. If ρ
f
k ≥ η1, set (xk+1, sk+1) = (x+

k , s+
k) and ν f = 0. The radius of

Tk in (24) is updated by

Δ
f
k+1 =

{
min

[
max[γ2‖dk‖,Δ f

k],Δmax
]

if ρ
f
k ≥ η2,

Δ
f
k if ρ

f
k ∈ [η1, η2),

(54)

123

DEFT-FUNNEL: an open-source global optimization solver... Page 25 of 36 176

The radius of Nk in (19) is updated by

Δz
k+1 =

{
min

[
max[γ2‖nk‖,Δz

k],Δmax
]
if v(x+

k , s+
k) < η3 vmax

k ,

Δz
k otherwise.

(55)

2: Unsuccessful iteration. If ρ
f
k < η1, set (xk+1, sk+1) = (xk, sk) and Δz

k+1 = δzk . The
radius of Tk is updated by

Δ
f
k+1 =

⎧
⎪⎨

⎪⎩

γ1‖dk‖if either (Yk+1 �= Yk and ν f ≤ νmax
f)

or Yk+1 = Yk,

Δ
f
k if Yk+1 �= Yk and ν f > νmax

f ,

(56)

If Yk+1 �= Yk and ν f ≤ νmax
f , update ν f = ν f + 1.

The operations related to z-iterations follow below.

Algorithm 3.8: z-iteration(xk , sk , x
+
k , s

+
k , Δ

f
k , Δ

z
k)

1: Successful iteration. If (46) holds, set (xk+1, sk+1) = (x+
k , s+

k),Δ f
k+1 = Δ

f
k and νz = 0.

The radius of Nk is updated by

Δz
k+1 =

{
min

[
max[γ2‖nk‖,Δz

k],Δmax
]
if ρz

k ≥ η2,

Δz
k if ρz

k ∈ [η1, η2). (57)

2: Unsuccessful iteration. If (46) fails, set (xk+1, sk+1) = (xk, sk) and Δ
f
k+1 = Δ

f
k . The

radius of Nk is updated by

Δz
k+1 =

⎧
⎪⎪⎨

⎪⎪⎩

γ1‖nk‖if ‖nk‖ �= 0 and either (Yk+1 �= Yk and νz ≤ νmax
z)

or Yk+1 = Yk,

Δz
k if Yk+1 �= Yk and νz > νmax

z ,

γ1Δ
z
k if ‖nk‖ = 0,

(58)

If Yk+1 �= Yk and νz ≤ νmax
z , update νz = νz + 1.

3.4 Parameter tuning and user goals

Like any other algorithm,DEFT-FUNNELperformance can be affected by how its parameters
are tuned. In this section, we discuss about which parameters might have a major impact on
its performance and how they should be tuned depending on the user goals. We consider four
main aspects concerning the resolution of black-box problems: the budget, the priority level
given to feasibility, the type of the objective function and the priority level given to global
optimality. We can then describe the possible scenarios in decreasing order of difficulty as
below:

123

176 Page 26 of 36 P. R. Sampaio

– Budget: very low, limited or unlimited.
– Priority to feasibility: high or low.
– Objective function: highly multimodal, multimodal or likely unimodal.
– Priority given to global optimality: high or low.

Clearly, if the objective function is highlymultimodal and the budget is limited, one should
give priority to a multistart strategy with a high number of samples per iteration where global
optimality is important. This can be done via two ways: the first one is by reducing the budget
for each local search through the optional input maxeval_ls, which equals maxeval*0.7 by
default; for instance, one could try setting maxeval_ls = maxeval*0.4, so that each local
search uses up to 40% of the total budget only. The other possibility is to increase the number
N of random points generated in the global search (see Step 3 in Algorithm 2.1). In case
where attaining the global minimum is not a condition, a better approach would be to give
more budget to each local search so that the chances to reach a local minimum are higher. If
the objective function is not highly multimodal, one should search for a good compromise
between spending the budget on each local search and on the sampling of the multistart
strategy.

Notice also that when the budget is too small and it is very hard to find a feasible solution, it
may be a good idea to compute a tangent step only when feasibility has been achieved. This is
due to the fact that tangent steps may still deteriorate the gains in feasibility obtained through
normal steps. When this happens, more normal steps must be computed which requires more
function evaluations. Therefore, instead of spending the budget with both tangent and normal
steps without guarantee of feasibility in the end, it is a better strategy to compute only normal
steps in the beginning so that the chances of obtaining a feasible solution are higher in the
end. For this purpose, the user should set the constant value κR = 0 in (26). By doing so, the
tangent step will be computed only if the normal step equals zero, which by (31) happens
when the iterate is feasible. In the code, this can be done by setting kappa_r to zero in the
function deft_funnel_set_parameters.

