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Abstract
Transportation problem is the prominent class of mathematical programming problems that
has a significant role in many practical transportation fields. Naturally, the transportation
parameters inherently involve uncertainty in real life caused by lacking of information, impre-
cision in judgment, environmental factors, and etc. Therefore, it is very valuable to handle
transportation problem under uncertainty aspect. The aim of this paper is to study the solution
of the rough multi-objective transportation problem by supposing that the decision makers
realize the transportation cost, availability and demand of the product as rough interval coef-
ficients. The proposed approach exploits the merits of the weighted sum method to find the
non-inferior solutions and it has two distinguishing features. Firstly, the proposed approach
characterizes the surely Pareto optimal solution through converting the lower interval into two
crisp transportation problems. Secondly, the proposed approach characterizes the possibly
Pareto optimal solution through decomposing the upper interval into two crisp transportation
problems. Furthermore, the expected nondominated value is applied to obtain the optimal
compromise solutions of multi-objective transportation problem in rough environment. The
presented approach is showed with rough multi-objective optimization problem as numerical
illustration, where a wide set of the expected compromise solution ranged from 15.75 to 25.8
can be obtained. Furthermore, the investigation on the rough multi-objective transportation
problem is conducted a real thought-provoking case study, where the optimal rough interval
of transportation cost ranged from 97 to 314 can be achieved. With the adoption of rough
environment modeling, a wide variate of optimal solutions can be achieved that can help
the decision maker to extract the best compromise alternative according to practical situa-
tions. This represents a novel contribution to the decision making field and profit satisfaction
models.
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1 Introduction

The classical transportation problem (TP) was originally developed by Hitchcock (1941).
The central concept is to transport the required goods from the supply points to the demand
points so as to minimize the total transportation costs with fixed parameters. The basic model
of a traditional TP consists of an objective function and two kinds of constraints, namely,
source constraint and destination constraint in the single objective. In this sense, Ezekiel
and Edeki (2018) proposed a modified Vogel’s approximation method to deal with the TP.
Dantzig and Thapa (2006) presented the Simplex method to the transportation problem as
the primal Simplex transportation method.

In some realistic transportation problems, the complexity of the social and economic
environment requires the explicit consideration of multiple objective functions other than
single objective function. This is denoted as a multi-objective programming problem. The
complexity of this problem is being in its incommensurate and conflict nature with one
another. In multi-objective transportation problems, the concept of optimal solution gives
place to the concept of non-dominated solution or the non-inferior solution (any solution
satisfies the constraints, such that the improvement in any objective function is attained
without sacrificing on at least one of the other objective functions).

Many authors have carried out investigations on multi-objective transportation problems
(MOTPs). Aneja and Nair (1979) described a method for solving the bicriteria TP. Iser-
mann (1979) introduced a new algorithm for solving the linear MOTP in which all the
non-dominated solutions are identified. Ringuest and Rinks (1987) introduced two interac-
tive algorithms to solve the linear MOTPs. Bit et al. (1992) proposed a new algorithm using
fuzzy programming technique for the solution of linear MOTPs. Amaliah et al. (2020) pro-
posed a novel heuristic method to find the initial basic feasible solution (IBFS) while solving
the TP. The introducedmethod aims to improve the accuracy of existingmethods and save the
computational time of finding the optimal solution of the TP. Karagul and Sahin (2020) devel-
oped a new approximation method, named Karagul–Sahin ApproximationMethod (KSAM),
to achieve an efficient IBFS while handling the TP. The KSAM is faster than the Vogel’s
Approximation method and the Northwest Corner method.

Naturally, MOTPs involve many parameters include transportation cost, availability, and
demand of the product, whose possible values may be assigned by the experts (Bera et al.
2018). In conventional MOTPs, such parameters are fixed at some values in an experimental
and/or subjective manner through the experts’ understanding of the nature of the parameters.
However, in the real-world applications, the coefficients of the transportation problems may
not be known precisely. It is due to the fact that some of the relevant data nearly always
made on the basis of information which, at least in part, is vague or imprecise data in nature
(Akilbasha et al. 2018). In this regard, researchers have been tried to consider the uncertainty
aspects with the TP (Majumder et al. 2019; Roy and Midya 2019; Biswas and Pal 2019;
Bagheri et al. 2020a; Ebrahimnejad 2016).

Apart from the previously existed deterministic aspect-based TP, many attentions have
been presented in the literature to address the uncertainty aspect-based TP with aim to handle
the practical situations in which the lack of information about the parameters is occurred;
for example, multi-objective non-linear fixed charge TP using multi-mode transport has been
solved through the crisp aspect and interval environments-based uncertainty aspect (Biswas
et al. 2019). Pratihar et al. (2020) studied TP using the interval type 2 fuzzy set regarding the
transportation cost, supply, and demand. Mahajan and Gupta (2019) formulated the MOTP
based on the fully intuitionistic fuzzy (FIF), where membership function is presented in
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different forms including linear, exponential and hyperbolic aspects. In this sense, the problem
is transformed to a crisp MOTP using accuracy function and then the solution is obtained
using the proposed algorithm. Mishra and Kumar (2020) proposed a new method to convert
an unbalanced FIF transportation problems (FIFTPs) to a balanced FIFTP. Srinivasan et al.
(2020) presented a new algorithm to deal with the fully fuzzy TP (FFTP) through assuming
that the decision maker (DM) is uncertain about the precise values regarding the demand,
supply and transportation costs that are represented through the triangular fuzzy numbers.
Uddin et al. (2021) solved the uncertain MOTP based on fuzzy linear membership function
using goal programming tactic. Bagheri et al. (2020a, b) addressed the uncertain MOTP
with fuzzy costs, where the fuzzy arithmetic data envelopment analysis (FADEA) approach
is conducted to solve the problem under hand. Adhami and Ahmad (2020) suggested a
novel Pythagorean hesitant fuzzy programming approach (PHFPA) to solve theMOTP under
uncertain cost, supply and demand parameters. Rizk-Allah et al. (2018) developed a novel
neutrosophic compromise programming approach (NCPA) that is inspired by neutrosophic
set terminology along with Zimmermann’s fuzzy programming for solving the MOTP. The
NCPA is characterized by the truth membership, indeterminacy membership and falsity
membership that are adopted to simulate the uncertainty aspect regarding each objective
function.

