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Abstract
Transport and logistics networks are more complex than ever before. Complex networks
and limitation of available capacities make flow processing schedule (FPS) a challenging
problem to ensure customer satisfaction and profitability. This paper addresses an integrated
hub location and flowprocessing schedule problem (HLFPSP) to determine hub locations, the
allocated traffic flows and the optimal FPS at hubs under capacity constraints. Specifically, in
an air transport network, the optimal FPS leads to optimal flight scheduling. The problem is
formulated as a mixed-integer linear programming (MILP) model to minimize total tardiness
costs (at operational level) and hub construction costs (at strategic level), simultaneously. The
developedmodel is utilized to solve small-size hub location-scheduling problems. To provide
a good solution in a reasonable time, the Lagrangian relaxation algorithm is employed. Based
on the data from 80 airports in Turkey, the application of problem in real world is showed and
the efficiency of the proposed solution methods is evaluated. Finally, a number of sensitivity
analyses and managerial insights are provided to enrich the computational results.

Keywords Hub location · Flow processing schedule · Total tardiness · Mixed-integer linear
programming · Lagrangian relaxation algorithm · Heuristic algorithm

Mathematics Subject Classification 90B06 · 90B35

1 Introduction

Hubs are special facilities that act as switching, transshipment and sorting points in many-to-
manydistribution systems [seeO’kelly (1987) andErnst andKrishnamoorthy (1996)]. Instead
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of serving each origin–destination pair independently, hub facilities concentrate flows to take
advantage of economies of scale. Flows from the same origin with different destinations are
consolidated on their route to the hubs and then split and re-consolidated with flows of other
origins for similar destinations [see Alumur and Kara (2008)]. Hub location problems (HLP)
examine potential location of facilities through which flows of passengers or freights are to
route from origins to destinations. Literature of hub location problems aims to find suitable
location for the hubs to enhance the network performance. Reviewing the HLP literature
shows two main trends over the past couple of decades. First is the increasing use of hub-
and-spoke network structure in research and practice, which can be witnessed by geometric
growth of published papers in the field. And second, is more complex logistics network
requiring sophisticated algorithms to solve the models, which has promoted the increasing
application of heuristic solution methods [see Farahani et al. (2013), Campbell and O’Kelly
(2012) and Alumur and Kara (2008)].

In recent years, diversification of services has been considered by transportation compa-
nies. These diverse and sometimes exclusive services are their competitive advantages. One
of these services is to provide express service for special customers to deliver passengers
or freights to their destinations. To do this, tight due dates are set for some flows, and the
company will be subject to penalties commensurate with the amount of tardiness if the cargo
is delivered after due date. High-speed delivery with no latency makes a competitive envi-
ronment for the firms (Karimi and Setak 2018). Some of them, like FedEx, apply a money
back guarantee if quoted delivery time is missed even by as little as 60 s. Another example is
related to aviation compensation laws in the European Union. In the European Union, Flight
Compensation Regulation 261/2004 states that flight delays for over 3 h entitle passengers
to a compensation from e250 up to e600 per passenger from the airline (2004). Therefore,
it is very important to pay attention to delivery times in a transportation network.

The distribution network topology significantly impacts distribution time and cost (Karimi
and Setak 2018). Hub location problem is a well-known network design problem which
effectively handles the time-definite service (Campbell 2009). In a hub network, the delivery
time is a function of two decisions. The first is the routing of the flow under the hub network,
which directly affects the distance and travel time. The second is the flow processing schedule
at each hub, which can affect the waiting time of the flow for in-hub services, especially in
congested hubs. According to Levin (2007) study, one of the main reasons for flight delays is
congestion in air traffic. Transportation companies use hub-and-spoke network structure to
reduce transportation costs through consolidation of flows. Such a decision may cause flow
congestion in some hubs, and therefore there is a need to properly schedule the processing of
flow at each hub to minimize delivery times. On the other hand, introducing flow processing
schedule into hub location problems is necessary to efficiently design hub networks, as
integrated decisions may have an effect on the optimal hub locations.

