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Abstract
This article develops a new discontinuous Galerkin (DG)method with the one-stage arbitrary
derivatives in time and space approach to solve one-dimensional hyperbolic conservation
laws. This method employs the differential transformation procedure instead of the Cauchy–
Kowalewski procedure to recursively express the spatiotemporal expansion coefficients of
the solution through the low-order spatial expansion coefficients. The proposed method is
free of solving generalized Riemann problems at inter-cells. Compared with the Runge–
Kutta DG methods, the current method needs less computer memory due to no intermediate
stages. In summary, this method is one step, one stage, fully discrete, and easily achieves
arbitrary high-order accuracy in time and space. Extensive numerical results illustrate the
good performances of the present method: high-order accuracy for smooth solutions, good
resolution for discontinuous solutions and high efficiency.
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1 Introduction

The hyperbolic conservation laws arise inmany scientific as well as technological fields, such
as the Euler equations in gas dynamics, shallow water equations, and so on. In this article, we
are concernedwith numerically solving hyperbolic conservation laws in one space dimension
with the below form

Ut + F(U )x = 0, (1)

where U is the state vector; F(U ) is the physical flux. In recent years, researchers have paid
more and more attention to the arbitrary high-order methods for hyperbolic conservation
laws (Toro et al. 2001; Titarev and Toro 2002, 2005; Pedro et al. 2014).

The discontinuous Galerkin (DG) methods are popular to solve the hyperbolic conserva-
tion laws. The traditional DG methods by Cockburn and Shu (1989, 1998) and Cockburn
et al. (1989, 1990) are semi-discrete methods, apply the multi-stage Runge–Kutta approach
(Gottlieb et al. 2009) to obtain high-order temporal accuracy, and are known as the RKDG
methods. A brief historic review as well as the latest developments can be found in Cockburn
et al. (2000) and Shu (2016) and the references cited therein. The RKDG methods enjoy the
advantage of simplicity, but need to construct the inter-cell numerical flux and to calculate
volume integrations at each stage; therefore, the RKDG methods are very time consuming
relatively.

Alternatively, Qiu et al. (2005) developed a DGmethod using the Lax–Wendroff (LWDG)
approach for the temporal discretization; the resulting LWDG method is one stage and
explicit. In addition, Dumbser and Munz (2005a, b) and Dumbser (2005) originally devel-
oped a new DG method with the one-stage ADER approach (Toro et al. 2001; Titarev and
Toro 2002, 2005) for the temporal discretization. Subsequently, Dumbser and collaborators
conducted a series of researches for this subject (Zanotti et al. 2015; Fambri et al. 2017, 2018;
Rannabauer et al. 2018). The key ingredient of the DG methods (Zanotti et al. 2015; Fambri
et al. 2017, 2018; Rannabauer et al. 2018) is to construct high-order inter-cell numerical
flux. The inter-cell state is expressed in a form of temporal Taylor series expansion, where
the temporal derivatives are described by the spatial derivatives using the governing PDE
repeatedly. This procedure is known as the Cauchy–Kowalewski procedure [also termed as
the Lax–Wendroff procedure in the literature Harten (1987)]. In addition, one also need to
solve generalized Riemann problems at inter-cells to obtain the state itself and its spatial
derivatives. However, the Cauchy–Kowalewski procedure is very cumbersome especially
for high-dimensional problems. Therefore, the replacement or simplification of the Cauchy–
Kowalewski procedure is very welcome. It is noteworthy that Dumbser and Munz (2006)
have proposed an efficient algorithm for the Cauchy–Kowalewski procedure. More recently,
Dumbser et al. (2014) and Duan and Tang (2020) have adopted the local continuous space-
time Galerkin predictor approach (Dumbser et al. 2008) to replace the Cauchy–Kovalewski
procedure under the framework of DG methods.

The key objective of this article is to develop a new DGmethod with the ADER approach
for the temporal discretization, which is called as the ADER-DG method accordingly. The
methodhere applies the differential transformationprocedureAyaz (2003, 2004) andKurnaza
et al. (2005) instead of the Cauchy–Kowalewski procedure as in Zanotti et al. (2015), Fambri
et al. (2017, 2018) and Rannabauer et al. (2018) to express the spatiotemporal expansion
coefficients of the solution through the low-order spatial expansion coefficients and enables
us to avoid solving the generalized Riemann problem at inter-cells.