Although, the suggested approaches in the literature to deal with the uncertain frame-
works of the MOTP, a continuous effort is being made to explore other uncertainty-related
MOTP. In this sense, the vagueness occurrence can be represented as roughness framework
that is occurred due to vague information or approximate information about the parameters
of MOTP. Thus by motivating these facts, the present work proposes a novel approach to
solve MOTP under roughness tactic that represents all opinions of experts through the rough
intervals environment. In this sense, the supply, demand and transportation costs of MOTP
are specified imprecisely using rough intervals scenario, thus the proposed study is developed
to handle theMOTP under roughness tactic for the first time. The proposed study can serve as
a fruitful tool to address the realistic decisions through including the intersection and union
of the experts’ knowledge to represent the roughness tactic, where the intersection aspect
realizes the consensus of all experts’ knowledge, while union aspect realizes the respecting
any of the experts’ knowledge.

Recently, Rough set theory (RST)was proposed by Pawlak (1982) as a novelmathematical
tool to handle imprecise, vague and uncertain data (Hassanien et al. 2018; Wei and Liang
2019). In RST, any concept, a subset of the universe, is characterized based on defining the
lower and upper approximations. Using the lower and upper approximations, the knowledge
concealed in information systems canbe expressed in the formof rules. The basic advantage of
RST in information analysis is that no need any preliminary or additional information about
data (Pengfei et al. 2021). The ability to deal with the vagueness and imprecision in real
world problems has attracted many researchers to use RST in many fields including feature
selection (Jie et al. 2020), knowledge reduction (Li et al. 2013), rule extraction (Apolloni
et al. 2006), uncertainty reasoning (Düntsch and Gediga 1998), granular computing (Liang
and Qian 2006; José et al. 2020) and others (Niroomand et al. 2020; Li et al. 2016; Rizk-
Allah 2016; Sarra and Inès 2020; Sharma et al. 2020; Stankovic et al. 2019, Ebrahimnejad
2019, Ebrahimnejad and Verdegay 2018). On the other hand, there are some approaches
in the literature of TP using rough set techniques, for example Kundu (2015) proposed TP
under uncertain environments, where different uncertainty manipulationmechanisms such as
fuzzy types and rough variable are introduced to solve this problem, while Tao and Xu (2012)
proposed a new approach based on hybridizing the rough set theory with genetic algorithm to
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solve the solid TP, where the rough set is adopted to make the process of the decision-making
more flexible, then the genetic algorithm is implemented to obtain the optimal solution.

The aim of this paper is to study the solution of the rough multi-objective transportation
problem (RMOTP) under the rough interval scenario (RIS) regarding the transportation cost,
availability and demand. The RIS is inspired from the intersection of the experts’ knowledge
(consensus opinion) and the union of the experts’ knowledge (respecting opinion) to represent
the lower and upper approximation intervals, respectively. In this sense, the RMOTP is
decomposed into two sub-interval models, namely, lower interval model (LIM) and upper
intervalmodel (UIM). The proposed approach exploits themerits of theweighted summethod
to find the non-inferior solution and it has two distinguishing features. Firstly, the proposed
approach characterizes the surely Pareto optimal solution through converting the LIM into
two crisp sub-transportation problemusing the borders of this interval. Secondly, the proposed
approach characterizes the possibly Pareto optimal solution through decomposing the UIM
into two crisp sub-transportation problem using the borders of this interval. Furthermore,
an expected rule is presented to obtain the best compromise solution of the RMOTP. The
presented approach is showed with rough multi-objective optimization problem (RMOOP)
as numerical illustration and then applied on RMOTP a real thought-provoking case study
to illustrate its feasibility and robustness. This methodology represents a novel contribution
to the decision making field and profit satisfaction situations.

The novelty of the presented methodology is contained in developing a new formulation
for the MOTPs on the basis of rough set theory (RST) through reformulating the MOTPs’
parameters with rough interval form which is denoted as RMOTP. This representation unlike
the literature formulations, and thus this makes our work more challenging and novel.

The contributions of the presented methodology are as follows:

1. A new formulation for the MOTPs with RICs named RMOTP is introduced and solved.
2. The RMOTP is presented on the basis of the RST to simulate the impreciseness and

uncertainties.
3. The solution methodology operates by constructing two sub-model, lower interval model

(LIM) that simulates the consenting of all DMs’ information and upper interval model
(UIM) that means the respecting any of the DMs’ information, where each interval sub-
model is decomposed into two crisp sub-transportation problem using the borders of this
interval.

4. The proposed methodology is investigated and validated using an illustrative example as
well as the application on RMOTP.

5. The developed framework can serve as a great tool for DMs to address the real-life
situations that include consenting and opposing knowledge.

The frame of this paper is outlined as follows. In Sect. 2, we describe the preliminaries and
deductions regarding rough set concepts. The proposed approach for rough multi-objective
transportation problem (RMOTP) is explained in detail in Sect. 3. Section 4 provides an
illustrative numerical example and the real case study ofRMOTP to demonstrate the proposed
approach. Finally, the conclusion and future work are declared in Sect. 5.

2 Preliminaries

In this section, we give some definitions regarding the basics of real intervals, rough set theory
and rough intervals (Hamzehee et al. 2014; Luhandjula and Rangoaga 2014). Furthermore,
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Table 1 Model nomenclature and list of abbreviations

List of abbreviations List of symbols

RI Real intervals m Number of sources

LIM Lower interval model N Number of destinations

UIM Upper interval model K Number of objective functions

RST Rough set theory ZkR
The kth element of rough
interval objective function
vector

TP Transportation problem ([clki j , cuki j ], [c
lk
i j , cuki j ] ) The penalty of transportation in

rough interval representation
for kth objective

MOTPs Multi-objective transportation
problems

([ali , aui ], [a
l
i , aui ]) Rough interval for ith source

RICs Rough interval coefficients ([blj , buj ], [b
l
j , b

u
j ]) Rough interval for jth

destination

RMOTP Rough multi-objective
transportation problem

xi j Denotes the quantity transported
from ith source to jth
destination

RPOS Rough Pareto optimal solution �R
Rough set of all feasible
solutions

RMOOP Rough multi-objective
optimization problem

wk Weight value for kth objective

KSAM Karagul–Sahin Approximation
Method

W The set of weights

FIF Fully intuitionistic fuzzy E(z∗(w)) Expected non-dominated value
for the rough solution

FIFTPs FIF transportation problems X R
Rough interval

FFTP Fully fuzzy TP Xl , Xu Lower and upper
approximations intervals of
X R

FADEA Fuzzy arithmetic data
envelopment analysis

U Non-empty finite set of objects

PHFPA Pythagorean hesitant fuzzy
programming approach

Rn
The set of real nvectors

NCPA Neutrosophic compromise
programming approach

F Interval-valued function

IBFS Initial basic feasible solution X Convex set

DM Decision maker R The set of all real numbers

the nomenclature that summarizes the main characteristics of the presented work is given in
Table 1.