Based on the definitions, HLP is a strategic decision and the problem is mostly solved
independently from requirements of tactical and operational planning. However, it should
be noted that decisions at the strategic level will directly affect decisions at the operational
planning level, and therefore their separate planning may lead to decisions that are far from
optimal [see Badri et al. (2013)]. Suppose that the optimal location of the hubs and the flow
allocation be determined without considering FPS. So, such a decision may negatively affect
the total tardiness. The total tardiness may be reduced by changing the location of the hubs
or by allocating flows or both. In a real case, we know that some FPS features such as due
dates and release times may change on a much shorter time scale, but the amount of flow (the
number of jobs) that must be scheduled in each hub (machine environment) as well as its
capacity (number of parallelmachines) are affected by strategic planning, i.e. hub location and
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flow allocation to them. Therefore, creating a trade-off between these two levels of planning
seems necessary. It should be noted that in this study, these two levels of decisions are made
in the same time scale. While, in classic HLP, it is not possible to calculate and minimize the
tardiness times of passengers or freights, simultaneously. This paper addresses this gap and
considers both hub location and flow processing schedule problems. This issue has not been
addressed in the literature to date. However, there are research in the literature on considering
operational decisions in HLP that indicate the importance of considering integrated decisions
in this scope [see Zhang et al. (2017), Karimi and Setak (2018), Masaeli et al. (2018) and
Charisis et al. (2020)].

Operational characteristics related to in-hub services stimulate the primary motivation
of this study. Besides that, changing the approach to resource planning in the hub network
is another motivation of this research. Operations at the hubs are limited by their capacity,
which also makes the flow processing plan more challenging. To formulate the capacitated
hub location problem, the common approach is to consider the hub capacity over a given
time period, which is calculated based on net capacity times the length of time period [e.g.
da Graça Costa et al. (2008), Correia et al. (2013) and Kumar and Sivakumar (2013)]. In
this approach the capacity is nonrenewable, meaning that the available capacity of a hub gets
updated when a flow is allocated to the hub but it is not re-calculated when the transiting flow
leaves the hub. In the literature, a large number of research have used this approach because
their planning is at a strategic level. The other approach, renewable capacity, is to investigate
the hub capacity per unit of time. So, the capacity is utilized as long as the flow resides at
the hub and becomes available when the flow leaves. What is happening in the real world
is closer to the second approach. For example, if we consider the number of runways as a
limited capacity resource in the hub, this resourcewill only be usedwhen the aircraft occupies
the runway. As soon as the aircraft leaves it, the available capacity of the resource increases.
Although it is necessary to consider the latter approach for flow processing schedule at each
hub, it is more complicated and less employed in the literature. In fact, another contribution
of this paper is to incorporate the capacity constraint based on renewable capacity approach
in the model.

The formal path of this research field goes back to the paper published by Toh and Higgins
(1985) on the application of hubs in airport business. Motivated by Toh and Higgins’s idea
on hub location, O’Kelly (1986a,1986b,1987) published the first mathematical modeling and
solution methods for HLP. After O’kelly, several modeling efforts and solution methods have
been presented in the literature. To learn more about the various models of the hub location
and classification review of that kind of problems, you can see Alumur et al. (2020) research.

Planning the airport operations is one the main applications of FPS problem. It seems
that the literature on this subject is not very rich. Brueckner and Zhang (2001) provided a
comprehensive economic analysis of scheduling decisions in airline networks. McWilliams
(2005) investigated the scheduling problem in freight consolidation terminals in parcel deliv-
ery industry. The unloading inbound trucks were scheduled for a fixed number of cross-docks
with the goal of minimizing time span for transfer operation. The truck scheduling was done
through a simulation-based genetic algorithm to search for new solutions. McWilliams et al.
(2005, 2008, 2010) proposed different solutionmethods including genetic algorithm and sim-
ulated annealing to schedule the trailers to the unload docks in the parcel delivery industry.
Lu et al. (2015) designed a timetable for managing airport which is a new access service
provided by the airport with the purpose of attracting more passengers. Zhang et al. (2017)
considered an integrated plane assignment and hub location problem for the air-cargo deliv-
ery service. They present two different MIP model to integrate hub location, flow allocation
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and plane scheduling and also developed a two-stage hybrid algorithm for solving large-size
instances.

Recently, some researchers have investigated flow shipment scheduling in a hub location
problem. This problem is introduced by Masaeli et al. (2018) for the first time. Based on
their definition, shipment scheduling seeks to determine the number of vehicles dispatched
from the hubs at different times and does not pay attention to the flow processing schedules
at each hub. It was supposed that the capacity of the hubs is unconstraint while the capacity
of vehicles is limited. It is also assumed that shipment schedules are to be defined only
within the inter-hub links. Karimi and Setak (2018) developed a bi-objective model for flow
shipment scheduling problem in an incomplete hub location-routing network. They present
mathematical programming models in deterministic and stochastic environments when flow
arrivals follow a piecewise linear form. Also, Charisis et al. (2020) introduced the problem of
locating leasing hubs and their optimal leasing schedule. They proposed a linear programming
model to achieve the optimal solution.