4 Numerical experiments

The numerical experiments are divided into two sections: the first one is focused on the
evaluation of the performance ofDEFT-FUNNELon black-box optimization problems,while
the second one aims at analyzing the benefits of the exploitation of white-box functions on
grey-box problems. In all experiments with DEFT-FUNNEL, minimum 	2-norm models
were employed. This choice is based on past numerical experiments (Sampaio and Toint
2015, 2016) where minimum 	2-norm models performed better than the other approaches.
The criticality step threshold was set to ε = 10−4 and the trust-region constants were defined
as η1 = 10−4, η2 = 0.9, η3 = 0.6, γ1 = 0.5, γ2 = 2.0, νmax

f = 20 × n and νmax
z = 20 × n,

where n is the number of variables.
DEFT-FUNNEL is compared with two popular algorithms for constrained black-box

optimization: NOMAD (Le Digabel 2011), a state-of-the-art C++ implementation of the
MADSmethod, and the Pattern Search (PS) algorithm from the Matlab Global Optimization
Toolbox (MATLAB 2015b). Both solvers belong to the class of direct-search methods for
constrained black-box optimization algorithms. Besides their popularity, the choice for these
solvers is based on the fact that both codes are publicly available for any user, a criterion that
reduces the number of options significantly. Notice also that this section is neither intended to
be an extensive benchmark on black-box optimization solvers nor to show the superiority of

123

DEFT-FUNNEL: an open-source global optimization solver... Page 27 of 36 176

one solver over another—as it would require, among other things, a careful hyperparameter
tuning of the other solvers as well—but rather to present encouraging results from DEFT-
FUNNEL in a set of meaningful and difficult tests based on real-world applications.

Since NOMAD and PS are local optimization algorithms, they have been coupled with
the Latin Hypercube Sampling (LHS) (McKay et al. 1979) method in order to achieve global
optimality, a very common strategy found among practitioners in industry. In NOMAD, all
constraints were treated as relaxable constraints by using the Progressive Barrier approach
of the solver. Our experiments cover therefore two of the most popular approaches for solv-
ing black-box problems: surrogate-based methods and direct-search methods. Other DFO
algorithms have already been compared against DEFT-FUNNEL in previous papers (see
Sampaio and Toint 2015, 2016) on a much larger set of test problems mainly designed for
local optimization.

4.1 Black-box optimization problems

The three methods are compared on a set of 14 well-known benchmark problems for con-
strained global optimization, including four industrial design problems—Welded Beam
Design (WB4) (Deb 2000), Gas Transmission Compressor Design (GTCD4) (Beightler and
Phillips 1976), PressureVessel Design (PVD4) (Coello andMontes 2002) and SpeedReducer
Design (SR7) (Floudas and Pardalos 1990)—and the Harley pooling problem (problem 5.2.2
from Floudas et al. 1999), which is originally a maximization problem and that has been
converted into a minimization one. Besides the test problems originated from industrial
applications, we have collected problems with different characteristics (multimodal, nonlin-
ear, separable and non-separable, with connected and disconnected feasible regions) to have a
broader view of the performance of the algorithms in various kinds of scenarios. For instance,
the Hesse problem (Hesse 1973) is the result of the combination of 3 separable problems
with 18 local minima and 1 global minimum, while the Gómez #3 problem, listed as the
third problem in Gómez and Levy (1982), consists of many disconnected feasible regions,
thus having many local minima. The test problems G3-G11 are taken from the widely known
benchmark list in Michalewicz and Schoenauer (1996). Table 3 gives the number of decision
variables, the number of constraints and the best known feasible objective function value of
each test problem.

Two types of black-box experiments were conducted in order to compare the algorithms.
In the first type, a small budget of 100 black-box calls is given to each algorithm in order
to evaluate how they perform on difficult problems with highly expensive functions. In such
scenarios, many algorithms have difficulties to obtain even local minima depending on the
test problem. In the second type of experiments, we analyze their ability and speed to achieve
global minima rather than local minima by allowing larger budgets that range from 100 × n
to 400× n, where n is the number of variables. Every function is considered as black box in
both types of experiments. Finally, each algorithm is run 50 times on each test problem. For
NOMAD and PS, each run is done on a different starting point obtained from LHS.

Only approximate feasible solutions of the problem (1) are considered when comparing
the best objective function values obtained by the algorithms, i.e. we require that each optimal
solution x∗ satisfy cv(x∗) ≤ 10−4, where

cv(x)
def= max

[[
z(x) − us

]+
,
[
ls − z(x)

]+]
. (59)

In the next two subsections, we show the results for the two types of experiments in the
black-box setting.