In comparison with the traditional RKDGmethods (Cockburn and Shu 1989, 1998; Cock-
burn et al. 1989, 1990), the proposedmethod is one stage and fully discrete, which iswelcome
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in many practical applications due to its simplicity and the low computer storage. Moreover,
the one-stage reformulation greatly reduces the frequency of inter-process communications,
and is desirable for the parallel computing. The current method is free of solving generalized
Riemann problems at inter-cells, compared with the existing methods (Zanotti et al. 2015;
Fambri et al. 2017, 2018; Rannabauer et al. 2018), which apply the Cauchy–Kowalewski
procedure. The differential transformation procedure is more concise and more efficient than
the Cauchy–Kowalewski procedure (Norman and Finkel 2012). The space–time polynomial
representation of the solution on each space-time control volume leads to precise calcula-
tions for the volume integral and the numerical flux and avoids the use of costly numerical
quadrature rule.

This article is organized as follows. In Sect. 2, we present a new ADER-DG method with
differential transformation procedure. Section 3 contains extensive examples to illustrate the
performances of the current method. Some conclusions are given in Sect. 4.

2 Construction of ADER-DGmethod

2.1 Mesh and solution space

We first divide the spatial domain of interest with cells I j =
[
x j− 1

2
, x j+ 1

2

]
, for j =

1, 2, . . . , N , and we set x j = 1
2

(
x j− 1

2
+ x j+ 1

2

)
and τ j = x j+ 1

2
− x j− 1

2
as the mesh center

and the mesh size, respectively. The notation τ = max1≤ j≤N τ j stands for the Maximum
mesh size and the notation � j = I j × [

tn, tn+1
]
represents the space-time control volume

with
[
tn, tn+1

]
being the time interval.

Herein, we take the approximation solution space as follows

V k
τ =

{
ϕ(x, t) : ϕ(x, t)

∣∣
� j

∈ Pk(� j )
}

,

where Pk(� j ) denotes the set of space-time polynomials of degree up to k on � j .

2.2 General formulation of ADER-DGmethod

Multiplication of (1) with an arbitrary spatial test function φ(x) and using the integration by
parts on � j yield the following weak form

∫

I j

U
(
x, tn+1

)
φ(x) dx −

∫

I j

U (x, tn) φ(x) dx

+
tn+1∫

tn

F

(
x
j+ 1

2
, t

)
dt · φ

(
x−
j+ 1

2

)
−

tn+1∫

tn

F

(
x
j− 1

2
, t

)
dt · φ

(
x+
j− 1

2

)
−

∫∫

� j

F(x, t) φx dxdt

= 0, for j = 1, 2, . . . , N .

Here, we take the physical flux as a binary function with F(x, t) = F(U (x, t)) for the sake
of easy presentation.

The fully discrete ADER-DG method for solving (1) is defined as follows: for all test
functions φ(x) = (x − x j )kx with kx = 0, 1, . . . , k from V k

τ , the solution Uτ (x, t) ∈ V k
τ

satisfies the following equality
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∫

I j

Uτ

(
x, tn+1) φ(x) dx

=
∫

I j

Uτ (x, t
n) φ(x) dx − F̂j+ 1

2
· φ

(
x−
j+ 1

2

)
+ F̂j− 1

2
· φ

(
x+
j− 1

2

)

+
∫∫

� j

Fτ (x, t) φx dxdt, for j = 1, 2, . . . , N .

(2)

Here, the numerical flux F̂j+ 1
2
is used to approximate the time integration of the physical

flux at inter-cell, i.e.,
∫ tn+1

tn F
(
x j+ 1

2
, t

)
dt .

Herein, on each space–time control volume� j , we takeUτ (x, t) (the subscript j is ignored
for the sake of simplicity) in a piecewise space–time polynomial form to approximate the
unknown solution U (x, t). At time tn , we have Uτ (x, tn) at hands as a linear combination
of spatial polynomials

Uτ (x, t
n) =

k∑
kx=0

Ũ (kx , 0)(x − x j )
kx ,

with Ũ (kx , 0) being the expansion coefficient in space. Our basic goal is to construct the
following space-time polynomial

Uτ (x, t) =
k∑

kt=0

k−kt∑
kx=0

Ũ (kx , kt )(x − x j )
kx (t − tn)kt ∈ V k

τ ,

on� j in the whole time interval [tn, tn+1]. Here, Ũ (kx , kt ) denote the space–time-dependent
degrees of freedom (DOF) on � j . In the following, we will obtain Ũ (kx , kt ) from Ũ (kx , 0)
at the old time level tn repeatedly using the differential transformation procedure presented
in Sect. 2.2.1.

The evolution from Uτ (x, tn) to Uτ (x, tn+1) needs the evaluation of the right hand side
of (2): a space integral, a space–time integral as well as the construction of numerical fluxes
at intercells.