As can be seen, the problems of hub location and flow processing schedule under renew-
able capacity constraint are not formulated and solved simultaneously, while the importance
of tactical and operational requirements cannot be denied. This paper investigates the hub
capacity from renewable capacity approach that is directly influenced by operational schedul-
ing (e.g. incoming and outgoing time) of the flows. If a general pattern for the flows between
different origins and destinations can be estimated, that estimation can be used for better
decision making regarding the hub locations. The main purpose of this paper is to develop
an integrated hub location and flow processing schedule (HLFPS) problem to minimize the
total construction and operational cost. This model uses the information of flow patterns to
firstly solve the hub location problem and then generate the preliminary schedule for the
processing of flows.

The developed model investigates the choice of hub airports, where the flights scheduling
depends on airport runway constraints for aircraft servicing (such as refueling, maintenance,
etc.). Considering the limitations on the number of runways, a mixed-integer linear pro-
gramming model is presented for flow processing schedule to minimize total tardiness and
total cost of hub construction. The problem is large scale and an optimal solution cannot be
achieved in a reasonable time. Considering the high number of nodes, a Lagrangian relax-
ation (LR) method is employed to solve the problem for a good lower bound. In addition,
performance of the proposed solution method is compared with an optimal solution and an
upper bound heuristic algorithm for small-size problems.

The remaining parts of this paper are organized as follows. The problem is introduced and
a mixed-integer linear programming model is developed in Sect. 2. To solve the problem in
large-size settings, Sect. 3 proposes a solution algorithm based on the Lagrangian Relaxation
where a heuristic method is used to obtain the upper bound at each iteration. Computational
results are elaborated in Sect. 4 and paper concludes with discussion on the results and
suggestions for future research.

2 Problem formulation

To formulate the HLFPS problem, we consider a network with N nodes. Some of the nodes
can be selected to act as hub and to provide the following two major functions: (1) switching,
sorting, or connecting (SSC) function, and (2) consolidation/break-bulk (CB) function. The
SSC function facilitates redirections of the flows and allows many origins and destinations to
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be connected with fewer links than a fully connected network. The CB function allows flows
to be aggregated and disaggregated to decrease the total cost through economies of scale.
Each flow is recognizable based on its origin–destination. They have a predetermined release
time and the due date for arrival of the flow at destination is known. The flow processing
preemption is not allowed and hubs have limited capacity for simultaneous processing of
flows. If a flow is assigned to a hub with fully occupied capacity, it has to wait in a queue
that may lead to delayed arrival at destination. A fully connected network is very expensive
to run, because not all the direct routes can exploit the economies of scale and cover the
associated costs. In addition, the required functions for preparation of the flows (e.g. sorting,
consolidating, and break-bulking) require that the flows pass through at least one and at most
two hubs.

This problem is a single allocation hub location problem where each demand point is
attached only to one hub. The planning horizon is T , over which the flows’ scheduling is
done. The objective function is to minimize the total tardiness costs plus the homologized
costs of hub construction. Homologized cost of hub construction is obtained by dividing
the cost to establish a hub by the length of the planning horizon. Please remember that the
transportation cost is included as indirect cost in the total tardiness cost function. Table 1
provides the definitions of the parameters and variables.

Based on the defined parameters and decision variables, the HLFPS Problem is formulated
as follows:

Min f =
∑

k

fk zk+β
∑

i j

Ti j . (1)

Subject to:
∑

k

∑

l

xi jkl = 1∀i j(i �= j), (2)

∑

l

xi jkl ≤ zk ∀k, i j(i �= j), (3)

∑

k

xi jkl ≤ zl ∀l, i j(i �= j), (4)

yt1i jk ≤
∑

l

xi jkl ∀k, t, i j(i �= j), (5)

yt2i jl ≤
∑

k

xi jkl ∀l, t, i j(i �= j), (6)

∑

k

∑

t

yt1i jk = 1∀i j(i �= j), (7)

∑

l

∑

t

yt2i jl +
∑

l

xi jll = 1∀i j(i �= j), (8)

∑

i j

Ri j

⎛

⎝
t∑

u=t−vk pi j+1

yu1i jk

⎞

⎠ +
∑

i j

Ri j

⎛

⎝
t∑

u=t−vk pi j+1

yu2i jk

⎞

⎠ ≤ Ckzk ∀k, t, (9)

∑

t

t yt1i jk ≥
∑

l

(
xi jkl

(
ri j + tik Dik

)) ∀k, i j(i �= j), (10)

∑

t

t yt2i jl + M
(
1 − xi jkl

) ≥
∑

t

t yt1i jk + vk pi j + αtkl Dkl ∀i j(i �= j), k, l(k �= l) (11)

Ti j ≥
∑

k

∑

t

t yt1i jk +
∑

k

∑

l

(
xi jkl

(
vl pi j + tl j Dl j

)) − di j ∀i j(i �= j), (12)
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Table 1 Parameters and decision variables