2.1 Real intervals (RI)

We denote by RI the family of all compact intervals in R (the set of all real numbers), i.e.,
RI � {[a, b] | a, b ∈ R and a ≤ b}.

For A ∈ RI , we write A � [a, b], where a and b are the lower and the upper bounds of
A, respectively (Hamzehee et al. 2014).
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The operations on RI used in this paper can be defined as follows: Let A � [a, b] and
B � [c, d] be two RIs. Then, we have:

1. Addition: A + B � [a + c, b + d] ,
2. Negation: −A � [−b,−a],
3. Subtraction: A − B � [min(a − c, b − d) , max (a − c, b − d) ].
4. Multiplication: k A � [ka, kb], k ≥ 0, k A � [kb, ka], k < 0.

The order relation (≤) is defined as follows: A ≤ B if and only if a ≤ c and b ≤ d .

2.2 Some properties of interval-valued function

Let X ⊂ Rn , then the interval-valued function F can be defined as F : X ⊂ Rn → RI ,
i.e.,F(x) � [ f l (x) , f u(x) ].

2.2.1 Convexity

Definition 1 (Luhandjula and Rangoaga 2014) Let F(x) be an interval-valued function
defined on a convex set X ⊂ Rn . Then, F(x) is said to be convex onX if F(λx1+(1−λ)x2) ≤
λF(x1) + (1 − λ)F(x2), for all 0 ≤ λ ≤ 1 and x1, x2 ∈ X .

Proposition 1 (Luhandjula and Rangoaga 2014) Let F(x) be an interval-valued function
defined on a convex set X ⊂ Rn . Then,

F(x) is convex on X if and only if f l (x) and f u(x) are convex real-valued function on X .
F(x) is convex on X if and only if α f l (x)+ (1−α) f u(x) is convex on X for all 0 ≤ α ≤ 1 .

The proof of Proposition 2.1 and detailsmay be found inLuhandjula andRangoaga (2014).

2.3 Rough set theory

Rough set theory and its extensions have been flourished in many fields (Sami et al. 2020;
Majid et al. 2020; Masoud 2020). It was proposed by Pawlak (1982) as a novel mathematical
tool to handle roughness, vague and uncertain data without any prior knowledge about the
data. Assume thatwe deal onlywith the available information provided by the data to generate
conclusion. Let U is a non-empty finite set of objects we are interested in, and let 	 be an
equivalence relation on U and 	(x) be the equivalence class of the relation which contains
x ∈ U . The equivalence relation 	 shall be referred as indiscernibility relation. For any
concept X ∈ U , the lower and upper approximations of X by 	 are described as follows:

	X � {x ∈ U | 	(x) ⊆ X} , (1)

	X � {x ∈ U | 	(x) ∩ X �� φ}. (2)

Clearly, the lower approximation 	X is the biggest definable set contained in X , and the
upper approximation 	X is the smallest definable set containing X . The boundary region of
rough set X is defined as

BN	(X ) � 	X − 	X . (3)

The boundary region represents the area which cannot be classified, neither to X nor to its
complement U − X . The boundary region becomes an empty set when the upper approxi-
mation and lower approximation of the definable set are equal. The graphical representation
of rough set is depicted in Fig. 1.
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Fig. 1 Schematic definitions of the rough set theory

2.4 Rough interval

A Rough interval can be considered as a qualitative value from vague concept defined on a
variable X in R, which is abstracted in the following definition.

Definition 2. The qualitative value XR is called a rough interval when one can assign two
closed intervals (Xl and Xu) on R, such that Xl ⊆ Xu . Moreover,

1. If x ∈ Xl then XR surely takes x (denoted by x ∈ XR).
2. If x ∈ Xu then XR possibly contains x.
3. If x /∈ Xu then XR surely not takes x (denoted by x /∈ XR).

where Xl and Xu are called lower and upper approximations intervals of XR
, respectively.

Further XR is denoted by XR � (Xl , Xu). Here Xl and Xu are conventional intervals, and
Xl ∈ Xu . When Xl � Xu ,XR becomes a conventional interval, i.e., XR � Xl � Xu .
Superscript R indicates that the corresponding parameters/decision variables show rough-
interval feature.

Definition 3 (Luhandjula and Rangoaga 2014) For a rough interval XR
, we have,

• XR ≥ 0, iff Xu ≥ 0 and Xl ≥ 0.
• XR ≤ 0, iff Xu ≤ 0 and Xl ≤ 0.

For example, consider a firm wants to plan the scheduling of products through use the
opinions of three experts for production time due to the uncertainty of parameters. Each expert
gives approximate production time of the product as follows: Expert 1: A � [3, 4], Expert
2: B � [2.5, 3.5]; Expert 3: C � [3, 5]. Therefore, the intersection of the experts’ opinions
(consensus opinion) represents the lower interval,Xl (i.e., assume that the intersection of the
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experts’ opinions has is an nonempty set), while the union of the experts’ opinions (respect
opinion) represents the upper interval, Xu , which lead to the rough interval XR that be
formulated as follows XR � ([3, 3.5], [2.5, 5]).

The operations on rough intervals can be defined as follows:

Let AR � (
Al , Au

) � ([
al , au], [al , au

])
and BR � (

Bl , Bu
) �

([
bl , bu], [b

l
, b

u
])

be

two rough intervals. Then, we have:

1. Addition: AR + BR � (
Al + Bl , Au + Bu

) �
([

al + bl , au + bu], [al + b
l
, au + b

u
])

.

2. Negation: −AR � (−Au,−Al
) � ([−au,−al ], [ − au,−al

])
.

3. Subtraction: AR − BR � (
Al − Bl , Au − Bu

) �([
al − bu, au − bl ], [al − b

u
, au − b

l
])

.

4. Intersection: AR ∩ BR � ([max{al , bl},min{au, bu}], [ max{al , bl},min{au, bu}]).
5. Union: AR ∪ BR � ([min{al , bl},max{au, bu}], [min{al , bl},max{au, bu}])..
6. Multiplication:

• k AR � ([
kal , kau

]
,
[
kal , kau

])
, k > 0,

• k AR � ([
kau, kal ], [kau, kal

])
, k < 0,

• AR × BR � ([min{albl , albu, aubl , aubu},max{albl , albu, aubl , aubu}],
[min{albl , albu, aubl , aubu},max{albl , albu, aubl , aubu}]).