2.2.1 A brief review of differential transformation procedure

The key component ofDGmethods (Zanotti et al. 2015; Fambri et al. 2017, 2018;Rannabauer
et al. 2018) is to repeatedly differentiate the PDE and to express the temporal derivatives
through the spatial ones using the Cauchy–Kowalewski procedure. However, the Cauchy–
Kowalewski procedure becomesmore cumbersomeespecially for higher order derivatives due
to chain rules. To reduce the cost of the Cauchy–Kowalewski procedure, Dumbser and Munz
(2006) have proposed an efficient algorithm based on the Leibnize rule for two-dimensional
Euler equations under the DG frame. More recently, Dumbser et al. (2014) and Duan and
Tang (2020) have employed the local continuous space–time Galerkin predictor approach to
replace the Cauchy–Kovalewski procedure (Dumbser et al. 2008) in the framework of DG
methods.

Herein, we apply the differential transformation procedure to replace the Cauchy–
Kowalewski procedure. The differential transformation procedure was originally proposed
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Table 1 Transformed functions of some functions encountered in this article

Functional form Transformed form

q(x, t) = c · u(x, t) q̃(kx , kt ) = c · ũ(kx , kt )

q(x, t) = ∂x u(x, t) q̃(kx , kt ) = (kx + 1)ũ(kx + 1, kt )

q(x, t) = ∂t u(x, t) q̃(kx , kt ) = (kt + 1)ũ(kx , kt + 1)

q(x, t) = u(x, t)v(x, t) q̃(kx , kt ) = ∑kx
r=0

∑kt
s=0 ũ(r , s)ṽ(kx − r , kt − s)

q(x, t) = 1
u(x, t) q̃(0, 0) = 1

ũ(0, 0)

q̃(kx , kt ) = − 1
ũ(0, 0)

∑kx
r=0

∑kt
s=0

s+r>0
ũ(r , s)q̃(kx − r , kt − s)

for nonlinear initial value problems in the electric circuit analysis (Pukhov 1982; Zhou 1986).
Ayaz generalized this procedure to two-dimensional case (Ayaz 2003) and system case (Ayaz
2004;Kurnaza et al. 2005) conducted the extension ton-dimensional case.Recently, bymeans
of this procedure, Norman and Finkel (2012) have developed a multi-moment finite volume
scheme for one-dimensional balance laws.

The detailed definition of the differential transformation procedure is as follows. Suppose
that a function u(x, t) in cell I j at time tn is known, the differential transformation is defined
as in Ayaz (2003, 2004) and Kurnaza et al. (2005)

ũ(kx , kt ) = 1

kx !kt !
∂kx+kt u(x, t)

∂xkx ∂tkt

∣∣∣∣
x=x j ,t=tn

, with u(x, t) =
k∑

kt=0

k−kt∑
kx=0

ũ(kx , kt )(x − x j )
kx (t − tn)kt ,

(3)

where u(x, t) is the original function and ũ(kx , kt ) denotes the transformed function. In fact,
the transformed function ũ(kx , kt ) denotes the expansion coefficient of the truncated Taylor
series expansion. The transformed functions used in this article are shown in Table 1.

Subsequently, we exemplify the differential transformation procedure with the non-linear
Burgers’ equation

ut + f (u)x = 0, (4)

where f (u) = 1

2
u2 denotes the physical flux. Combining the rules in Table 1, we implement

the differential transformation procedure at both ends of (4) and obtain the below equality
for the transformed functions

(kt + 1)ũ(kx , kt + 1) + (kx + 1) f̃ (kx + 1, kt ) = 0,

which leads to the following recurrence formula

ũ(kx , kt + 1) = −kx + 1

kt + 1
f̃ (kx + 1, kt ), (5)

with

f̃ (kx , kt ) = 1

2

kx∑
r=0

kt∑
s=0

ũ(r , s)ũ(kx − r , kt − s).

We here take the physical flux f (u) as a binary function with f (x, t) = f (u(x, t)). On basis
of ũ(kx , 0), kx = 0, 1, . . . , k coming from uτ (x, tn) = ∑k

kx=0 ũ(kx , 0)(x − x j )kx at time tn
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and applying the above recurrence relation (5) repeatedly, we obtain

ũ(kx , kt ) and f̃ (kx , kt ), for kt = 0, 1, . . . , k; kx = 0, 1, . . . , k − kt .

Next, we achieve

uτ (x, t) =
k∑

kt=0

k−kt∑
kx=0

ũ(kx , kt )(x − x j )
kx (t − tn)kt ∈ V k

τ ,

fτ (x, t) =
k∑

kt=0

k−kt∑
kx=0

f̃ (kx , kt )(x − x j )
kx (t − tn)kt ∈ V k

τ ,

on the space–time control volume � j . We present the detailed steps of the procedure for
Burgers’ equation in Appendix A.

