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Abstract
We propose a numerical scheme based upon the Bernstein approximation method for com-
putational solution of a new class of Volterra integral equations of the third kind (3rdVIEs).
Construction of the technique and its practicality for proposed equations have been intro-
duced. Furthermore we have examined the numerability and convergence analysis of the
proposed scheme. Finally, we demonstrate a series of numerical examples demonstrating the
effectiveness of this new technique for solving 3rdVIEs.
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1 Introduction and preliminaries

In the early 1900s, Vito Volterra developed new types of equations for his work on the phe-
nomenon of population growth and called these equations integral equations. In more detail,
the integral equation is the equation that contains the unknown function under the integral
sign. Integral equations; arise in chemistry, biology, physics and engineering applications
modelled with initial value problems for a finite closed interval (Wazwaz 1997). There are
three basic kinds of integral equations, but in this study we focus on the third kind due to the
its characteristic properties than the others.

TheVolterra integral equations of the third kind (3rdVIEs) can be expressed in the literature
as follows:

xβ f (x) = xβg(x) + λ

∫ x

0

1

(x − t)α
K(x, t) f (t)dt, x ∈ [0, τ ], (1.1)
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where λ is constant, α ∈ [0, 1), β > 0, α + β ≥ 1. In addition to these, g(x) is a continuous
function on [0, τ ] and K(x, t) is continuous on the domain,

� = {(x, t) | 0 ≤ t < x ≤ τ },
such that

K(x, t) = tα+β−1K∗(x, t),

whereK∗(x, t) is a continuous function on� and f (·) is unknown function to be determined.
As it can be easily seen that the coefficient of the f (x) on the left-hand side of (1.1), which
causes to be 3rdVIEs different from the Volterra integral equations of the first and second
kind (denoted by 1stVIEs and 2ndVIEs, respectively), gives the characteristic feature to the
3rdVIEs. Therefore, they help us understand why this equations are called the third kind in
the literature. As a consequence of these, over the past century, there has been a dramatic
increase in the studies of the above-mentioned equations.

The existence and uniqueness theorems and regularity properties of the computational
solutions to the 3rdVIEs, including equations associatedwith for bothweakly singular kernels
(0 < α < 1) and smooth kernel (α = 0) have been presented in Allaei et al. (2015) for β > 1
and β ∈ [0, 1). Additionally, at the same study, the authors have provided the conditions for
g and K to obtain the cordial Volterra integral equations (cVIEs), for detailed information
about cVIEs see Vainikko (2009, 2010). Therefore, this enabled to apply to Eq. (1.1) some
derived consequences known for cordial equations. In addition these, the case of α + β > 1
has a special significance with regard to compactness. In more detail, if K∗(x, t) > 0, the
integral operator related to third kind Volterra integral equations in (1.1) is not compact. In
the circumstances, the classical computational techniques can not guarantee the solvability
of the third kind Volterra integral equations.

As it is understood, it follows from Allaei et al. (2015), that under certain conditions on
K(x, t), α and β the integral operator in the (1.1) is compact and then the algebraical system
resulting from the collocation technique is uniquely solvable for entire adequately small mesh
sizes.However, in the non-compact circumstances, generally, the solvability of the algebraical
systemwith equally distanced or gradedmesh is not guaranteed. That is to say, computational
approaches to obtain numerical solution of 3rdVIEs take an important place in the literature.
InAllaei et al. (2017), the authors have presented the spline collocation technique in the piece-
wise polynomial spaces directly to 3rdVIEs with noncompact operator. Additionally, in this
study, the authors show that the operator associated the equivalent 2ndVIEs is compact under
specific conditions which led the resultant system is uniquely computable for all adequately
small size mesh diameters. In addition to these, classical and adapted version of collocation
technique for solving 3rdVIEs for both linear and non-linear cases is explained, analysed
and tested detailed in Shayanfard et al. (2019, 2020) and Song et al. (2019). Moreover, a
spectral collocation technique, based upon the generalized Jacobi wavelets accompanied by
the Gauss–Jacobi numerical integration formula has been presented in Nemati et al. (2021).
Another approach for solving 3rdVIEs has been presented in Nemati and Lima (2018) by an
operational matrix. All these studies show that the 3rdVIEs is worth studying and researches
on this subject will increase day by day.