3 The proposed roughmulti-objective transportation problem

In this section, the MOTP formulation in crisp and rough (RMOTP) environments are pre-
sented. In the RMOTP, the parameters are considered as rough intervals for the supply and
demand.

3.1 MOTP in crisp environment

The Linear MOTP can be formulated mathematically as

P1 : Min Zk(x) �
m∑

i�1

cki j xi j , k � 1, 2, . . . , K ,

subject to
n∑

j�1

xi j � ai , i � 1, 2, . . . ,m,

m∑

i�1

xi j � b j , j � 1, 2, . . . , n,

xi j ≥ 0∀i, j . (4)

where Z � {
Z1(x), Z2(x), . . . , ZK (x)

}
denotes the vector of the K objective functions,

and xi j defines the product amount to be shipped from ith source to jth destination. Here,
cki j defines the penalty or the cost for a unit of the product during the transporting from ith
source to jth destination at the kth criterion, and ai and b j define the availability at ith source
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and the demand at jth destination, respectively. It is assumed that ai > 0∀i, b j > 0∀ j and
cki j ∀i, j and ∑m

i�1 ai � ∑n
j�1 b j .

3.2 MOTP in rough environment (RMOTP)

In this section, the formulation of the MOTP under the rough environment (RMOTP) is
presented. In this sense, the parameters of the cost (penalty), availability and demand are
represented by rough interval scenario (RIS). The RIS is inspired from the intersection of the
experts’ knowledge (consensus opinion) and the union of the experts’ knowledge (respecting
opinion) to represent the lower and upper approximation intervals, respectively. In this sense,
the RMOTP is decomposed into two sub-interval models, namely, lower interval model
(LIM) and upper interval model (UIM). Afterwards the LIM is decomposed into two crisp
sub-transportation problem using the borders of this interval to characterize the surely Pareto
optimal solution and also the UIM is decomposed into two crisp sub-transportation problem
using the borders of this interval to characterize the possibly Pareto optimal solution. By this
way, rough Pareto optimal solution can be obtained.

Thus, P1 in rough environment can be formulated by P2 as follows:

P2 : MinZkR(x) �
m∑

i�1

n∑

j�1

([clki j , c
uk
i j ], [c

lk
i j , c

uk
i j ])x

R

i j , k � 1, 2, . . . , K ,

subject to
n∑

j�1

xRi j � (
[
ali , a

u
i ], [a

l
i , a

u
i

]
), i � 1, 2, . . . ,m,

m∑

i�1

xRi j �
([

blj , b
u
j ], [b

l
j , b

u
j

])
, j � 1, 2, . . . , n,

xRi j ≥ 0, i � 1, 2, . . . ,m, j � 1, 2, . . . , n,

with
m∑

i�1

([
ali , a

u
i ], [a

l
i , a

u
i

])
�

n∑

j�1

([
blj , b

u
j ], [b

l
j , b

u
j

])
, (5)

where RMOTP is the problem of minimizing K interval valued objective functions and
([clki j , c

uk
i j ], [c

lk
i j , cuki j ] ) is the uncertain cost for the transportation problem in rough inter-

val representation that can represent delivery time, quantity of goods delivered, etc.

([ali , a
u
i ], [a

l
i , a

u
i ]) and ([b

l
j , b

u
j ], [b

l
j , b

u
j ]) are rough intervals representing the source and

destination parameters, respectively.

Remark 1. From the properties of rough intervals given in Sect. 2, we have,

1. [cli j , c
u
i j ] ⊆ [cli j , c

u
i j ] ⇔ cli j ≤ cli j ≤ cui j ≤ cui j ,

2. [ali , a
u
i ] ⊆ [ali , a

u
i ] ⇔ ali ≤ ali ≤ aui ≤ aui ,

3. [blj , b
u
j ] ⊆ [b

l
j , b

u
j ] ⇔ b

l
j ≤ blj ≤ buj ≤ b

u
j .

for all k � 1, 2, ..., K , i � 1, 2, ...,m and j � 1, 2, ..., n.

Definition 4 x∗ ∈ XR is said to be rough Pareto optimal solution (RPOS) of P1 if there
is no x ∈ XR, such that ZkR(x) ≤ ZkR(x∗) for all k � 1, 2, . . . , K with at least one
k ∈ {1, 2, . . . , K }, such that ZkR(x) < ZkR(x∗).
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For characterizing the RPOS of P2, let us consider the following weighted problem (Tao
and Xu 2012; Hamzehee et al. 2014):

P3 : Min ZR(w) �
K∑

k�1

m∑

i�1

n∑

j�1

wk([c
lk
i j , c

uk
i j ], [c

lk
i j , c

uk
i j ])x

R

i j ,

subject to

x ∈ �R and for any w ∈ W �
{

w ∈ RK

∣
∣
∣
∣
∣

K∑

k�1

wk � 1, wk ≥ 0

}

(6)

The rough set of all feasible solutions of the transportation problem will be denoted by
�R asollows:

�R �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

j�1
xRi j � (

[
ali , a

u
i ], [a

l
i , a

u
i

]
), i � 1, 2, . . . ,m,

m∑

i�1
xRi j �

([
blj , b

u
j ], [b

l
j , b

u
j

])
, j � 1, 2, . . . , n,

xRi j ≥ 0, i � 1, 2, . . . ,m, j � 1, 2, . . . , n,
m∑

i�1

([
ali , a

u
i ], [a

l
i , a

u
i

]) �
n∑

j�1

([
blj , b

u
j ], [b

l
j , b

u
j

])

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)

Definition 5 For given w∗ ∈ W , the solution x ∈ XR
is said to be a rough feasible solution,

if it satisfies the feasible region �R.

Definition 6 For given w∗ ∈ W , the a rough feasible solution x∗ ∈ XR, is said to be a rough
optimal solution of the problem P2 if the following rule is satisfied:

K∑

k�1

m∑

i�1

n∑

j�1

wk

([
clki j , c

uk
i j

]
,
[
clki j , c

uk
i j

])
x∗R
i j

≤
K∑

k�1

m∑

i�1

n∑

j�1

wk

([
clki j , c

uk
i j

]
,
[
clki j , c

uk
i j

])
xRi j ∀i � 1, 2, . . . ,m, j � 1, 2, . . . , n.