123

176 Page 28 of 36 P. R. Sampaio

Table 3 Problem name, number of decision variables, number of constraints (simple bounds not included)
and the best known feasible objective function value of each test problem

Test problem Number of
variables

Number of
constraints

Best known feasible
objective function value

Harley (Harley Pooling Problem) 9 6 −600

WB4 (Welded Beam Design) 4 6 1.7250

GTCD4 (Gas Transmission Compressor
Design)

4 1 2964893.85

PVD4 (Pressure Vessel Design) 4 3 5804.45

SR7 (Speed Reducer Design) 7 11 2994.42

Hesse 6 6 −310

Gómez #3 2 1 −0.9711

G3 2 1 −1

G4 5 6 −30665.539

G6 2 2 −6961.8139

G7 10 8 24.3062

G8 2 2 −0.0958

G9 7 4 680.6301

G11 2 1 0.75000455

4.1.1 Budget-driven experiments

The results of the first type of experiments are shown in Table 4. In the second column, fOPT
denotes the objective function value of the global minimum of the problem when it is known
or the best known objective function value otherwise. For each solver, we show the best, the
average and the worst objective function values obtained in 50 runs on every test problem.

As it can be seen in Table 4, DEFT-FUNNEL attained fOPT in 10 out of 14 problems,
while NOMAD did it in 5 problems and PS in only 4. Besides, when considering the best
value found by each solver, DEFT-FUNNEL was superior to the others or equal to the best
solver in all problems. In the average and worse cases, DEFT-FUNNEL also presented a very
good performance; in particular, its worse performance was inferior to all others’ in only 4
problems, while its average performance was superior to others in 9 problems. Although
NOMAD did not reach fOPT often, it presented the second best average-case performance
among all methods, while PS presented the worst. Finally, NOMAD and PS were unable to
reach a feasible solution in the Harley pooling problem.

4.1.2 Experiments driven by global minima

This section evaluates the ability of each solver to find global minima rather than local
minima. The results of the second type of experiments for each test problem are presented
individually, which allows a better analysis of the evolution of each solver performance over
the number of function evaluations allowed. Each figure is thus associated to one single test
problem and shows the average progress curve of each solver after 50 trials as a function of
the budget.

In Fig. 4, we show the results on test problems Harley, WB4, GTCD4 and PVD4. DEFT-
FUNNEL and NOMAD presented the best performance among the three methods, with

123

DEFT-FUNNEL: an open-source global optimization solver... Page 29 of 36 176

Table 4 Results for the first type of experiments on a budget of 100 black-box calls. For each solver, it shows
the best, the average and the worst objective function values obtained in 50 runs. For each column and each
problem, the method with the lowest objective function value is in bold