In addition to these, polynomials are one of the most widely usedmathematical tools since
they are easy to define, can be calculated quickly in the modern computer system and used to
express functions in a simple form. Therefore, they played a significant role in approximation
theory and numerical analysis for many years. Studies in approximation theory began when
Weierstrass proved that it is possible to approximate continuous functions with the help of
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polynomials. In 1912, Bernstein defined new polynomials called Bernstein polynomials in
the method used in the proof of the Weierstrass approximation theory Bernstein (1913).
In more detailed, for each bounded function on [0, 1], n ≥ 1 and x ∈ [0, 1], Bernstein
approximations are defined as

Bn( f ; x) =
n∑

k=0

Pn,k(x) f (k/n) , (1.2)

where Pn,k(x) = nCkxk(1 − x)n−k and nCk is binomial coefficient. A number of different
operators have been introduced and different generalizations have been made on the basis of
the linear and positive Bernstein operators that produced by Bernstein polynomials. Today,
studies are still carried out using these operators, Altomare and Leonessa (2006), Altomare
(2010), Altomare and Rasa (1999) and Usta (2020).

Throughout this and next sections, C[0, 1] is the space of whole continuous real valued
functions on [0, 1], endowed with the supremum norm ‖ · ‖∞ and the natural point-wise
ordering. In addition to these, if m ∈ N, the symbol Cm[0, 1] denote by the space of whole
continuously m-times differentiable functions on [0, 1].
Theorem 1 Let f ∈ C[0, 1]. Then, Bn( f ) converges to f uniformly on [0, 1].
Proof For detailed proof, see Powel (1981). �	

Furthermore, the well-recognized Voronovskaya type theorem for the classical Bernstein
operators (Bn)n≥1 was expressed as follows.

Theorem 2 Let f ∈ C2[0, 1], n ∈ N and 0 ≤ x ≤ 1. Then, the following inequality holds;
∣∣∣∣n(Bn( f ; x) − f (x)) − 1

2
x(1 − x) f ′′(x)

∣∣∣∣ ≤ 1

2
x(1 − x)ω̃

(
f ′′;

√
nx(1 − x) + 1

n2

)
,

where ω̃ is the least concave limit superior of the first order modulus of continuity denoted
by ω, satisfying for ε ≥ 0

ω( f ; ε) ≤ ω̃( f ; ε) ≤ 2ω( f ; ε).

Proof For detailed proof, see DeVore and Lorentz (1993). �	
In other words, one can state the above-mentioned theorem as follows, Bustamante (2017)

|Bn( f ; x) − f (x)| ≤ 1

2n
x(1 − x)‖ f ′′‖, (1.3)

which means the rate of convergence of the Bernstein operators is at least n−1 for f ∈
C2[0, 1].

In this direction, Maleknejad et al. (2011) introduced the new method for solving 1stVIEs
and 2ndVIEs using the Bernstein approximation method. In this work, they presented the
convergence analysis for the introduced methods using the Voronovskaja type theorem for
classical Bernstein approximation. Additionally, Usta et al. (2021) have extended this work
using the Szasz–Mirakyan operators to solve 1stVIEs and 2ndVIEs and presented conver-
gence properties of the introduced method.

In this study, motivated by the above studies, we construct a numerical scheme to solve
3rdVIEs bymeans of Bernstein approximationmethod.Wewill then give convergence analy-
sis results to prove that the solution technique we proposed is theoretically consistent. Finally
we will strengthen our claim with numerical results.
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The rest of the presented manuscript is constructed as follows: in Sect. 2, the construction
of the technique is presented, along with the Bernstein approximation method. In Sect. 3,
the convergence analysis of introduced methods is given with the help of Voronovskaja type
theorem of Bernstein operators. Numerical examples are presented in Sect. 4, while some
concluding remarks and farther directions of study are discussed in Sect. 5.