Theorem 1 The rough optimal solution of the problem P3 can be characterized by finding
the solutions of the following two sub-model, lower interval model (LIM) named Model 1
and upper interval model (UIM) Model 2.

• Model 1: LIM
The LIM model is characterized by taking the lower interval of the problem P3 that is
defined as P4:

P4 : Min Zl(w) �
K∑

k�1

m∑

i�1

n∑

j�1

wk([c
lk
i j , c

uk
i j ])x

l
i j

subject to
n∑

j�1

xli j � (
[
ali , a

u
i

]
), i � 1, 2, . . . ,m,

m∑

i�1

xli j �
([

blj , b
u
j

])
, j � 1, 2, . . . , n,
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xli j ≥ 0, i � 1, 2, . . . ,m, j � 1, 2, . . . , n,

m∑

i�1

([ali , a
u
i ]) �

n∑

j�1

([blj , b
u
j ]),

and for any w ∈ W �
{

w ∈ RK

∣
∣
∣∣
∣

K∑

k�1

wk � 1, wk ≥ 0

}

. (9)

Theorem 2 Consider the constraints of LIM model (P4), where xi j ≥ 0, i �
1, 2, . . . ,m, j � 1, 2, . . . , n. Then,

∑n
j�1 xi j � ali ;

∑m
i�1 xi j � blj and

∑n
j�1 xi j � aui ;

∑m
i�1 xi j � buj are lower and upper approximations of the feasi-

ble range, respectively.

Theorem 3 Consider LIM model (P4). Then, for any given feasible solution xi j ≥ 0, i �
1, 2, ...,m, j � 1, 2, ..., n, we have,

K∑

k�1

m∑

i�1

n∑

j�1

wk(c
lk
i j )xi j <

K∑

k�1

m∑

i�1

n∑

j�1

wk(c
uk
i j )xi j (10)

Proof The proof is trivial by the fact that xi j ≥ 0, for all i � 1, 2, ...,m, and j �
1, 2, . . . , n.

Definition 7 For a given feasible solution x ∈ Xl of LIM model (P4), the
value

∑K
k�1

∑m
i�1

∑n
j�1 wk(clki j )x

l
i j is called the most favorable value, while

∑K
k�1

∑m
i�1

∑n
j�1 wk(cuki j )x

l
i j is the least favorable value of the cost function.

Theorems 2, 3 and Definition 4 allow obtaining the best and worst optimal solutions of the
LIM model. In fact, it is done by transforming the original LIM model into two classical
TPs. We call them TP lower for the lower interval (TPLL) and TP upper for the lower
interval (TPUL), where the best optimal solution xl of the lower interval solution Xl is
found by solving the following form:

TPLL : Min zl (w) �
K∑

k�1

m∑

i�1

n∑

j�1

wk

(
clki j

)
xli j ,

subject to
n∑

j�1

xi j � ali , i � 1, 2, . . . ,m,

m∑

i�1

xi j � blj , j � 1, 2, . . . , n,

xli j ≥ 0, i � 1, 2, . . . ,m, j � 1, 2, . . . , n, (11)

with
m∑

i�1

ali �
n∑

j�1

blj and for any w ∈ W �
{

w ∈ RK

∣∣∣∣∣

K∑

k�1

wk � 1, wk ≥ 0

}

.

In addition, the worst optimal solution xl of the lower interval solution Xl is found by
solving the following form:

TPUL : Min zl (w) �
K∑

k�1

m∑

i�1

n∑

j�1

wk

(
cuki j

)
xi j ,
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subject to
n∑

j�1

xi j � aui , i � 1, 2, . . . ,m,

m∑

i�1

xi j � buj , j � 1, 2, . . . , n,

xli j ≥ 0, i � 1, 2, . . . ,m, j � 1, 2, . . . , n, (12)

with

m∑

i�1

aui �
n∑

j�1

buj and for any w ∈ W �
{

w ∈ RK

∣
∣
∣
∣
∣

K∑

k�1

wk � 1, wk ≥ 0

}

.

Indeed, TPLL (TPUL) uses the least (most) favorable value of the lower interval cost value.
(Zl (w) � [zl (w), zu(w)]) and lower interval solution Xl is obtained as Xl � [xl , xl ] that
is named surely Pareto optimal range.

• Model 2: UIMTheUIMmodel is characterized by taking the upper interval of the problem
P3 that is defined as P5:

P5 : Min Zu(w) �
K∑

k�1

m∑

i�1

n∑

j�1

wk

(
[clki j , cuki j ]

)
xui j ,

subject to
n∑

j�1

xui j � ( [ali , a
u
i ] ), i � 1, 2, . . . ,m,

m∑

i�1

xui j �
(
[b

l
j , b

u
j ]

)
, j � 1, 2, . . . , n,

xui j ≥ 0, i � 1, 2, . . . ,m, j � 1, 2, . . . , n,

with
m∑

i�1

([ali , a
u
i ]) �

n∑

j�1

( [b
l
j , b

u
j ])

and for any w ∈ W �
{

w ∈ RK

∣∣
∣
∣∣

K∑

k�1

wk � 1, wk ≥ 0

}

. (13)

By implementing Theorems 2, 3 andDefinition 4 inUIMmodel, the best andworst optimal
solutions of theUIMmodel can be computed. In fact, it is done by transforming the original
UIM model into two classical TPs, where we call them TP lower for the upper interval
(TPLU) and TP upper for the lower interval (TPUU).
where the best optimal solution xu of the upper interval solution Xu is found by solving
the following aspect:

TPLU : Min zu(w) �
K∑

k�1

m∑

i�1

n∑

j�1

wk(c
lk
i j )x

u
i j ,

subject to
n∑

j�1

xi j � ali , i � 1, 2, . . . ,m,

m∑

i�1

xi j � b
l
j , j � 1, 2, . . . , n,
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xli j ≥ 0 , i � 1, 2, . . . ,m, j � 1, 2, . . . , n,

with

m∑

i�1

ali �
n∑

j�1

ali and for any w ∈ W �
{

w ∈ RK

∣
∣
∣
∣
∣

K∑

k�1

wk � 1, wk ≥ 0

}

. (14)

In addition, the worst optimal solution xu of the lower interval solution Xu is found by
solving the following form:

TPUU : Min zl (w) �
K∑

k�1

m∑

i�1

n∑

j�1

wk(c
uk
i j )xi j ,

subject to
n∑

j�1

xi j � aui , i � 1, 2, . . . ,m,

m∑

i�1

xi j � b
u
j , j � 1, 2, . . . , n,

xli j ≥ 0, i � 1, 2, . . . ,m, j � 1, 2, . . . , n,

with

m∑

i�1

aui �
n∑

j�1

b
u
j and for any w ∈ W �

{

w ∈ RK

∣∣∣∣∣

K∑

k�1

wk � 1, wk ≥ 0

}

. (15)