Remark 1 Actually, to implement the differential transformation procedure for a given func-
tion is to obtain its transformed functions namely the expansion coefficients of the Taylor
series form. Moreover, the differential transformation procedure converts a PDE into a series
of recurrence relations for expansion coefficients of the solution in a Taylor series form.

2.2.2 The differential transformation procedure for Euler equations

Let us deal with the Euler equations in the gas dynamics
⎧
⎨
⎩

ρt + (ρu)x = 0,
(ρu)t + (ρu2 + p)x = 0,
Et + (u(E + p))x = 0.

(6)

Here, ρ is the density, u is the velocity, E is the total energy, p is the pressure, which is
related to the total energy by

E = p

γ − 1
+ 1

2
ρu2 (7)

with γ = 1.4 as the specific heats ratio. We can rewrite the system (6) in the conservative
form (1) with the following conservative variable and physical flux

U =
⎛
⎝

ρ

ρu
E

⎞
⎠ , F(U ) =

⎛
⎝

ρu
ρu2 + p
u(E + p)

⎞
⎠ .

Suppose in cell I j and at time t = tn , the solution Uτ (x, tn) are known in the form

Uτ (x, t
n) = (

ρτ (x, t
n), (ρu)τ (x, t

n), Eτ (x, t
n)

)� =
k∑

kx=0

Ũ (kx , 0)(x − x j )
kx . (8)

Then, using the Table 1, we implement the differential transformation procedure on both
ends of system (1) in a componentwise manner; we obtain the following equality of the
transformed functions in a vector form

(kt + 1)Ũ (kx , kt + 1) + (kx + 1)F̃(kx + 1, kt ) = 0, (9)

with the below auxiliary variables
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F̃(kx , kt ) =
⎛
⎝

(ρ̃u)(kx , kt )
(γ − 1)Ẽ(kx , kt ) + 1

2 (3 − γ )G̃3(kx , kt )
γ G̃5(kx , kt ) − 1

2 (γ − 1)G̃6(kx , kt )

⎞
⎠ ,

G̃1(kx , kt ) = − 1

ρ̃(0, 0)

kx∑
r=0

kt∑
s=0

ρ̃(r , s)G̃1(kx − r , kt − s),

G̃2(kx , kt ) =
kx∑
r=0

kt∑
s=0

(ρ̃u)(r , s)(ρ̃u)(kx − r , kt − s),

G̃3(kx , kt ) =
kx∑
r=0

kt∑
s=0

G̃2(r , s)G̃1(kx − r , kt − s),

G̃4(kx , kt ) =
kx∑
r=0

kt∑
s=0

ρ̃u(r , s)G̃1(kx − r , kt − s),

G̃5(kx , kt ) =
kx∑
r=0

kt∑
s=0

G̃4(r , s)Ẽ(kx − r , kt − s),

G̃6(kx , kt ) =
kx∑
r=0

kt∑
s=0

G̃4(r , s)G̃3(kx − r , kt − s),

where we ignore the subscript j for the clarity of presentation. Moreover, Eq. (9) leads to the
following recurrence formula

Ũ (kx , kt + 1) = −kx + 1

kt + 1
F̃(kx + 1, kt ). (10)

Then, starting from

Ũ (kx , 0) = (
ρ̃(kx , 0), (ρ̃u)(kx , 0), Ẽ(kx , 0)

)�
, for kx = 0, 1, . . . , k,

we can circularly get

Ũ (kx , kt ) and F̃(kx , kt ), for kt = 0, 1, . . . , k; kx = 0, 1, . . . , k − kt ,

by repeatedly using the recurrence formula (10). Subsequently, we obtain Uτ (x, t) and
Fτ (x, t) as follows

Uτ (x, t) =
k∑

kt=0

k−kt∑
kx=0

Ũ (kx , kt )(x − x j )
kx (t − tn)kt ∈ V k

τ ,

Fτ (x, t) =
k∑

kt=0

k−kt∑
kx=0

F̃(kx , kt )(x − x j )
kx (t − tn)kt ∈ V k

τ ,

on each space–time control volume � j , for j = 1, 2, . . . , N to approximate the unknown
conservative stateU (x, t) and the physical flux F(x, t) = F(U (x, t)).Wepresent the specific
steps in Appendix B.