2 Construction of the numerical scheme

The main goal in this part is to construct a numerical scheme to solve 3rdVIEs with the
aid of Bernstein approximation method in a simple one dimensional setting. In line with this
objective, we tackle the 3rdVIEs given in (1.1). To solve 3rdVIEs computationally, firstly, we
need to approximate the unknown function f (x) which need to be determined, as follows,

f (x) ≈ Bn( f (x)) =
n∑

k=0

Pn,k(x) f (k/n) , (2.1)

where Pn,k given as above. Since Bernstein approximation is valid for the functions defined
on [0, 1], let us consider the following third kind Volterra integral equation, that is to say,

xβ f (x) = xβg(x) + λ

∫ x

0

1

(x − t)α
K(x, t) f (t)dt, x ∈ [0, 1].

For computationally solving of this kind of integral equation, we approximate the unknown
function f by (2.1). In other words, by direct substitution of the expansions for f (x) into
3rdVIEs, we deduce that,

xβBn( f (x)) = xβg(x) + λ

∫ x

0

1

(x − t)α
K(x, t)Bn( f (t))dt, (2.2)

then we have

xβ
n∑

k=0

Pn,k(x) f (k/n) = xβg(x) + λ

∫ x

0

1

(x − t)α
K(x, t)

n∑
k=0

Pn,k(t) f (k/n) dt,

which yields,

n∑
k=0

f (k/n)

[
xβPn,k(x) − λ

∫ x

0

1

(x − t)α
K(x, t)Pn,k(t)dt

]
= xβg(x).

It is outstanding to emphasise here that it is required to change x with xi = i/n + ε,
where ε is arbitrary small number, before one determines the unknown coefficients f (k/n),
k = 0, 1, . . . , n. In other words, in order to avoid from singularity problem, we can select for
xi , i = 0, 1, 2, . . . , n any other distinct values in [0, 1] except singular values of our integral
equation, that is to say, xi = i/n + ε, i = 0, 1, 2, . . . , n − 1 and xn = 1 − ε. So we can
express in matrix notation the fully discretized 3rdVIEs as follows,

[α][X] = [β],
where

[α] =
[
xβ
i Pn,k(xi ) − λ

∫ xi

0

1

(xi − t)α
K(xi , t)Pn,k(t)dt

]
n×n

, i, k = 0, 1, · · · , n,
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[β] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

xβ
0 g(x0)

xβ
1 g(x1)

...

...

xβ
n g(xn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
n×1

, [X] =

⎡
⎢⎢⎢⎢⎢⎢⎣

f (0)
f (1/n)

...

...

f (1)

⎤
⎥⎥⎥⎥⎥⎥⎦
n×1

, (2.3)

where α is a n × n matrix and β and X are n × 1 vectors. These are the matrices that will be
the essential part in the Matlab implementation. Then, in an effort to compute the array of x,
first of all, we are in need of to calculate matrix α and vector β computationally. By the end
of this process, accordingly, we will deduce X vector with n components. Eventually, when
we specify the vector X we can obtain the approximate computational solution of 3rdVIEs.

It is note that, we can show f (k/n), k = 0, 1, 2, . . . , n by fn(k/n), k = 0, 1, 2, . . . , n
that are our solution in nodes k/n, k = 0, 1, 2, . . . , n and by substituting them in (1.2), we
can findBn( fn(xk)), k = 0, 1, 2, . . . , n that is a solution for the third kind Volterra integral
equation (1.1).

Now we provide an error bound for the scheme presented above in the following theorem.

3 Convergence analysis

Now, we focus on the converge analysis of the proposed solution technique to vali-
date it theoretically. In parallel with this purpose, we need to find an upper bound for
supxi∈[0,1] | f (xi )−Bn( fn(xi ))|where it must go to zero in limit case. The following theorem
show that the numerical solution of the 3rdVIEs convergence the exact one with larger n.