Indeed, TPLU (TPUU) uses the least (most) favorable value of the upper interval cost value
(Zu(w) � [zl (w), zu(w)]) and upper interval solution Xu is obtained as Xu � [xu, xu]
that is named possibly Pareto optimal range.
As discussed in Sect. 2, let Zl (w) � [zl (w), zu(w)] (Zu(w) � [zl (w), zu(w)]). Then, for
some w ∈ W the expected non-dominated value, E(z∗(w)), for P2 is obtained from the
following relation (Dash and Mohanty 2013):

E(z∗(w)) � 1

4
[zl (w) + zu(w) + zl (w) + zu(w)]. (16)

Definition 8 1. If E(z∗(w)) ∈ [zl (w), zu(w)], then E(z∗(w)) is surely non-dominated
solution of P3.

2. If E(z∗(w)) ∈ [zl (w), zu(w)] − [zl (w), zu(w)], then E(z∗(w)) is possibly non-
dominated solution of P3.

3. If E(z∗(w)) /∈ [zl (w), zu(w)], then E(z∗(w)) is surely dominated solution of P3.

Following the above discussion, the algorithm for the proposed approach, in this paper,
for solving RMOTP is given in Algorithm 1.
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4 Simulation results

In this section, the proposed methodology is investigated and validated by introducing a
counter example for rough multi-objective optimization problem (RMOOP) and followed by
the case study, rough multi-objective transportation problem (RMOTP).

4.1 Numerical illustration

The proposed methodology is illustrated via the numerical RMOOP as follows:

Max Z1(x) � ([1 , 3], [0 , 5] )x1 + ([1 , 2], [1 , 3] )x2
Max Z2(x) � ([3 , 5], [2 , 6] )x1 + ([2 , 6], [1 , 7] )x2
Subject to :

([2 , 3], [1 , 3] )x1 + ([2 , 4], [1 , 5] )x2 ≤ ([7 , 9], [5 , 10] )

([2, 3], [1 , 5] )x1 + ([1 , 2], [0 , 6] )x2 ≤ ([5, 8], [3 , 9] )

x1, x2 ≥ 0.

First, the rough multi-objective optimization problem (RMOOP) is decompose into four
classical linear programming problems according LIM and UIM models as in Table 2, then
each problem of the RMOOP is combined into single objective problem (SOP) through
the weighted sum method. Different weights of objective functions are imposed and the
corresponding Pareto optimal solutions in the decision space are obtained, as shown in Table
3.

Table 3 shows that, the non-dominated solutions (i.e., zl (w), zu(w), zl (w), zu(w)) for the
four problems PLL,PUL,TPLU and TPUU with the corresponding Pareto set of solutions for
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Table 2 Decomposition of the
RMOOP

Model Problem 1 (PLL) Problem 2 (PUL)

LIM model Max Z1(x) � x1 + x2
Max Z2(x) � 3x1 + 2x2
Subject to :

2x1 + 2x2 ≤ 7

2x1 + x2 ≤ 5

x1, x2 ≥ 0

Max Z1(x) � 3x1 + 2x2
Max Z2(x) � 5x1 + 6x2
Subject to :

3x1 + 4x2 ≤ 9

3x1 + 2x2 ≤ 8

x1, x2 ≥ 0

Problem 3 (TPLU) Problem 4 (TPUU)

UIM model Max Z1(x) � 0x1 + x2
Max Z2(x) � 2x1 + x2
Subject to :

x1 + x2 ≤ 5

x1 + 0x2 ≤ 3

x1, x2 ≥ 0

Max Z1(x) � 5x1 + 3x2
Max Z2(x) � 6x1 + 7x2
Subject to :

3x1 + 5x2 ≤ 10

5x1 + 6x2 ≤ 9

x1, x2 ≥ 0

different weights. Table 4 demonstrates that the Pareto optimal rough intervals, where for
problemsPLL,PUL,we can achieve the surely Pareto optimal range for taking differentweights
for the objective functions, while the possibly Pareto optimal range for problems TPLU and
TPUU is determined by taking different weights for the objective functions. In addition, Table
4 provides the surely, possibly as rough optimal ranges. Additionally, to help the decision
maker to extract the “preferred” solution from the surely and possibly Pareto optimal ranges,
expected non-dominated solution is introduced, as shown in Table 4, where the first four
expected values lie in the surely range, while the remain values lie the possibly range.

Furthermore, the bounds of the surely and possibly Pareto optimal range is depicted in
Fig. 2 and denoted by zl (lower for the lower objective) and zu (upper for the lower objective),
respectively. In addition, the bounds of the possibly Pareto optimal range is depicted in Fig. 2
and denoted by zl (lower for the upper objective) and zu(upper for the upper objective),
respectively.

4.2 Case study: RMOTP

This section is introduced to validate the proposed approach for solving RMOTP, where the
cost functions’ coefficients Ck,R, the source parameters aR, and destination parameters bR

are represented as rough interval form. The RMOTP can be formulated as follows:

Min ZR

1 (x) �
m∑

i�1

n∑

j�1

CR

1 x
R

i j

Min ZR

2 (x) �
m∑

i�1

n∑

j�1

CR

2 x
R

i j

n∑

j�1

xRi j � aRi , i � 1, 2, . . . ,m,
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Table 4 Surely, possibly and rough optimal ranges

w1 w2 The surely Pareto
optimal range [zl ,zu ]

The possibly Pareto
optimal range [zl ,zu ]

The rough Pareto
optimal range
([zl ,zu ],[zl ,zu ])

The expected
solution E(z∗)