In the above formulae (10), we apply the following relations

ρu2 + p = ρu2 + (γ − 1)

(
E − 1

2
ρu2

)
= (γ − 1)E + 1

2
(3 − γ )ρu2,
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u(E + p) = u

(
E + (γ − 1)

(
E − 1

2
ρu2

))
= γ uE − 1

2
(γ − 1)u(ρu2),

due to the equation of state (7).

Remark 2 The key function of the differential transformation procedure is to supply the
temporal evolution, locally for each cell, of the existing solution Uτ (x, tn) at time tn .

Remark 3 The Cauchy–Kowalewski procedure uses the symbolic expansions of the PDE
itself directly, which needs costly recomputations of many terms and leads to exponen-
tial increase in complexity. While, the differential transformation procedure is considerably
cheaper than theCauchy–Kowalewski procedure and achieves the same aimwith a predictable
polynomial complexity.

2.2.3 Construction of high order numerical fluxes

To construct high-order numerical flux in ADER schemes (Toro et al. 2001; Titarev and Toro
2002, 2005; Dumbser and Munz 2005a, b, 2006; Dumbser 2005), one first expand the inter-
cell state in a time Taylor series form, where the temporal derivatives are expressed by the
spatial derivatives using the Cauchy–Kowalewski procedure. To get the spatial derivatives,
one also need to solve generalized Riemann problems at inter-cells.

After applying the differential transformation procedure in cell I j at time tn , we have
Uτ (x, t) as well as Fτ (x, t) on � j at hands, and then we adopt the simple and efficient
Lax–Friedrichs flux

F̂j+ 1
2

= 1

2

tn+1∫

tn

(
Fτ

(
x−
j+ 1

2
, t

)
+ Fτ

(
x+
j+ 1

2
, t

)
− α

(
Uτ

(
x+
j+ 1

2
, t

)
−Uτ

(
x−
j+ 1

2
, t

)))
dt,

(11)

where α is an estimate of largest wave speed on the whole spatial domain.
Because Uτ (x, t) and Fτ (x, t) are all space–time polynomials on � j , we can adopt pre-

cise calculations for the numerical flux in (11) in stead of resorting to the costly numerical
quadrature rule.

In addition, for the space integral and the space–time integral in (2), we also apply the
precise calculations and substitute them into (2), then obtain the fully discrete ADER-DG
method (2).

Remark 4 The present construction means of the numerical fluxes is free of solving general-
ized Riemann problem at inter-cells.

2.3 Implementation details of ADER-DGmethod

Here, we summarize the proposed method within one time step tn −→ tn+1 as follows:

(i) Initially, we obtain Ũ (kx , 0), kx = 0, 1, . . . , k, from U (x, 0) in each cell I j , for j =
1, 2, . . . , N .

(ii) At time tn , by the recursive steps (10), we acquire Ũ (kx , kt ) and F̃(kx , kt ) on basis of
Ũ (kx , 0), then obtain Uτ (x, t) and Fτ (x, t).

(iii) Construct numerical fluxes F̂j+ 1
2
using the formula (11).

(iv) Obtain Uτ (x, tn+1) according to the one-step formula (2).
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(v) Apply a slope limiter on Uτ

(
x, tn+1

)
when needed.

Remark 5 The one-dimensional method proposed here can be directly generalized to high-
dimensional problems. To handle the multi-dimensional problems, we need to pay special
attention on the differential transformation procedure. In practice, in comparison to the
one-dimensional case, we need to add an extra layer on the program for the differential
transformation procedures, see Appendices A and B. In addition, we also need to be careful
when initializing.

3 Numerical results

In this section, we conduct classical examples to validate the performance of the current
method. In the following computations, we take the polynomial of degree two and four (i.e.,
k = 2 and k = 4) , and set the CFL constant as 0.18 and 0.1, respectively.

3.1 The scalar case

3.1.1 Linear advection equation

We first consider the linear advection equation as in (Jiang and Shu 1996a)

{
ut + ux = 0, −1 ≤ x ≤ 1,
u(x, 0) = u0(x), periodic,

where

u0(x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
6 (G(x, β, z − δ) + G(x, β, z + δ) + 4G(x, β, z)) , −0.8 ≤ x ≤ −0.6,
1, −0.4 ≤ x ≤ −0.2,
1 − |10(x − 0.1)|, 0 ≤ x ≤ 0.2,
1
6 (F(x, α, a − δ) + F(x, α, a + δ) + 4F(x, α, a)) , 0.4 ≤ x ≤ 0.6,
0, otherwise,

G(x, β, z) = e−β(x−z)2 ,

F(x, α, a) =
√
max

(
1 − α2(x − a)2, 0

)
.