Theorem 3 Consider the 3rdVIEs given in (1.1). Assume thatK(x, t) is continuous kernel on
the square [0, 1]2 and α is a matrix given in (2.3). Then assume that the numerical solution
of 3rdVIEs given in (1.1) belong to (C ∩ L2)([0, 1]). If the matrix α is invertible, then the
following inequality holds,

sup
xi∈[0,1]

| f (xi ) − Bn( fn(xi ))| ≤ 1

8n
‖ f

′′ ‖ [
1 + (1 + ∇)‖α−1‖)] ,

where

∇ = sup
xi ,t∈[0,1]

∣∣∣∣λ 1

(xi − t)α
K(xi , t)

∣∣∣∣ ,
and f (x) is the exact solution, Bn( fn(x)) is the numerical solution of the introduced tech-
nique, xi = i/n for i = 0, 1, . . . , n.

Proof Thanks to the well-known triangular inequalities, we have

sup
xi∈[0,1]

| f (xi ) − Bn( fn(xi ))| ≤ sup
xi∈[0,1]

| f (xi ) − Bn( f (xi ))| + sup
xi∈[0,1]

|Bn( f (xi ))

− Bn( fn(xi ))|,=: A1 + A2. (3.1)

So, finding an upper limit forA1 andA2 will be enough to conclude the proof. Let begin with
A1. With the aid of the Voronovskaya type theorem given in (1.3), we obtain the following
upper bound for A1.

A1 = sup
x∈[0,1]

| f (x) − Bn( f (x))| ≤ 1

2n
x(1 − x)‖ f ′′‖ ≤ 1

8n
‖ f ′′‖. (3.2)

123



161 Page 6 of 11 F. Usta

Then it is enough to find an upper bound forA2 to finalize the proof of theorem. If we replace
f (·) with Bn( f (·)) in the equation

xβg(x) = xβ f (x) − λ

∫ x

0

1

(x − t)α
K(x, t) f (t)dt, (3.3)

then the function g(x) in the left hand side of the above equation is switch by a new function
which we denote by h(x). So we get

xβh(x) = xβBn( f (x)) − λ

∫ x

0

1

(x − t)α
K(x, t)Bn( f (t))dt . (3.4)

Using the (3.3) and (3.4), we deduce the following inequality,

xβ [g(x) − h(x)] = xβ [ f (x) − Bn( f (x))] − λ

∫ x

0

1

(x − t)α
K(x, t)[ f (t) − Bn( f (t))]dt .(3.5)

Then using (3.5) and (1.3), we obtain that

sup
xi∈[0,1]

|xβ
i [g(xi ) − h(xi )]| = sup

xi ,t∈[0,1]

∣∣∣xβ
i [ f (xi ) − Bn( f (xi ))]

− λ

∫ xi

0

1

(xi − t)α
K(xi , t)[ f (t) − Bn( f (t))]dt

∣∣∣∣ ,
≤ sup

xi∈[0,1]

∣∣∣xβ
i [ f (xi ) − Bn( f (xi ))]

∣∣∣

+ sup
xi ,t∈[0,1]

∣∣∣∣λ
∫ xi

0

1

(xi − t)α
K(xi , t)[ f (t) − Bn( f (t))]dt

∣∣∣∣ ,
≤ sup

xi∈[0,1]

∣∣∣xβ
i [ f (xi ) − Bn( f (xi ))]

∣∣∣

+ sup
xi ,t∈[0,1]

∣∣∣∣λ 1

(xi − t)α
K(xi , t)[ f (t) − Bn( f (t))]

∣∣∣∣ ,
≤ sup

xi∈[0,1]

∣∣∣xβ
i [ f (xi ) − Bn( f (xi ))]

∣∣∣

+ sup
xi ,t∈[0,1]

∣∣∣∣λ 1

(xi − t)α
K(xi , t)

∣∣∣∣ sup
xi∈[0,1]

|[ f (t) − Bn( f (t))]| ,

≤ 1

8n
‖ f

′′ ‖ + ∇ 1

8n
‖ f

′′ ‖,

= (1 + ∇)
1

8n
‖ f

′′ ‖. (3.6)

On the other hand, we have [α][X] = [β] and [α][X̃] = [β̃], where
[X] = [Bn( fn(xi ))], [β] = [xβg(xi )], [X̃] = [Bn( f (xi ))], [β̃] = [xβh(xi )],

therefore using (3.6), we have

Bn( f (x)) − Bn( fn(x)) = α−1xβ [h(x) − g(x)],
which yields,

A2 = sup
xi∈[0,1]

|[Bn( f (xi )) − Bn( fn(xi ))]| ≤ ‖α−1‖ sup
xi∈[0,1]