0 1 [5, 27] [1.2, 70] ([5, 27], [1.2, 70]) 25.8

0.1 0.9 [4.67, 25.2] [18, 66] ([4.67, 25.2], [1.08, 66]) 24.24

0.2 0.8 [4.4, 23.4] [0.96, 62] ([4.4, 23.4], [0.96, 62]) 22.69

0.3 0.7 [4.1, 21.6] [0.84, 58] ([4.1, 21.6],[0.84, 58]) 21.135

0.4 0.6 [3.8, 19.8] [0.72, 55.8] ([3.8, 19.8], [0.72, 55.8]) 20.03

0.5 0.5 [3.5, 18] [0.6, 54.5] ([3.5, 18],[0.6, 54.5]) 19.15

0.6 0.4 [3.2, 16.9] [0.5,53.2] ([3.2, 16.9], [0.5,53.2]) 18.45

0.7 0.3 [2.9, 15.8] [0.5,51.9] ([2.9, 15.8], [0.5,51.9]) 17.77

0.8 0.2 [ 2.6, 14.7] [0.5,50.6] ([ 2.6, 14.7], [0.5,50.6]) 17.1

0.9 0.1 [ 2.3, 13.6] [0.5,49.3] ([ 2.3, 13.6], [0.5,49.3]) 16.425

1 0 [2, 12.5] [0.5,48] ([2, 12.5], [0.5,48]) 15.75
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Fig. 2 Rough non-dominated solutions with different weights

m∑

i�1

xRi j � bRi , j � 1, 2, . . . , n,

n∑

j�1

aRi �
m∑

i�1

bRi , xRi j ≥ 0, i � 1, 2, . . . ,m, j � 1, 2, . . . , n.

Rough interval coefficients CR

1 and CR

2 for both objectives are defined as follows:

CR

1 �
⎛

⎜
⎝

([1, 2], [0, 3]) ([1, 3], [0, 4]) ([5, 9], [4, 10]) ([4, 8], [3, 9])

([1, 2], [0, 3]) ([7, 10], [6, 11]) ([2, 6], [1, 7]) ([3, 5], [2, 6])

([7, 9], [6, 10]) ([7, 11], [6, 12]) ([3, 5], [2, 6]) ([5, 7], [4, 8])

⎞

⎟
⎠,

CR

2 �
⎛

⎜
⎝

([3, 4], [2, 5]) ([3, 5], [2, 6]) ([7, 11], [6, 12]) ([6, 10], [5, 11])

([3, 4], [2, 5]) ([9, 12], [8, 13]) ([4, 8], [3, 9]) ([5, 7], [4, 8])

([9, 11], [8, 12]) ([9, 13], [8, 14]) ([5, 7], [4, 8]) ([7, 9], [6, 10])

⎞

⎟
⎠.
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Table 5 Coefficients, source and destination parameters forTPLL and TPUL

TPLL Source TPUL Source

2 2 6 5 7 3 4 10 9 9

2 8 3 4 17 3 11 7 6 21

8 8 4 6 16 10 12 6 8 18

Destination 10 2 13 15 40 Destination 12 4 15 17 48

In addition, the rough source parameters aR, and rough destination parameters bR are
defined as follows:

aR1 � ([7, 9], [6, 10]), aR2 � ([17, 21], [16, 22]), aR3 � ([16, 18], [15, 19])

bR1 � ([10, 12], [9, 13]), bR2 � ([2, 4], [1, 5]), bR3 � ([13, 15], [12, 16]),

bR4 � ([15, 17], [15, 17]).

First, we formulate the weighted sum problem to combine the two costs into single cost
function as follows:

CR � w1C
R

1 + w2C
R

2 .

Let (w1, w2) � (0.5, 0.5), we obtain CR as

CR �
⎛

⎝
([2, 3], [1, 4]) ([2, 4], [1, 5]) ([6, 10], [5, 11]) ([5, 9], [4, 10])
([2, 3], [1, 4]) ([8, 11], [7, 12]) ([3, 7], [2, 8]) ([4, 6], [3, 7])

([8, 10], [7, 11]) ([8, 12], [7, 13]) ([4, 6], [3, 7]) ([6, 8], [5, 9])

⎞

⎠.

Now, we are going to formulate LIM and UIM for the RMOTP. Then the LIM is spited
into two crisp TPs, where the coefficients, source and destination parameters for TPLL and
TPUL are illustrated in Table 5 as follows:

The TPLL model is formulated as follows.

Min Z � 2x11 + 2x12 + 6x13 + 5x14 + 2x21 + 8x22 + 3x23 + 4x24
+ 8x31 + 8x32 + 4x33 + 6x34

Subject to :

x11 + x12 + x13 + x14 � 7

x21 + x22 + x23 + x24 � 17

x31 + x32 + x33 + x34 � 16

x11 + x21 + x31 � 10

x12 + x22 + x32 � 2

x13 + x23 + x33 � 13

x14 + x24 + x34 � 15

xi j ≥ 0 ∀i, j .
Apply the simplex method to solve TPLL model. The solution for TPLL is obtained as

x LLi j � {5, 2, 0, 0; 5, 0, 0, 12; 0, 0, 13, 3} and the corresponding objective (cost) function
value for TPLL is obtained as zl (w) � 142.
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Table 6 Coefficients, source and destination parameters forTPLU and TPUU

TPUL Source TPUU Source

1 1 5 4 6 4 5 11 10 10

1 7 2 3 16 4 12 8 7 22

7 7 3 5 15 11 13 7 9 19

Destination 9 1 12 15 37 Destination 13 5 16 17 51

Table 7 Rough Pareto optimal transported amount

D1 D2 D3 D4

S1 ([5, 5], [5, 5 ]) ([2, 4], [1, 5 ]) ([0, 0], [0, 0 ]) ([0, 0], [0, 0 ])

S2 ([5, 7], [4, 8 ]) ([0, 0], [0, 0 ]) ([0, 0], [0, 0 ]) ([12, 14], [12, 14 ])

S3 ([0, 0], [0, 0 ]) ([0, 0], [0, 0 ]) ([13, 15], [12, 16 ]) ([3, 3], [3, 3 ])

In addition, the TPUL model is formulated as follows:

Min Z � 3x11 + 4x12 + 10x13 + 9x14 + 3x21 + 11x22 + 7x23 + 6x24
+ 10x31 + 12x32 + 6x33 + 8x34

Subject to :

x11 + x12 + x13 + x14 � 9

x21 + x22 + x23 + x24 � 21

x31 + x32 + x33 + x34 � 18

x11 + x21 + x31 � 12

x12 + x22 + x32 � 4

x13 + x23 + x33 � 15

x14 + x24 + x34 � 17

xi j ≥ 0 ∀i, j .

In addition, the simplex is implemented for the TPUL problem and the solution for the
TPUL is given by xUL

i j � {5, 4, 0, 0; 7, 0, 0, 14; 0, 0, 15, 3}, where the objective (cost)
function value for TPUL becomes zu(w) � 250.

Similarly, the UIM is spited into two crisp TPs, where the coefficients, source and des-
tination parameters for TPLU and TPUU are illustrated in Table 6 and the models for TPLU
and TPUU is formulated as TPLL and TPUL models.