Prob fOPT Solver Best Avg. Worst

Harley −600 NOMAD None None None

PS None None None

DEFT-FUNNEL −600 −17.1508 301.9904

WB4 1.7250 NOMAD 3.0824 6.4501 11.7399

PS 3.6274 7.2408 11.0038

DEFT-FUNNEL 3.0773 6.7615 8.1626

GTCD4 2964893.85 NOMAD 3781751.7488 7303454.2325 13628063.6983

PS 4953046.0849 12212940.1950 13786675.7772

DEFT-FUNNEL 3707234.9964 8188878.0194 13503809.4223

PVD4 5804.45 NOMAD 6063.7060 7521.6839 9630.1232

PS 5877.6483 7650.8416 10827.5206

DEFT-FUNNEL 5804.3761 7360.2882 10033.0231

SR7 2994.42 NOMAD 3044.4672 3146.3952 3347.5176

PS 3134.0525 3516.1761 5677.6224

DEFT-FUNNEL 3003.7577 3489.8743 4583.1364

Hesse −310 NOMAD −308.4200 −194.4412 −44.3316

PS −302.1163 −162.5650 −49.4364

DEFT-FUNNEL -310 −234.5969 −24

Gómez #3 −0.9711 NOMAD −0.9709 −0.8626 −0.2094

PS −0.9700 −0.7774 −0.4293

DEFT-FUNNEL −0.9711 −0.0689 3.23333

G3 −1 NOMAD −0.9600 −0.0384 −0.0000

PS −1 −0.8162 −0.0831

DEFT-FUNNEL −1 −0.8967 −0.0182

G4 −30665.539 NOMAD −30961.7716 −30565.9896 −29792.9259

PS −30814.5885 −29422.4521 −27838.8541

DEFT-FUNNEL −31025.6056 −30980.3524 −29246.5608

G6 −6961.8139 NOMAD −6961.8147 −6327.9568 −1537.6319

PS −6252.2652 −3220.0072 −1206.1356

DEFT-FUNNEL −6961.8165 −6961.8158 −6961.8146

G7 24.3062091 NOMAD 111.7315 587.7964 1918.5181

PS 197.7475 434.6940 687.2492

DEFT-FUNNEL 24.3011 52.1011 185.5706

G8 −0.095825 NOMAD −0.0958 −0.0786 −0.0212

PS −0.0953 −0.0097 0.0185

DEFT-FUNNEL −0.0958 −0.0471 0.0008

123

176 Page 30 of 36 P. R. Sampaio

Table 4 continued

Prob fOPT Solver Best Avg. Worst

G9 680.6300573 NOMAD 910.0862 34279.7451 686827.9075

PS 953.2964 5336.9157 12000.4159

DEFT-FUNNEL 797.1996 1403.7992 2668.9271

G11 0.75000455 NOMAD 0.7501 0.9238 1

PS 0.7502 0.8937 0.9997

DEFT-FUNNEL 0.7499 0.7513 0.8091

Fig. 4 Mean best approximately feasible objective function value obtained by each solver on 50 trials with
budgets of 100 × n, 200 × n, 300 × n and 400 × n black-box function evaluations

NOMAD being superior in 2 out of 4 problems. PS not only was inferior to the other two
methods, but it also seemed not to be affected by the number of black-box calls allowed,
as it can be seen in Fig. 4a–c. The solutions found by PS had often much larger objective
function values than those obtained by DEFT-FUNNEL and NOMAD. Moreover, PS and
NOMAD could not find a feasible solution for the Harley problem regardless of the number
of black-box calls.

123

DEFT-FUNNEL: an open-source global optimization solver... Page 31 of 36 176

Fig. 5 Mean best approximately feasible objective function value obtained by each solver on 50 trials with
budgets of 100 × n, 200 × n, 300 × n and 400 × n black-box function evaluations

Figure 5 shows the results on test problems SR7, Hesse, Gómez #3 and G3. DEFT-
FUNNEL and NOMAD had similar performances on SR7 and Hesse problems with little
difference between both solvers, while PS had the poorest performance. On the other hand,
the performance of DEFT-FUNNEL on Gómez #3 and G3 was significantly better than the
other methods; in particular, DEFT-FUNNEL attained fOPT in G3 in, practically, all tests.
Finally, PS performance on SR7 shows that allowing more black-box calls was not helpful
and that the objective function value even increased.

Figure 6 shows the results on test problemsG4, G6, G7, G8, G9 andG11. DEFT-FUNNEL
was superior to all other methods, attaining fOPT on 4 problems (G4, G6, G8, G11) inde-
pendently of the number of evaluations allowed. NOMAD was the second best, followed
by PS. DEFT-FUNNEL and NOMAD had similar performances on G7 and G9, where both
reached fOPT when the number of black-box calls were higher than 200 × n. Besides that
PS did not find a feasible solution on Harley pooling problem, there is a significant increase
on its objective function value as the number of evaluations grows on test problems SR7 and
G7. These 3 problems are the ones with the largest number of constraints, which could be a
reason for its poor performance.

123

176 Page 32 of 36 P. R. Sampaio

Fig. 6 Mean best approximately feasible objective function value obtained by each solver on 50 trials with
budgets of 100 × n, 200 × n, 300 × n and 400 × n black-box function evaluations

123

DEFT-FUNNEL: an open-source global optimization solver... Page 33 of 36 176

Table 5 Problem name, number of decision variables, number of black-box constraints, number of white-box
constraints, type of objective function—black box (BB) or white box (WB)—and the best known feasible
objective function value of each test problem

Test
problem

Number of
variables

Number of
BB constraints

Number of
WB constraints

Type of
Obj. function

Best known
feasible bj.
function value

WB4 4 6 0 WB 1.7250

GTCD4 4 0 1 BB 2964,893.85

SR7 7 9 2 WB 2994.42

Hesse 6 3 3 WB −310

Table 6 Experiments with grey-box problems with a budget of 100 black-box calls. For each solver, it shows
the best, the average and the worst objective function values obtained in 50 runs. DEFT-FUNNEL GB denotes
the results on the grey-box problems while DEFT-FUNNEL BB denotes the version of DEFT-FUNNEL with
the WB functions treated as BB functions