The above constants are set as a = 0.5, z = −0.7, δ = 0.005, α = 10, and β = log 2/36δ2.
The solution includes a smooth but narrow combination of Gaussians, a square, a triangle,
as well as an half ellipse.

We compute this example until t = 8 on a mesh with 200 cells and show the numerical
results by the third order as well as the fifth-order methods in Fig. 1. Both the ADER-DG
methods perform well for the four types of waves in the initial data. The numerical solution
by the fifth-order method is clearly sharper than that by the third-order method.
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Fig. 1 Linear advection equation by third-order (left) and fifth-order (right) ADER-DG methods. Solutions at
t = 8

3.1.2 Burgers’ equation

Then, we conduct the ADER-DG method for non-linear Burgers’ equation (4) coupled with
two different initial conditions:

u(x, 0) = 0.5 + sin(πx), x ∈ [0, 2] and u(x, 0) =
⎧⎨
⎩

−0.5 x ≤ 0.5,
1 x ≤ 1,
0 else,

x ∈ [0, 1.5].

The first case develops a shock; the second one produces a shock as well as a rarefaction at
the same time. The numerical solutions of the two examples in comparison with the exact
solutions are shown in Fig. 2. The numerical solutions obviously agree well with the exact
solutions, and the discontinuities are all well resolved.

3.2 The system case

3.2.1 Testing the order of accuracy

On the basis of the Euler equations (6), we testify the order of accuracy using an example
with exact solutions from (Qiu and Shu 2003)

ρ(x, t) = 1 + 0.2 sin(π(x − t)), u(x, t) = 1, p(x, t) = 1, x ∈ [0, 2],
and we exert periodic boundary conditions at both ends of the spatial domain. For this
example, we only apply the polynomial of degree four. The errors at time t = 2 and orders
of accuracy are shown in Table 2. The solutions clearly converge at the optimal rate.

3.2.2 Sod problem

The initial conditions are as in (Sod 1978)

(ρ, u, p)(x, 0) =
{

(1, 0, 1) if x ≤ 0,
(0.125, 0, 0.1) if x > 0,
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Fig. 2 Burgers’ equation by third-order (left) and fifth-order (right) ADER-DGmethods. Top: solutions of the
first example at t = 1.5/π ; Bottom: solutions of the second example at t = 0.5 (right)

Table 2 The errors and orders of accuracy for density

Cells L∞ error Order L1 error Order L2 error Order

25 7.1557E−09 5.4250E−09 4.6434E−09

50 1.4620E−09 2.29 5.0198E−10 3.43 5.4977E−10 3.08

100 3.2688E−11 5.48 1.1626E−11 5.43 1.2667E−11 5.44

200 1.2699E−12 4.69 5.8475E−13 4.31 5.2894E−13 4.58

on [−5, 5]. This example develops a rarefaction fan, a contact discontinuity as well as a
shock at the same time. The computed density at time t = 2 is shown in Fig. 3. The
numerical results keep sharp discontinuity transition and the contact discontinuities are also
considerably well resolved.
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Fig. 3 Sod problem by third-order (left) and fifth-order (right) ADER-DG methods. Density at t = 2

Fig. 4 Lax problem by third-order (left) and fifth-order (right) ADER-DG methods. Density at t = 1.3

3.2.3 Lax problem

The initial conditions are defined by

(ρ, u, p)(x, 0) =
{

(0.445, 0.698, 3.528) if x ≤ 0,
(0.5, 0, 0.571) if x > 0,

on [−5, 5]. This example develops a shock aswell as a contact discontinuity, which is difficult
to resolve accurately. The computed density at time t = 1.3 compared with the exact one are
shown in Fig. 4. The strong shock is equally well resolved by means of both methods.

3.2.4 Shu–Osher problem

The initial data are given by (Shu and Osher 1988)

(ρ, u, p)(x, 0) =
{

(3.857143, 2.629369, 10.333333) if x < −4,
(1 + 0.2 sin(5x), 0, 1) if x ≥ −4,

123



A new ADER discontinuous Galerkin method... Page 13 of 20 139

Fig. 5 Shu-Osher problem by third-order (left) and fifth-order (right) ADER-DG methods. Density at t = 1.8

Fig. 6 Blastwaveproblemby third-order (left) andfifth-order (right)ADER-DGmethods.Density at t = 0.038

on [−5, 5]. This example produces a shock interacting with complex smooth regions. We
present the computed density at time t = 1.8 in Fig. 5, which fits well with the reference
solution.