∣∣∣xβ
i [g(xi ) − h(xi )]

∣∣∣ ,
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≤ (1 + ∇)
1

8n
‖α−1‖ · ‖ f

′′ ‖. (3.7)

Finally, by substituting (3.7) and (3.2) into (3.1), we get the desired results thus the proof is
completed. �	

The drawback of the Theorem 3 is the error bound of the scheme contains the quantity
‖α−1‖. Hence, in the following Lemma using extra condition, we found a bound for ‖α−1‖
and condition number of α.

Lemma 1 Suppose that the same circumstances in previous theorem hold. Let I is the n × n
identity matrix and ‖ · ‖ is the maximum norm of rows. In the given circumstances, we have

cond(α) ≤ 1 + ∇1

1 − ∇2
,

such that

‖α − I‖ = ∇2 < 1,

where ∇1 = maxi |λ| ∫ xi
0

1

(xi − t)α
|K(xi , t)|dt .

Proof Let us begin with finding an upper bound ‖α‖ utilizing (2.3), as follows

‖α‖ = max
i

n∑
k=0

∣∣∣∣xβ
i Pn,k(xi ) − λ

∫ xi

0

1

(xi − t)α
K(xi , t)Pn,k(t)dt

∣∣∣∣ ,

= max
i

∣∣∣∣xβ
i − λ

∫ xi

0

1

(xi − t)α
K(xi , t)dt

∣∣∣∣ ,

≤ max
i

[
1 + |λ|

∫ xi

0

1

(xi − t)α
|K(xi , t)|dt

]
,

≤ (1 + ∇1).

Then, we need to find another upper bound for ‖α−1‖. For that, we have
‖�‖ = ‖α − I‖ = ∇2 < 1.

Due to the geometric series theorem, we conclude that

‖α−1‖ = ‖(I + �)−1‖ ≤ 1

1 − ‖�‖ = 1

1 − ∇2
.

Therefore,

cond(α) = ‖α‖‖α−1‖ ≤ 1 + ∇1

1 − ∇2
,

thus the desired result has been obtained. �	

4 Numerical results

So far this manuscript has focused on the construction of the numerical solution procedure
of 3rdVIEs and the convergence analysis. In this section we will present and test various
constructive computational experiments to demonstrate the proficiency of our numerical
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Table 1 Bernstein approximation
results for 3rdVIEs with ε = 0.01
for different values of n

1st experiment
Max-Err Rms-Err Time

Number of grids

5 8.429772e−05 3.703985e−05 0.088461

10 2.104560e−06 6.797969e−07 0.154026

15 1.858041e−07 5.003889e−08 0.260149

20 1.908159e−08 5.458331e−09 0.404387

25 3.003613e−09 9.875713e−10 0.589637

30 1.027688e−09 2.757048e−10 0.815464

algorithm for solving 3rdVIEs. Henceforward, Max-Err stands for the maximum modulus
error, i.e., ‖ f (x)−Bn( fn(x))‖, and Rms-Err stands for the standard root mean squared error,
i.e. √∑Neval

i=1 | f (xi ) − Bn( fn(xi ))|
Neval

,

where f (x) is the exact solution 3rdVIEs, Bn( fn(x)) is the approximate solution 3rdVIEs,
and Neval is the number of the test points. Time represents the CPU time consumed in each
numerical examples. All these examples have been performed in MATLAB because it is
convenient for our algorithm.

4.1 Experiment 1

(Nemati et al. 2021) We first consider the following 3rdVIEs,

x1/2 f (x) = x2 − B

(
1

2
,
9

2

)
x4 +

∫ x

0

1

(x − t)1/2
t2 f (t)dt, 0 ≤ x ≤ 1,

where B(p, q) is the Beta function defined by,

B(p, q) =
∫ 1

0
r p−1(1 − r)q−1dr ,

for p, q > 0. The exact solution of the above 3rdVIEs here is f (x) = x3/2, and ε = 0.01.
In Table 1, we present the maximum error, root mean square error and the CPU time for

the solution of the first experiment for different values of n. Additionally, in Fig. 1, we draw
the exact solution and approximate solution of 3rdVIEs at the same Figure. Both Table and
Figure show that, the proposed method provide the reliable numerical solution method for
3rdVIEs. Additionally, the last column of Table 1 shows the computational time of algorithm.