Description Values taken

Indices

I Index of origin nodes 1,2,…,N

J Index of destination nodes 1,2,…,N

k, l Index of hubs 1,2,…,N

T Index of time 1,2,…,T

Parameters

rij Release time of the flow from origin i to destination j

pij Processing time of the flow from origin i to destination j at each hub

Rij Size of the flow from origin i to destination j

M A positive big number

Dij The distance between node i and j

tij The transportation time for an unit of distance from node i to node j

dij Due date of the flow from origin i to destination j

f k Fixed homologized cost to establish a hub at node k

Ck Capacity of hub at node k

vk Velocity of flow processing at hub k

β Time to cost coefficient

α Discount coefficient for transportation time between two hubs

Decision variables

Tij Tardiness of the flow from origin i to destination j Nonnegative

zk Equal to 1 if a hub is located at node k 0,1

xijkl Equal to 1 if flow from origin i to destination j goes through the hubs located at
nodes k and l

0,1

yt1i jk Equal to 1 if the process of flow from node i to node j starts at time t at hub k (as
the first hub)

0,1

yt2i jl Equal to 1 if the process of flow from node i to node j starts at time t at hub l (as
the second hub)

0,1

Ti j ≥
∑

l

∑

t

t yt2i jl +
∑

k

∑

l

(
xi jkl

(
vl pi j + tl j Dl j

)) − di j ∀i j(i �= j), (13)

{
zk, xi jkl , yt1i jk, y

t
2i jl ∈ {0, 1} ∀i, j, k, l, t

Ti j ≥ 0 ∀i, j . (14)

The objective function minimizes hub construction cost and total tardiness costs. The β

coefficient is tardiness penalty costs per unit timewhich include special services to passengers,
delay penalties fees are paid to them and other imposed transportation costs. It should be
noted that these costs can be different for each route; however, to simplify the model, here,
it is assumed that for all routes, these costs are fixed. Constraint (2) ensures the flow passes
through minimum one and maximum two hubs from origin to destination. Constraints (3)
and (4) state that if no hub is formed at a node, then that node does not perform the hub
functions. Constraints (5) and (6) necessitate starting the flow processing only at the hubs.
Constraint (7) guarantees that each flow is allocated to a hub (called “the first hub”), and
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the hub function is done only once. Constraint (8) is to assure one-hub or two-hub route is
selected. So, if the flow is planned to be routed on a one-hub route, the binary variable yt2i jl
becomes 0 for all other hubs (i.e. there is not a second hub in the chosen route). Constraint
(9) controls the capacity limitation and prevents the flows from being allocated to the hubs
more than the available capacity at any given time. The capacity used for one-hub routes is
calculated based on the first component in Eq. (9) and the second component controls the
used capacity for two-hub routes. Constraints (10) and (11) indicate that the start time of
processing for each flow at the first (or second) hub should not be earlier than the arrival
of that flow to the hub. In constraint (11), the beginning of processing at the second hub is
not calculated for one-hub routes, because according to relation (8) this is always equal to 0.
Constraint (12) and (13) are to calculate the tardiness for each flow at its destination. If the
flow ij is travelled through a one-hub route, then the start time for process at the second hub
is zero and its tardiness will be calculated based on constraint (12). If the arrival time for a
flow is earlier than its due date, then its tardiness will be 0 (i.e. the early arrival of the flow
at its destination would not incur any penalty for the system). Finally, constraint (14) defines
the decision variables of the problem.

3 Lagrangian relaxation algorithm

3.1 Lagrangian relaxationmodel

The Lagrangian relaxation (LR) is one of the well-known methods for calculating lower
bounds in combinational minimization problems. By eliminating complicated constraints of
the problem and adding them with Lagrange multiplier to the objective function as penalties,
this method attempts to facilitate the solution process. The Lagrangian relaxation problem
is solved recursively and the multipliers are updated at each iteration. The sub-gradient
optimization technique is used to update multipliers mostly. For a review on the LR methods
and techniques, see Guignard (2003).

Constraints (3) and (4) can be eliminated from the developed model, and can be added to
the objective function using the multipliers of μl,ij and λk,ij. Also, the solution process can
be facilitated through relaxing constraint (9) and adding it to the objective function with the
multiplier γkt . This procedure gives the updated Lagrangian goal function as follows:

L(λ, μ, γ ) = Min
∑

k

fk zk + β
∑

i j

Ti j

+
∑

i j

∑

k

λk,i j

(
∑

l

xi jkl − zk

)
+

∑

i j

∑

l

μl,i j

(
∑

k

xi jkl − zl

)

+
∑

k

∑

t

γkt

⎛

⎝
∑

i j

Ri j

⎛

⎝
t∑

u=t−vk pi j+1

yu1i jk

⎞

⎠ +
∑

i j

Ri j

⎛

⎝
t∑

u=t−vk pi j+1

yu2i jk

⎞

⎠ − Ckzk

⎞

⎠.