3.2.5 Blast wave problem

The following example involves interaction of blast waves and its initial conditions are given
by (Woodward and Colella 1984)

(ρ, u, p)(x, 0) =
⎧⎨
⎩

(1, 0, 1000) if 0 ≤ x < 0.1,
(1, 0, 0.01) if 0.1 ≤ x < 0.9,
(1, 0, 100) if 0.9 ≤ x ≤ 1,

onanunity domain [0, 1].We impose a reflective boundary condition at both endsof the spatial
domain, see Woodward and Colella (1984) for more details. We carry out the simulation on
a mesh with 400 cells up to time t = 0.038 and present the computed density as well as the
reference one in Fig. 6. The numerical results obviously keep a steep discontinuity transition.
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Fig. 7 123 problem by third-order (left) and fifth-order (right) ADER-DG methods. Density at t = 0.15

3.2.6 123 problem

The initial conditions are given by (Toro 1999)

(ρ, u, p)(x, 0) =
{

(1,−2, 0.4) if x < 0.5,
(1, 2, 0.4) if x > 0.5,

on [0, 1]. We present the computed density at time t = 0.15 on a mesh with 200 cells in
comparison with the exact one in Fig. 7. The central expansion regions are all well resolved
by the current methods.

3.2.7 Modified shock/turbulence interaction

Then, we conduct an example (Toro and Titarev 2005) that is actually a modification of the
shock/turbulence problem developed in Jiang and Shu (1996b) and Balsara and Shu (2000).
The modification mainly includes three parts: (i) a weaker shock wave, (ii) a density fluctu-
ation with frequency four times higher and (iii) a ending time ten times larger. This example
produces a right facing shock wave running into a high-frequency density perturbation. As
time develops, a shock moves into this density perturbation, which spreads upstream. In
practice, this example can also be regarded as an extension of the Shu–Osher problem in
Sect. 3.2.4 and is applied to validate a severely oscillatory wave interacting with a shock.
Especially, the example here is more appropriate for testing the performance of the current
high-order method. We use the following initial conditions

(ρ, u, p)(x, 0) =
{

(1.515695, 0.523346, 1.805) if x ≤ −4.5,
(1 + 0.1 sin (20πx) , 0, 1) if x > −4.5,

on [−5, 5]. We implement the computation on a very refined mesh with 1000 cells up to time
t = 5 and show the computed density in Fig. 8. Both methods produce excellent resolution
for these high-frequency oscillations.

In addition, we also compare the CPU time for examples from Sects. 3.2.2–3.2.7 by the
third-order ADER-DGmethod and the third-order RKDGmethod, see Table 3. As shown in
the Table 3, the third-order ADER-DGmethod can save at least 38% of CPU time, and even
save 70% of CPU time compared with the RKDG method with the same order of accuracy.
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Fig. 8 Modified shock/turbulence interaction problem by third-order (left) and fifth-order (right) ADER-DG
methods. Upper: density at t = 5; Bottom: pressure at t = 5

Table 3 For the CPU time, the
gain of ADER-DG in terms of
percentage with regard to the
RKDG method

Examples Gain(%)

Sod problem 67.15

Lax problem 69.20

Blast wave problem 66.09

Shu–Osher problem 38.82

123 problem 70.59

Modified shock/turbulence interaction problem 67.63

3.2.8 Vortex evolution problem

In the end, we apply a one-dimensional example similar to the two-dimensional example
from Shu (1997). This example here is used to validate the proposed method with regard to
the conservation of a vortex for long time evolution. The setup of this example is as follows.
The mean flow is ρ = 1, p = 1, u = 1 on the spatial domain [0, 10]. We add, to the mean
flow, an isentropic vortex (perturbation in velocity u and the temperature T = p/ρ and no
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Fig. 9 Vortex evolution problem by third-order ADER-DG method. Density at t = 100

perturbation in the entropy S = p/ργ ) as follows

δu = ε

2π
e
(
0.5(1−(x−5)2)

)
(x − 5), δT = − (γ − 1)ε2

8γπ
e1−(x−5)2 ,

with ε = 5.
We impose periodic boundary conditions and carry our this example on different meshes

with 100 and200 cells. The numerical results by the third-orderADER-DGmethod at t = 100
(after 10 time periods) are shown in Table 9. As we can see from Table 9, the ADER-DG
method can keep a good conservation of the vortex even for a larger time modelling. In
addition, with the refinement of the mesh, the conservation of the vortex is improved.

4 Summary and conclusions

In this article, we develop a new DG method with the one-stage ADER approach for the
temporal discretization. The key component of this method is to express the spatiotemporal
expansion coefficients of the solution through the low-order spatial expansion coefficients
using the differential transformation procedure recursively. So, we can obtain the solution in
a space–time polynomial form on each space–time control volume starting from the solution
at time tn using the differential transformation procedure repeatedly. Since the numerical
solutions are in space–time polynomial forms, we can adopt precise calculations for the
numerical fluxes as well as the volume integrations, and avoid using the numerical quadrature
rules correspondingly.