Prob fOPT Solver Best Avg. Worst

WB4 1.7250 NOMAD 3.0824 6.4501 11.7399

PS 3.6274 7.2408 11.0038

DEFT-FUNNEL GB 2.3590 6.0765 6.3947

DEFT-FUNNEL BB 3.0773 6.7615 8.1626

GTCD4 2964893.85 NOMAD 3781751.7488 7303454.2325 13628063.6983

PS 4953046.0849 12212940.1950 13786675.7772

DEFT-FUNNEL GB 3697286.5280 6904032.0742 10408130.0338

DEFT-FUNNEL BB 3707234.9964 8188878.0194 13503809.4223

SR7 2994.42 NOMAD 3044.4672 3146.3952 3347.5176

PS 3134.0525 3516.1761 5677.6224

DEFT-FUNNEL GB 2994.4244 3083.8930 3288.8933

DEFT-FUNNEL BB 3003.7577 3489.8743 4583.1364

Hesse −310 NOMAD −308.4200 −194.4412 −44.3316

PS 302.1163 −162.5650 −49.4364

DEFT-FUNNEL GB −310 −241.2927 −27

DEFT-FUNNEL BB −310 −234.5969 −24

4.2 Grey-box optimization problems

In this section, DEFT-FUNNEL is compared with NOMAD and PS on a set of artificial
grey-box problems built by selecting a test problem and defining some of its functions as
black boxes and the remaining as white boxes. Among the 5 grey-box problems considered
in the experiments, 3 were used in the black-box experiments described in the previous
subsection, where all functions were considered as black boxes, namely: Hesse, SR7 and
GTCD4. The reuse of these test problems allows for evaluating the performance improvement
of DEFT-FUNNEL in cases where some information is available and for comparing its
performance with that obtained in the black-box setting. The remaining grey-box problems
are the problems 21 and 23 from the well-known Hock-Schittkowski collection (Hock and
Schittkowski 1980), denoted here as HS21 and HS23, respectively. Both HS21 and HS23

123

176 Page 34 of 36 P. R. Sampaio

have nonlinear objective functions; however, in HS21 the objective function is defined as
white box, while in HS23 it is defined as black box. The only constraint present in HS21 is
defined as black box, while in HS23 there is a balance between both categories among the
constraints. We have therefore attempted to cover different possibilities related to the type
of functions in a grey-box setting. The derivatives of all functions defined as white boxes
were given as input to DEFT-FUNNEL. The reader can find more details about the tested
grey-box problems in Table 5.

In Table 6, the results obtained with a budget of 100 black-box calls are presented. In order
to see the improvement on the DEFT-FUNNEL results when some functions are defined as
white boxes, both the results obtained on the grey-box problem, denoted by DEFT-FUNNEL
GB in Table 6, and those obtained on the corresponding black-box problem, denoted by
DEFT-FUNNEL BB, are provided. The DEFT-FUNNEL BB results contain the same values
already presented in Table 4.

It can be seen in Table 6 that DEFT-FUNNEL GB was the only one to reach fOPT in two
problems, having also the best average-case and worst-case performances in general. When
comparing the black-box and grey-box results obtained by DEFT-FUNNEL on problems
WB4, GTCD4 and SR7, it is evident that the available information from the white-box
functions contributed to improve its performance. Not only the best objective function values
on these problemswere improved, allowing for reaching the globalminimumonSR7, but also
the average and worst ones. Since DEFT-FUNNEL had already attained the global minimum
on Hesse in the black-box setting, the only expected improvement would be in the average
and worst cases, which did not happen in the experiments. This is probably due to the fact
that this a multimodal problem with 18 local minima, being a combination of 3 separable
problems and having 1 global minimum. Therefore, even if information about the function
is partially available, the problem remains very difficult to solve due to its nature.

5 Conclusions

This paper introduced a new global optimization solver for general constrained grey-box and
black-box optimization problems namedDEFT-FUNNEL. It combines a stochasticmultistart
strategy with a trust-funnel sequential quadratic optimization algorithm where the black-
box functions are replaced by surrogate models built from polynomial interpolation. The
proposed solver is able to exploit available information from white-box functions rather than
considering them as black boxes. Its code is open source and freely available at the Github
repository http://github.com/phrsampaio/deft-funnel. Unlike many black-box optimization
algorithms, it can handle both inequality and equality constraints and it does not require
feasible starting points.Moreover, the constraints are treated individually rather than grouped
into a penalty function.

The numerical experiments have shown that DEFT-FUNNEL compares favourably with
other state-of-the-art algorithms available for the optimization community on a collection of
well-known benchmark problems. The reported numerical results indicate that the proposed
approach is very promising for grey-box and black-box optimization. Future research works
include extensions for multiobjective optimization and mixed-integer nonlinear optimization
as well as as parallel version of the solver.