(15)

S.t:
Constraints (2), (5)–(8), (10)–(14).
To simplify the above model, we define t1i jk , t

2
i jl as two new variables, where t1i jk =∑

t
t yt1i jk indicates the start time of the processing of the flow ij at hub k as the first hub; and
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t2i jl = ∑
t
t yt2i jl shows the start time of the processing of the flow ij at hub l as the second

hub. Accordingly, the model L(λ, μ, γ ) can be rewritten as below:

L(λ, μ, γ ) = Min
∑

k

fk zk

+ β
∑

i j

max

(
∑

l

t2i jl +
∑

k

∑

l

(
xi jkl

(
vl pi j + tl j Dl j

)) − di j ,
∑

k

t1i jk

+
∑

k

∑

l

(
xi jkl

(
vl pi j + tl j Dl j

)) − di j , 0

)

+
∑

i j

∑

k

λk,i j

(
∑

l

xi jkl − zk

)
+

∑

i j

∑

l

μl,i j

(
∑

k

xi jkl − zl

)

+
∑

i j

∑

k

∑

l �=k

xi jkl

⎛

⎜⎝Ri j

⎛

⎜⎝
t1i jk+vk pi j−1∑

t=t1i jk

γkt +
t2i jl+vl pi j−1∑

t=t2i jl

γlt

⎞

⎟⎠

⎞

⎟⎠

+
∑

i j

∑

k

xi jkk

⎛

⎜⎝Ri j

t1i jk+vk pi j−1∑

t=t1i jk

γkt

⎞

⎟⎠ −
∑

k

∑

t

γktCkzk (16)

S.t:

⎧
⎪⎨

⎪⎩

(2), (5), (6), (7), (8), (10), (11)
t2i jl , t

1
i jk ∈ Integer

zk, xi jkl , yt1i jk, y
t
2i jl ∈ {0, 1}

.

It should be taken into account that the problem Lz(λ, μ, γ ) can be divided into two
separate sub-problems: (1) a problem in the space of the variable z, and (2) a problem in the
space of variables x and t.

The sub-problem related to the variables z is modeled as follows:

Lz(λ, μ, γ ) = Min
∑

k

zk

⎛

⎝ fk −
∑

i j

λk,i j −
∑

i j

μk,i j − Ck

∑

t

γkt

⎞

⎠

S.t :
zk ∈ {0, 1}

(17)

The solution of Lz(λ, μ, γ ) is simply found if only the variables zk are equal to 1 where
fk − ∑

i j
λk,i j − ∑

i j
μk,i j − Ck

∑
t

γkt ≤ 0. The remaining zk are equal to 0.

For the sub-problem associated with x and t, it is possible to convert it for each flow ij
into new sub-problems. Hence, modeling of the sub-problem related to the variables of x and
t for each ij will be as follows:
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Lx,t (i j, λ, μ, γ )

= Min β
∑

k

∑

l

xi jkl

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λk,i j + μl,i j +

⎛

⎜⎜⎜⎜⎝

max
(
t1i jk + vk pi j + tk j Dkj − di j , t

2
i jl + vl pi j + tl j Dl j − di j , 0

)

+Ri j

⎛

⎜⎝
t1i jk+vk pi j−1∑

t=t1i jk

γkt +
t2i jl+vl pi j−1∑

t=t2i jl

(γlt |l �= k)

⎞

⎟⎠

⎞

⎟⎟⎟⎟⎠

︸ ︷︷ ︸
ϕi jkl

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (18)

S.t:

∑

k

∑

l

xi jkl = 1, (19)

t1i jk ≥
∑

l

(
xi jkl

(
ri j + tik Dik

)) ∀k, (20)

t2i jl + M
(
1 − xi jkl

) ≥
∑

k

(
xi jkl

(
t1i jk + vk pi j + αtkl Dkl

) )
∀k, l

xi jkl ∈ {0, 1} ∀k, l.
(21)

The problem above is primarily examined for two situations. First, for all k and l (k �= l)
and for all possible states where t2i jl ≥ t1i jk + vk pi j + αtkl Dkl , the best solution for t2i jl is

chosen to minimize ϕijkl . Then, the best combination of (t1i jk, t
2
i jl) with the minimum ϕijkl is

chosen as the optimized combination for t1i jk and t2i jl . In the second situation, per all k = l,

the amount of t1i jk (t
1
i jk ≥ ri j + tik Dik) is chosen for which ϕijkl is minimum.