We solve the TPLU and TPUU problems with the simplex and the optimal solution for the
TPLU and TPUU problems are as follows: xUL

i j � {5, 1, 0, 0; 4, 0, 0, 12; 0, 0, 12, 3} and
xUU
i j � {5, 5, 0, 0; 8, 0, 0, 14; 0, 0, 16, 3}, where the cost functions for TPUL and TPUU
are zl (w) � 97 and zu(w) � 314, respectively.

The rough Pareto optimal transported amount for the RMOTP is illustrated in Table 7.
Furthermore, by solving the roughmodel of transportationproblem,weobtain a rough interval
cost (ZR � ([142, 250], [97, 314])). But in real applications the decision maker shall prefer
one set of solution rather being confused with a rough interval cost. In this section, we
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proposed one solution as a compromise solution by calculating the expected value for the
decision makers, that is obtained by Eq. (16) as E(z∗(w)) � 200.75.

4.3 Discussion

The proposed approach is implemented on rough multi-objective optimization problem as
numerical illustration, where different weights are presented to exhibit the rough Pareto
optimal range that comprises the surely Pareto optimal range as the lower approximation
interval and the possibly Pareto optimal range as the upper approximation interval. In this
context, a wide set of the expected compromise solution ranged from 15.75 to 25.8 can
be obtained. It is evident that in view of profit and workers satisfaction, the proposed
model is more fruitful for the decision maker (DM) as it provide different optimal suits
and thus can facilities the choice’ mission for the DM. Furthermore, the investigation on
the RMOTP is conducted a real thought-provoking case study, where the unit transporta-
tion cost, the supply, and destination are represented by rough interval form. The RMOTP
is decomposed through two sub-model, namely, LIM and UIM. Firstly, the parameters of
the LIM are illustrated in Table 5 then the optimal results for these models are obtained.
In this context, the LIM is decomposed to TPLL and TPUL, where the solution for TPLL is
obtained as x LLi j � {5, 2, 0, 0; 5, 0, 0, 12; 0, 0, 13, 3} with the corresponding objective

(cost) function value as zl (w) � 142, while the solution for the TPUL is obtained as xUL
i j �

{5, 4, 0, 0; 7, 0, 0, 14; 0, 0, 15, 3}with the objective (cost) function value as zu(w) � 250.
It is observed that the surely Pareto optimal range of the cost has been obtained between 142
and 250. Secondly, the parameters for the UIM are illustrated in Table 6, and then the results
for UIM model are obtained by solving the TPLU and TPUU problems, where the solu-
tions are obtained as xUL

i j � {5, 1, 0, 0; 4, 0, 0, 12; 0, 0, 12, 3} with corresponding cost

zl (w) � 97 for TPLU problem and xUU
i j � {5, 5, 0, 0; 8, 0, 0, 14; 0, 0, 16, 3}with the cor-

responding cost function zu(w) � 314 for TPUU problem. Thus the possibly Pareto optimal
range of the transportation cost has been obtained between 97 and 314. Therefore, theses
intervals can represent the rough Pareto optimum value (ZR � ([142, 250], [97, 314]). In
addition, the transported amount from the sources to destination as a rough Pareto optimal
solution is shown in Table 7. In addition, rough Pareto optimal solution for each model is
depicted for TPLL,TPUL,TPUL and TPUU models to demonstrate the rough interval for the
proposed models. In addition, the optimal transported amounts for the RMOTP models are
depicted in Fig. 3. In this sense, the decompose visualization of TPLL,TPUL,TPUL and TPUU
models can assist the decisionmaker to decide the adequate transported amount for candidate
situation. Furthermore, the expected value is obtained as a compromise solution. Finally, the
proposed algorithm has been demonstrated its robustness in handling impreciseness of the
mathematical modeling (occurring due to environmental fluctuations or due to instabilities in
the global market and the rapid fluctuations of prices) and has been empirically approved its
facility to the decision makers who are handling cost, availability and demand are in rough
interval parameters.

5 Conclusion

The present paper proposes an algorithm for rough multiobjective transportation problem
(RMOTP) in which the cost of transportation, the source and destination parameters have
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Fig. 3 Optimal transported amount for the RMOTP models

been considered as rough interval parameters. The systematic procedure of the proposed
incorporates the weighted sum method to find the non-inferior solution. Then two models
are introduced, namely, LIM and UIM. The LIM characterizes the surely Pareto optimal
solution through converting the lower interval into two deterministic transportation prob-
lems. The UIM characterizes the possibly Pareto optimal solution through decomposing
the upper interval into two deterministic transportation problems. Furthermore, expected
non-dominated value is applied to derive optimal compromise solutions of multi-objective
transportation problem in rough environment. The main benefits of the proposed methodol-
ogy can be observed as follows:

1. It has practicality vision by incorporating the classicalmultiobjective transportation prob-
lem under the rough interval concept to cope with the impreciseness and vagueness
aspects.

2. It can decompose the RMOTP into four crisp sub-model,TPLL, TPUL, TPUL and TPUU.
3. It can asset the hesitant decision maker to make a right decision by introducing expected

value measure to obtain the best compromise solution.
4. The results of theRMOTPmodel have a practicalmeaningful and demonstrate the validity

of the proposed approach.
5. A wide operational domain can be achieved by integrating different values for weights

interactively.
6. It can exhibit a new insight for rough multiobjective transportation problem.
7. It can present adequate way to build an optimization models for real-world situations in

which uncertainty are imposed by considering both of the intersection of the experts’
information (consensus opinion) and the union of the experts’ information (respect opin-
ion).

The main advantage of the proposed study lies behind the possibility of considering
the different and multiple sources of uncertainty that engaged from different experts. In the
context, the consensus of all experts’ knowledge, and respecting anyof the experts’ knowledge
are represented as a rough interval fashion. In this context, the rough MOTP is formulated
and solved under the concepts of Pareto optimal solution through decomposing the original
problem into four sub-problem. In this sense, a relaxed solution space is visualized that is
fruitful for decision maker to decide the more realistic solution among the obtained solution
space.However, the proposed framework needs to be investigated inmultiple cases, especially
for high-dimensional problems to prove its scalability. In addition, the fully roughMOTP that
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having all parameters and the variables as a rough interval fashion should be investigated in the
area of transportation sectors. Future work can focus on extending the proposed approach in
different optimization natures such as assignment problems, bi-level programming, geometric
programming and fractional programming under the rough set theory aspects.
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