123

http://github.com/phrsampaio/deft-funnel

DEFT-FUNNEL: an open-source global optimization solver... Page 35 of 36 176

References

Amaioua N, Audet C, Conn AR, Digabel SL (2018) Efficient solution of quadratically constrained quadratic
subproblems within the mesh adaptive direct search algorithm. Eur J Oper Res 268(1):13–24. https://
doi.org/10.1016/j.ejor.2017.10.058. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0377221717309876

Armstrong JC, Favorite JA (2016)Using a derivative-free optimizationmethod formultiple solutions of inverse
transport problems. Optim Eng 17(1):105–125. https://doi.org/10.1007/s11081-015-9306-x

Audet C, Dennis J (2006) Mesh adaptive direct search algorithms for constrained optimization. SIAM J Optim
17(1):188–217. https://doi.org/10.1137/040603371

Audet C, Digabel SL, Peyrega M (2015) Linear equalities in blackbox optimization. Comput Optim Appl
61(1):1–23. https://doi.org/10.1007/s10589-014-9708-2

Audet C, HareW (2017) Derivative-free and blackbox optimization. Springer, Cham. https://doi.org/10.1007/
978-3-319-68913-5

Bajaj I, Iyer SS, Hasan MMF (2018) A trust region-based two phase algorithm for constrained black-
box and grey-box optimization with infeasible initial point. Comput Chem Eng 116:306–321. https://
doi.org/10.1016/j.compchemeng.2017.12.011, Retrieved from http://www.sciencedirect.com/science/
article/pii/S0098135417304404

Beightler CS, Phillips DT (1976) Applied geometric programming. Wiley, New York
Birgin EG,Martínez JM, RaydanM (2000) Nonmonotone spectral projected gradient methods on convex sets.

SIAM J Optim 10(4):1196–1211
Boukouvala F, Hasan MMF, Floudas CA (2017) Global optimization of general constrained grey-box models:

new method and its application to constrained pdes for pressure swing adsorption. J Global Optim
67(1):3–42. https://doi.org/10.1007/s10898-015-0376-2

BuenoL, FriedlanderA,Martínez J, Sobral F (2013) Inexact restorationmethod for derivative-free optimization
with smooth constraints. SIAM J Optim 23(2):1189–1213. https://doi.org/10.1137/110856253

CoelloCAC,MontesEM(2002)Constraint-handling in genetic algorithms through the use of dominance-based
tournament selection. Adv Eng Inf 16(3):193–203. https://doi.org/10.1016/S1474-0346(02)00011-3.
Retrieved from http://www.sciencedirect.com/science/article/pii/S1474034602000113

Conn AR, Scheinberg K, Vicente LN (2009) Introduction to derivative-free optimization. MPS-SIAM Book
Series on Optimization, Philadelphia

Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl
Mech Eng 186(2):311–338. https://doi.org/10.1016/S0045-7825(99)00389-8. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0045782599003898

Digabel SL, Wild SM (2015) A taxonomy of constraints in simulation-based optimization. arXiv:1505.07881
Echebest N, SchuverdtML,VignauRP (2017)An inexact restoration derivative-free filtermethod for nonlinear

programming. Comput Appl Math 36(1):693–718. https://doi.org/10.1007/s40314-015-0253-0
Floudas C (2000) Deterministic global optimization: theory, methods and applications. Springer, Boston, MA.

https://doi.org/10.1007/978-1-4757-4949-6
Floudas C, Pardalos P, Adjiman C, EspositoWR, Gümüs ZH, Harding, ST, Schweiger CA (1999) Handbook of

test problems in local and global optimization. Springer US. https://doi.org/10.1007/978-1-4757-3040-
1

Floudas CA, Pardalos PM (1990) A collection of test problems for constrained global optimization algorithms.
Springer, Berlin

Gómez S, LevyAV (1982) The tunnellingmethod for solving the constrained global optimization problemwith
several non-connected feasible regions. In: Hennart JP (ed) Numerical analysis. Springer, Heidelberg,
pp 34–47

Gould NIM, Toint PL (2010) Nonlinear programming without a penalty function or a filter. Math Program
122(1):155–196. https://doi.org/10.1007/s10107-008-0244-7

Gratton S, Toint PL, Tröltzsch A (2011) An active-set trust-region method for bound-constrained nonlinear
optimization without derivatives. Optim Methods Softw 26(4–5):875–896

Griewank A (2003) A mathematical view of automatic differentiation. Acta Numerica 12:321–398. https://
doi.org/10.1017/S0962492902000132