Through determining the best values of ϕijkl for each k and l, for each flow from origin i
to destination j, we can solve the second sub-problem (Eqs. (18)–(21)) using the simple rule
below. The structure of lagrangian relaxation method can be summarized in the following
results:

Proposition 1 It is possible to say:

L(λ, μ, γ ) = Lz(λ, μ, γ ) +
∑

i j

Lx,t (i j, λ, μ, γ ). (22)

3.2 Solution procedure

To obtain the best possible lower bound for the problem, the problem L(λ, μ, γ ) must be
maximized for all different values of λ, μ and γ.

ZD = max L(λ, μ, γ )

λ, μ, γ ≥ 0. (23)

To do this, we implement the iterative sub-gradient method. In this algorithm, LBm indi-
cates the lower bound obtained at iteration m. UB is the best upper bound obtained for this
main problem. Also, the coefficient αm will be halved if no improvement is obtained for the
lower bound solution after 10 iterations. In this algorithm, g(λm, μm, γm) is the sub-gradient
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of L(λm, μm, γm) at iteration m, equal to the following:

g(λm , μm , γm ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
∑

l

xi jkl (m) − zk (m)

)
,

(
∑

k

xi jkl (m) − zl (m)

)
,

∑

i j

Ri j

⎛

⎝
t∑

u=t−vk pi j+1

yu1i jk (m)

⎞

⎠ +
∑

i j

Ri j

⎛

⎝
t∑

u=t−vk pi j+1

yu2i jk (m)

⎞

⎠ − Ck zk (m)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (24)

The outputs of this algorithm are zD and sUB which indicate the lower and upper bounds
of the master problem, respectively. The pseudo-code related to this algorithm is as follows:

3.3 The upper bound heuristic

In the Lagrangian relaxationmethod, the quality of upper bounds obtained from each iteration
is of great importance to achieve the best lower bound. In this section, a heuristic algorithm is
presented to find an upper bound for the master problem at each iteration. At each iteration,
after solving the problem L(λm, μm, γm), the resulted solution xi jkl(m) for each flow ij is
used to generate a possible upper bound for the master problem.

For those nodes which are used as hubs for at least one flow from i to j, zk(m) = 1 holds.
In this case, we need to be sure that both hub construction and routes will be feasible for
all flows. So, it is crucial to evaluate the possibility of an established schedule for each hub
provided that the constraints associated with the capacity are satisfied at any time. Inspired by
the heuristic algorithm developed by Rostami et al. (2014) for resource-constrained project
scheduling problems, a two-stage algorithm is used to solve the problem. In the first stage,
the priority of scheduling at each hub k is determined by a specific rule. In the second stage,
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according to such priorities, a simple algorithm is applied to schedule the processing on the
flows allocated to each hub k.

At the first stage of the algorithm, three types of priorities are generated for the
flows. The first priority is based on the flow arrival time to a given hub (it means:ri j +
tik Dik

(
or ri j + tik′ Dik′ + vk′ pi j + αtk′k Dk′k

)
). The first-in-first-served (FIFS) rule implies

that each flow reaching the hub earlier will be given higher processing priority. Hence, the
idle probability of the hub is decreased; however, with regard to due dates, this rule may
cause tardiness. It should be considered that, the arrival time of a flow to hub k as the second
hub is estimated when the flow has passed through hub k′ as the first hub. Since the real time
of processing the flow ij at the hub k′ is not clear, this is considered as equal to the arrival
time of that flow to hub k′.

The second prioritization rule, earliest-due-date (EDD), implies that any flow with closer
due date have higher priority for processing. Such prioritization can increase the waiting time
for flows with farther due dates, although they might have reached the hub earlier. The third
prioritization rule is based on arrival time, processing time, and due date. The highest priority
will be given to a flow with the least sum of arrival time, processing time and due date.

At the second stage of the algorithm, a certain schedule is generated for each type of the
priorities provided before. To create feasible schedules regarding the capacity of hub k, the
start time of processing each flow ij is considered as the earliest possible time in the planning
horizon, if the available capacity is enough for processing the flow ij over the time interval of
[t1i jk(or t

2
i jk),t

1
i jk + vk pi j (or t2i jk + vk pi j )]. It should be noted that the earliest possible time

to start processing the highest priority flow is equal to the arrival time of that flow to the
hub. For the flows with lower priority, the probability of immediate processing at the time
of their arrival to the hub is relatively lower, because the higher priority flows have already
been scheduled for processing. Hence it is expected that the lowest priority flows spend more
time waiting to be processed. When all the flows are scheduled, a scheduling plan with the
minimum sum of tardiness will be chosen as the optimized schedule at hub k. Below is the
formal definition for obtaining a feasible schedule at hub k:

Having the cost parameters for hub construction, routes for different flows and schedule
of the flows at the hubs, the original objective function can be calculated, that its solution is
the upper bound heuristic at each iteration.
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4 Computational results

This section evaluates and compares the performance of three solution methods; namely,
optimization with CPLEX solver in GAMS, Lagrangian relaxation algorithm and upper
bound heuristic algorithm. The developed MIP model was solved utilizing CPLEX solver
in GAMS, on a system with Intel Core i7, 3.1 GHz CPU and 8 GB RAM. The Lagrangian
Relaxation algorithm and the upper bound heuristic algorithms were coded with C# and ran
on the same system.