The differential transformation procedure is more efficient and the coding is more concise
than the Cauchy–Kowalewski procedure. Compared with the RKDG methods, the current
method needs less computer memory due to no intermediate stages. Thanks to the explicit
one-step nature and the compact stencil, the current ADER-DGmethod is an ideal candidate
for parallel computing on supercomputers. In addition, the proposed method avoids solving
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the generalized Riemann problems at inter-cells.Moreover, we can easily proceed to arbitrary
high-order accuracy in space and time without much coding effort. In summary, the resulting
method is one step, one stage, and fully discrete.

Several classical examples demonstrate the high-order accuracy, good resolution for dis-
continuous solutions and high computational efficiency. Extension to two-dimensional cases
constitutes our ongoing research.

Acknowledgements This research is supported by the National Natural Science Foundation of China
(11771228).

Appendix A: The algorithm of the differential transformation
procedure for Burgers’ equation

Input: ũ(kx , 0), kx = 0, 1, · · · , k.
Output: ũ(kx , kt ) and f̃ (kx , kt ), for kt = 0, 1, · · · , k; kx = 0, 1, · · · , k − kt .
while cell I j , j = 1, N do

while kt = 0, k do
while kx = 0, k − kt do

tot_ f = 0
while rt = 0, kt do

while rx = 0, kx do
tot_ f = tot_ f + ũ(rx , rt ) ∗ ũ(kx − rx , kt − rt )

end while
end while
f̃ (kx , kt ) = 1

2 tot_ f % f (u) = 1
2u

2

end while
if kt < k then

while kx = 0, k − (kt + 1) do
ũ(kx , kt + 1) = −kx + 1

kt + 1 ∗ f̃ (kx + 1, kt )

end while
end if

end while
end while

Appendix B: The algorithm of the differential transformation
procedure for Euler equations

Input: Ũ (kx , 0, 1 : 3), kx = 0, 1, · · · , k.
Output: Ũ (kx , kt , 1 : 3) and F̃(kx , kt , 1 : 3), for kt = 0, 1, · · · , k; kx = 0, 1, · · · , k−
kt .
while cells I j , j = 1, N do

g1 = 0
g1(0, 0) = 1/Ũ (0, 0, 1)
while kt = 0, k do

while kx = 0, k − kt do
tot_g1 = 0
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tot_g2 = 0
while rt = 0, kt do

while rx = 0, kx do
tot_g1 = tot_g1 + Ũ (rx , rt , 1) ∗ g1(kx − rx , kt − rt )
tot_g2 = tot_g2 + Ũ (rx , rt , 2) ∗ Ũ (kx − rx , kt − rt , 2)

end while
end while
g2(kx , kt ) = tot_g2
if kx + kt > 0 then

g1(kx , kt ) = −tot_g1/Ũ (0, 0, 1)
end if
tot_g3 = 0
tot_g4 = 0
while rt = 0, kt do

while rx = 0, kx do
tot_g3 = tot_g3 + g2(rx , rt ) ∗ g1(kx − rx , kt − rt )
tot_g4 = tot_g4 + Ũ (rx , rt , 2) ∗ g1(kx − rx , kt − rt )

end while
end while
g3(kx , kt ) = tot_g3
g4(kx , kt ) = tot_g4
g5 = 0
g6 = 0
while rt = 0, kt do

while rx = 0, kx do
g5 = g5 + g4(rx , rt ) ∗ Ũ (kx − rx , kt − rt , 3)
g6 = g6 + g4(rx , rt ) ∗ g3(kx − rx , kt − rt )

end while
end while
F̃(kx , kt , 1) = Ũ (kx , kt , 2)

F̃(kx , kt , 2) = (γ − 1) ∗ Ũ (kx , kt , 3) +
(
1 − γ−1

2

)
∗ g3(kx , kt )

F̃(kx , kt , 3) = γ ∗ g5 − 1
2 ∗ (γ − 1) ∗ g6

end while
if kt < k then

while kx = 0, k − (kt + 1) do

Ũ (kx , kt + 1, 1) = −kx + 1

kt + 1
∗ F̃(kx + 1, kt , 1)

Ũ (kx , kt + 1, 2) = −kx + 1

kt + 1
∗ F̃(kx + 1, kt , 2)

Ũ (kx , kt + 1, 3) = −kx + 1

kt + 1
∗ F̃(kx + 1, kt , 3)

end while
end if

end while
end while
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