Griewank A, Walther A (2008) Evaluating derivatives (Second ed), Society for Industrial and Applied Math-
ematics. Retrieved from https://epubs.siam.org/doi/abs/10.1137/1.9780898717761. https://doi.org/10.
1137/1.9780898717761

Hesse R (1973) A heuristic search procedure for estimating a global solution of nonconvex programming
problems. Oper Res 21(6):1267–1280. https://doi.org/10.1287/opre.21.6.1267

Hock W, Schittkowski K (1980) Test examples for nonlinear programming codes. J Optim Theory Appl
30(1):127–129. https://doi.org/10.1007/BF00934594

123

https://doi.org/10.1016/j.ejor.2017.10.058
https://doi.org/10.1016/j.ejor.2017.10.058
http://www.sciencedirect.com/science/article/pii/S0377221717309876
http://www.sciencedirect.com/science/article/pii/S0377221717309876
https://doi.org/10.1007/s11081-015-9306-x
https://doi.org/10.1137/040603371
https://doi.org/10.1007/s10589-014-9708-2
https://doi.org/10.1007/978-3-319-68913-5
https://doi.org/10.1007/978-3-319-68913-5
https://doi.org/10.1016/j.compchemeng.2017.12.011
https://doi.org/10.1016/j.compchemeng.2017.12.011
http://www.sciencedirect.com/science/article/pii/S0098135417304404
http://www.sciencedirect.com/science/article/pii/S0098135417304404
https://doi.org/10.1007/s10898-015-0376-2
https://doi.org/10.1137/110856253
https://doi.org/10.1016/S1474-0346(02)00011-3
http://www.sciencedirect.com/science/article/pii/S1474034602000113
https://doi.org/10.1016/S0045-7825(99)00389-8
http://www.sciencedirect.com/science/article/pii/S0045782599003898
http://www.sciencedirect.com/science/article/pii/S0045782599003898
http://arxiv.org/abs/1505.07881
https://doi.org/10.1007/s40314-015-0253-0
https://doi.org/10.1007/978-1-4757-4949-6
https://doi.org/10.1007/978-1-4757-3040-1
https://doi.org/10.1007/978-1-4757-3040-1
https://doi.org/10.1007/s10107-008-0244-7
https://doi.org/10.1017/S0962492902000132
https://doi.org/10.1017/S0962492902000132
https://epubs.siam.org/doi/abs/10.1137/1.9780898717761
https://doi.org/10.1137/1.9780898717761
https://doi.org/10.1137/1.9780898717761
https://doi.org/10.1287/opre.21.6.1267
https://doi.org/10.1007/BF00934594

176 Page 36 of 36 P. R. Sampaio

Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J
Global Optim 13(4):455–492. https://doi.org/10.1023/A:1008306431147

Kan AHGR, Timmer GT (1987a) Stochastic global optimization methods part i: Clustering methods. Math
Program 39(1):27–56. https://doi.org/10.1007/BF02592070

Kan AHGR, Timmer GT (1987b) Stochastic global optimization methods part ii: multi level methods. Math
Program 39(1):57–78. https://doi.org/10.1007/BF02592071

Larson J, Menickelly M, Wild SM (2019) Derivative-free optimization methods. Acta Numer 28:287–404.
https://doi.org/10.1017/S0962492919000060

Le Digabel S (2011) Algorithm 909: NOMAD: nonlinear optimization with theMADS algorithm. ACMTrans
Math Softw 37(4):1–15

Lewis R, Torczon V (2002) A globally convergent augmented lagrangian pattern search algorithm for opti-
mization with general constraints and simple bounds. SIAM J Optim 12(4):1075–1089. https://doi.org/
10.1137/S1052623498339727

Locatelli M (1998) Relaxing the assumptions of the multilevel single linkage algorithm. J Global Optim
13(1):25–42. https://doi.org/10.1023/A:1008246031222

Maratos N (1978) Exact penalty function algorithms for finite dimensional and control optimization problems.,
Department of Control Theory, Imperial College London. Retrieved from https://books.google.fr/books?
id=Ar2AtgAACAAJ

MATLAB (2015b) Natick, Massachusetts, The MathWorks Inc
McKay MD, Beckman RJ, Conover WJ (1979) A comparison of three methods for selecting values of input

variables in the analysis of output from a computer code. Technometrics 21(2):239–245. Retrieved from
http://www.jstor.org/stable/1268522

Michalewicz Z, Schoenauer M (1996) Evolutionary algorithms for constrained parameter optimization prob-
lems. Evol Comput 4(1):1–32. https://doi.org/10.1162/evco.1996.4.1.1

Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, New York
Powell MJD (1994) A direct search optimization method that models the objective and constraint functions

by linear interpolation. In: Gomez S, Hennart JP (eds), Advances in optimization and numerical analysis
(pp. 51–67). Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8330-5_4

Regis RG (2011) Stochastic radial basis function algorithms for large-scale optimization involving
expensive black-box objective and constraint functions. Comput Oper Res 38(5):837–853. https://
doi.org/10.1016/j.cor.2010.09.013. Retrieved from http://www.sciencedirect.com/science/article/pii/
S030505481000208X

Regis RG (2014) Constrained optimization by radial basis function interpolation for high-dimensional expen-
sive black-box problems with infeasible initial points. Eng Optim 46(2):218–243. https://doi.org/10.
1080/0305215X.2013.765000

Regis RG, Shoemaker CA (2005) Constrained global optimization of expensive black box functions using
radial basis functions. J Global Optim 31(1):153–171. https://doi.org/10.1007/s10898-004-0570-0

Regis RG, Shoemaker CA (2007) A stochastic radial basis function method for the global optimization of
expensive functions. INFORMS J Comput 19(4):497–509. https://doi.org/10.1287/ijoc.1060.0182

RiosLM,SahinidisNV (2013)Derivative-free optimization: a reviewof algorithms and comparison of software
implementations. J Global Optim 56(3):1247–1293. https://doi.org/10.1007/s10898-012-9951-y

Sampaio PR, Toint PL (2015) A derivative-free trust-funnel method for equality-constrained nonlinear opti-
mization. Comput Optim Appl 61(1):25–49. https://doi.org/10.1007/s10589-014-9715-3

Sampaio PR, Toint PL (2016) Numerical experience with a derivative-free trust-funnel method for nonlinear
optimization problems with general nonlinear constraints. OptimMethods Softw 31(3):511–534. https://
doi.org/10.1080/10556788.2015.1135919

Scheinberg K, Toint PL (2010) Self-correcting geometry in model-based algorithms for derivative-free uncon-
strained optimization. SIAM J Optim 20(6):3512–3532

Sendín JOH, Banga JR, Csendes T (2009) Extensions of a multistart clustering algorithm for constrained
global optimization problems. Ind Eng Chem Res 48(6):3014–3023. https://doi.org/10.1021/ie800319m

Zhang H, Conn A, Scheinberg K (2010) A derivative-free algorithm for least-squares minimization. SIAM J
Optim 20(6):3555–3576. https://doi.org/10.1137/09075531X

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1007/BF02592070
https://doi.org/10.1007/BF02592071
https://doi.org/10.1017/S0962492919000060
https://doi.org/10.1137/S1052623498339727
https://doi.org/10.1137/S1052623498339727
https://doi.org/10.1023/A:1008246031222
https://books.google.fr/books?id=Ar2AtgAACAAJ
https://books.google.fr/books?id=Ar2AtgAACAAJ
http://www.jstor.org/stable/1268522
https://doi.org/10.1162/evco.1996.4.1.1
https://doi.org/10.1007/978-94-015-8330-5_4
https://doi.org/10.1016/j.cor.2010.09.013
https://doi.org/10.1016/j.cor.2010.09.013
http://www.sciencedirect.com/science/article/pii/S030505481000208X
http://www.sciencedirect.com/science/article/pii/S030505481000208X
https://doi.org/10.1080/0305215X.2013.765000
https://doi.org/10.1080/0305215X.2013.765000
https://doi.org/10.1007/s10898-004-0570-0
https://doi.org/10.1287/ijoc.1060.0182
https://doi.org/10.1007/s10898-012-9951-y
https://doi.org/10.1007/s10589-014-9715-3
https://doi.org/10.1080/10556788.2015.1135919
https://doi.org/10.1080/10556788.2015.1135919
https://doi.org/10.1021/ie800319m
https://doi.org/10.1137/09075531X

	DEFT-FUNNEL: an open-source global optimization solver for constrained grey-box and black-box problems
	Abstract
	1 Introduction
	2 Multi-level single linkage
	3 The DEFT-FUNNEL solver
	3.1 Global search
	3.2 Local search
	3.2.1 Building the surrogate models
	3.2.2 Subspace minimization
	3.2.3 The normal step
	3.2.4 The tangent step
	3.2.5 Which steps to compute and retain
	3.2.6 Iteration types
	3.2.7 Criticality step

	3.3 Maintenance of the interpolation set and trust-region updating strategy
	3.4 Parameter tuning and user goals

	4 Numerical experiments
	4.1 Black-box optimization problems
	4.1.1 Budget-driven experiments
	4.1.2 Experiments driven by global minima

	4.2 Grey-box optimization problems

	5 Conclusions
	References