The test problems were generated based on the data used by Alumur et al. (2009) for
airports flows in Turkey. Some of the required data in our model that were not included in the
former study by Alumur et al. (2009), have been generated randomly. The main intention was
to generate a set of data close to the reality. Theparameterpijwas randomlygenerated basedon
a uniform distribution function on [0.1,1], rij from a uniform distribution function on [1,18],
dij from a uniform distribution function on

[
ri j + 3, ri j + 6

]
, tij from a uniform distribution

function on [0.0025, 0.0035], ck from a uniform distribution function on
[
1, 8 + ⌊n/

20
⌋]
, vk

from a uniform distribution function on [0.85, 1.15], f k from a uniform distribution function
on [20,60], and Rij is considered to be 1 for all flows. Further, the coefficients of β = 5 and
α = 0.3 were included and the planning horizon considered to be T = 24, respectively.

Table 2 exhibits the results of small-size problems consisting of up to 20 nodes including
all origins, destinations and potential hubs. The optimal solution of small-size problems can
be computed with CPLEX in a logical time (less than 3600 s). It should be noted that the
logical time can be different depending on the type of problem; however, in this problem,
because of planning at the operational level (scheduling daily flights), we have to solve the
problem less than 1 h (3600 s). In Table 2, the first section presents the values of objective
functions obtained from the CPLEX, LP-relaxation (LPR) method, Lagrangian relaxation
(LR) algorithm and the upper bound (UB) heuristic for the individual problems. The second
section indicates the CPU running time per second for different methods, while the third
section provides the gap between the lower bounds and the optimal solution. Table 3 presents
the results of large size problems, containing up to 80 nodes. For these problems, the model

Table 2 Results for small-size problems

# of
nodes

Objective function value CPU running time (s) Gapd

CPLEX LPRa LRb UBc CPLEX LPR LR LPR LR

5 60.52 60.14 60.52 60.52 2.150 0.832 0.183 0.0062 0

7 138.62 134.70 138.62 138.62 17.231 5.883 0.635 0.0282 0

10 66.64 63.94 66.64 66.64 84.713 29.038 2.172 0.0405 0

12 78.32 75.39 78.32 78.32 293.615 114.286 4.390 0.0374 0

15 71.20 67.85 71.13 71.31 844.126 362.962 9.732 0.0470 0.0025

17 69.85 64.23 69.85 69.85 1533.027 519.541 16.136 0.0805 0

20 120.25 108.25 120.18 120.50 3584.276 1142.557 28.315 0.0998 0.0026

aLP-relaxation method
bLagrangian relaxation algorithm
cUpper bound heuristic
dThe gap between lower bound and optimal solution with CPLEX
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Table 3 Results for large-size problems

# of nodes Objective function value CPU running time (s) Gapd

LPRa LRb UBc LPR LR LPR LR

25 112.14 129.30 129.75 2293.480 61.026 0.1357 0.0035

30 102.35 123.90 123.90 3549.216 104.692 0.1739 0

35 – 151.90 152.40 – 199.112 – 0.0033

40 – 156.34 158.24 – 382.206 – 0.0120

45 – 153.74 154.40 – 533.419 – 0.0043

50 – 161.98 162.34 – 810.795 – 0.0022

60 – 182.16 183.73 – 1482.565 – 0.0086

70 – 213.68 218.28 – 2670.140 – 0.0211

80 – 202.91 210.04 – 3600 – 0.0339

aLP-Relaxation method
bLagrangian relaxation algorithm
cUpper bound heuristic
dThe gap between lower bound and upper bound

cannot be solved with CPLEX in a reasonable computational time (3600 s), so the gap
between lower bounds and upper bounds heuristic are computed.