4.2 Experiment 2

(Nemati et al. 2021) Now, let consider another example given as below,

x2/3 f (x) = x47/12
(
1 − 
 (1/3) 
 (55/12)

π
√
3
 (59/12)

)
+

∫ x

0

√
3

3π
t1/3

1

(x − t)2/3
f (t)dt, 0 ≤ x ≤ 1.

The exact solution of the above 3rdVIEs here is f (x) = x13/4, and ε = 0.001.
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Fig. 1 Numerical solution of 3rdVIEs via Bernstein approximation technique: exact solution (blue-line),
Bernstein approximation technique of 3rdVIEs (red-circle) (colour figure online)

Table 2 Bernstein approximation
results for 3rdVIEs with
ε = 0.001 for different values of
n

2nd experiment
Max-Err Rms-Err Time

Number of grids

3 7.207543e−04 4.192187e−04 0.079473

5 2.031829e−05 9.057481e−06 0.135934

7 3.058573e−06 1.292000e−06 0.260526

9 1.699888e−06 8.148023e−07 0.400485

11 1.682356e−06 7.748719e−07 0.579480

Similarly, in the first round of the second experiment, in Table 2, we present the maximum
error, root mean square error and the CPU time for the solution of the second experiment for
different values of n. In addition to this, in Fig. 2, we plot the exact solution and approximate
solution of 3rdVIEs at the same figure.

It can be easily seen that it is immediately obvious from these results, both table and figure
show that, the proposed method provide the reliable numerical solution method for 3rdVIEs.

4.3 Experiment 3

(Shayanfard et al. 2019) Finally, we present the last experiment to show the reliability of the
method as follows

x f (x) = x2
(
1 − x

3

)
+

∫ x

0
t f (t)dt, 0 ≤ x ≤ 1.

The exact solution of the above 3rdVIEs here is f (x) = x , and ε = 0.01.
Finally, in Table 3, we present the maximum error, root mean square error and the CPU

time for the solution of the first experiment for different values of n. Furthermore, in Fig. 3,
we draw the exact solution and approximate solution of 3rdVIEs at the same figure. We see
from the table and figure that the proposed method provide the reliable numerical solution
method for 3rdVIEs. Again, the last column of Tables 2 and 3 demonstrate the CPU time of
algorithm.
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Fig. 2 Numerical solution of 3rdVIEs via Bernstein approximation technique: exact solution (blue-line),
Bernstein approximation technique of 3rdVIEs (red-circle) (colour figure online)

Table 3 Bernstein approximation
results for 3rdVIEs with ε = 0.01
for different values of n

3rd experiment
Max-Err Rms-Err Time

Number of grids

3 4.085274e−15 2.047346e−15 0.074066

5 2.949030e−16 1.387273e−16 0.088938

7 3.884046e−15 1.385783e−15 0.111189

9 6.349088e−16 2.530961e−16 0.139295

11 1.221245e−15 3.603997e−16 0.170513

Fig. 3 Numerical solution of 3rdVIEs via Bernstein approximation technique: exact solution (blue-line),
Bernstein approximation technique of 3rdVIEs (red-circle) (colour figure online)

In this section, it has been provided a series of the numerical experiments and these show
that the proposed method can be applied successfully for solving 3rdVIEs. Especially, this
method provide good results in the small number of iteration.
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5 Concluding remarks

In the existing paper, we proposed and tested a numerical scheme based upon the Bernstein
approximation technique for solving a new class of 3rdVIEs. Construction of the technique
and its practicality for presented equations have been introduced. in additional to these, we
have examined the numerability and convergence analysis of the proposed scheme. At the
end of the paper, we tested a series of numerical examples demonstrating the effectiveness
of this new technique for solving 3rdVIEs.
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