Based on the presented results, an increase in the number of nodes results in an increase
in the CPU running time; HLFPS has higher increases as compared to the LPR, and LPR
higher than LR. Commercial solver cannot solve the problems with more than 20 nodes in a
reasonable time, and the LP-relaxationmethod is not effective for problemswithmore than 30
nodes.Aswitnessed by the results inTable 2, theLRalgorithmcanfindnearly global optimum
solution in all small-size problems. For all the small-size problems, the LR has a better
performance than the LPR and can find solutions of higher quality. For problems with 25, 30,
35, 45 and 50 nodes, the LR algorithm terminated by the first termination criterion, whereas
problems having 40, 60 and 70 nodes terminated over the second termination criterion, and
problems with 80 nodes terminated through the third criterion (Table 3). In conclusion, it can
be claimed that the solution of LR algorithm deviates less than 4% from the optimal solution.
Figures 1 and 2 illustrate theCPU running time of the discussed solutionmethods for different
problem sizes. The rapid growth of the CPU running time for HLFPS and LPR is evident
in Fig. 1 for small-size problems, while the LR has a slow increasing rate. For large-scale
problems, LPR has a sharp jump in running time from 25-node to 30-node problem, and it is
not effective from that point forward. Similar to the small-size problems, LR shows a slow
growth in running time for large-size problems (Fig. 2).

The objective function in the developed HLFPS, is sensitive to the introduced coefficient
parameters (α and β). α is the coefficient factor for travel time discount between hubs and β

is the time–cost conversion coefficient. To evaluate the sensitivity of the developed HLFPS
against each of them, all the small-size problems (due to the optimal solutions have been
obtained only for this category of problems) introduced in Table 2 have been solved by the
CPLEX for different values of α and β (see Figs. 3, 4, 5, 6).

Figure 3 shows how average number of hubs is influenced by α and β. According to
this figure, the number of the constructed hubs is higher when the cost of the tardiness gets
higher weight (higher β). This can be because any increase in the number of hubs leads to a
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Fig. 1 Investigating the effect of problem dimensions on CPU running time based on different methods (small-
size problems)

Fig. 2 Investigating the effect of problem dimensions on CPU running time based on different methods (large
size problems)

decrease in the traffic of flows available at each hub, thereby decreasing the tardiness. This
figure also indicates that for higher α, the model has less tendency to create 2-hub routes, and
as a result, the average number of constructed hubs is reduced. Figure 4 displays the changes
in the average percentage of two hub routes in the network, affected by two coefficient
factors of α and β. As it is evident, for higher β, number of 2-hub routes will be increased
compared to the total routes generated to reduce the traffic and hence to decrease the sum of
tardiness. Furthermore, by increasing α, the model shows reduced tendency to build 2-hub
routes. Figure 5 compares the changes in the average cost of hub construction (SC). The
graph shows when the second part of the objective function (the sum of tardiness) has higher
weight, constructing more hubs becomes necessary to increase the capacities, so the traffic
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Fig. 3 Investigating the effect of alpha and beta values on the average number of hubs constructed

Fig. 4 Investigating the effect of alpha and beta values on the percentage of 2-hub routes

volume of the flows is decreased and, therefore, the sum of tardiness is reduced. It is also
obvious that higher α may result in reduced tendency to build 2-hub routes, thereby reduced
costs for hub construction. Figure 6 assesses the changes in average total tardiness (TT);
an increase in β results in a decreased TT due to increased hub construction and decreased
traffic at each hub. However, by increasing α and decreasing number of 2-hub routes, the flow
traffic will be increased at each hub and some level of tardiness is expected in the network.
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Fig. 5 Investigating the effect of alpha and beta values on the average construction costs

Fig. 6 Investigating the effect of alpha and beta values on the average total tardiness time

5 Conclusion

This paper revisits the hub location problem and proposes an integratedmodel to schedule the
processing flows and select the hub locations. Another contribution of thiswork is to address a
novel approach for modeling the capacity constraint through introducing renewable capacity
for the hubs, meaning that the available capacity is dynamically changing when a flow enters
or leaves the hub. So, instead of net capacity of the hubs over a period of time, the real-time
capacity of the hubs is monitored and scheduling of the process is being done accordingly.
The integrated hub location and flow processing schedule problem is formulated based on a
mixed-integer linear programming model and a heuristic algorithm is proposed to solve the
large-scale problems. The model was solved for a group of small and large size problems to
evaluate the performance of different solution methods. The Lagrangian relaxation method
obtains very close to optimal solution for small-size problem, where the problem can be
solved with GAMS for optimal solution. For large-scale problems, Lagrangian relaxation

123

165 Page 16 of 18



Integrated hub location and flow processing schedule problem …

method can solve the problems of up to 80 nodes in a reasonable time. Moreover, based on
the calculated upper bound for the optimal solution, the obtained solutions deviate from the
optimal solution less than 4%. This paper assumes a pattern of the flows can be estimated
in the system. The model is solved based on this estimated pattern to suggest location of the
hubs to minimize the total cost. This work can be extended by incorporating uncertainty in
the model. Particularly, future research can be done to propose a robust design considering
risk and uncertainty in the model parameters.
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